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Plasma wakefields driven by an incoherent combination of laser pulses: a

path towards high-average power laser-plasma accelerators
C. Benedetti,1 C. B. Schroeder,1 E. Esarey,1 and W. P. Leemans1

Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Dated: 6 May 2014)

The wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,
without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-
cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the
amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent
nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the
wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the
same energy. Wake generation requires that the incoherent structure in the laser energy density produced by
the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of
multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power
laser-plasma accelerators and associated applications.

I. INTRODUCTION

Plasma-based accelerators have received significant
theoretical and experimental interest in the last years
because of their ability to sustain extremely large
acceleration gradients, enabling compact accelerating
structures1,2. In a laser plasma accelerator (LPA), a
short and intense laser pulse propagating in an under-
dense plasma, ponderomotively drives an electron plasma
wave (or wakefield). The plasma wave has a relativistic
phase velocity (of the order of the group velocity of the
laser driver) and can support large accelerating and fo-
cusing fields. The relativistic plasma wave is the result
of the gradient in laser field energy density providing a
force (i.e., the ponderomotive force) that creates a space
charge separation between the plasma electrons and the
neutralizing ions. For a resonant laser pulse driver, i.e.
with a length L0 ∼ k−1

p , where kp = ωp/c, c being

the speed of light in vacuum and ωp = (4πn0e
2/m)1/2

the electron plasma frequency for a plasma with den-
sity n0 (m and e are, respectively, the electron mass and
charge), with a relativistic intensity, i.e. with a normal-
ized vector potential a0 = eA0/mc2 ∼ 1 (A0 is the peak
amplitude of the laser vector potential), the amplitude
of the accelerating field is of order E0 = mcωp/e, or

E0[V/m] ≃ 96
√

n0[cm−3]. For instance, in a plasma
with n0 ∼ 1017 e/cm3, accelerating gradients on the or-
der of ∼ 30 GV/m can be obtained. This value is several
orders of magnitude higher than in conventional accel-
erators, presently limited to gradients on the order of
∼ 100 MV/m. LPAs have produced & 1 GeV electron
beams over a few centimeters plasmas with per-cent-level
energy spread3,4, and significant effort has been put to
increase their reliability and tunability5–9, and to fully
characterize the properties of the laser-plasma acceler-
ated beams10–13.

The rapid development and properties of LPAs makes
them interesting candidates for applications to future
compact radiation sources14–18 and high energy linear

colliders19–21. However, significant laser technology ad-
vances are required to realize, for instance, a linear col-
lider based on LPA techniques. A concept for a 1 TeV
center-of-mass electron-positron LPA-based linear col-
lider is presented in Ref. 20. A possible scenario fore-
sees, for both the electron and positron arms, multiple
LPA stages with a length of Lstage ∼ 1 m, operating
at a density of the order n0 ∼ 1017 e/cm3. Each LPA
stage is powered by a resonant laser pulse with duration
T0 ∼ L0/c . 100 fs, wavelength λ0 ∼ 1 µm, contain-
ing tens of Joules of laser energy (with a peak power of
. 1 PW), and with a laser spot size w0 ∼ λp = 2π/kp,
yielding an intensity such that a0 ∼ 1, and creating a
quasi-linear wake in the plasma with accelerating gradi-
ent ∼ E0. After propagating in a plasma stage the laser
pulse driver is depleted. The accelerated particle bunches
are then extracted form the plasma stage and re-injected
in a subsequent LPA stage, powered by a new laser pulse,
for further acceleration. The required laser intensities
and energies are achievable with present laser technol-
ogy. However, luminosity requirements dictate that the
laser repetition rate is frep ∼ 10 kHz (average laser power
of hundreds of kW), which is orders of magnitude beyond
present technology. The required repetition rate depends
on the plasma density choice and scales as frep ∝ n0.

20

However, operating at a lower plasma density21 reduces
the accelerating gradient and increases beamstrahlung
effects22.

To date, LPAs are typically driven by solid-state (e.g.,
Ti:sapphire) lasers that are limited to an average power
∼ 100 W. For example, the Berkeley Lab Laser Acceler-
ator (BELLA) laser delivers 40 J pulses on target at 1
Hz23. Since virtually all applications of LPAs will ben-
efit greatly from higher repetition rates, it is essential
that high average power laser technology continues to be
developed. Together with the increase in average laser
power, the laser wall-plug efficiency will need to increase.
Increasing the laser average power and efficiency would
also benefit several future accelerator applications be-
yond LPAs, owing to the broad use of laser technology in



2

modern high performance accelerator facilities (e.g., driv-
ing electron/ion sources, pump and probe beams, seeding
x-ray lasers, exciting matter into exotic non-equilibrium
states, dielectric laser accelerators, lasers for Compton
scattering sources, etc.)24,25.
Several laser technologies are being studied and con-

sidered as potential candidates to provide systems with
high average power and high wall-plug efficiency, namely,
fiber lasers, diode-pumped solid-state lasers, and optical
parametric chirped pulse amplification (OPCPA) based
lasers2,24–26. For example, in Refs. 26 and 27, a scheme
is presented were a large number of diode-pumped fiber
systems, delivering pulses with ∼ mJ energy at kHz rep-
etition rate, are combined in such a way that the relative
phases of the output beams are controlled so they con-
structively interfere (coherent combination) and produce
a single, high power output beam with high efficiency.
The challenges in controlling individual phases are re-
lated not only to the large number of fibers to combine
in order to achieve high peak power (e.g., ∼ 104 fibers
for a ∼ 30 J energy pulse), but also to the fact that co-
herent combination of pulsed beams with a duration of a
few tens or hundreds of femtoseconds requires matching
of both phase and group delays using phase modulators
and delay lines. So far, the coherent combination of an
array of 64 (continuous wave) beams from fiber ampli-
fiers with λ0/60 precision has been demonstrated28. The
coherent combination of a small number of femtoseconds
lasers has also been achieved29,30.
In this paper we show that an LPA does not require

a fully coherent driver laser pulse. This is true because
the LPA wakefield is excited by the ponderomotive force
(i.e., the gradient in the electromagnetic energy density),
along with the fact that the plasma responds on the time
scale λp/c. Large amplitude wakefield excitation requires
sufficient electromagnetic energy within a given volume,
typically of the order of ∼ λ3

p. Since the wakefield re-
sponse behind the driver depends on the time-integrated
behavior of the electromagnetic energy density of the
driver over λp/c, it is insensitive to time structure in the
driver on time scales ≪ λp/c, which allows for the use
of incoherently combined laser pulses as the driver. The-
oretically, this can be easily demonstrated in the linear
(a2 < 1) wakefield regime in which the amplitude of the
electric field of the wake is small (|E|/E0 < 1). In the
linear regime, the wake electric field E is given by1

(

∂2/∂t2 + ω2
p

)

