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Abstract

Cough is an important symptom in children with acute and chronic respiratory disease. Daily 

cough is common in Cystic Fibrosis (CF) and increased cough is a symptom of pulmonary 

exacerbation. To date, cough assessment is primarily subjective in clinical practice and research. 

Attempts to develop objective, automatic cough counting tools have faced reliability issues in 

noisy environments and practical barriers limiting long-term use. This single-center pilot study 

evaluated usability, acceptability and performance of a mechanoacoustic sensor (MAS), previously 

used for cough classification in adults, in 36 children with CF over brief and multi-day periods 

in four cohorts. Children whose health was at baseline and who had symptoms of pulmonary 

exacerbation were included. We trained, validated, and deployed custom deep learning algorithms 

for accurate cough detection and classification from other vocalization or artifacts with an overall 

area under the receiver-operator characteristic curve (AUROC) of 0.96 and average precision 

(AP) of 0.93. Child and parent feedback led to a redesign of the MAS towards a smaller, 

more discreet device acceptable for daily use in children. Additional improvements optimized 

power efficiency and data management. The MAS’s ability to objectively measure cough and 

other physiologic signals across clinic, hospital, and home settings is demonstrated, particularly 

aided by an AUROC of 0.97 and AP of 0.96 for motion artifact rejection. Examples of cough 

frequency and physiologic parameter correlations with participant-reported outcomes and clinical 

measurements for individual patients are presented. The MAS is a promising tool in objective 

longitudinal evaluation of cough in children with CF.

I. INTRODUCTION

Cystic fibrosis (CF) is a genetic disorder resulting in abnormal epithelial ion transport in 

multiple organs[1]. In the lung, dehydration of the airway mucus layer causes obstruction, 

infection, inflammation, progressive loss of lung function, and reduced life expectancy[2, 3]. 

Chronic cough is often a presenting symptom in CF in early childhood and reduces quality 
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of life[4, 5]. Increasing cough frequency or changes in cough character are sentinel signs of 

pulmonary exacerbation in CF, driving pulmonary function decline and mortality[3, 4, 6, 7].

While clinical assessment relies on specific cough characteristics, pediatric history-taking 

faces challenges due to intermittent parental observation and subjective interpretation 

[8–10]. Despite being used as a disease marker in clinical trials, validated diaries and 

existing devices for cough measurement are underutilized, poorly accepted[8], and have low 

association with objective lung function measurements[11]. There is significant unmet need 

to precisely measure the frequency, circadian timing, characteristics and severity of cough in 

children for acute and chronic disease management [9].

Acoustic analysis and cough recognition algorithms have been developed for use in CF 

and other lung diseases[9, 10, 12, 13]; state of the art techniques, limitations, and future 

directions are thoroughly reviewed[9]. Briefly, most methods involve recording cough 

sounds and analyzing the sound waveform to detect patterns or changes that may indicate 

increased airway secretions and/or airway obstruction. Existing devices generally include 

a microphone and include the Hull Automatic Cough Counter[14], PulmoTrack-CC[15], 

the Leicester Cough Monitor[16] and VitaloJak[17]. Limitations of free-field microphone 

techniques include difficulty distinguishing one individual’s cough from that of others’ and 

from ambient noise, leading to overcounting and high false-positive rate as demonstrated 

in external validation studies[9]. Several techniques have attempted to add additional 

sensors, such as a pneumogram belt (PulmoTrack-CC) or The LifeShirt[18] which combined 

many different sensors to increase specificity in the ambulatory setting but is no longer 

commercially available. The LifeShirt and other multi-contact approaches[19] have comfort 

and usability issues that require active device maintenance, interfering with normal activity. 

Only the PulmoTrack-CC and the Leicester Cough Monitor have achieved widespread use. 

Complicated data download tasks additionally reduced usability in these devices, a major 

barrier to their use in children.

Few cough monitoring approaches are specifically studied pediatric populations. One aimed 

at developing and assessing usability of an asthma monitoring device in adolescents[20] 

found that ambient sounds limited the reliability of their approach, and the wired 

microphone limited usability. Another approach achieved good performance using stationary 

microphones in a limited hospital setting but did not address ambulatory monitoring[21]. 

More recent work in pediatric cough detection using smartphone microphones had a 

significant decrease to their sensitivity during validation in clinical environments where 

proximity of the microphone to the patient could not be guaranteed[22].

Advances in materials science and biomedical engineering have enabled development of 

fully wireless, skin-like devices designed for high-quality, convenient, and continuous 

measurement of physiological signals[23–28]. Mechanoacoustic sensors (MAS) using a 

triaxial accelerometer can simultaneously measure physiological functions such as heart 

valve closure, skeletal muscle contraction, and vocal fold vibration, yielding mechanical 

waves and signals in the frequency of less than 1 Hz (body orientation, chest wall motion) to 

over 1,000 Hz (vocal and respiratory sounds). The direct skin interface reduces the effect of 

ambient noise on the measurements, greatly improving data quality and participant privacy.
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We present initial studies of an MAS, repurposed from prior studies[23–26], for use in 

detecting and monitoring cough in children with CF. We describe how the sensor was 

studied, miniaturized and made more discreet to be acceptable to children and their parents. 

