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Patients with sporadic FTLD exhibit similar 
increases in lysosomal proteins and storage 
material as patients with FTD due to GRN 
mutations
Skylar E. Davis1, Anna K. Cook1, Justin A. Hall1, Yuliya Voskobiynyk1, Nancy V. Carullo2, Nicholas R. Boyle1, 
Ahmad R. Hakim1, Kristian M. Anderson1, Kierra P. Hobdy1, Derian A. Pugh1, Charles F. Murchison1,3, 
Laura J. McMeekin4, Micah Simmons1,4, Katherine A. Margolies4, Rita M. Cowell1,4, Alissa L. Nana5, 
Salvatore Spina5, Lea T. Grinberg5,6, Bruce L. Miller5, William W. Seeley5,6 and Andrew E. Arrant1,2*   

Abstract 

Loss of function progranulin (GRN) mutations are a major autosomal dominant cause of frontotemporal dementia 
(FTD). Patients with FTD due to GRN mutations (FTD-GRN) develop frontotemporal lobar degeneration with TDP-43 
pathology type A (FTLD-TDP type A) and exhibit elevated levels of lysosomal proteins and storage material in fron-
tal cortex, perhaps indicating lysosomal dysfunction as a mechanism of disease. To investigate whether patients 
with sporadic FTLD exhibit similar signs of lysosomal dysfunction, we compared lysosomal protein levels, transcript 
levels, and storage material in patients with FTD-GRN or sporadic FTLD-TDP type A. We analyzed samples from frontal 
cortex, a degenerated brain region, and occipital cortex, a relatively spared brain region. In frontal cortex, patients 
with sporadic FTLD-TDP type A exhibited similar increases in lysosomal protein levels, transcript levels, and storage 
material as patients with FTD-GRN. In occipital cortex of both patient groups, most lysosomal measures did not differ 
from controls. Frontal cortex from a transgenic mouse model of TDP-opathy had similar increases in cathepsin D and 
lysosomal storage material, showing that TDP-opathy and neurodegeneration can drive these changes independently 
of progranulin. To investigate these changes in additional FTLD subtypes, we analyzed frontal cortical samples from 
patients with sporadic FTLD-TDP type C or Pick’s disease, an FTLD-tau subtype. All sporadic FTLD groups had similar 
increases in cathepsin D activity, lysosomal membrane proteins, and storage material as FTD-GRN patients. However, 
patients with FTLD-TDP type C or Pick’s disease did not have similar increases in lysosomal transcripts as patients with 
FTD-GRN or sporadic FTLD-TDP type A. Based on these data, accumulation of lysosomal proteins and storage material 
may be a common aspect of end-stage FTLD. However, the unique changes in gene expression in patients with FTD-
GRN or sporadic FTLD-TDP type A may indicate distinct underlying lysosomal changes among FTLD subtypes.

Keywords Frontotemporal dementia, Lysosome, Progranulin, TDP-43

*Correspondence:
Andrew E. Arrant
andrewarrant@uabmc.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40478-023-01571-4&domain=pdf
http://orcid.org/0000-0003-4706-9411


Page 2 of 19Davis et al. Acta Neuropathologica Communications           (2023) 11:70 

Introduction
Loss-of-function mutations in progranulin (GRN) are 
a major autosomal dominant cause of frontotemporal 
dementia (FTD) [10, 29]. Most of these mutations cause 
progranulin haploinsufficiency [33, 36, 62, 79], which is 
thought to cause FTD in GRN mutation carriers (FTD-
GRN). The presence of loss-of-function mutations on 
both GRN alleles, resulting in complete progranulin 
deficiency, causes the lysosomal storage disorder Neu-
ronal Ceroid Lipofuscinosis (NCL) [2, 44, 82], showing 
that progranulin is necessary for maintaining lysosomal 
function.

Progranulin is a secreted pro-protein that is traf-
ficked to lysosomes and cleaved into granulins [43, 106]. 
Progranulin and some granulins facilitate the activ-
ity of several lysosomal enzymes, including the pro-
tease cathepsin D (CatD) and enzymes involved in 
glycosphingolipid metabolism. Progranulin and some 
granulins interact with CatD and enhance its matura-
tion and stability [13, 17, 18, 84, 104]. Progranulin also 
facilitates maturation of the glycosphingolipid-metab-
olizing enzymes β-hexosaminidase A (HexA) [26] and 
β-glucocerebrosidase (GCase) [8, 46, 85, 105] and regu-
lates lysosomal levels of critical co-factors for glycosphin-
golipid metabolism, including prosaposin [106, 107] and 
BMP (bis(monoacylglycero)phosphate) [49, 55].

Brains of patients with FTD-GRN exhibit numerous 
lysosomal abnormalities. Cortical samples from patients 
with FTD-GRN have elevated levels of CatD and other 
lysosomal proteins [40], elevated levels of extracellu-
lar vesicles [4], and accumulation of lysosomal storage 
material [40, 90]. Cortical samples from patients with 
FTD-GRN also show signs of impaired glycosphingolipid 
metabolism such as reduced GCase activity [8, 85], low 
levels of BMP [14, 55], and accumulation of gangliosides 
[14]. These changes may be a sign of lysosomal dys-
function, which might drive FTD-GRN pathogenesis by 
impairing neuronal autophagy and promoting TDP-43 
aggregation [24] or by shifting microglia to a reactive 
phenotype that destroys synapses and promotes TDP-43 
mislocalization in neurons [39, 42, 56, 94, 100].

Lysosomal dysfunction may also be involved in patho-
genesis of other genetic FTD subtypes [72, 86, 87]. FTD-
causing mutations have been found in several genes 
involved in the autophagy-lysosomal or endolysosomal 
pathways, including VCP [92], TBK1 [27, 35, 37, 67], 
OPTN [67], and CHMP2B [81]. Similar to patients with 
GRN mutations, brains of FTD patients with CHMP2B 
mutations contain higher levels of lysosomal storage 
material than controls [28]. C9ORF72, in which repeat 
expansions are the most common genetic cause of FTD 
and ALS, is also involved in aspects of lysosomal function 
[3, 42].

Given the evidence that lysosomal dysfunction may 
contribute to pathogenesis of several genetic FTD sub-
types [72, 86, 87], it is possible that lysosomal dysfunc-
tion might contribute to pathogenesis of sporadic FTD, 
which comprises most FTD cases. To address this ques-
tion, we investigated whether the lysosomal abnormali-
ties of FTD-GRN patients [8, 40, 85, 90] are also present 
in patients with sporadic FTD. We began by compar-
ing samples from patients with FTD-GRN or sporadic 
FTLD-TDP type A (frontotemporal lobar degeneration 
with TDP-43 pathology type A), the same type of TDP-
43 pathology that occurs in patients with FTD-GRN [58]. 
To assess the relationship of these lysosomal abnormali-
ties with TDP-43 pathology and neurodegeneration, we 
analyzed samples of frontal cortex, a degenerated brain 
region, and occipital cortex, a mostly spared brain region. 
We then extended this investigation to include a trans-
genic mouse model of TDP-opathy [93] and additional 
subtypes of sporadic FTLD-TDP (FTLD-TDP type C) 
and FTLD-tau (Pick’s disease).

Materials and methods
Patient brain samples
Post-mortem brain samples were provided by the Neu-
rodegenerative Disease Brain Bank at the University of 
California, San Francisco. Brains were donated with the 
consent of the patients or their surrogates in accordance 
with the Declaration of Helsinki and the research was 
approved by the University of California, San Francisco 
Committee on Human Research. Tissue blocks were dis-
sected from the orbital part of the inferior frontal gyrus 
and the inferior occipital cortex of 5 controls, 13 patients 
with FTD-GRN, and 7 patients each with sporadic FTLD-
TDP type A, FTLD-TDP type C, or Pick’s disease. All 
patients with FTD-GRN carried a pathogenic variant in 
GRN and had FTLD-TDP type A identified at autopsy, 
except one (Table 1, case 11), who had a primary pathol-
ogy diagnosis of Lewy body disease, with possible early 
FTLD-TDP type A pathology. Patients with sporadic 
FTLD-TDP Type A carried no pathogenic GRN variants, 
though one (Table  1, case 21) carried an intronic GRN 
variant of unknown significance. Patient characteristics 
are provided in Table  1. Clinical and neuropathological 
diagnoses were made using standard diagnostic criteria 
[38, 58, 59, 64, 69].