E/E0 = −(cωp/2)∇a2, (1)

with the solution

E/E0 = −(c/2)

∫ t

0

dt′ sin[ωp(t− t′)]∇a2(t′). (2)

This Green function solution averages out the small scale
time structure in the ponderomotive force. Hence, in
effect, the wakefield is given by

(

∂2/∂t2 + ω2
p

)

E/E0 ≃ −(cωp/2)∇〈a2〉, (3)

where the angular brackets represent a time average over
scales small compared to λp/c.
Owing to the time average process characterizing the

wake excitation, we show that multiple, low-energy, inco-
herently combined laser pulses can deposit sufficient field
energy in the plasma to ponderomotively drive a large
wakefield. We show that no phase control in the combi-
nation of multiple laser pulses is required for LPAs. We
find that, under certain conditions, the wake generated
by an incoherent combination of pulses is regular behind
the driver and its amplitude is comparable, or equal, to
the one obtained by using a single coherent pulse with
the same energy. We expect that the fundamental re-
quirements to achieve incoherent combination are more
relaxed compared to coherent combination. Hence, inco-
herent combination may provide an alternative and tech-
nically simpler path to the realization of high repetition
rate and high average power LPAs.
In this paper we analyze, analytically and numerically

by means of fully-self-consistent particle-in-cell (PIC)
simulations, the wakefield generated in a plasma by com-
bining a large number of low energy laser pulses with-
out constraining the phases of the different laser pulses
(incoherent combining). To illustrate the physics of
wake generation using multiple, incoherent pulses, we
consider, as examples, three different incoherent com-
bination schemes: (1) spectral combining (where differ-
ent laser pulses, spectrally separated, are spatially over-
lapped by using a dispersive optical system), (2) short
pulse stacking (where short pulses with a moderately low
energy but high intensity are stacked longitudinally), and
(3) a mosaic of beamlets (where short and narrow laser
pulses are placed side-by-side tiling a prescribed volume).
We show that, in spite of the (in general) incoherent na-
ture of the wakefield within the volume occupied by the
laser pulses, behind this region the structure of the wake-
field is, in some cases, completely regular, and its ampli-
tude is comparable or equal to the one obtained by us-
ing a single (coherent) pulse with same energy. We also
characterize the evolution of the wakefield as the inco-
herent combination of pulses propagates in the plasma.
The results are of interest for high-repetition rate LPA
applications, such as an LPA-based collider.
The paper is organized as follows. Wakefield excita-

tion using the spectral combining scheme is presented in
Sec. II, the pulse stacking method in Sec. III, and the
mosaic of beamlets in Sec. IV. Conclusions are presented
in Sec. V.

II. SPECTRAL COMBINATION OF INCOHERENT

PULSES

Although technically difficult to realize, we consider
the idealized case of spectrally combining a large num-
ber of incoherent pulses to demonstrate the principal that
wakefield excitation does not require the energy density
of the driver to be in a single coherent pulse. We con-
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sider a collection of N laser pulses propagating along the
longitudinal direction, z, in a parabolic plasma channel.
The plasma density profile is given by

n(r) = n0 +
1

πrer20

(

r

r0

)2

, (4)

where n0 is the on-axis (r =
√

x2 + y2 = 0) plasma den-
sity, r0 determines the channel depth, and re = e2/mc2 ≃
2.82× 10−13 cm is the classical electron radius. For con-
venience throughout the paper we will use comoving co-
ordinates, namely ζ = z − ct, s = ct. Each (linearly
polarized) laser pulse is described initially (s = 0) by a
transverse normalized laser vector potential of the form

a⊥,j(r, ζ) = a0,j exp

(

− r
2

w2
0

)

exp

(

− ζ2

L2
0

)

cos(k0,jζ+ϕj),

(5)
for j = 1, · · · , N , where a0,j is the amplitude of the
laser vector potential for the j−th laser pulse, k0,j =
2π/λ0,j is the wavenumber associated with the laser
wavelength λ0,j , ϕj is an arbitrary (random) phase, w0

and L0 are, respectively, the laser spot size and pulse
length (for simplicity we assume all the lasers have the
same spot size and pulse length, we also assume that
k0,jw0 ≫ 1 and k0,jL0 ≫ 1, for j = 1, · · · , N). De-
noting by I0,j the laser peak intensity, then a0,j ≃
8.5 · 10−10(I0,j [W/cm2])1/2λ0,j [µm]. We consider pulse
lengths such that L0 ∼ k−1

p (resonant laser pulses), where
kp is the plasma wave number corresponding to the on-
axis density n0. If we take w0 = r0, every laser pulse is
(linearly) matched in the channel and so, in the limit of
low-power and low-intensity, its spot size does not evolve
during propagation. Under these conditions we expect
each pulse to propagate in the channel with a constant
group velocity vg,j (neglecting nonlinear effects such as
self-steepening and depletion32) given by33

βg,j =
vg,j
c

≃ 1−
k2p

2k20,j
− 2

k20,jr
2
0

. (6)

To leading order, the transverse laser field, which
is the dominant component for a broad pulse, is
E⊥,j ≃ (mc2/e)∂ζa⊥,j. We define the (denormalized)

laser pulse energy as Uj =
∫

dζ
∫

2πrdr (∂ζa⊥,j)
2 ≃

(π/2)3/2a20,jk
2
0,jw

2
0L0/2. We also assume that the N

laser pulses are spectrally separated, namely, the power
spectra of the pulses do not overlap with each other
(wavelength combining). The spectral bandwidth of each
pulse (Gaussian longitudinal profile) can be estimated as
∆k ∼ 1/L0, so the condition of spectral separation can
be expressed as

|k0,j − k0,l| ≫ ∆k ∼ 1/L0, (7)

for j 6= l, and the following condition also holds,

∫ +∞

−∞

dζ F (ζ) a⊥,j(r, ζ)a⊥,l(r, ζ) = 0, (8)

for j 6= l, where F (ζ) is any slowly varying function,
namely |∂ζF | . |F |/L0. The total energy of the combi-
nation is then simply

Utot =

N
∑

j=1

Uj =
1

2

(π

2

)3/2

w2
0L0

N
∑

j=1

a20,jk
2
0,j . (9)

From an experimental point of view, the condition
of spectral separation allows the overlap of N different
beams by using a dispersive optical system like a sequence
of dichroic mirrors, a grating, or a prism31. To com-
pute the wakefield generated by the combination of laser
pulses requires solving Maxwell’s equations coupled with
the cold plasma fluid equations. Assuming that individ-
ual plasma particles are passed over by the laser pulses
and the associated wake in a short time compared with
the time over which the shape of the laser pulses or the
wake evolve, we can make the quasi-static approxima-
tion, i.e. ∂s ≃ 0 in all the wake quantities. Denoting by
φtot the wake potential (normalized to mc2/e), we have1