We report how custom machine learning algorithms to detect cough were trained, validated, 

and deployed on data collected from children with CF. Finally, we describe how the sensor 

was studied over multiple days in children with CF when health was at baseline or during 

pulmonary exacerbations, demonstrating the sensor’s ability to objectively measure cough 

and other physiologic signals in the home and hospital setting. We also describe our 

experience monitoring cough with simultaneous collection of validated participant-reported 

outcome tools and clinical measurements.

II. METHODS

A. Study Design

This single-center pilot study was designed to determine if a small, wearable 

mechanoacoustic sensor 1) could detect cough and distinguish cough from other vocal and 

confounding signals at rest and during activities 2) required modification to be acceptable 

and usable to the children with CF and their parents/guardians and 3) could generate 

longitudinal cough and vital sign data in clinical, home and community settings. Children 

and teenagers with CF were studied under four clinical protocols to train a cough algorithm 

and study sensor performance under a variety of conditions. The study was performed at 

Ann & Robert H. Lurie Children’s Hospital of Chicago. The Institutional Review Board at 

Ann & Robert H. Lurie Children’s Hospital of Chicago approved the study protocol (IRB 

2020–3743).

We recruited participants by telephone, secure electronic communication, or in-person in the 

clinic or hospital. Consent was obtained in-person or via an electronic consent platform after 

the study objectives, procedures, potential benefits and risks were described in a clear and 

understandable manner, and all questions were answered. Participants who were 18 years 

old, or parents or legal guardians, provided written informed consent. Children aged 12–17 

years old provided written assent.

Inclusion criteria were a diagnosis of CF[5] and age 3–18 years and were otherwise cohort 

specific. Inclusion criteria intentionally remained broad (e.g. did not consider lung function 

measurements) in order to capture as much variety in disease states as possible for this pilot 

study. Exclusion criteria were limited to factors precluding placement of the device such 

as history of atopy, skin rash or breakdown involving the neck or upper chest, presence of 

tracheotomy, or factors preventing family ability to follow study procedures, physiologic 

instability requiring intensive care, or other factors identified based on discussion about 

and/or review of the study procedures outlined in the consent form.

We recruited participants into 4 cohorts to assess the device performance over a range 

of clinical conditions and outcomes. Participants could enroll in more than one cohort 

at different times. A priori, we anticipated device modifications may be needed based 

on participant and parent usability and acceptability feedback and planned limited tests 

using the cohort 1 protocol to assess form factors, placements, and adhesive types, prior 
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to using these devices for further studies. In summary, we planned to re-purpose a sensor 

used for adult cough monitoring[26] for initial data collection trials, collect usability and 

acceptability surveys, then pursue a MAS redesign based on patient and parent feedback for 

long-term monitoring.

B. Survey Assessments

1) Cystic Fibrosis Respiratory Symptom Diary (CFRSD)—The CFRSD[29] is a 

validated measure of the symptoms and impact of the pulmonary symptoms in adults and 

adolescents (>12 years) with CF and chronic respiratory infection. It is used to evaluate the 

effect of treatment on the severity of symptoms of a respiratory infection.

2) Revised Cystic Fibrosis Questionnaire (CFQ-R)—The Cystic Fibrosis 

Questionnaire-Revised (CFQ-R)[30–34] is a validated, disease-specific health-related 

quality of life (HRQOL) survey. It is completed by parents of children < 6 years, as separate 

child and parent surveys for child participants between 6–13 years of age, and directly to 

participants >13 years of age.

3) Sinonasal Outcome Test—The 22-item Sinonasal Outcome Test (SNOT-22) is 

a validated, participant rated outcome measure[35] considered the most suitable tool to 

evaluate nasal symptoms in terms of ease of use[36]. It queries key diagnostic symptoms 

included in the European Position Paper on Rhinosinusitis and Nasal Polyps[37] definition 

for chronic rhinosinusitis.

4) Acceptability and Usability—We designed a usability questionnaire for 

administration to participants and/or their parents/guardians. This 6-question survey was 

designed to generate feedback on overall comfort, effectiveness, efficiency, and satisfaction 

with the MAS system. Direct verbal and written feedback solicited by the study team 

supplemented information about device acceptability.

C. Clinical Metrics

The pulmonary exacerbation (PEx) score is a tool used at Lurie Children’s CF Center during 

clinic visits and telephone encounters for illness to support standardization and quality of 

care in identifying pulmonary exacerbation[38, 39]. PEx scores were calculated at clinical 

encounters in accordance with usual practice at the Lurie CF Center (Supplementary Table 

2). FEV1 was measured in accordance with American Thoracic Society standards[40] at the 

time of clinic or hospital encounters and recorded as percent predicted FEV1 (FEV1pp).

D. Cohorts

Cohort 1 included children during routine clinic visits to the Lurie Children’s Hospital 

Cystic Fibrosis Center. Each participant had an MAS mounted at the suprasternal notch 

by a trained research coordinator and was instructed through a series of standardized 

vocalizations and activities. A research staff member observed the participant continuously 

in an exam room or virtually through a Health Insurance Portability and Accountability 

Act (HIPAA) compliant videoconferencing platform. Activities were time stamped by the 

staff member. Timestamps were electronically supplemented by notes on a source document 
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for use in algorithm training. The duration of the procedure was approximately 30 minutes 

following the protocol outlined in Supplementary Table 1.