Animals
Mice expressing wild-type human TARDBP under con-
trol of the Thy-1 promoter (TDP + +) [93] were obtained 
from the Jackson Laboratory (#012,836). Mice used for 
this study were on a mixed genetic background, hav-
ing been crossed from a C57Bl6J/SJL F1 background 
onto a C57Bl6/J background for 2–4 generations before 



Page 3 of 19Davis et al. Acta Neuropathologica Communications           (2023) 11:70  

use. Hemizygous transgenic mice were bred to produce 
nontransgenic and homozygous transgenic littermates 
for all experiments. Due to the severe motor deficits 
of homozygous transgenic mice of this line [93], mice 
were euthanized at 21 days of age for collection of brain 

samples. Both male and female mice were studied. Mice 
were housed in a facility accredited by the Association 
for Assessment and Accreditation of Laboratory Animal 
Care on a 12 h light/dark cycle with lights on at 6:00 AM. 
Mice had free access to food (Envigo #7917) and water 

Table 1 Description of patients

*All GRN mutations were heterozygous. **Disease considered most likely to explain the clinical syndrome. ***No control subject had limbic TDP-43 proteinopathy. 
#case 7 was only analyzed for lysosomal storage markers in fixed tissue. †case 21 was negative for pathogenic GRN mutations, but had intronic GRN variants of 
unknown significance. PMI postmortem interval, AD Alzheimer’s disease, AGD argyrophilic grain disease, bvFTD behavioral variant frontotemporal dementia, CBS 
corticobasal syndrome, DLB dementia with Lewy bodies, LBD Lewy body disease, MCI mild cognitive impairment, nfvPPA nonfluent variant primary progressive 
aphasia, svPPA semantic variant primary progressive aphasia

# Group GRN Mutation* Sex Age at death Clinical diagnosis** Primary neuropath diagnosis*** PMI (h)

1 Ctrl n/a F 81 MCI, amnestic Braak 2 30.3

2 Ctrl n/a M 77 MCI, executive AGD 4.9

3 Ctrl n/a F 86 Control CVD; AGD 7.8

4 Ctrl n/a M 76 Control Braak 2, limbic AGD 8.2

5 Ctrl n/a F 86 Control iLBD, brainstem predominant 6.4

6 GRN c.1145del:p.Thr382Serfs*30 M 74 nfvPPA/CBS FTLD-TDP-A 30.9

7# GRN c.347C > A:p.Ser116* M 68 bvFTD FTLD-TDP-A 13.5

8 GRN c.264 + 2 T > C F 73 nfvPPA/CBS FTLD-TDP-A 20.7

9 GRN c.1477C > T:p.Arg493* F 66 bvFTD FTLD-TDP-A 7.4

10 GRN c.709-2A > G M 64 bvFTD FTLD-TDP-A 7.2

11 GRN c.1256_1263dup:p.Ile422Glufs*72 M 66 DLB LBD, FTLD-TDP-A 10.1

12 GRN c.1A > T:p.Met1? F 59 CBS FTLD-TDP-A 9.5

13 GRN c.1477C > T:p.Arg493* F 70 PPA, unspecified FTLD-TDP-A 9.1

14 GRN c.1216C > T:p.Gln406* F 56 bvFTD FTLD-TDP-A 7.6

15 GRN c.349 + 1G > A F 78 mixed FTD FTLD-TDP-A 19

16 GRN c.328C > T:p.Arg110* F 66 bvFTD FTLD-TDP-A 17.1

17 GRN c.708 + 1G > A F 64 CBS FTLD-TDP-A 10.5

18 GRN c.1256_1263dup:p.Ile422Glufs*72 M 72 AD-type dementia AD, FTLD-TDP-A 7.2

19 TDP-A n/a F 78 nfvPPA FTLD-TDP-A 9

20 TDP-A n/a F 66 CBS FTLD-TDP-A 17.3

21 TDP-A n/a† M 72 PPA-mixed FTLD-TDP-A 23.8

22 TDP-A n/a M 63 CBS FTLD-TDP-A 15.7

23 TDP-A n/a M 70 bvFTD FTLD-TDP-A 8.5

24 TDP-A n/a F 73 bvFTD FTLD-TDP-A 7.4

25 TDP-A n/a F 78 AD-type dementia vs. FTD FTLD-TDP-A 8.1

26 TDP-C n/a F 69 svPPA FTLD-TDP-C 10.7

27 TDP-C n/a M 66 svPPA FTLD-TDP-C 10

28 TDP-C n/a F 68 svPPA FTLD-TDP-C 8.4

29 TDP-C n/a M 66 svPPA FTLD-TDP-C 14.5

30 TDP-C n/a M 75 svPPA FTLD-TDP-C 3.8

31 TDP-C n/a F 75 svPPA FTLD-TDP-C 7.9

32 TDP-C n/a F 71 svPPA FTLD-TDP-C 13

33 Pick’s n/a M 64 CBS Pick’s Disease 13.7

34 Pick’s n/a F 78 nfvPPA Pick’s Disease 14.5

35 Pick’s n/a F 67 AD-type dementia Pick’s Disease 6.8

36 Pick’s n/a F 63 nfvPPA Pick’s Disease 4.3

37 Pick’s n/a M 57 bvFTD Pick’s Disease 12.4

38 Pick’s n/a F 73 nfvPPA Pick’s Disease 9.6

39 Pick’s n/a M 78 svPPA Pick’s Disease 7.5
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throughout the study. All experiments were approved by 
the Institutional Animal Care and Use Committee of the 
University of Alabama at Birmingham.

Tissue preparation
Prior to analysis by enzyme activity assays or immunob-
lot, tissue from frontal or occipital cortex of patients with 
FTD or frontal cortex of TDP-43 transgenic mice was 
homogenized in lysis buffer (50 mM Tris, 150 mM NaCl, 
5 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycho-
late) and centrifuged for 10  min at 5000 × g. For analy-
sis of Triton-insoluble p-TDP-43, the resulting pellets 
were solubilized in 8 M urea. Protein concentration was 
determined by BCA assay (ThermoFisher) and uniform 
amounts of protein were used for subsequent activity 
assays and SDS-PAGE. Two samples were analyzed from 
each tissue block and averaged to give final results for 
each patient.

Lysosomal enzyme activity assays
HexA and GCase activity were determined as previously 
described [8] using fluorogenic substrates (HexA-4-
methylumbelliferyl-2-acetamido-2-deoxy-6-sulfate-β-
D-glucopyranoside, Research Products International, 
GCase-4-Methylumbelliferyl β-D-glucopyranoside, Mil-
liporeSigma) conjugated to the fluorophore 4-methylum-
belliferone (4-MU). Fluorescence was measured using a 
Biotek Synergy LX plate reader and quantified relative to 
a standard curve of 4-MU run on each plate.

CatD activity was determined as previously described 
[7] using the fluorogenic cathepsin D/E substrate 
(7-methoxycoumarin-4-yl)acetyl-GKPILF ~ FRLK(2,4-
dinitrophenyl)-D-R-NH2 (MilliporeSigma) [97]. Specific 
CatD activity was determined by subtracting fluorescence 
generated in the presence of the CatD inhibitor pepstatin 
A (Fisher Scientific). Lysates were incubated with sub-
strate for 60 min at 37 °C prior to reading fluorescence on 
a Biotek Synergy LX plate reader. Fluorescence was nor-
malized to control samples run on the same plate.