1

k2p

∂2φtot

∂ζ2
= −φtot +

a2tot
2

, (10)

where atot =
∑

j a⊥,j. Eq. (10) is valid in the limit of

a broad plasma channel, k2pr
2
0 ≫ 1, and low intensity,

atot . 1 (linear wakefield). The longitudinal accelerat-
ing field is then Ez/E0 = −∂φtot/∂(kpζ). The Green
function solution to Eq. (10) is

φtot(r, ζ) = − sin(kpζ)

∫ ∞

ζ

d(kpζ
′) cos(kpζ

′)
a2tot(r, ζ

′)

2
+ cos(kpζ)

∫ ∞

ζ

d(kpζ
′) sin(kpζ

′)
a2tot(r, ζ

′)

2
, (11)

where

a2tot =

N
∑

j=1

a2⊥,j +

N
∑

j=1

N
∑

l=1,l 6=j

a⊥,ja⊥,l. (12)

The solution for wake phases ζ in the domain following

the pulses where all the laser fields vanish is obtained by
taking the limit ζ → −∞ in the integrals of Eq. (11).
By inserting Eq. (12) in Eq. (11) and using the spectral
separation condition Eq. (8) (in our case kpL0 ∼ 1, then
the functions cos(kpζ

′) and sin(kpζ
′) within the integrals

are slowly varying functions) we find that the contribu-



4

tions to the integrals coming from the double summation
(i.e., the terms with j 6= l) are vanishing. The wakefield
potential behind the laser pulses then reads

φtot ≃ −1

4

√

π

2
(kpL0)e

−(kpL0)
2/8e−2r2/w2

0 sin kpζ

N
∑

j=1

a20,j ,

(13)
where we used the assumption k0,jL0 ≫ 1 to perform
an average over the fast laser oscillations on each of the
terms a2⊥,j originating from the first sum in Eq. (12).
The average removes the dependence of φtot on the laser
phases ϕj . We notice that for wake phases within the
volume occupied by the lasers, where we cannot take the
limit ζ → −∞ in the integrals of Eq. (11), the contri-
bution to the wakefield originating from the interference
between the lasers [double summation term in Eq. (12)]
does not vanish, yielding an “incoherent” behavior for
φtot characterized by the non-smoothness of the wake-
field due to the presence of spatial structures at several
different spatial scales and by the fact that these struc-
tures depend on the particular values of the relative laser
phases ϕj − ϕl.
We consider now the wakefield generated by a single

(“coherent”) bi-Gaussian, linearly polarized laser pulse
[same form for the vector potential as in Eq. (5)] and
with the same pulse length, L0, and spot size, w0, as
before. We denote by A0 the amplitude of the nor-
malized vector potential, and by λ0 = 2π/K0 the laser
wavelength. Also in this case we assume K0L0 ≫ 1
and K0w0 ≫ 1. The (denormalized) pulse energy is
Uc = (π/2)3/2A2

0K
2
0w

2
0L0/2 and the expression of the

wake potential in the region behind the laser driver is

φc ≃ −A2
0

4

√

π

2
(kpL0)e

−(kpL0)
2/8e−2r2/w2

0 sin kpζ. (14)

Equating the laser energy and the wakefield amplitude
for the single pulse to the corresponding quantities in the
case of N pulses incoherently combined, namely Eq. (9)
and Eq. (13), we obtain the following consistency condi-
tions

{

∑N
j=1 a

2
0,jk

2
0,j = A2

0K
2
0 , (equal energy)

∑N
j=1 a

2
0,j = A2

0, (equal wakefield).
(15)

Therefore, given a set of spectrally separated, low power
laser pulses with identical pulse lengths and spot sizes,
and with wavenumbers and amplitudes of the normalized
vector potential satisfying Eq. (15), the wakefield gener-
ated in a plasma channel by their (incoherent) combi-
nation equals, in the region behind the pulses, the one
generated by a single laser pulse with the same total en-
ergy, pulse length and spot size.
We notice, however, that this equivalence applies only

in the early stages of the laser plasma interaction. In
fact, during propagation, owing to the fact that lasers
with different frequencies are characterized by different
group velocities as expressed in Eq. (6), the combination

of pulses disperses and, consequently, the amplitude of
the excited wake drops. We can estimate the lengthening
of the laser driver due to dispersion as follows. We denote
by kmin, k, and kmax, respectively, the minimum, central,
and maximum laser wavenumbers in the combination, we
also define δk = kmax − kmin, then, using Eq. (6), the
rate at which the lasers disperse is

δL ∼ [βg(kmax)− βg(kmin)]s ∼
[

(

kp

k

)2

+
4

(kr0)2

]

δk

k
s.

(16)
The driver loses resonance with the plasma when
(kpδL)

2 ≫ 1, causing a reduction of the wakefield am-
plitude. For the case where the driver loses resonance
and the laser pulses are not fully depleted, some (or all)
of their remaining energy may be recovered when the
lasers exit the plasma channel.
The consistency conditions Eq. (15) can be fulfilled in

several ways. In the following we present two examples.
In the first one we consider a set of laser pulses with the
same normalized laser vector potential and different en-
ergies. In the second one we consider a set of pulses with
the same energy and different values for the normalized
vector potential. In both cases, we assume that the laser
wavenumbers are given by

k0,j/K0 = α+ βj, (17)

for j = 1, · · · , N , where β, which sets the spectral sep-
aration between lasers pulses, is fixed in such a way
the condition expressed in Eq. (7) is satisfied, namely
|k0,j+1−k0,j| = K0β ≫ 1/L0 ∼ kp, implying β ≫ kp/K0,
and α depends on the number of laser pulses and on the
particular laser combination scheme as explained below.
For the case of pulses with the same normalized laser

vector potential we have a0,j = A0/
√
N , and the second

condition in Eq. (15) is automatically satisfied, while the
first one, together with Eq. (17), gives

α2 + αβ(N + 1) +
β2

6
(2N2 + 3N + 1)− 1 = 0. (18)

Solving for α in Eq. (18) we finally determine the values
of k0,j to be used in the laser combination. We notice,
however, that a solution does not exist for an arbitrarily
large number of lasers. For this particular scheme we
have N . (

√

1 + 48/β2 − 3)/4 (with β <
√
6), or, in

the limit β ≪ 1, N .
√
3/β. For instance, in a 10 GeV

LPA stage powered by a BELLA-type laser (Uc ∼ 30 J,
λ0 ∼ 1 µm, A0 ∼ 1), we have kp/K0 ∼ 0.01. Choosing
β ∼ 0.08, we obtain that the maximum number of lasers
that can be accommodated with this scheme is N ∼ 20,
and so a0 ∼ 0.22. The minimum and maximum laser
wavelengths are, respectively, 0.6 µm and 8.9 µm, and
the corresponding laser energies are 4 J, and 20 mJ. This
scheme is characterized by a strong imbalance among the
energies of the different beams.
As a second example, we consider pulses of equal en-

ergy. We have a0,jk0,j = A0K0/
√
N , and, in this case,
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the first condition in Eq. (15) is automatically satisfied.