Cohort 2 included children who were monitored during all procedures at a routine CF 

clinic visit. Procedures included spirometry or multiple breath washout tests, collection of 

expectorated sputum or oropharyngeal secretions for culture, and clinical assessments by 

members of the multidisciplinary CF team. A research staff member mounted the MAS 

at the suprasternal notch prior to clinical assessments and observed the visit, annotating 

times of activities and observed coughs on a study-specific document. The duration of the 

ambulatory evaluation was approximately 120 to 150 minutes.

Cohort 3 included participants who were stable during routine clinical care or at a 

screening visit, agnostic to baseline symptoms or FEV1pp. Clinical stability was defined 

as: (a) clinical PEx score < 2 and/or, as applicable, (b) absence of FEV1-indicated 

exacerbation[41]. Remote screening included home spirometry for participants who could 

perform spirometry, had a device at home, and had at least 3 prior measurements on 

separate days when clinically stable. Participants were shipped 2 MAS devices, adhesives, 

chargers, and tablets and guided through mounting the devices over HIPAA compliant 

videoconferencing calls. Participants wore the MAS for one week, changing devices either 

on their own or with parental assistance every 24 hours to allow for charging and data 

download. Participants and parents were instructed to complete the CFRSD daily and the 

CFQ-R on days 1 and 7.

Cohort 4 included participants with clinically diagnosed pulmonary exacerbation of any 

severity who were prescribed antibiotic therapy. They were identified at admission to 

Lurie Children’s Hospital, during clinic visits, or after phone or electronic health record 

communication. Participants were enrolled as early as feasible, within 3 days of initiating 

treatment. Participants were trained to place the sensor and wore it for the duration of 

treatment or up to 14 days, changing and charging sensors daily for near-continuous data 

capture. Hospitalized participants who were discharged from the hospital to complete 

therapy continued monitoring at home. Disease specific quality of life and symptom 

questionnaires were administered similar to cohort 3, with addition of the sino-nasal 

outcome test (SNOT-22), administered at enrollment and on the final day of treatment. 

CFQ-R surveys were completed at enrollment, days 7 and 14, and/or on the final day of 

treatment. FEV1pp was also measured as ordered by the treating practitioner along with any 

available PEx scores. Site, duration of therapy, and specific treatment (antibiotics, airway 

clearance) was extracted from the medical record for descriptive purposes.

E. Mechanoacoustic Sensor Framework

The MAS (Fig. 1) includes two inertial measurement units (IMUs) capable of triaxial 

accelerometry and triaxial angular velocity measurements via a gyroscope. The primary 

IMU is mechanically isolated at an island, while the secondary IMU in the sensor body 

serves as a backup or for artifact cancellation[23]. For the purposes of this study, surface-

normal (z-axis) acceleration is measured at 1.6kHz, while the x- and y- axes are resampled 

to 30Hz to provide low-frequency three-dimensional chest wall motion, activity, and body 

orientation measurements. 1.6kHz was chosen as the optimal sampling frequency as it 
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captures a majority of the energy in coughs[9, 42, 43] while limiting the amount of data 

required to be written to memory or transferred wirelessly. The internal temperature sensors 

in the IMUs and system-on-a-chip (SoC) provide skin temperature measurements. The SoC 

manages communication between device components and external data transfer through the 

Bluetooth Low-Energy (BLE) protocol.

Devices are encapsulated in medical grade silicone elastomer (Silbione 4420, Elkem) and 

charge wirelessly via power collection from an inductive coil tuned to 13.56MHz. Devices 

are attached to the skin using a custom laser cut, medical grade dual sided silicone-acrylate 

adhesive (2477p, 3M). Sensor mechanical characteristics, performance, and bandwidth 

are reviewed in previous work[23, 25], capabilities in cough and vocal characterization 

including association with droplet production (in adults) are presented[26]. All integrated 

components are soldered onto flexible polyimide printed circuit board (fPCB).

Data are streamed through BLE to a consumer mobile device running custom software 

nearby or stored in onboard memory when out of range or to save power. Independent 

power management circuitry isolates the battery from sensor components and coordinates 

power transfer. Data streamed to the mobile device is displayed and processed locally, and 

simultaneously securely uploaded to a timeseries database optimized for storage, retrieval, 

processing, and visualization of the data. Further improvements made to the sensor based on 

patient feedback during this study are reviewed in the Results section.

F. Cough Detection Strategy

1) Preprocessing—Coughing is a complex reflex response, can be voluntary or 

involuntary and is influenced by both behavior and pathologic processes[9]. Fig. 2 shows 

a segment of data from a natural coughing pattern collected from a participant in cohort 2 

during spirometry (top panel). Coughs are followed by throat clearing and a vocalization, 

converted into a spectrogram using conventional Fourier analysis (Fig. 2 middle panel). 

Coughing exhibits spectrally distributed power, while throat clearing and vocalization show 

clear fundamental frequencies and harmonics, findings consistent with observations in other 

studies[9, 43].