Immunoblotting
Samples were subjected to SDS-PAGE on 10% TGX 
polyacrylamide gels (Bio-Rad) prior to transferring to 
Immobilon-FL PVDF membranes (MilliporeSigma). 
Membranes were blocked with protein-free blocking 
buffer (Thermo Scientific) before overnight incubation 
with primary antibody at 4 °C. The following day, mem-
branes were incubated with species-matched IR-dye–
conjugated secondary antibodies (Li-COR Biosciences) 
and scanned on an Odyssey scanner (Li-COR Bio-
sciences). In some cases, blots were stripped (62.5  mM 
Tris, pH 6.7, 4% SDS, 85  mM β-mercaptoethanol) and 
re-probed for additional proteins. Bands were quantified 

using ImageStudio Lite software (Li-COR Biosciences), 
with the exception of low molecular weight GCase, which 
was quantified using ImageJ to enable clear separation 
from mature GCase.

Immunostaining
Formalin-fixed blocks of the orbital part of the inferior 
frontal gyrus or inferior occipital cortex were provided 
by the Neurodegenerative Disease Brain Bank at the Uni-
versity of California, San Francisco, as described above. 
Brains from TDP-43 transgenic mice were prepared by 
transcardial perfusion with 0.9% saline, bisection into 
hemibrains, and 48-h post-fixation in 4% paraformalde-
hyde. All tissue was cryoprotected in 30% sucrose and cut 
into 30 µm sections on a sliding microtome (Leica).

Prior to immunostaining, sections from patient tissue 
were subjected to antigen retrieval in 10  mM sodium 
citrate, pH 6.0 at 80ºC for 2 h. Mouse brain sections did 
not require antigen retrieval. The sections were immu-
nostained by overnight incubation with primary anti-
body, followed by species-matched secondary antibodies, 
as previously described [66]. Species-matched Alex-
aFluor-conjugated secondary antibodies (ThermoFisher) 
were used for immunofluorescence and autofluorescence 
was quenched using 1% Sudan Black B (Acros Organics). 
Biotinylated secondary antibodies (Vector Laboratories) 
and VectaStain Elite ABC reagent (Vector Laboratories) 
were used for chromogenic labeling with diaminoben-
zidene (MP Biomedicals).

Antibodies
Antibodies used in this study are described in Table 2.

Autofluorescence
Brain sections from frontal and occipital cortex were 
washed with PBS, mounted onto Colorfrost Plus slides 
(Fisher Scientific), and coverslipped with Vectashield 
HardSet mounting medium containing DAPI (Vector 
Laboratories). Colocalization of autofluorescence with 
cell type markers was assessed by immunostaining for 
MAP2, Iba1, or GFAP as described above, but without 
quenching autofluorescence with Sudan Black B dye.

Sudan black B staining
Brain sections were mounted onto Colorfrost Plus slides 
(Fisher Scientific) and dried overnight prior to staining. 
Slides were then washed twice with water, immersed in 
70% ethanol for one minute, then stained for 20 min in 
0.1% Sudan Black B (Acros Organics) in 70% ethanol. 
Slides were then washed twice each with PBS and water 
before coverslipping with Vectashield HardSet mounting 
medium (Vector Laboratories).
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Imaging and analysis
Patient brain sections processed for autofluorescence and 
Sudan Black B were imaged at 20 × on a Nikon upright 
microscope or an EVOS M5000 imaging system (Ther-
moFisher). Images were taken of cortical layer II/III from 
2–3 sections from each patient and averaged to give final 
values. The number of autofluorescent or Sudan Black 
B-positive particles per field of view was determined 
using ImageJ. Due to variability in background fluores-
cence and staining, the Triangle autothreshold function 
[99] was used to detect autofluorescence and the Yen 
autothreshold function [98] was used to detect Sudan 
Black B. Preliminary trials with these functions produced 
very similar thresholds as investigators blinded to sample 
identity.

Images of p-TDP-43, autofluorescence, and SCMAS 
from mouse brain sections were taken at 20X on an 
EVOS M5000 imaging system (ThermoFisher). Staining 
was quantified with ImageJ by applying a uniform thresh-
old to all images. Immunofluorescent images for colocali-
zation were obtained at 20X on a Nikon Ti2-C2 confocal 
microscope.

Nanostring analysis
A custom Nanostring nCounter panel was designed 
to assess expression of 42 endolysosomal genes, with 

normalization to the housekeeping genes AARS, 
CCDC12, FAM104A, HPRT1, and PGK1. RNA was 
extracted from samples of frontal and occipital cor-
tex using the Qiagen RNEasy kit, then 200  ng of RNA 
from each sample was analyzed using an nCounter 
analysis system (Nanostring) and nSolver 4.0 software 
(Nanostring) in UAB’s Nanostring laboratory.

qPCR
For mouse brain samples, quantitative reverse-transcrip-
tion PCR was performed as previously described [34]. 
RNA was extracted from frontal cortex of nontransgenic 
and TDP++ littermates with Trizol (ThermoFisher). 
RNA samples were treated with DNase (Promega), 
then reverse transcribed with the High Capacity cDNA 
Reverse Transcription Kit (ThermoFisher). qPCR was 
conducted using Taqman assays (ThermoFisher) for 
Hexa (Mm00599877_m1), Ctsd (Mm00515586_m1), 
Gusb (Mm01197698_m1), Atp6v1a (Mm01343719_m1), 
Atp6v0a2 (Mm00441838_m1), Lamp1 (Mm00495262_
m1), Cd63 (Mm01966817_g1), Cd9 (Mm00514275_
g1), and Grn (Mm01245914_g1) using JumpStart Taq 
Readymix (MilliporeSigma), and normalized to expres-
sion of Actb (Mm00607939_s1).

For patient samples, RNA was extracted with the Qia-
gen RNEasy kit, treated with DNase (ThermoFisher), 

Table 2 Antibodies used for Immunoblotting and Immunostaining

CatD cathepsin D, GCase β-glucocerebrosidase, HexA β-hexosaminidase A, IB immunoblot, IF immunofluorescence, IHC immunohistochemistry, SCMAS subunit C of 
mitochondrial ATP synthase

Target Application Sample Type Source/Cat. # Dilution

CatD IB Patient Santa Cruz Biotechnology, sc- 1:500

IF 6486 1:500

CatD IB Mouse R&D Systems, AF1029 1:500

IF 1:1000

GCase IB Patient MilliporeSigma, G4171 1:500

GCase IF Patient R&D Systems, MAB7410 1:250

GFAP IF Patient/Mouse Agilent, Z033429 1:1000

HexA IB Patient Santa Cruz Biotechnology, sc-376777 1:500

HexA IB Mouse Abcam, ab189865 1:500

Iba1 IF Patient/Mouse Wako, 019–19,741 1:500

LAMP-1 IB Patient Santa Cruz Biotechnology, sc-20011 1:1000

LAMP-1 IB Mouse Developmental Studies Hybridoma Bank, 1D4B 1:100

LAMP-2 IB Patient Santa Cruz Biotechnology, sc-18822 1:1000

MAP2 IF Patient ThermoFisher, PA1-10,005 1:1000

NeuN IF Patient Abcam, ab177487 1:1000

NeuN IF Mouse MilliporeSigma, Abn91 1:500

p-TDP-43 (Ser409/410) IF Mouse Proteintech, 22,309–1-AP 1:1000

IHC 1:60,000

IB Patient 1:500

SCMAS IHC Mouse Abcam, ab181243 1:500
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and reverse transcribed using Biorad iScript. qPCR was 
conducted using pre-designed Prime-Time qPCR prim-
ers (Integrated DNA Technologies) and Power SYBR 
Green master mix (ThermoFisher). The following primer 
sets were used: HEXA (Hs.PT.58.24457208), CTSD (Hs.
PT.58.27568031), GUSB (Hs.PT.58v.27737538), IDUA 
(Hs.PT.58.40058589), LAMP1 (Hs.PT.58.27192505), 
CD63 (Hs.PT.58.25219306), GRN (Hs.PT.58.2528960.g), 
and PSAP (Hs.PT.58.744083), and normalized to expres-
sion of HPRT1 (Hs.PT.58v.45621572). Two samples were 
analyzed from each tissue block and averaged to give 
final results for each patient.