We also have a0,j = (A0/
√
N)K0/k0,j = (A0/

√
N)(α +

βj)−1, and using the second condition in Eq. (15) we ob-
tain the equation for α for this configuration of lasers,
namely

N
∑

j=1

1

(α+ βj)2
= N. (19)

The maximum number of lasers that can be accommo-
dated in this case is, in the limit β ≪ 1, N . 1.6/β2,
so this configuration shows a more favorable scaling with
β compared to the equal amplitude combination scheme.
In fact, if we take, as before, kp/K0 ∼ 0.01 (e.g., 10
GeV LPA stage) and β ∼ 0.08, we obtain that the max-
imum number of lasers is N ∼ 250. The energy of each
pulse is then ∼ 120 mJ, the minimum and maximum
laser wavelengths to be used in the combination are, re-
spectively, 12 µm (with a0 = 0.78) and 0.05 µm (with
a0 = 0.0031). We recall that, however, the larger is the
number of beams, and so the larger is the range of laser
wavelengths employed, the fastest the pulse combination
will disperse. More specifically, according to Eq. (16),
since δk = kmax − kmin ∝ N , we have that the prop-
agation length over which the combination disperses is
∝ 1/N . Finally, we note that, in both examples, we
can accommodate twice the number of laser pulses (and
so decrease the laser energy of each pulse) without in-
creasing the range of laser wavelengths, by considering
polarization multiplexing.
A numerical example of wakefield generated by a spec-

tral combination of incoherent pulses is presented in
Fig. (1). In Fig. (1) (a) we show (red line) the normal-
ized laser field, a(ζ), generated by incoherently combin-
ing 50 spectrally separated laser pulses with equal en-
ergies. The black dashed line is the laser envelope for a
single (coherent) laser pulse with A0 = 1.5,K0/kp = 150,
and kpL0 = 2. The incoherent laser parameters, namely
k0,j , a0,j , are chosen such that the conditions expressed
by Eq. (15) hold. The laser phases are random. In
Fig. (1) (b) we show the lineout of the longitudinal accel-
erating field, Ez(ζ)/E0, generated by the coherent pulse
(black line) and by the incoherent combination of laser
pulses for two different set of values of the laser phases
(red and blue dashed lines). We notice that the wakefield
from incoherent combination is regular behind the driver
region, namely kpζ . −4, its amplitude equals the one
from the single coherent pulse with the same energy, and
no dependence on the laser phases is observed. This is
in contrast to the region within the driver (|kpζ| . 4),
where the wakefield shows, as expected, an “incoherent”
pattern with dependence on laser phases.
So far, we considered the centroids of the spectrally

separated laser pulses to be completely overlapped. How-
ever, if this is not the case, both the structure (shape)
and the amplitude of the wakefield are different compared
to the case where the centroids are superimposed. De-
noting by (x0, y0, z0) the coordinates of the centroid for a
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FIG. 1. (a) Normalized laser field generated by incoherently
combining 50 spectrally separated laser pulses with equal en-
ergies (red line). The black dashed line is the laser envelope
for a single (coherent) laser pulse with A0 = 1.5, K0/kp = 150,
and kpL0 = 2. The incoherent laser parameters, k0,j , a0,j , are
chosen such that the conditions expressed by Eq. (15) hold.
The laser phases are random. (b) Lineout of the longitudinal
accelerating field generated by the coherent pulse (black line)
and by the incoherent combination of laser pulses for two dif-
ferent set of values of the laser phases (red and blue dashed
lines).

generic laser pulse, we assume that the centroids are ran-
domly distributed with a Gaussian probability distribu-
tion function such that, initially, 〈x0〉 = 〈y0〉 = 〈z0〉 = 0,
〈x2

0〉 = 〈y20〉 = σ2
⊥, and 〈z20〉 = σ2

z . In general the centroid
distribution will evolve during propagation, however, at
least for short pulses in the low-power and low-intensity
limit, it will maintain a Gaussian feature. This is due
to the fact that the centroid of each laser which is, ini-
tially, off-axis or with a non-vanishing injection angle,
performs harmonic oscillations about the channel axis
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FIG. 2. (a) Snapshots of the longitudinal wakefield maps,
Ez(ζ, x), generated by an incoherent combination of 48 spec-
trally separated pulses (including polarization multiplexing)
with identical energies and with σ⊥ = 0 (overlapped cen-
troids, left panel), and σ⊥ = 5 µm (displaced centroids, right
panel). In both cases σz = 0 (no longitudinal centroids dis-
placement). The laser and plasma parameters are n0 = 1018

cm−3, r0 = w0 = 12 µm, and L0 = 8 µm. The remaining in-
coherent laser parameters, namely k0,j , a0,j , are chosen such
that the conditions expressed by Eq. (15) are satisfied with
A0 = 1 and λ0 = 0.8 µm. The green dashed lines delimit the
transverse wakefield extent for the case with σ⊥ = 0. (b) On-
axis lineout of the longitudinal accelerating field generated
by a coherent pulse with A0 = 1 (black solid line), and by
the incoherent combination of 48 pulses with the same energy
as the coherent pulse and centroid displacements such that
σ⊥ = 0 (red), 3 µm (green), and 5 µm (purple). The black
dotted lines correspond to the theoretical predictions for the
on-axis lineout of the accelerating wakefield.

with a period Zos = 2πZm, where Zm = k0r
2
0/2. In

particular, if the distribution of the injection angles (i.e.,
θx and θy) is chosen also to be Gaussian with, initially,
〈θx〉 = 〈θy〉 = 0, 〈θ2x〉 = 〈θ2y〉 = σ2

⊥〈Z2
m〉, and all the other

second order moments are vanishing, then the transverse
centroid distribution is “matched” in the channel and all
the second order moments of the distribution are con-

stant during propagation, for propagation lengths short
compared to the characteristic dispersion length. Sum-
ming over the incoherent laser pulses distribution, the
wakefield behind the pulses for non-overlapping laser cen-
troids is

φtot ≃ −A′2
0

4

√

π

2
(kpL)e

−(kpL)2/8e−2r2/w2

sin kpζ, (20)

where L2 = L2
0 + 4σ2

z , w
2 = w2

0 + 4σ2
⊥, and

A′2
0 =

L0

L

(w0

w

)2 N
∑

j=1

a20,j =
L0

L

(w0

w

)2

A2
0. (21)

We note that the wakefield structure is determined by
the properties of the incoherent energy distribution. For
instance, the transverse characteristic size of the wake-
field increases from ∼ w0 to ∼ w in accordance with
the increase in the transverse extent of the incoherent
energy distribution due to transverse centroid displace-
ment. Similarly, the effective driver length determining
the wake excitation is the characteristic length of the
incoherent energy distribution, L [i.e., wake excitation

proportional to (kpL)e
−(kpL)2/8]. Finally, we have that

the effective driver field strength for wake excitation is
reduced compared to the case where the centroids are
overlapped, namely A′2