Potential cough events were isolated from the continuous data using a first-pass algorithm 

with high sensitivity but low specificity for cough-like events, a process described in detail 

in previous work[26]. Briefly, spectrally distributed “burst” events are identified as peaks 

in the time series power sum (10–800Hz range) exceeding a predetermined threshold of 

2,000 times the noise floor power sum of the dataset. These burst events are collected 

into 0.32 second windows (512 samples), roughly the average cough sound length noted in 

the literature[43]. Events with clear periodic peaks in their power spectrum representing a 

harmonic series were removed from further analysis to limit the number of vocal events 

requiring classification[26]. The remaining segments of signal are then converted into 

wavelet scalograms with inversely scaled Morlet wavelets corresponding to 128 linearly 

spaced frequency bins with centers between 0.13Hz and 765Hz (Fig. 2 bottom panel). This 

accomplishes three crucial tasks: 1) improved representation of rapidly changing frequency 

components throughout time via wavelet analysis, 2) separation of low-frequency chest 

wall and throat motion (arrows in Fig. 2) which are not present in vocalization events 
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(dotted circle in Fig. 2), and 3) enhanced representation of higher frequencies expected to be 

generated by pediatric participants. The spacing of these frequency bins to highlight higher 

frequencies represents a departure from previous work[26].

2) Labeling—Burst events (marked events in Fig. 2) from participants in cohort 1 

and cohort 2 were labeled as coughing, throat clearing, talking, laughing, and motion 

artifact by expert evaluation. Two independent experts combined visual inspection of known 

signal patterns[9, 43] with audio playback of the raw acceleration signal cross-referenced 

with research coordinator notes on participant activity to label the data. Disagreements 

were resolved by arbitration with a third expert. In many cases, especially with younger 

participants, elicited coughing and throat clearing on demand were difficult to distinguish 

from each other. This is likely due to both behavioral and motor differences and between 

younger and older children and milder disease in younger participants[44]. Children with 

CF and bronchiectasis are often taught to “huff” or cough in a stereotyped fashion to aid in 

airway clearance[45], leading to measurable physical differences[46]. Nevertheless, cough 

and throat clearing events were kept separate for model training purposes to attempt to 

separate true, involuntary, pathologic coughs from non-pathologic voluntary events. Events 

labeled as “talking” included a broad range of speech, singing, humming and interjections.

3) Model—The choice of the model used for the interpretation of the wavelet spectrogram 

representation and classification of cough events was based on previous success with a 

similar model used for adult vocal event classification, described in detail elsewhere[26]. 

Briefly, the model treats the 2D wavelet scalograms as an image. The model takes advantage 

of the convolutional neural network (CNN) architecture and the pre-trained and optimized 

ResNet50[47] architecture widely used in image classification approaches to identify unique 

combinations of features enabling accurate classification.

Fig. 3 outlines the model layers and training strategy. 512 × 128 scalograms are passed 

through a 3×3 kernel CNN, followed by a fully pre-trained ResNet50. This output undergoes 

global pooling, followed by two fully connected layers of 512 and 128 neurons, respectively, 

followed by the five-neuron output layer. Rectified linear unit activation, 50% dropout, and 

random initialization is used throughout non-ResNet layers. The adam optimizer and sparse 

categorical crossentropy loss is used. Data from cohort 1 was used to train and cross-validate 

the model, while data from cohort 2 was held out for testing.

G. Vital Sign Measurements from the MAS

1) Heart Rate—Heart Rate (HR) is calculated from the 20–50Hz zero-phase filtered 

z-axis acceleration signal. A Shannon energy envelope is calculated on this bandpassed 

signal, from which peaks are detected via automatic multi-scale peak detection[48]. Pairs 

of peaks corresponding to the first (S1) and second (S2) heart sounds are extracted, with 

the difference in time between subsequent S1 sounds used for HR and HR variability 

(HRV) calculations. HRV is calculated using the root-mean-square of successive differences 

definition.
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2) Respiration Rate and Body Orientation—Respiration Rate (RR) is extracted 

from the 3-dimensional periodic motion of the chest wall. A modified algorithm[49] was 

used to estimate the dominant gravity vector in a 1-minute window, from which small 

deviations in the frequency range of 0.1–0.8Hz were assumed to arise from chest wall 

motion. The dominant gravity vector also determined the body orientation.

3) Activity—Relative activity measurements were estimated by a power density sum from 

1–10Hz over a 15-second window expressed in decibels relative to a power sum of 1g2. 

An additional, high-frequency metric corresponding to a similar power sum from 10–100Hz 

aided in the identification of mechanical vest usage.

H. Bias, Study Size, and Statistical Analysis

This is a pragmatic pilot study to assess performance of the MAS and to test usability 

and acceptability. We did not aim to compare cough between individuals or cohorts. No 

sample size was calculated as this is a pilot study aimed at evaluating if sensor-measured 

coughs can be separated from other vocal events and artifacts without prior knowledge of the 

prevalence and variance of these events. A recent review[50] notes that a majority of studies 

on cough detection recruited fewer than 30 subjects. We therefore aimed to recruit a sample 

size of 50. We initiated the study with an older version of the MAS and used survey and 

participant feedback, ultimately redesigning the device for acceptability. These new devices 

then informed subsequent software and application updates. Quantitative variables from 

surveys and metrics derived from the MAS including vital sign measurements and cough 

metrics were compared only within individual subjects to reduce inter-subject variability and 

bias.