Small molecule fluorescent in situ hybridization (FISH)
Small molecule fluorescent in  situ hybridization (FISH, 
RNAscope) was performed to localize and quantify tran-
script for Ctsd (cat #520,571, Advanced Diagnostics/
ACD) in mouse brain tissue. Brains from non-transgenic 
or TDP++ mice were fresh frozen on dry ice, sectioned 
at 20  µm on a cryostat, and re-frozen at -80° C until 
use. FISH was performed according to manufacturer’s 
instructions and as previously described [34], using four 
mice/group, four coronal hemisections/mouse. Corti-
cal glutamatergic neurons and parvalbumin-expressing 
interneurons were identified using probes for Slc17a7 
(cat #416,631-C2, Advanced Diagnostics) and Pvalb 
(cat #421,931-C3, Advanced Diagnostics), respectively, 
using the RNAscope Mulitplex Fluorescent Assay V1 
(Advanced Diagnostics). Images were collected on a 
Nikon A1 + confocal microscope and exported as tiffs 
into ImageJ for analysis [34, 76, 80]. Thresholds were 
set using samples from non-transgenic mice, regions of 
interest were selected by Slc17a7 or Pvalb-positivity in 
the same sections, and Ctsd was quantified by region-
of-interest, taking into consideration the area of the cell 
(generating a mean pixel density value).

Electron microscopy
Frontal cortices were rapidly dissected after euthanizing 
mice, then fixed overnight at 4  °C in 6% glutaraldehyde 
and 2% paraformaldehyde in 0.15  M cacodylate buffer 
with 1 mM  Ca++ and 2 mM  Mg++. The following day, the 
tissue was rinsed three times in 0.15 M cacodylate buffer, 
then post-fixed for 90  min at room temperature in 1% 
osmium tetroxide in 0.15 M cacodylate buffer. The tissue 
was then rinsed three more times and processed through 
a graded ethanol series followed by three changes in pro-
pylene oxide. The tissue was infiltrated overnight with a 
1:1 solution of propylene oxide and Epon-812 resin, fol-
lowed by three incubations in 100% resin for two hours 
each. Tissue pieces were arranged in embedding molds, 
embedded in fresh resin, and polymerized at 65  °C 
overnight. The samples were then sliced, mounted onto 

copper grids, and imaged on a Technai Spirit T12 trans-
mission electron microscope (ThermoFisher).

Statistics
Most data are shown in box and whisker plots with the 
box drawn from the  25th to  75th percentiles, a line at the 
median value, and whiskers extending to the minimum 
and maximum data points. Tables containing all patient 
data are available in Additional File 2.  For all analyses, 
two-tailed p values were calculated with α set at 0.05. 
Data were tested for unequal variance using Bartlett’s 
test or F test, and for non-normal distribution using the 
D’Agostino-Pearson test in GraphPad Prism 9. Data that 
failed to meet assumptions of equal variance or normality 
were either log-transformed or analyzed by nonparamet-
ric tests. Except where noted, data were analyzed with 
GraphPad Prism 9.

Enzyme activity, protein levels, Triton-insoluble 
p-TDP-43, and lysosomal storage material in patient 
samples were analyzed by one-way ANOVA with a factor 
of patient group. Significant group effects were followed 
by Fisher’s LSD post-hoc test. Due to unequal variance, 
levels of low molecular weight GCase, Triton-insoluble 
p-TDP-43, and lysosomal storage material in patients 
were log-transformed prior to analysis. The relationship 
between p-TDP-43 and lysosomal protein levels was 
assessed using Spearman correlation. Mouse enzyme 
activity and protein levels were analyzed by t test, and 
Ctsd in situ hybridization was analyzed with Mann–
Whitney test (mean values per mouse) or Kolmogorov–
Smirnov test (cumulative frequency of Ctsd labeling). 
Lysosomal storage material in mice was analyzed with 
Mann–Whitney test. Due to analysis of multiple genes 
that were expected to exhibit similar changes relative to 
controls, qPCR data from both patient and mouse sam-
ples were analyzed by MANOVA using IBM SPSS Sta-
tistics 27. Group significance for individual genes was 
determined by between-subjects test. For patient qPCR 
data, this was followed with pair-wise comparisons 
between patient groups using Tukey’s post-hoc test. Due 
to unequal variance, both patient and mouse qPCR data 
were log-transformed prior to analysis.

Analyses of Nanostring data were conducted with R 
4.0 with additional utility from the Bioconductor suite 
of packages, with specific application of the Limma, 
Glimma, and DeSeq2 packages. Nanostring data were 
analyzed with general linear mixed-effects models to 
evaluate the impact of patient group on differential 
expression of mRNA. Abundance of mRNA profiles 
assumed a Gamma distribution using a natural log link 
function to account for the right-skewed scale distribu-
tion. Once samples were normalized to adjust for batch 
effects, GLME models were applied to each of transcripts 
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of interest with fixed effects covariates for brain region 
(occipital vs orbital), patient group (control vs FTD-
GRN vs sporadic FTLD-TDP type A) and their interac-
tion. Random effects blocked on individual patients who 
provided tissue from both brain regions. Specific con-
trasts of interest identified group effects between control 
patients and the two groups of patients with FTLD while 
controlling for brain region effects. For significance of 
differential expression between patients with FTD-GRN 
or sporadic FTLD-TDP type A versus controls, changes 
in mRNA expression for patients required a minimum 
50% fold change in either direction relative to controls 
to be considered clinically meaningful, with statistical 
significance for p-values less than 0.05 after False Dis-
covery Rate correction of 5% to account for multiple 
comparisons.

Results
Similar increases in lysosomal proteins in frontal cortex 
of patients with FTD‑GRN and sporadic FTLD‑TDP type A
Prior reports show that frontal cortex from patients with 
FTD-GRN has elevated levels of CatD, HexA, and other 
lysosomal proteins [8, 40], as well as reduced levels of 
mature GCase and accumulation of incompletely glyco-
sylated GCase [8, 85]. We therefore analyzed frontal cor-
tex from controls, patients with FTD-GRN, and patients 
with sporadic FTLD-TDP type A for CatD, HexA, and 
GCase enzyme activity and protein levels.

Across all measures, patients with FTD-GRN and 
sporadic FTLD-TDP type A exhibited similar changes 
relative to controls. Both patient groups exhibited ele-
vated HexA activity (Fig.  1a), as well as elevated levels 
of mature CatD and the lysosomal membrane proteins 
LAMP-1 and LAMP-2 (Fig.  1b). In contrast to prior 
observations [8, 85], neither group exhibited a deficit in 
GCase activity (Fig.  1a) or mature GCase protein levels 

Fig. 1 Increases in lysosomal enzyme activity and protein levels in frontal cortex of patients with FTD-GRN and sporadic FTLD-TDP type A. a 
Analysis of lysates from frontal cortex of patients with FTD-GRN or sporadic FTLD-TDP type A revealed similar increases in HexA activity (ANOVA, 
p = 0.0171) and CatD activity (ANOVA, p = 0.0404) in each patient group. No changes in GCase activity were detected (ANOVA, p = 0.4053). b 
Lysosomal protein levels followed a similar pattern, with both patient groups exhibiting increased levels of mature CatD (ANOVA, p = 0.0429), 
LAMP-1 (ANOVA, p = 0.0170), and LAMP-2 (ANOVA, p = 0.0019). c In contrast, no significant changes in enzyme activity were detected in occipital 
cortex, though there was a trend for reduced GCase activity in FTD patients (ANOVA, p = 0.0595). d Levels of mature GCase protein were reduced 
in occipital cortex of both patient groups (ANOVA, p = 0.0159) and the only elevated lysosomal protein in occipital cortex was LAMP-2, which was 
only elevated in patients with FTD-GRN (ANOVA, p = 0.0232). Immunoblots for frontal cortex are shown in e and for occipital cortex are shown in f. 
HexA = β-hexosaminidase A, CatD = cathepsin D, GCase = β-glucocerebrosidase. In e, f Ct = control, G = FTD-GRN, and A = sporadic FTLD-TDP type 
A. Molecular weight markers are identified by weight in kDa for each blot. †p < 0.1, *p < 0.05, **p < 0.01, and ***p < 0.001 by Fisher’s LSD post-hoc test. 
n = 5 controls, 12 patients with FTD-GRN, and 7 patients with sporadic FTLD-TDP type A
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(Fig.  1b). Most patients from both FTLD groups exhib-
ited a low molecular weight GCase band that we previ-
ously found to be composed of incompletely glycosylated 
GCase (Fig. 1e) [8]. This band was very faint in all but one 
control. Levels of this low molecular weight GCase were 
significantly elevated versus controls in patients with 
sporadic FTLD-TDP type A (Additional file  1: Fig. S1), 
with a similar trend in patients with FTD-GRN.