0 /A
2
0 = (L0/L)(w0/w)

2 ≤ 1, and
this is consistent with the fact that, by displacing the
laser centroids, the total incoherent energy is distributed
over a volume that is (L/L0)(w/w0)

2 times larger com-
pared to the case where the centroids are overlapped.
In Fig. (2) (a) we show maps, obtained in 2D simula-

tions with the PIC code ALaDyn34,35, of the longitudinal
wakefield, Ez(ζ, x), generated by an incoherent combi-
nation of 48 spectrally separated pulses (including po-
larization multiplexing) with identical energies and with
σ⊥ = 0 (overlapped centroids, left panel), and σ⊥ = 5 µm
(displaced centroids, right panel). In both cases σz = 0
(no longitudinal centroids displacement). The laser and
plasma parameters are n0 = 1018 cm−3, r0 = w0 = 12
µm, and L0 = 8 µm. The remaining incoherent laser pa-
rameters, namely k0,j , a0,j, are chosen such that the con-
ditions expressed by Eq. (15) are satisfied with A0 = 1
and λ0 = 0.8 µm. The green dashed lines delimit the
transverse wakefield extent for the case with σ⊥ = 0 (left
panel). As anticipated, the characteristic transverse size
of the wakefield is increased when the laser centroids are
displaced.
In Fig. (2) (b) we show the on-axis lineout of the longi-

tudinal accelerating field, Ez(ζ, x = 0)/E0, generated by
a coherent pulse with A0 = 1 (black solid line), and by
the incoherent combination of 48 pulses with the same
energy as the coherent pulse and centroid displacements
such that σ⊥ = 0 (red), 3 µm (green) and 5 µm (purple).
We note that the black (coherent pulse) and red (incoher-
ent combination with σ⊥ = 0) solid curves are completely
overlapped behind the driver region. The black dotted
lines correspond to the theoretical predictions for the on-
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axis lineout of the accelerating wakefield. More specifi-
cally, following Eq. (20) rewritten for the 2D Cartesian
geometry, we have that the accelerating wakefield for the
incoherent combination is expected to scale as

Ez,incoherent(ζ, x = 0)

Ez,coherent(ζ, x = 0)
=

w0

w
=

(

1 +
4σ2

⊥

w2
0

)−1/2

. (22)

The theoretical prediction is in good agreement with the
simulations.

III. INCOHERENT LASER PULSE STACKING

In this section, we consider N identical short laser
pulses with high peak intensity and, owing to the short
duration, moderately low energy, stacked longitudinally
in a parabolic plasma channel as the one described by
Eq. (4). All the linearly polarized laser pulses have the
same amplitude of the normalized vector potential, a0,
wavelength, λ0 = 2π/k0, pulse length, ℓ0, spot size,
w0, and independent (random) phases, ϕj . We assume
kpℓ0 ≪ 1 (short pulse compared to the plasma wave-
length), ℓ0 & 2λ0, and k0w0 ≫ 1 (broad pulse). As be-
fore we take w0 = r0 so every laser is (linearly) matched
in the channel during propagation. The form of the laser
vector potential for the pulses at s = 0 is

a⊥,j(r, ζ) =a0 exp

(

− r
2

w2
0

)

f

(

ζ − ζ0,j
ℓ0

)

× cos[k0(ζ − ζ0,j) + ϕj ], (23)

for j = 1, · · · , N , where z0,j is the longitudinal coor-
dinate of the centroid for the j−th laser, and f(y) is
a compact support function describing the longitudinal
envelope. In the following we will assume

f(y) =

{

cos2 (πy) , |y| ≤ 1
2 ,

0, |y| > 1
2 .

(24)

The energy of each pulse, keeping into account the con-
tribution of the finite length envelope, is

Uj ≃
3

32
πa20k

2
0w

2
0ℓ0

[

1 +
4π2

3

1

(k0ℓ0)2

]

. (25)

The laser pulses are located, longitudinally, one after the
other (longitudinal stack of pulses) such that the sepa-
ration between two adjacent pulses is ℓ0 (well separated
lasers), namely |ζ0,j+1 − ζ0,j | = ∆ζ = ℓ0, in this case the
total energy of the pulses is simply

Utot =

N
∑

j=1

Uj ≃
3

32
πNa20k

2
0w

2
0ℓ0

[

1 +
4π2

3

1

(k0ℓ0)2

]

.

(26)
The concept of driving the wakefield with a long train

of short pulses spaced by the plasma period has been
studied1, and has been recently re-examined as a tech-
nique for driving plasma accelerators with efficient, low-
energy, high-repetition lasers2. However, some concern
may be raised about the possibility that the wake remains
coherent after several hundreds (or thousand) of plasma
periods. Furthermore, using pulse trains, the fluctua-
tions in the background density need to be small in order
to avoid changes in the phase velocity of the wake due
to variations of the plasma wavelength, λp = 2π/kp ∝
1/

√
n0, that could potentially spoil the properties or limit

the energy gain of the accelerated bunch located at some
phase (accelerating and focusing) behind the last laser
pulse. In our approach all the pulses are located within
a plasma period and we use the combined envelope of
the stack of short, sub-resonant pulses to synthesize the
envelope of a single longer, resonant pulse.
The wakefield, φtot, generated behind the train of N

pulses can be compute analytically in the limit a0 . 1
using, as before, the quasi-static approximation. We
will also make the assumption of broad plasma channel,
k2pr

2
0 ≫ 1. Owing to linearity of the wakefields and to the

fact that the different pulses are non-overlapping, we have

φtot =
∑N

j=1 φj and φj , and the single-pulse contribution

to the wakefield, satisfies k−2
p (∂2φj/∂ζ

2) = −φj+a2⊥,j/2.
The Green function solution for φj in the region behind
the laser pulse where the laser field vanishes, namely
ζ < ζ0,j − ℓ0/2, is

φj = − 3

32
a20(kpℓ0)e

−2r2/w2

0

{

sin [kp(ζ − ζ0,j)] +G

(

k0ℓ0
π

)

cos(2ϕj) sin [kp(ζ + ζ0,j)]

}

, (27)

where G(x) = (4/π)[sinπx/(4x − 5x3 + x5)]. We no-
tice that φj depends on the laser phase ϕj , however
the function G(k0ℓ0/π) goes to zero quickly as L0 in-
creases (|G| ∼ 1/(k0ℓ0)

5 for k0ℓ0 large). For instance,
already if we take ℓ0 & 2λ0, then G . 10−3, and so
the dependence of the wakefield amplitude on the laser

phase can be neglected. Assuming the N lasers are dis-
tributed in the interval −L0/2 ≤ ζ ≤ L0/2, that is
ζ0,j = −L0/2 + ℓ0(j − 1)/(N − 1), for j = 1, · · · , N ,
then the total wakefield in the region ζ < −L0/2− ℓ0/2
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is