III. RESULTS

A. Participant Characteristics

A total number of 50 individuals were approached and consented for the study. Satisfactory 

data collection was accomplished for 36 individuals across 4 cohorts. Some participants 

contributed datasets to multiple cohorts. A flow diagram is shown in Fig. 4. Overall, over 

2767 hours (111.7 days) of usable continuous sensor data was collected across all cohorts.

Those who consented but did not participate were simultaneously consented for enrollment 

in a clinical trial of alternative approaches to mild pulmonary exacerbation but never 

developed an exacerbation. Demographics (Table 1) of enrolled participants reflected the 

population of our pediatric CF program.

B. Mechanoacoustic Sensor Improvements and Data

Improvements to the sensor form factor and operating characteristics were made following 

analysis of the acceptability and usability survey responses. Participant/parent reports 

included comments on sensor size, visibility, difficulty adhering the device to skin, and 

color options (Supplementary Table 3). Furthermore, the demands of daily use required 

improving the robustness of device components, reducing overall power consumption and 

memory usage to allow for longer continuous recording periods. A schematic of the new 
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devices is presented in Fig. 5. Table 2 presents measurements of current consumption over 

one minute of steady-state operation for the old device and the new device compared under 

different conditions.

1) Hardware Improvements—Device size was reduced primarily by improving the 

power management circuitry for more efficient operation at lower voltages, therefore 

enabling selection of smaller battery sizes. The operating voltage of the device was 

lowered to 1.8V from 3.3V by implementing a power management integrated circuit 

(nPM1100, Nordic® Semiconductor) with a high efficiency buck regulator. Upgraded 

components include a low-power IMU (LSM6DSO, STMicroelectronics) and NAND 

memory (W25M02GVZEIG, Winbond). To maximize use of available memory, the NAND 

driver implemented a 16KiB buffering scheme that compresses and fragments payloads 

across NAND pages. The NAND packing scheme provided, on average, a 1.2x compression 

ratio at the cost of additional CPU usage overhead not represented in the old device 

firmware. These improvements are best represented as an overall ~170μA improvement 

to current draw when recording (Table 2).

2) Data Compression—Compact integral time-series compression[51] leaning heavily 

on delta compression[52] is implemented on the SoC firmware. This leads to a significant 

reduction in the number of bits required to be written to memory or sent over BLE, 

drastically reducing the power consumption of these operations. The amount of compression 

achievable varies depending on the entropy of the incoming data, averaging around 4x 

compression. During typical operations, average current required to record to onboard 

memory is nearly halved (Table 2). The significant reduction in power consumption made 

feasible the real-time streaming of raw data over BLE to a local mobile device, when in 

range. This further reduces the amount of data required to be written to onboard memory, 

substantially extending recording intervals.

3) Mechanical Improvements—These improvements to power consumption and 

memory use overall enable a reduction to the size of the battery required to power the device 

from 75mAh to 50mAh. Device layout was optimized while maintaining a manufacturer-

recommended 18mm keep-out-zone around the BLE antenna. Sections with integrated 

circuit components were reinforced while maintaining foldable areas and introducing a 

freely flexible umbilical.

The new device is 2cm × 3cm × 1cm with a 2.5cm narrow umbilical, shown in Fig. 

6a-d. A comparison between old and new devices is shown in Supplementary Fig. 1. The 

smaller size represents a 40% decrease in area of the core electronics compared to the old 

device[23] and allows comfortable placement of the device on a smaller pediatric sternum. 

The umbilical design enables only a small part of the device to protrude into the visible 

suprasternal notch in response to participant feedback.

4) Example Data—Fig. 7 demonstrates data from a typical morning for a participant in 

cohort 4. Raw acceleration signals are shown alongside a normalized Fourier spectrogram, 

showing both time and frequency information. The background of the acceleration plot is 

shaded depending on the body orientation of the participant as they sleep, wake up, engage 
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with their routine mechanical vest therapy, eat breakfast, and walk to school. A 20 second 

segment of data from a quiet section showing the sinusoidal oscillations as the chest wall 

moves with every respiration and small, regular spikes originating from the opening and 

closing of heart valves (Fig. 7b). These are also seen as regular, low-frequency bumps on 

the corresponding spectrogram. A half hour of high frequency oscillatory vest therapy (Fig. 

7c) appears as low-frequency vibrations applied at a periodic 5-minute interval of linearly 

increasing and decreasing frequency. Broad-spectrum spikes associated with coughs are near 

the peaks of these oscillations. Fig. 7d shows the participant walking around and performing 

activities of daily living.

C. Cough Detection Training and Performance

Labeled events from the protocolized recordings in cohort 1 were used for training and 

cross-validation. A leave-one-subject-out cross-validation strategy with 40% weighting on 

cough events was used, and the cross-validation was repeated 10 times. The model with 

best cross-validation performance was subsequently tested on never-before-seen data from 

clinical visits (cohort 2) to generate the results in Fig. 8 and Supplementary Fig. 2. This 

model was frozen and subsequently deployed on the long-term monitoring cohorts 3 and 4. 

The final model was implemented on the cloud.