Limited changes in lysosomal proteins in occipital cortex 
of patients with FTD‑GRN and sporadic FTLD‑TDP type A
To determine whether these lysosomal changes were lim-
ited to a degenerated brain region, we measured the same 
lysosomal markers in occipital cortex, a region that was 
relatively spared from FTLD-TDP pathology.

In occipital cortex, neither patient group exhibited 
changes in HexA or CatD (Fig.  1c,d), but there was 
a trend for reduced GCase activity (Fig.  1c, ANOVA 
p = 0.0595) in both FTLD patient groups. Levels of 
mature GCase were significantly reduced in both FTLD 
patient groups (Fig. 1d), many of whom exhibited some 
accumulation of low molecular weight GCase (Fig.  1e), 
though levels of low molecular weight GCase did not sta-
tistically differ from controls (Additional file  1: Fig. S1). 
LAMP-1 levels were not significantly elevated in either 
FTLD patient group, but LAMP-2 levels were elevated 
in patients with FTD-GRN (Fig.  1d). In summary, the 
increases in lysosomal activity and protein levels were 
largely limited to frontal cortex in both FTLD patient 
groups.

Association of increased CatD and LAMP‑1 
with accumulation of p‑TDP‑43 in frontal cortex
The more dramatic increase in lysosomal proteins in 
frontal cortex than in occipital cortex of patients with 
FTD-GRN, as well as the presence of similar increases 
in patients with sporadic FTLD-TDP type A, suggested 
that these changes may be more associated with aspects 
of FTLD-TDP type A pathology such as TDP-opathy, 
neurodegeneration, or neuroinflammation than with pro-
granulin insufficiency. To gain insight into the relation-
ship of TDP-opathy with increases in lysosomal proteins, 
we conducted immunoblots for p-TDP-43 (Ser409/410) 
on the Triton-insoluble pellets from lysates used to deter-
mine enzyme activity and protein levels. These immu-
noblots revealed a roughly 25  kDa p-TDP-43 band that 
was detectable only in patients with FTD-GRN or spo-
radic FTLD-TDP type A (Additional file  1: Fig. S2a,b). 
Both patient groups exhibited similar levels of 25  kDa 
p-TDP-43 on average, so we analyzed the correlation 
across FTLD groups of 25  kDa p-TDP-43 with levels of 
proteins that were significantly elevated in patients with 

FTLD: CatD, LAMP-1, LAMP-2, and low molecular 
weight GCase (Additional file 1: Fig. S2c–f). These analy-
ses revealed a significant correlation of 25 kDa p-TDP-43 
with CatD and LAMP-1, with a similar trend for LAMP-
2. Levels of low molecular weight GCase were not corre-
lated with levels of 25 kDa p-TDP-43.

Cellular distribution of altered lysosomal proteins 
in frontal cortex of patients with FTD‑GRN and sporadic 
FTLD‑TDP type A
Since neuroinflammation could be an important factor 
driving the increase in lysosomal proteins in the frontal 
cortex, we conducted co-immunotaining to investigate 
whether these proteins were highly expressed in glia. We 
immunostained for progranulin, CatD, and GCase with 
markers of neurons (NeuN), microglia (Iba1), and astro-
cytes (GFAP) in frontal cortex of controls and patients 
with FTD-GRN or sporadic FTLD-TDP type A. Con-
sistent with a prior report [25], we observed strong pro-
granulin immunoreactivity in microglia (Additional file 1: 
Fig. S3a), suggesting that high progranulin expression by 
reactive microglia may mask the progranulin haploinsuf-
ficiency of patients with GRN mutations.

In contrast, we observed robust CatD immunoreactiv-
ity in neurons from both patient groups (Additional file 1: 
Fig. S3b), as well as some labeling in both microglia and 
astrocytes. Based on this labeling pattern, the increased 
CatD activity in FTLD patient tissue could be driven by 
changes in both neurons and glia.

Consistent with our prior observations [8], we observed 
lower GCase immunoreactivity in neurons from frontal 
cortex of patients with FTD-GRN (Additional file 1: Fig. 
S3c), but also observed some GCase immunoreactivity in 
astrocytes. Astrogliosis might therefore explain why we 
did not observe lower mature GCase levels in lysates of 
frontal cortex of patients with FTD-GRN, but did observe 
lower GCase levels in occipital cortex, which should have 
less neuroinflammation in these patients.

Similar increases in lysosomal transcript levels in frontal 
cortex of patients with FTD‑GRN and sporadic FTLD‑TDP 
type A
Having seen similar region-dependent changes in a small 
set of lysosomal proteins among patients with FTD-
GRN and sporadic FTLD-TDP type A, we analyzed the 
expression of 42 lysosomal genes using a Nanostring 
panel to gain a broader view of lysosomal changes in 
these patients. This panel consisted of transcripts for late 
endosomal and lysosomal membrane proteins, enzymes, 
and ion channels (Fig. 2a). In frontal cortex, the majority 
of genes on the panel trended toward increased expres-
sion relative to controls (Fig. 2a), with a total of 21 genes 
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reaching statistical significance (Fig.  2b,c). Of these 21 
genes, 16 were shared between patients with FTD-GRN 
and sporadic FTLD-TDP type A (Fig.  2d). Consistent 
with enzyme activity and immunoblots, transcripts for 
HEXA, CTSD, LAMP1, and LAMP2 were more abun-
dant in each patient group relative to controls (Fig.  2c). 
GRN was also elevated in both patient groups, consistent 
with a prior study of patients with FTD-GRN [25]. Two 
genes encoding vacuolar ATPase subunits were downreg-
ulated, one of which was shared between patients with 
FTD-GRN and FTLD-TDP type A (Fig. 2b,c). In occipital 
cortex, no changes in gene expression reached statistical 
significance (Fig. 2a).

Patients with FTD‑GRN and sporadic FTLD‑TDP type 
A exhibit signs of lysosomal storage material in frontal 
cortex
We next analyzed accumulation of lysosomal stor-
age material by measuring autofluorescence and stain-
ing with Sudan Black B. Consistent with a prior report 
[90], patients with FTD-GRN had more autofluorescent 
(Fig. 3a,b) and Sudan Black B-positive particles (Fig. 3d,e) 
in frontal cortex than controls. Patients with sporadic 
FTLD-TDP-A had more Sudan Black B-positive par-
ticles in frontal cortex than controls (Fig.  3d,e), but did 

not have more autofluorescent particles. Neither FTLD 
patient group had significantly elevated autofluorescence 
(Fig.  3c) or Sudan Black B labeling (Fig.  3f ) in occipi-
tal cortex, though patients with FTD-GRN had a trend 
for increased levels of Sudan Black B-positive particles 
(ANOVA, p = 0.0819).