φtot = − 3

32
a20(kpℓ0)





N
∑

j=1

cos kpζ0,j



 e−2r2/w2

0 sinkpζ

≃ − 3

16
a20 sin

(

kpL0

2

)

e−2r2/w2

0 sin kpζ, (28)

where we assumed N ≫ 1.
We compare the wakefield generated by the stack of

pulses with the one generated by a single (coherent) laser
pulse with amplitude A0, wavenumber k0, spot size w0 =
r0, and a longitudinal flattop intensity profile of length
L0, namely ac(ζ, r) = A0 exp(−r

2/w2
0) cos(k0ζ) for |ζ| <

L0/2, for |ζ| > L0/2 the amplitude of the vector potential
goes to zero with a ramp characterized by a scale length
Lr such that λ0 ≪ Lr ≪ L0 ∼ k−1

p . The exact functional
form of the ramp is not relevant. The energy of the pulse
is Uc ≃ πA2

0k
2
0w

2
0L0/4 and the wakefield behind the pulse

is φc ≃ −(A2
0/2) sin(kpL0/2)e

−2r2/w2

0 sinkpζ. Equating
the wakefield amplitude for the pulse train φtot given by
Eq. (28) to the one of a single pulse, we obtain that the
two are equivalent if

a0 =

√

8

3
A0. (29)

By substituting the value of a0 given by Eq. (29) in the
expression for Utot, Eq. (26), and comparing Utot with
the energy of the single pulse, Uc, we obtain

Utot

Uc
≃ 1 +

4π2

3

k2p
k20

N2

(kpL0)2
& 1. (30)

We notice that, even though the wakefield generated
by the stack of pulses is equivalent to the one gener-
ated by a single coherent pulse, the total energy of the
combination of pulses is more than the one of the co-
herent pulse. The loss in the efficiency of the combina-
tion is related to finite pulse length effects, and is sen-
sitive to the details of the longitudinal pulse envelope.
However, for physically relevant parameters, the quan-
tity η = (4π2/3)(kp/k0)

2[N2/(kpL0)
2] is small. In fact,

for a resonant flattop pulse kpL0 = π, and the condi-
tion ℓ0 & 2λ0 limits the maximum number of pulses to
N . (k0/kp)/4, and so η . 0.08. In a 10 GeV LPA
stage (k0/kp ∼ 100) the maximum number of pulses in
the train would be N . 25, with an energy per pulse of
& 1.3 J. The overall number of pulses in the train can
be doubled (and so the energy of each pulse halved) by
using polarization multiplexing.
A numerical example of wakefield generated by the

incoherent pulse stacking is presented in Fig. (3). In
Fig. (3) (a) we show (black dashed line) the normalized
laser field envelope for a single (coherent) flat-top laser
pulse with A0 = 1.5, k0/kp = 150, kpL0 = π. The red
plot is the laser field generated by stacking longitudi-
nally 37 pulses with a0 =

√

8/3A0 ≃ 2.45, ℓ0 = 2λ0. The
laser phases for the 37 pulses are random. In Fig. (3)
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FIG. 3. (a) Normalized laser field envelope for a single (coher-
ent) flat-top laser pulse with A0 = 1.5, k0/kp = 150, kpL0 = π
(black dashed line). The red plot is the laser field generated

by stacking longitudinally 37 pulses with a0 =
√

8/3A0 ≃

2.45, ℓ0 = 2λ0. The laser phases for the 37 pulses are random.
(b) Lineout of the longitudinal accelerating field generated by
the coherent pulse (black line) and by the incoherent stacking
of laser pulses for two different set of values of the laser phases
(dotted red line and blue diamonds).

(b) we show the lineout of the longitudinal accelerating
field, Ez(ζ)/E0, generated by the coherent pulse (black
line) and by the incoherent stacking of laser pulses for
two different set of values of the laser phases (dotted
red line and blue diamonds). As expected, we have that
the wakefield from incoherent combination equals the one
from the single coherent pulse. The energy of the inco-
herent combination exceeds the energy of the coherent
pulse by ∼ 8% in agreement with Eq. (30).
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IV. MOSAIC OF INCOHERENT LASER BEAMLETS

As a third example of driving a wakefield with in-
coherently combined laser pulses, we consider a collec-
tion of short and narrow laser beamlets placed side-by-
side, both longitudinally and transversally, tiling a pre-
scribed volume. Each pulse has high (relativistic) peak
intensity but low energy owing to the limited spatial ex-
tent of the beamlets. The domain to be tiled (cylin-
der in 3D or square in 2D) is given by |ζ| < L0, and

r =
√

x2 + y2 < W0, in 3D, or |x| < W0, in 2D Cartesian
geometry. This scheme can be seen as the generalization
to the transverse dimensions of the one presented in the
previous section. For simplicity, we will restrict our anal-
ysis to the 2D Cartesian geometry. The generalization to
3D is straightforward. In this scheme the pulses are ini-
tially organized into a 2D grid of Nz×Nx points, then, at
each location, two laser beamlets with orthogonal polar-
ization can be accommodate (polarization multiplexing).
The total number of beamlets is then N = Nz ×Nx × 2.
All the laser beamlets have the same amplitude of the
normalized vector potential, a0, wavelength, λ0 = 2π/k0,
pulse length, ℓ0, spot diameter, d0. The longitudinal and
transverse coordinates of the centroid of the beamlets are,
ζ0,i = −L0/2 + ℓ0/2 + ℓ0(i − 1), for i = 1, · · · , Nz, and

x
(k)
0,j = −W0+d0/2+d0(j+k/2−1) for j = 1, · · · , Nx and

k = 0, 1, where k is the polarization index (e.g., k = 0
for the in-plane polarization, k = 1 for the out-of-plane
polarization). The laser field for each beamlet is non-
zero only over the domain defined by |ζ − ζ0,i| < ℓ0/2

and |x − x
(k)
0,j | < d0/2, and so beamlets with the same

polarization do not overlap. The form of the laser vector
potential for the pulses at s = 0 is,

a
(k)
⊥,ij(ζ, x) =a0 f⊥

(

x− x
(k)
0,j

d0

)

f‖

(

ζ − ζ0,i
ℓ0

)