As expected, there is inherent similarity between the cough and throat clearing classes, and 

the talking and laughing classes. This was also evident in the raw data during the process 

of expert labeling, and the model does not perform well separating these pairs of classes, 

as shown by the confusion matrix in Supplementary Fig. 2. While these labels were kept 

separate for training the model, throat clearing can be folded into cough (and laugh into talk) 

and treated as one physiologically related class. These combined classes are used to when 

presenting the final confusion matrix (Fig. 8a), receiver-operator characteristic (ROC) curves 

(Fig. 8b) and precision-recall curves (PRC) (Fig. 8c). This model is particularly capable of 

rejecting motion artifacts, with over 95% accuracy and total area under the ROC (AUROC) 

of 0.97 and average precision (AP) of 0.96. The overall micro-averaged AUROC is 0.96 and 

overall micro-averaged AP is 0.93.

D. Long-Term Monitoring of Pulmonary Exacerbation

Fig. 9 shows data from a single participant from cohort 4 enrolled by the study team on the 

second day of admission to the hospital for pulmonary exacerbation. Vital signs including 

HR, HRV, RR, activity, and skin temperature are calculated from sensor signals. Cough 

counts per hour were generated from cough events labeled by the machine learning model. 

Re-analysis of labelled events measured the total power, plotted as varying colors of the 

cough count bars.

Cough variability is defined as the root-mean-square of the time intervals between coughs 

in a 1-hour interval around each detected cough event. For this participant, self-reported 

symptom and quality of life surveys improved at discharge relative to the time of admission. 

Cough count and intensity was higher during admission, especially during mechanical 

vest therapy, frequently exceeding 25 coughs per hour. Coughs also occurred regularly, as 

indicated by low variability compared to the sparser coughing after discharge. HR often 
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peaked greater than 100 beats per minute during admission, and nighttime HR was higher 

than after discharge. The participant’s temperature was generally higher during the hospital 

admission, however nighttime temperature appears to remain similar, indicating this may 

be an environmental effect rather than physiologic. Two additional examples of long-term 

cohort 4 monitoring are shared in Supplementary Fig. 3.

E. Acceptability and Usability

Acceptability and usability survey result responses are separated by cohort based on sensor 

wear time; cohorts 1 and 2 are grouped as short-term wear (Table 3), and cohorts 3 and 4 

are grouped as long-term wear (Table 4). As shown in Fig. 4, the cohort 1 and 2 participants 

primarily used the original device whereas cohorts 3 and 4 primarily used the newer device.

Overall, there was a high level of acceptability for this sensor to pediatric participants 

and their families, which decreased slightly with wear time. Participants reported few 

problems using the sensor during the short-term wear. While 55% of participants in 

the long-term wear group reported problems using the sensor, 91% of long-term wear 

participants still reported the sensor was easy to use. Verbal feedback suggested most 

problems were associated with charging the MAS but were quickly resolved. Of note, the 

age of participants in the long-term wear cohorts were generally older (12.36+/−3.6 years 

old) than the short-term wear cohorts (9.44+/−5.4 years old), Table 5.

1) Symptom and quality of life survey completion rates—Overall, there were low 

rates of completing the SNOT-22, CFRSD, and CFQR surveys during 7 days of monitoring 

at home during a period of baseline health (Cohort 3) and during up to 14 days of 

monitoring during pulmonary exacerbation treatment (Cohort 4), shown in Supplementary 

Table 4.

IV. DISCUSSION

This study introduces a mechanoacoustic sensor for children, facilitating convenient and 

user-friendly multiparameter physiologic monitoring. Specifically, this is a unique device 

simultaneously able to capture cough in addition to physiologic signs such as HR(V), RR, 

activity, body orientation, and temperature among other physiologic parameters from a 

single wearable sensor acceptable to children over long-term (up to two weeks) monitoring 

periods. Coughs and throat clearing events detected by the device are distinguishable from 

other vocal events (talking and laughing) and other artifacts with an overall micro-averaged 

AUROC of 0.96 and overall micro-averaged AP of 0.93.

Improvements over existing automated cough detection techniques[9] include a reduction 

to the high false-positive rate often observed in free-field microphone approaches. This is 

accomplished by soft mechanical coupling of the accelerometer to the suprasternal notch, 

minimizing the effect of ambient sound and enabling introduction of low-frequency chest 

and throat motion into the model (Fig. 2). This work observed 95% accuracy, an AUROC 

of 0.97 and an AP of 0.96 in artifact identification by the cough classification algorithm. 

This observation is limited by a lack of external validation; other studies were able to 

evaluate algorithm performance on standardized audio datasets[9], which are not available 
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in the same form for accelerometer data or for pediatric patients. Direct comparison 

between studies is impeded by varying definitions, objectives, health conditions, and studied 

environments[9, 50]. Despite these limitations, the deployed MAS and model demonstrated 

cough counts trending with symptom surveys in several individual children in a variety of 

uncontrolled, natural settings – in clinic, the hospital, at home, or at school. Future research 

effort directed at establishing concrete relationships between these detected coughs and 

physiological states is warranted.