A mouse model of TDP‑opathy replicates the increased 
CatD expression and accumulation of lysosomal storage 
material observed in FTLD‑TDP type A patients
Since patients with FTD-GRN and sporadic FTLD-TDP 
type A had similar lysosomal abnormalities that were 
generally limited to the degenerated frontal cortex and 
some of which were associated with levels of p-TDP-43 
(Additional file  1: Fig. S2), we hypothesized that TDP-
opathy, neurodegeneration, and/or neuroinflammation 
might be sufficient to drive these lysosomal abnormali-
ties. To test this hypothesis, we analyzed lysosomal phe-
notypes in a transgenic mouse model of TDP-opathy 
that expresses wild-type human TDP-43 under control 
of the Thy1 promoter [93]. When bred to homozygosity 
(TDP++ mice), these mice exhibit TDP-43 aggregation 
(Additional file 1: Fig. S4), neuronal loss, and gliosis [93] 
by 21 days of age.

Fig. 2 Similar changes in lysosomal gene expression in patients with FTD-GRN and sporadic FTLD-TDP type A. a Nanostring analysis of 42 genes 
related to endolysosomal function revealed similar changes in gene expression in frontal cortex of patients with FTD-GRN and patients with 
sporadic FTLD-TDP type A. b, c Statistical analysis revealed 20 differentially expressed genes versus control in frontal cortex across both patient 
groups, with no significant changes versus control in occipital cortex. c, d There was strong overlap of differentially expressed genes across both 
patient groups, with 16/20 genes exhibiting altered expression in both groups. Shaded cells in c indicate statistical significance after correction 
for multiple comparisons. n = 5 controls, 12 patients with FTD-GRN, and 7 patients with sporadic FTLD-TDP type A. In a GRN = FTD-GRN and 
TDP-A = FTLD-TDP type A
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Analysis of frontal cortex from 21  day-old TDP++ 
mice revealed increases in CatD activity and mature 
CatD levels similar to those observed in FTLD patients 
(Fig.  4a,b), though HexA and LAMP-1 levels were not 
significantly altered. Analysis of a subset of genes with 
differential expression in FTLD patients (Fig. 2) revealed 
that TDP++ mice replicated the increases in Ctsd, Gusb, 
Lamp1, and Cd63 (Fig.  4c), though the mice exhibited 
an opposite change in Atp6v0a2 from that observed 
in patients. As in FTD patients, CatD protein exhib-
ited a heavily neuronal localization (Fig. 4d), and in situ 
hybridization revealed an increase in Ctsd mRNA expres-
sion in excitatory (Slc17a7 +) neurons with no change in 
expression in local fast-spiking (Pvalb +) interneurons 
(Fig. 4e–g).

We next examined frontal cortex of 21 day-old TDP++ 
mice for lysosomal storage material by assessing levels of 
autofluorescence and subunit C of mitochondrial ATP 
synthase (SCMAS). SCMAS is a marker of lipofuscin 
[30, 41, 50] that is also elevated in Grn–/– mice [7, 40], 
which model the lipofuscinosis of homozygous GRN car-
riers [2, 44, 82]. TDP++ mice had higher levels of both 
autofluorescence (Fig.  4h,i) and SCMAS (Fig.  4j,k) in 
frontal cortex than nontransgenic littermates, indicat-
ing accumulation of lysosomal storage material. Nota-
bly, the autofluorescent material was less abundant than 
observed in patients, perhaps due to the young age of 
these mice. The autofluorescent material was present in 
both neurons and microglia, and exhibited a punctate 

appearance rather than the granular morphology typical 
of lipofuscin (Additional file  1: Fig. S5). However, elec-
tron microscopy revealed deposits with similar appear-
ance as storage material from Grn–/– mice (Additional 
file 1: Fig. S5).

In summary, TDP++ mice partially replicated the lyso-
somal changes of patients with FTD-GRN or sporadic 
FTLD-TDP type A, particularly the increases in Ctsd 
transcript, CatD protein/activity, and potential lysosomal 
storage material. With the caveat that these data were 
obtained from young mice that overexpress TDP-43, 
these findings suggest that TDP-opathy, neurodegenera-
tion, and/or neuroinflammation can drive these changes 
independently of progranulin haploinsufficiency.

Patients with multiple sporadic FTLD subtypes exhibit 
similar lysosomal abnormalities as patients with FTD‑GRN
To determine whether the lysosomal changes observed 
in patients with FTD-GRN or sporadic FTLD-TDP type 
A are specifically associated with TDP-opathy or may 
be more generally associated with neurodegeneration 
or neuroinflammation, we extended our investigation to 
include patients with a subtype of FTLD-TDP not associ-
ated with GRN mutations (type C) or a subtype of FTLD-
tau (Pick’s disease). For this analysis, new slices were 
collected from the previously used tissue blocks of fron-
tal cortex from controls and patients with FTD-GRN or 
sporadic FTLD-TDP type A and analyzed in parallel with 

Fig. 3 Signs of lysosomal storage material in frontal cortex of patients with FTD-GRN or sporadic FTLD-TDP type A. Patients with FTD-GRN 
exhibited a greater number of autofluorescent particles than controls in frontal cortex (ANOVA effect of group, p = 0.0243), while patients with 
sporadic FTLD-TDP type A did not differ from controls. c No difference was detected in autofluorescent particles in the occipital cortex of either 
group versus control (ANOVA effect of group, p = 0.4988). d, e Patients with FTD-GRN also exhibited a greater number of Sudan Black B-positive 
particles than controls in frontal cortex (ANOVA effect of group, p = 0.0022), as did patients with sporadic FTLD-TDP type A. f Levels of Sudan Black 
B-positive particles in occipital cortex of patients with FTD-GRN or FTLD-TDP type A did not significantly differ from controls (ANOVA effect of group, 
p = 0.0819). Scale bars in a, d represent 50 μm. *p < 0.05 and ***p < 0.001 by Fisher’s LSD post-hoc test. n = 5 controls, 13 patients with FTD-GRN, and 
7 patients with sporadic FTLD-TDP type A
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slices from tissue blocks of frontal cortex from patients 
with FTLD-TDP type C or Pick’s disease.

Analysis of lysosomal enzyme activity revealed a non-
significant trend for increased HexA activity (Fig.  5a, 

ANOVA effect of patient group, p = 0.1079) among all 
FTLD patient groups. CatD activity was significantly 
increased in patients with FTD-GRN, FTLD-TDP type 
C, and Pick’s disease. Similarly, all FTLD patient groups 

Fig. 4 A mouse model of TDP-opathy partially replicates the lysosomal abnormalities observed in patients with FTD-GRN or sporadic FTLD-TDP 
type A. a Homozygous TDP-43 transgenic mice (TDP++) had elevated CatD activity versus nontransgenic littermates (t test, p = 0.0004, n = 17–21 
mice per genotype), though HexA activity did not differ between groups. b TDP++ mice had a corresponding increase in mature CatD levels 
(t test, p = 0.0075, n = 16–21 mice per genotype), but no significant changes in HexA (t test, p = 0.0704) or LAMP-1 (t test, p = 0.3807). c TDP++ 
mice also exhibited increases in several lysosomal genes that were elevated in patients with FTLD (MANOVA effect of genotype, p = 0.019, n = 7 
mice per genotype). d CatD immunoreactivity in TDP++ mice was mostly neuronal, but also present in glia. e–g, in situ hybridization for Ctsd 
confirmed an increase in Ctsd expression in cortical vGlut1-positive (Slc17a7+) excitatory neurons (Mann–Whitney test, p = 0.0286), but not 
in parvalbumin-positive interneurons (Mann–Whitney test, p = 0.3429, n = 4 mice per genotype, number of cells analyzed is noted in f). The 
cumulative frequency of Ctsd labeling in Slc17a7 + excitatory neurons is shown in g (Kolmogorov–Smirnov test, p < 0.0001). TDP++ mice also 
accumulated storage material in frontal cortex, with an increase in autofluorescent particles (h, i Mann–Whitney test, p = 0.0002, n = 16–18 mice per 
genotype) and SCMAS (j, k Mann–Whitney, p = 0.0015, n = 10–11 mice per genotype). Scale bars represent 20 μm in (d, e, i, k). *p < 0.05, **p < 0.01, 
and ***p < 0.001 by t test in a and b, MANOVA between-subjects test in (c), ANOVA with Fisher’s LSD post-hoc test in (f), Kolmogorov–Smirnov test 
in (g), and Mann–Whitney test in (h, j)