× cos[k0(ζ − ζ0,i) + ϕi,j,k], (31)

where ϕi,j,k is the laser phase (different for each laser),
and f⊥(y), f‖(y) are compact support functions that van-
ishes for |x| > 1/2. In the following we will assume
f⊥ = f‖ = f , where f is the one defined in Eq. (24).
The guiding of this incoherent combination of laser

pulses over distances much longer compared to the
Rayleigh length of the single beamlets, namely ZR ∼
πd20/λ0, can be achieved by a plasma channel with a con-
stant density, n(x) = n0, up to a distance R ∼ W0 from
the axis, and then, for |x| > R, a steep plasma wall,
for instance n(x) = n0 + ρ(|x| − R)8, where ρ is a pa-
rameter that sets the steepness of the wall. The optimal
value of both R and ρ is chosen via numerical simulations.
During propagation the single beamlets diffract but their
energy is reflected by the plasma walls. Because of multi-
ple reflections, and interference between fields of different
beamlets, we expect the total electromagnetic radiation
driving the wake to have a complex pattern. Another
consequence of multiple reflections, and of the fact that
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FIG. 4. (a) Evolution of the rms transverse size of the energy
distribution, σx(s), for a combinations of 208 = 13 × 8 × 2
beamlets with a0 = 1.5, ℓ0 = 4 µm, d0 = 15 µm, λ0 =
0.8 µm. The background plasma density is n0 = 0.9 · 1017

cm−3. The beamlets are tiling a 2D domain with L0 = 55
µm, and 2W0 = 144 µm. (b) Snapshot of the laser energy
density at the beginning of the simulation, and (c) after some
propagation distance in the plasma.

each beamlet is characterized by a typical (finite) diffrac-
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tion angle, is the increase of the effective driver length,
implying a slow decrease of the accelerating field induced
by the loss of resonance of the driver.

In Fig. (4) (a) we show, as an example, the evolution of
the rms transverse size of the energy distribution, σx(s),
for a combinations of 208 = 13 × 8 × 2 beamlets with
a0 = 1.5, ℓ0 = 4 µm, d0 = 15 µm, λ0 = 0.8 µm. The
background plasma density is n0 = 0.9 · 1017 cm−3. The
beamlets are tiling a 2D domain with L0 = 55 µm, and
2W0 = 144 µm. We see that the laser energy from the
combination is well guided over distances significantly
longer than the Rayleigh length of the beamlets. Fig. (4)
(b,c) show snapshots of the laser energy density at the
beginning of the simulation (b), and after some propa-
gation distance in the plasma (c), where the laser field
exhibits a clear incoherent pattern.

To simplify the analytical description of the system,
we will assume kpℓ0 ≪ 1 (short pulse compared to the
plasma wavelength), ℓ0 & 2λ0, and w0/ℓ0 ≫ 1. An esti-

mate of the single pulse energy is give by

U
(k)
ij ≃

∫

dζ

∫

dx

(

∂a
(k)
⊥,ij

∂ζ

)2

≃ 9

128
a20k

2
0d0ℓ0

[

1 +
4π2

3

1

(k0ℓ0)2

]

. (32)

Since the beamlets are (initially) non-overlapping, the
total energy of the combination is

Utot =

N
∑

j=1

Uj

≃ 9

128
Na20k

2
0d0ℓ0

[

1 +
4π2

3

1

(k0ℓ0)2

]

≃ 9

32
a20k

2
0W0L0

[

1 +
4π2

3

k2p
k20

N2
z

(kpL0)2

]

. (33)

As shown in the previous sections, in the limit a0 . 1
(linear wakefield), and by using the quasi-static approxi-
mation, we can obtain an estimate of the wakefield ampli-
tude at early times during propagation, when the struc-
ture of the total electromagnetic fields of the beamlets is
still reasonably simple. In particular, behind the region
occupied by the drive lasers, the longitudinal accelerating
fields reads

Ez,tot(ζ, x)/E0 ≃ 3

32
a20(kpℓ0)

Nz
∑

i=1

Nx
∑

j=1

1
∑

k=0

f2

(

x− x
(k)
0,j

d0

)

[cos(kpζ) cos(kpζ0,i) + sin(kpζ) sin(kpζ0,i)] . (34)

In this calculation we neglected the terms of the wakefield
depending on the laser phases ϕi,j,k since, as shown in the
previous section, already for very short pulses, namely
ℓ0/λ0 & 3, their contribution is negligible. We notice

that, in Eq. (34),
∑Nz

i=0 cos kpζ0,i ≃ (2/kpℓ0) sin(kpL0/2),

and that
∑Nz

i=0 sinkpζ0,i ≃ 0. We also notice that
the dependence of Ez on x is modulated by the func-

tion g(x) ≡ ∑Nx

j=1

∑1
k=0 f

2[(x − x
(k)
0,j )/d0], whose aver-

age value, which depends on the particular disposition of
the beamlets, the dimensionality (2D Cartesian), and the
particular choice of the transverse envelope shape for the
beamlets. For Eq. (24), the average of g(x) is 3/4. As
a consequence, the mean amplitude of Ez far from the
plasma walls is

Ez,tot(ζ, |x| ≪ R)/E0 ≃ 9

64
a20 sin

(

kpL0

2

)

cos kpζ. (35)

We compare the wakefield generated by the combina-
tion of beamlets with the one generated by a single (co-
herent) laser pulse with amplitude A0, wavenumber k0.
The pulse has a longitudinal flattop intensity profile of
length L0, and a super-Gaussian transverse intensity pro-

file, namely ac(ζ, x) = A0 exp[−(x/W0)
14] cos(k0ζ) for

|ζ| < L0/2. For |ζ| > L0/2 the amplitude of the vec-
tor potential goes to zero with a ramp characterized by
a scale length Lr such that λ0 ≪ Lr ≪ L0 ∼ k−1

p .
We notice that the intensity profile is transversally con-
stant for |x| . W0, as is the transverse profile for the
incoherent combination case. The energy of the coher-
ent pulse is Uc ≃ A2

0k
2
0W0L0, and the on-axis accel-

erating field behind the pulse is Ez,c(ζ, x = 0)/E0 ≃
A2

0

2 sin
(

kpL0

2

)

cos kpζ. Equating the field amplitude for

the beamlets, Ez,tot, given by Eq. (35) to the one of a
single pulse, we obtain that the two are equivalent if

a0 =
4
√
2

3
A0. (36)

By substituting the value of a0 given by Eq. (36) into the
expression for Utot, Eq. (33), and comparing Utot with the
energy of the single pulse, Uc, we obtain

Utot

Uc
≃ 1 +

4π2

3

k2p
k20

N2
z

(kpL0)2
& 1. (37)
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FIG. 5. (a) Map of the longitudinal wakefield, Ez(ζ, x), gen-
erated by the incoherent combination of 208 beamlets [same
parameters as in Fig. (4)]. (b) On-axis lineout of the acceler-
ating field for the incoherent combination (red line) and for
a single coherent pulse with A0 = 0.8 (black dashed line).
This inset shows the integrated momentum gain, ∆uz(ζ, s) ≃
−(e/mc2)

∫ s

0
Ez(ζ, s

′)ds′, for a relativistic particle initially lo-
cated in kpζ ≃ −10 (maximum accelerating field). The black
and red lines refer, respectively, to the momentum gain in the
coherent and incoherent case.