While an attempt was made to separate pathologic coughs from non-pathologic throat 

clearing, the trained model ultimately failed to distinguish these classes. Model training 

data was collected on children with CF who performed coughing, throat clearing, and other 

activities during routine clinic visits (i.e. without concurrent pulmonary exacerbation). As 

cough has both behavioral and functional components[53], some younger participants in 

the training cohort had difficulty mimicking pathologic coughing which precluded finer 

classification of respiratory mechanics. Indeed, it was often difficult for the trained experts 

labeling the data to agree on the labeling of these events, a commonly observed interrater 

reliability issue[17].

This pilot and feasibility study was not designed to perform inter-individual comparisons, 

or comparisons between pathologic coughs that arise during exacerbation compared to 

those that occur (e.g. for mucus clearance) at the baseline state. While PEx scores and 

lung function measurements (FEV1) were collected, these were only used to determine 

cohort assignments rather than characterize cough. The definition used for coughs and the 

respiratory status of patients selected for this study were purposely kept broad to observe a 

realistic distribution of measurements. Future work may benefit from characterizing coughs 

based on physiologic or radiologic criteria[54].

The additional physiologic variables measured by the MAS were not used to influence the 

cough detection or classification algorithm in the current study. While extensive analysis of 

these other variables is not a core aim of the current study, their availability to subsequent 

researchers through the convenient, acceptable, single-sensor format presented here adds 

important variables to future research efforts. For instance, respiratory phase measurement, 

concurrent tachypnea, activity, temperature and other values used to calculate clinical PEx 

scores[39] may allow for finer delineation of pathologic cough.

An increased duration of cough monitoring is desirable due to the objective data gained 

through diurnal and inter-day variations in cough frequency during natural tasks, when 

the wearer has become accustomed to the monitoring device and does not adapt behavior 

to being monitored[9]. In this work, hardware upgrades, firmware optimizations, and 

compression implementation aimed at reducing power-intensive operations such as data 

bus usage, BLE radio usage, and writing data to memory reduced power consumption 

compared to previous designs by over 60% while recording. The same advancements enable 

real-time raw data streaming, reduce reliance on limited device memory, and result in 

continuous monitoring intervals of >24h for a single device; long-term monitoring up to 2 

weeks is demonstrated with patients switching devices daily. User comfort, ease of use, and 
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compliance reported on surveys by 91% of long-term users supports the use of the MAS in 

this regard.

Model selection was based on previous success with similar architectures[26]. Model size 

optimization such as parameter pruning and layer trimming were not performed. With full 

access to continuous raw sensor data provided by the MAS, future work may be able 

to iterate and improve on any aspect from pre-processing and feature selection, to model 

architecture and optimization, enabling deployment of the model to the mobile device or 

onboard the sensor itself as desired.

A barrier to further analysis of the data collected was that many of the patients screened 

into cohort 4 had only minor exacerbations or were treated with antibiotics for lung-related 

complications where an increase in cough frequency or change in cough character was not 

a significant presenting symptom. The study was conducted during the first years of the 

COVID-19 pandemic, when viral respiratory tract infections decreased in children due to 

community masking and restrictions[55]. It is proposed that future work pursue long-term 

home monitoring with the aim of establishing individualized baseline cough counts in order 

to better recognize changes in these values when a pulmonary exacerbation is encountered, 

similar to a recent study performed in chronic obstructive pulmonary disease[12].

There was also poor adherence with participant reported outcome surveys in cohorts 3 and 

4, which has been reported in other studies using these measures[9, 56]. The relative patient 

adherence with the MAS supports the argument that objective tools acceptable to pediatric 

patients such as the MAS could be valuable as an outcome measure for future observational 

and interventional studies as well as to monitor symptoms for early detection, progression, 

and resolution of pulmonary exacerbation after further work.

In summary, we evaluated, redesigned and demonstrated the performance of a 

mechanoacoustic sensor for noninvasive, continuous monitoring of cough and vital signs. 

Further development may lead to an effective, objective way to monitor symptoms in CF and 

other childhood respiratory diseases, for research and in clinical practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A schematic view of key sensor components and data flow. The device stores raw data 

locally on onboard memory for low-power operation or streams to a mobile device through 

BLE. The mobile device is able to display data and run pre-defined signal processing locally. 

All raw data are securely uploaded to cloud storage from which retrospective analyses are 

performed and larger models can be trained.
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Fig. 2. 
Example segment of raw, surface-normal acceleration data during a coughing fit. The raw 

acceleration data (top panel) is converted into a Fourier power spectrogram (middle panel), 

from which “burst” events are detected via power-sum peaks of spectrally wide-band data. 