Fig. 5 Similar lysosomal protein changes and storage material accumulation in frontal cortex of patients with multiple FTLD subtypes. Frontal 
cortex from patients with FTD-GRN, FTLD-TDP type C, or Pick’s Disease exhibited increased CatD activity versus controls (a, ANOVA effect of group, 
p = 0.0109). HexA activity was not significantly different from controls (ANOVA effect of group, p = 0.1079), though all FTLD groups exhibited trends 
for increased activity. b, c All FTLD patient groups also exhibited at least trends for elevated levels of LAMP-1 (ANOVA effect of group, p = 0.013) and 
LAMP-2 (ANOVA effect of group, p = 0.0059). d, e Patients with FTD-GRN and Pick’s disease exhibited higher numbers of autofluorescent particles 
compared to controls, and patients with FTLD-TDP type A exhibited a similar trend (ANOVA effect of group, p = 0.0254). f, g All FTLD patient groups 
had higher numbers of Sudan Black B-positive particles than controls (ANOVA effect of group, p < 0.0001). In a HexA data are scaled to the left y-axis 
and CatD data are scaled to the right y-axis. †p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 by Fisher’s LSD post-hoc test. Black lines 
and symbols indicate difference from controls. The red line and symbol in b indicate difference from FTD-GRN. n = 5 controls, 12–13 patients with 
FTD-GRN, 7 patients with FTLD-TDP type A, 7 patients with FTLD-TDP type C, and 7 patients with Pick’s disease. Abbreviations for c are: Ct = control, 
G = FTD-GRN, A = FTLD-TDP type A, C = FTLD-TDP type C, P = Pick’s disease. Scale bars in f and g represent 50 μm

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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exhibited increases in LAMP-1 and/or LAMP-2 (Fig. 5b) 
relative to controls. We did not observe significant 
increases in HexA activity or CatD protein levels ver-
sus controls as in Fig. 1, perhaps due to loss of statistical 
power with the increased number of comparisons.

As in Fig.  1, levels of mature GCase did not differ 
between controls and patients with FTLD, but patients 
with FTD-GRN or FTLD-TDP type A exhibited signifi-
cant increases in low molecular weight GCase (Addi-
tional file  1: Fig. S6). Patients with FTLD-TDP type C 
did not accumulate low molecular weight GCase, and 
had significantly lower levels than patients with FTD-
GRN. However, patients with Pick’s disease had interme-
diate levels of low molecular weight GCase that did not 
statistically differ from either controls or patients with 
FTD-GRN.

Analysis of lysosomal storage material revealed an 
increased number of autofluorescent particles (Fig. 5d,e) 
in patients with FTD-GRN and Pick’s disease, with a sim-
ilar trend for patients with FTLD-TDP type A. All FTLD 
patient groups exhibited an increase in Sudan Black 
B-positive particles relative to controls (Fig.  5f,g). Fluo-
rescent immunostaining revealed that neurons and astro-
cytes accumulated autofluorescent storage material, with 
microglia exhibiting some storage material as well (Addi-
tional file 1: Fig. S7).

In summary, all groups of patients with sporadic FTLD 
exhibited generally similar changes in lysosomal pro-
teins as patients with FTD-GRN. The only exceptions to 
this trend were lower levels of LAMP-2 in patients with 
Pick’s disease than patients with FTD-GRN (Fig.  5b, 
which still trended higher than controls), and the lack of 

accumulation of low molecular weight GCase in patients 
with FTLD-TDP type C.

Patients with sporadic FTLD‑TDP type C or Pick’s disease 
do not exhibit the increased lysosomal transcript levels 
observed in patients with FTD‑GRN or FTLD‑TDP type A
In contrast to the generally similar changes in lysosomal 
proteins, qPCR for a subset of the differentially expressed 
genes found by Nanostring (Fig.  2) revealed distinct 
changes in patients with FTD-GRN and sporadic FTLD-
TDP type A versus the other FTLD subtypes (Fig.  6). 
qPCR validated the increases in PSAP, HEXA, GUSB, 
CD63, and LAMP1 for patients with FTD-GRN and spo-
radic FTLD-TDP type A, and in GRN for patients with 
sporadic FTLD-TDP type A (Tukey’s post-hoc test for 
GRN in Ctrl vs. GRN, p = 0.078). CTSD and IDUA exhib-
ited statistically non-significant trends for increases ver-
sus controls (Tukey’s post-hoc test, CTSD Ctrl vs. GRN, 
p = 0.056, CTSD Ctrl vs FTLD-TDP-A, p = 0.089, IDUA 
Ctrl vs. GRN, p = 0.073, IDUA Ctrl vs. FTLD-TDP-A, 
p = 0.065). In contrast, patients with FTLD-TDP type 
C or Pick’s disease exhibited no significant changes in 
any of these genes versus controls. Direct compari-
son between patients with FTD-GRN and other FTLD 
groups revealed that patients with FTD-GRN had higher 
expression of most of these genes than patients with 
Pick’s disease (Fig.  6, red symbols). Thus, while signs of 
general lysosomal dysfunction were similar across FTLD 
subtypes (increases in CatD, LAMP1 and LAMP2, and 
lysosomal storage material), changes in expression of 
this subset of lysosomal genes were generally unique to 
FTLD-TDP type A, regardless of GRN status.

Fig. 6 Patients with Sporadic FTLD-TDP Type C or Pick’s Disease Do Not Exhibit the Increased Lysosomal Gene Expression Observed in Patients with 
FTD-GRN or FTLD-TDP Type A. qPCR for a subset of lysosomal transcripts detected by Nanostring analysis (Fig. 2) generally validated their increased 
expression in frontal cortex of patients with FTD-GRN and sporadic FTLD-TDP type A (MANOVA effect of group, p = 0.01). However, none of these 
genes were significantly elevated from control in frontal cortex of patients with FTLD-TDP type C or Pick’s disease. *p < 0.05, **p < 0.01 by Tukey’s 
post-hoc test. Black lines and symbols indicate difference from control. Red lines and symbols indicate difference from FTD-GRN. n = 5 controls, 12 
patients with FTD-GRN, 7 patients with FTLD-TDP type A, 7 patients with FTLD-TDP type C, and 7 patients with Pick’s disease
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Discussion
In this study, we report that many of the lysosomal 
abnormalities observed in frontal cortex of patients 
with FTD-GRN [8, 40, 90] are also present in fron-
tal cortex of patients with several types of sporadic 
FTLD. Patients with sporadic FTLD-TDP types A 
and C and FTLD-tau (Pick’s disease) exhibited simi-
lar increases in CatD activity, LAMP-1 and LAMP-2 
levels, and lysosomal storage material as patients with 
FTD-GRN. Though we analyzed a limited number of 
FTLD subtypes, these data suggest that such lysosomal 
abnormalities may be a common feature of end-stage 
FTLD. These lysosomal abnormalities may be asso-
ciated with multiple aspects of FTLD pathology and 
neurodegeneration.