As for the laser pulse stacking example, also in this case
we expect that, for a given wakefield amplitude, the en-
ergy of the incoherent combination exceeds the energy of
the coherent pulse by a few percents.
A numerical example of wakefield generated by the a

mosaic of incoherent beamlets is presented in Fig. (5).
The laser and plasma parameters are the same as in
Fig. (4). In Fig. (5) (a) we show a 2D map of the lon-
gitudinal wakefield, Ez(ζ, x), generated by the incoher-
ent combination. In Fig. (5) (b) we show the on-axis
lineout of the accelerating field for the incoherent com-

bination (red line) and for a single coherent pulse with
A0 = 0.8 (black dashed line). We notice that, behind
the driver region, the wake from incoherent combination
is regular and its amplitude is the same as the one from
a single (coherent) pulse. The total energy of the com-
bination of pulses exceeds the one of the coherent pulse
by ∼ 10%. we notice that this value is slightly higher
than the one given by Eq. (37). This difference can be
ascribed to the details of the definition of the laser pulses
in the simulation (i.e. small differences in the definition
of the intensity profiles between coherent and incoherent
case). The noisy field structure observed in the lineout
of the accelerating field, due to multiple reflections from
walls and interference of beamlets, does not affect the en-
ergy gain of relativistic particles accelerated in the wake-
field. This is shown in the inset of Fig. (5) (b), where
we compute the integrated momentum gain, defined as
∆uz(ζ, s) ≃ −(e/mc2)

∫ s

0
Ez(ζ, s

′)ds′, for a relativistic
particle initially located in kpζ ≃ −10 (maximum accel-
erating field). The black and red lines in the inset refer,
respectively, to the momentum gain in the coherent and
incoherent case. The momentum gain in the two cases is
approximately equal (∼ 2% difference in the energy gain
after 10 mm propagation).
As a final illustration, we will compute the number

of beamlets, in 3D, required to power a 10 GeV LPA
stage (Uc ∼ 30 J, λ0 ∼ 1 µm, A0 ∼ 1, flattop length
L0 ∼ 50 µm, spot size W0 ∼ 60 µm). By using, for
instance, beamlets with ℓ0 ∼ 3λ0 ∼ 3 µm (≃ 10 fs), and
d0 ∼ 10 µm, we obtain Nz ≃ L0/ℓ0 ∼ 16, and Nx/2 =
Ny/2 ∼ W0/d0 ∼ 6. Taking into account polarization
multiplexing, the total number of beamlets is then N ∼
3600, and the energy of each beamlet would be & 8 mJ.

V. CONCLUSIONS

In this paper we studied the wakefield generated by
the incoherent combination of multiple laser pulses. We
have shown that multiple, low-energy, incoherently com-
bined pulses may be employed to efficiently excite plasma
wakefields for LPA applications. This is the case since the
wakefield is excited in a plasma by the nonlinear pondero-
motive force, Fp, which in the mildly relativistic regime
(a2 < 1) scales as Fp ∼ a2, along with the fact that
the plasma responds on the time scale ∼ ω−1

p . Effective
wake generation requires that there is a sufficiently large
amount of laser energy within a sufficiently small volume
∼ λ3

p, however, wake excitation is largely insensitive to

small scale fluctuations (time scales < ω−1
p ) in the laser

energy density within this volume. In effect, the plasma
response averages out the small scale structures in the
laser driver. Hence, a highly incoherent driver, such as a
collection of incoherently combined laser pulses, can be
used to excite a wakefield, as long as the resulting inco-
herent structures exist on a short time scale (< ω−1

p ),
and the resulting time averaged structure has a form
appropriate for wake generation (e.g., a time-averaged
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structure that is localized in space and time to a volume
∼ λ3

p).

To illustrate the physics, we considered three different
combination schemes, namely, spectral combining, pulses
stacking, and a mosaic of beamlets. The aim of these
schemes is to deliver in a suitable spatial volume a certain
amount of electromagnetic energy obtained from multi-
ple, low-energy laser beams. For each incoherent combi-
nation scheme examined, we characterized the wakefield
amplitude and compared it to that generated by a sin-
gle (coherent) laser pulse with the same rms length and
width. In particular, we determined under which condi-
tions the wakefield generated by the incoherent combi-
nation is equivalent to that generated by the single co-
herent pulse and we compared the total energy for each
case. More specifically, we find that, for the wavelength
combination scheme, the wakefield amplitude excited by
the combination can be equal to that generated by a sin-
gle (coherent) pulse, and the energy of the combination
equals the energy of the single pulse, i.e., the incoherent
combination scheme is as efficient as the coherent one in
generating the wakefield. For the cases of the pulse stack
and the mosaic of beamlets, we find that, even though
the wakefield amplitude of the combination equals the
one of a single pulse, the total energy of the combination
exceeds the one of a single pulse. However, the loss in
the efficiency is generally limited to a few percent.

For each combination scheme we discussed the main
limitations. These limitations include dispersive length-
ening of the collection of pulses, limitations imposed by
geometry, and limitations due to laser technology. For
example, the maximum number of pulses that can be ac-
commodated in the spectral combining scheme depends
on the maximum bandwidth, the available frequencies,
and the plasma wavelength for a given density. The three
combination schemes discussed in this paper serve as il-
lustrative examples and should not be considered as an
optimized configuration. One can readily envision other
possible schemes for the incoherent combination of laser
pulses. For instance, some features of the approaches dis-
cussed in this paper can be used in conjunction, e.g., the
wavelength combination approach can be used together
with the pulse train scheme or with the mosaic of beam-
lets. This would allow increasing the overall number of
beams to use in the combination and so further reduce
the energy of each pulse.

Virtually all applications of LPAs would benefit greatly
from an increase in laser repetition rate and average
power. These applications range from drivers for ad-
vanced light sources (e.g., short-wavelength free-electron
lasers) to large-scale colliders for high-energy physics. As
an example, the laser requirements for a LPA-based col-
lider are extremely challenging, requiring high efficiency
lasers with repetition rates on the order of ten kHz,
and average powers on the order of hundreds of kW.
Present high power, short pulse laser systems based on
Ti-sapphire are limited to an average power on the or-
der of hundreds of W. One approach to the next gen-

eration of laser drivers for LPAs that is widely being
researched is the coherent combination of a large num-
ber of fiber lasers. Coherent combination of lasers en-
tails several technical challenges including control of the
laser phase, spatial combination, and precise pulse tim-
ing and synchronization (to within a fraction of a laser
wavelength). Our study, however, has shown that co-
herent combination is not required for an LPA. Since no
control over the relative laser phases is imposed, we ex-
pect that fundamental requirements to achieve incoher-
ent combination are more relaxed compared to coherent
combination, thereby enabling a technologically simpler
path for design of high-peak power, high-average power,
high-repetition rate LPAs and associated applications.
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