These events are further converted into wavelet scalograms (bottom panel), which better 

represent dynamic frequency changes and can simultaneously capture relationships between 

low frequency components (throat and chest wall motion) which are present in cough events 

(purple arrows) and not in simple vocalizations or throat clearing (dotted circle).
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Fig. 3. 
Overview of the CNN-based Cough Classifier Model
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Fig. 4. 
Recruitment flow diagram
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Fig. 5. 
New Device Schematic, a top-down circuit view with key components highlighted, b fully 

encapsulated side view with annotations.
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Fig. 6. 
Mechanoacoustic Cough Sensor, a, exploded view of the pediatric optimized device, b, a 

pair of fully encapsulated devices, c-d, multi-colored devices mounted on the suprasternal 

notch. Note the subjects must lower their shirt collar to fully display the device.
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Fig. 7. 
Raw Data and Spectrograms in Free-living Environments. Raw triaxial accelerometer data 

are shown above the corresponding Fourier power spectrogram with colors normalized 

for clarity, red corresponds to higher power, blue to lower power. (a) shows a typical 

morning routine for a CF patient while wearing the device. Examples of events captured, 

ranging from subtle oscillations of heart valves opening/closing and chest wall motion (b), 

CF-related mechanical vest therapy and superimposed coughing (c), and physical activity 

(d) are shown.
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Fig. 8. 
Cough Classification Testing Set Results. a, confusion Matrix, b, receiver-operator 

characteristic curves and c, precision-recall curves
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Fig. 9. 
Multi-day Continuous Vital Signs and Cough Tracking. A patient’s clinical course is 

continuously monitored from admission to discharge and resumption of daily activities. 

Average daily HR, RR, skin temperature, cough frequency and intensity decrease as survey-

based symptom assessments improve, mechanical vest therapy is spaced, and the patient is 

clinically cleared to discharge home.
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TABLE 1

PARTICIPANT DEMOGRAPHICS BY COHORT

Cohort

1 2 3 4 Unique participants

Total Count

(New Sensor, Old Sensor) 19 (3, 16) 16 (3, 13) 6 (2, 4) 14 (12, 2) 36

Gender

Male 9 10 4 9 19

Female 10 6 2 5 17

Race

White 17 11 5 11 30

Asian 0 0 0 0 0

Black 1 1 0 0 1

Other 1 4 1 3 5

Hispanic ethnicity 0 4 1 4 5

Age (yrs) 8.68 +/− 4.62 12.06 +/− 6.37 12 +/− 3.79 13.36 +/− 4.63 11.53 +/− 5.85

Height Percentile 55 [32, 78] 49 [31, 69] 58 [52, 71] 40 [36, 65] 55 [31, 75]

Weight Percentile 71 [59, 87] 72 [46, 78] 63 [55, 78] 68 [52, 69] 68 [53, 88]

BMI Percentile 83 [68, 88] 75 [65, 83] 77 [62, 82] 61 [53, 82] 76 [59, 88]

Baseline FEV1pp 110 [96, 112] 97 [77, 117] 95 [65, 117] 115 [62, 118] 103 [84, 114]

Race and ethnicity were documented in accordance with US Census categories and confirmed by participants or their parents. Age is reported as 
Mean +/− S.D. All other variables are reported as median [Interquartile range]
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TABLE 2

Average Steady-State Current Consumption

Recording to Onboard 
Memory

Full Raw Data Streaming over 
BLE

Exporting Onboard 
Memory over BLE

Old Device 577 - 2934

New Device (tsz compression disabled) 405 1206 5212

New Device (tsz compression enabled) 
typical - high entropy 216 – 243 689 – 995 3416

All values represent average μA current at steady-state operation over 1 minute.

tsz - Compact Integral Time-Series Compression

Only the new device is capable of real-time full raw data streaming.
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TABLE 3

Cohorts 1 & 2 (Short-term wear) Survey Responses

Strongly Agree 
n (%) Agree n (%) Disagree n (%) Strongly 

Disagree n (%) Total

I (or my child) likes wearing the cough sensor. 13 (38.2%) 21 (61.7%) 34

I (or my child) is embarrassed to wear the cough sensor. 2 (5.8%) 14 (41.1%) 18 (52.9%) 34

I (or my child) finds the sensor comfortable to wear. 19 (55.8%) 12 (35.3%) 3 (8.8%) 34

The cough sensor is easy to use. 24 (70.6%) 8 (23.5%) 2 (5.8%) 34

I (or my child) experienced problems using the sensor. 1 (2.9%) 3 (8.8%) 9 (26.4%) 21 (61.7%) 34

I (or my child) had trouble remembering to put on or 
change the cough sensor. 6 (20.7%) 12 (41.3%) 11 (37.9%) 29
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TABLE 4

Cohorts 3 & 4 (Long-term wear) Survey Responses

Strongly Agree 
n (%) Agree n (%) Disagree n (%) Strongly 

Disagree n (%) Total

I (or my child) likes wearing the cough sensor. 1 (9%) 7 (63.6%) 2 (18.1%) 1 (9%) 11

I (or my child) is embarrassed to wear the cough sensor. 2 (18.1%) 7 63.6%) 2 (18.1%) 11

I (or my child) finds the sensor comfortable to wear. 1 (9%) 5 (45.4%) 5 (45.4%) 11

The cough sensor is easy to use. 3 (27.2%) 7 (63.6%) 1 (9%) 11

I (or my child) experienced problems using the sensor. 6 (54.5%) 436.3%) 1 (9%) 11

I (or my child) had trouble remembering to put on or 
change the cough sensor. 1 (9%) 7 (63.6%) 3 (27.2%) 11
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TABLE 5

Survey Response Age and Gender Characteristics

Short term Cohorts 1 & 2 Long Term Cohorts 3 & 4

Age Mean (+/− SD) 9.44 (+/− 5.4) 12.36 (+/− 3.6)

Gender (M) 18 7

Gender (F) 16 4
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