The increases in neuronal CatD (Additional file  1: 
Fig. S1, Fig.  4) and lysosomal storage material (Addi-
tional file 1: Fig. S4) are consistent with prior studies of 
FTD-GRN [40, 90] and FTD-CHMP2B [28], and may 
be a sign of neuronal lysosomal dysfunction. Lysosomal 
dysfunction may be an important contributor to FTLD-
TDP and FTLD-tau pathogenesis, as the endolysosomal 
and autophagy-lysosomal pathways clear TDP-43 and 
tau, and disruption of these pathways exacerbates both 
types of pathology [12, 53, 54, 78, 88, 89, 96]. Mutations 
in several genes involved in autophagy-lysosomal func-
tion cause FTLD-TDP [72, 86, 87], implicating lysosomal 
dysfunction in the initiation of FTLD-TDP. Addition-
ally, both TDP-43 and tau pathology may disrupt lysoso-
mal function, driving further pathology. Loss of nuclear 
TDP-43 is a key aspect of TDP-43 pathology [4, 65] that 
may disrupt the autophagy-lysosomal and endolysosomal 
systems [15, 71, 77, 95]. Pathologic tau can also inhibit 
autophagy [19, 20], and the FTD-causing R406W tau 
mutation disrupts lysosomal function in iPSC-derived 
neurons [60].

While lysosomal dysfunction is implicated in FTLD-
TDP and FTLD-tau pathogenesis, the increased CatD 
and lysosomal storage material in FTLD might also be 
downstream of neurodegeneration. Similar increases 
in neuronal cathepsin D and lysosomal storage material 
have been observed in degenerated regions of brains from 
patients with Alzheimer’s disease (AD) [21, 22], though 
these changes are closely associated with AD pathology 
[23]. Accumulation of lysosomal storage material has also 
been observed in models of stroke [9], excitotoxicity [48] 
and traumatic brain injury [45, 47, 70], perhaps indicat-
ing a general relationship with neuronal stress or death. 
In contrast, CatD levels increase in some models of injury 
and excitotoxicity [11, 13, 16], but decrease in models of 
hypoxia and stroke [61] and at early time points after 
traumatic brain injury [74].

Neuroinflammation may also drive some of the lysoso-
mal abnormalities we observed in patients with sporadic 
FTLD. Degenerated brain regions in FTLD contain many 
reactive glia [52, 57], which strongly express lysosomal 
genes [75, 102, 103]. Reactive glia may drive several of 
the changes we observed, such as increased GRN expres-
sion in patients with FTD-GRN and sporadic FTLD-TDP 
A (Fig. 2, Additional file 1: S1) [25]. Glial phagocytosis of 
dead neurons may explain the presence of storage mate-
rial in glial cells of patients with sporadic FTLD (Addi-
tional file 1: Fig. S7), as similar effects have been observed 
in microglia in rodent models of traumatic brain injury 
[45, 47, 70].

In summary, the increases in lysosomal proteins and 
storage material in patients with sporadic FTLD and 
FTD-GRN [8, 40, 90] may be driven by a combination 
of both dysfunctional neurons and reactive glia. Further 
investigation will be needed to determine if the increased 
CatD and storage material in neurons are an indicator 
of lysosomal dysfunction that may contribute to FTLD 
pathogenesis or a more non-specific indicator of neu-
ronal distress and death.

This study also raises questions about the relation-
ship between progranulin haploinsufficiency, lysosomal 
dysfunction, and FTLD-TDP pathology in patients with 
GRN mutations. Comparison of lysosomal measures in 
frontal and occipital cortices of patients with FTD-GRN 
and sporadic FTLD-TDP type A (Figs. 1, 2, 3, Additional 
file 1: S1, S2) suggests an association of lysosomal abnor-
malities with TDP-opathy, neurodegeneration, or inflam-
mation rather than with progranulin haploinsufficiency. 
Notably, patients with FTD-GRN also exhibit lipofuscin 
accumulation, loss of nuclear TDP-43, and degenera-
tion in the retina [90, 91]. These data may indicate that 
these lysosomal abnormalities are primarily driven by 
TDP-opathy, neurodegeneration, or neuroinflammation 
rather than by progranulin haploinsufficiency. If so, then 
progranulin haploinsufficiency, unlike complete progran-
ulin deficiency, may produce relatively mild lysosomal 
dysfunction in the brain. This is also observed in mouse 
models. Brains from Grn–/– mice, which model the pro-
granulin deficiency of NCL [2, 44, 82], exhibit robust lys-
osomal changes and lipofuscinosis [1, 31, 32, 40, 56, 83]. 
However, brains from Grn+/– mice, which model the pro-
granulin haploinsufficiency of FTD-GRN, exhibit milder 
changes in lysosomal protein levels [5, 6, 31] and fail to 
accumulate lipofuscin [1, 32].

Alternatively, the association of lysosomal abnormali-
ties with FTLD-TDP pathology in FTD-GRN may indi-
cate regional differences in vulnerability to progranulin 
haploinsufficiency. Such vulnerability might arise via sev-
eral mechanisms. In the retina, the daily cycle of photo-
receptor degradation places high demand on lysosomes 



Page 15 of 19Davis et al. Acta Neuropathologica Communications           (2023) 11:70  

in cells of the retinal pigment epithelium [51], which 
might make them more vulnerable to disruption by pro-
granulin haploinsufficiency. Within the cortex, regional 
differences in progranulin cleavage might contribute to 
selective vulnerability. Greater progranulin cleavage into 
granulins might contribute to neurodegeneration, as pro-
granulin and granulins have distinct effects on inflam-
mation [108] and lysosomal protease activity [17, 18]. 
Mouse studies indicate differential cleavage of progranu-
lin between brain regions, with the cortex having a par-
ticularly high granulin to progranulin ratio [101]. Patients 
with FTD-GRN exhibit greater cleavage of progranulin to 
granulins in a degenerated region of frontal cortex than 
in occipital cortex [63], but this higher cleavage of pro-
granulin may be driven by neurodegeneration or inflam-
mation, as it is also observed in degenerated regions of 
patients with sporadic FTLD-TDP type A and AD [73].

As in sporadic FTLD, the role of lysosomal dysfunction 
in FTD-GRN pathogenesis will therefore be an impor-
tant topic for future investigation. The presence of simi-
lar lysosomal abnormalities in patients with FTD-GRN, 
patients with sporadic FTLD, and TDP++ mice shows 
that progranulin haploinsufficiency is not necessary to 
produce increases in some lysosomal proteins and stor-
age material. However, this does not rule out progranulin 
haploinsufficiency as an early driver of lysosomal abnor-
malities in patients with FTD-GRN. For example, data 
from Grn–/– mice suggest a model in which progranulin 
deficiency induces lysosomal dysfunction in microglia 
[39, 56], which then drives neuronal dysfunction and 
TDP-opathy at later ages [39, 56, 100].

Despite similar signs of lysosomal dysfunction among 
all FTLD patient groups, patients with FTD-GRN and 
sporadic FTLD-TDP type A exhibited unique changes 
in expression of lysosomal genes (Figs.  2, 6). Patients 
with FTLD-TDP type A, regardless of GRN genotype, 
might therefore exhibit unique lysosomal changes com-
pared to other FTLD subtypes. Patients with FTD-
GRN or sporadic FTLD-TDP type A also exhibit unique 
transcriptional changes in other pathways, as a recent 
transcriptomic study showed substantial overlap in dif-
ferentially-expressed genes among patients with FTD-
GRN and sporadic FTLD-TDP type A, which diverged 
from changes in patients with FTLD-TDP type C [68]. 
Understanding the role of transcriptional dysregulation 
in FTLD-TDP type A pathogenesis is therefore another 
important area for future investigation.

Conclusions
This study shows that patients with several subtypes of 
sporadic FTLD have similar increases in CatD activity, 
lysosomal membrane proteins, and lysosomal storage 

material as patients with FTD-GRN. These changes may 
be driven by lysosomal dysfunction associated with 
FTLD-TDP or FTLD-tau pathology, or with neurodegen-
eration and neuroinflammation. In contrast, the unique 
changes in lysosomal gene expression of patients with 
FTD-GRN and sporadic FTLD-TDP type A indicate lyso-
somal changes specific to FTLD-TDP type A. These data 
indicate that lysosomal abnormalities may be a common 
feature of end-stage FTLD, though they may be driven by 
distinct mechanisms in different FTLD subtypes.
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