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ABSTRACT

The theory bf cluster expansions is studied by a new method. A
general procedure for oBiaining the thermal average of a many body function
as a series in powers of‘density is derivgd. A recipe based on.the Baker-
Hausdorf theorem for reducing quantum thermal averagés to their classical
analogueé is also described. These‘results'are used ic express the slow
neutroﬁ'cross sections of imperfect gases as power series in molecular
density. Formulae are given for the leading eontribu@ions to both elastic

and inelsstic scattering.

Work supported in part by the Atomic Energy Commission;

YT Now at the University of Califorhia,-Berkeley, California.
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1. INTRODUCTION
The scattering of slow neutrons by nuclei subject to = - chemical
‘ forces in atomic and molecular systems can be uséd as a tool to study these
forces. This technique is being developed as a ne&_and-welcome supplement
td such well established methods as x;rayfand electron diffraction. Consider-
éble work has been dohe on neutroﬁ diffraction by crystals and within the
past fef years, tﬁe"use of neutrons in~the sfudy'of gases and liquids has
- been init‘.:i.ea.tecl..-1

Methods have recently been developedg for thevtreatﬁent'of inelastic
as well as elastic scattering of neutrons'By gaseous systems. Since the
'effécté of intermolecﬁlar interactioﬁs were considered quite crudely, and
only in connection with fhe ;outer effect", the resﬁlts are strictly valid
ohly in the limit of.vanishing density.. When scattering experiments are
pefformed at gas densities at which the departure from ideality is manifested
in other properties, correctiqns to the formulae previously giveﬁ may be
required. From the investigatioh of sﬁch imferfect gas corrections, one may
hope to elicit informatiQn on the potentials which act bétween gas particles
and on other aspects of the behavior of dense gases.

In the present work, we extend the methods of reference 2 té_obtain
the négtron cross éectiqn in a power series in‘thé-gas,density, the leading
term of.whi§h is the ideal gas result. For this.purpose, a method is
presented in the next section whiph both unifies and generalizes procedures
: previouély used for deriving deﬁsity expangions in simpler contextg. We

shall confine our treatment to gases whose behavior approximates that of a

1 G. E. Bacon, Neutron Diffraction, Oxford,. 1955. .

2 : ‘ ' .
A. C. Zemech &nd R. J. Glauber, Phys. Revf 101, 118, 129 (1956), hereafter
called 2G. ' o L s :



=5= _ : UCRL—3931
classical ensemble of particles (a slight restriction in practice),-.A concise
technique for obtaining classical limits of averages over systems in thermal
equilibrium and quantum-corrections to them is also explained in section 2.
We discuss first some aspects of the scattering formalism. The -
excitations of a target systém bombarded by a slow neutron beam remain; as a
~ruie, unobserved. We recall the optical theorem Which relates-a total cross
section, summed over all scattering processes, to a cohereﬁt-séattEring ‘
amplitude; i.e. to an amplitude for the proceés which lesaves the dynahical
system as a whole unaitered. An anslogous result is achiéved in the present
case where a summation is performed over the final states of the scattering
medium only;-‘In-the time dependent formulatioﬁ of ‘the diffraction'prob1em,

the relation‘takes the»form3

o(6) = (en) z‘:,ﬂ,(AVA‘,, + SW,_.CV.) Jj (k/ko) e <X,, >t de ,
‘. . ’ . . ‘ (lol)
, . qHt -1Ht )
<X, > = <y | e exp(ikez, e exp(-iker ) | v >
| (1.2)

for the differential cross section whéh,the initiai stdte of fhé scatterer
is ¥ ._ﬂ | | |

- Thus the cross éécticn,'originally computed within the fofmalism of
the first Born approximation; may be reinterpreted. in terms 6f a twofold
collision of ‘the neutron and the scatterer following ﬁhich the scatterer
returns to its initial state. Specifically;ﬁif fﬁe expression for <Xuy'>
is read from right to left, we find that the scatteref,'initially‘iﬁ state V¥,

loses momentum X in collision of the neutron with niucleus V' ; propogates

> The reader is referred to ZG for definitions and notation. Boltzmann's

constant and W have unit magnitude in the system of units adopted.
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through a time interval t: and.regains the ﬁomentum _5 in a collision
involving nucleus » ,,’The'cross.section(depeﬁhs upon.the overlap of the
latter state with the state e"thV resulting from an uninterrupted temporal
development of ¥ in the course of the "collision time" t. The final states
of the true-scatterfng processes appeaf aS'intermediate sfétes in the double
scattering picture. The presence Qf the phase factor e-iet insures that in

the integration over collision times, contributions from intenmediate states

which disobey the conservation condition

interfere destructively. Egq. (1.15 leads'to.compéct'and powerful methods for
the calculationvgf'cross sectiéns; in addition, the accompanying phyéical‘
interpretatioﬁ is of great utility in appreciatiﬁg the qualitative features
of the scattering. | |
The appfoximgtion methodz’h based on‘anAexpansion éf all er'parﬁ of
the expectation values (1.2) in ascending powers of t is of-particular
importance both because of its wide domain of validity and the comparative .
simplicity of the ensuing computations. The procedure is applicable when the
variétion in timé ofﬁthe‘eipahded quantities is slowbeompared.to the rate of
oscillation of e*i@t° We shall employ it in treating the imperfect gas

problem. Work extending these calculations to denser systems such as liquids.

is planned.

b .G. C. Wick, Phys. Rev. 9k, 1228 (1954)_.'
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2. CLUSTER EXPANSIONS. AND THERMAL AVERAGES
We present a theory of cluster“expansions which unifies and extends

. the formalism originated by Ursell and Mayer5

and which provides a foundation
for our later calculations.

The central problem concerns the average of a many-particle operator

<v la |<¢ > = ﬁr (rl, r2, .o.,mn) Qw(,;l, '°°°--n) T, eee dE , |
' ‘ (e.1)
' in_some_stgte 6r thermal ensemble of states of a gasequs;system, The integrand
.above;is“aﬁseparable fugetion, i.e., whén the particles dgvidevinto isolatgdv
clusters,6 the function itéelf'Separates into factors, each a function of the
coOrdihatesaof.particleé 1n3one‘cluster, Gorrec#ionsité_the ideal gas 1imit
of (2.1) which aécount fof interparticle collisions make up & series in '
powérs of moiecular density. Series of this fype are élosély related tq'the
cluster expansions of separable functions. | e '

A situatlon of complete symmetry will be examined first. For-
brevity, we designate a. set of coordinates rl, r2, oo iN: by‘cg? and
dr, q£2°°°@£N by dr o For each integer N, let W (r ) specify a syﬁﬂé%rié.
coordinatéqunetiOn Which is separable in the sgnseuthat if /aN' divides into

mﬂﬁ@phmws£m‘®€gm,n+m=N,mmV'
WL (r ) = W (r' ) W (r"‘;“) . e - (2.2)

We introduce a parmetric function a( p ) of a single position

) ol P

coor@ingpe and write in abbreviation of the product

> See, for exampie, Hirschfelder, et al., Molecular Theory of Gases and
Liquids, Wiley, 1955. Also, J. deBoer, Dissertation, Amsterdam.

That is, clusters whose.physical separation exceeds the range of molecular

forces.
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.Ob&al) QLQEB) aE a,(«;?‘n)-° A gene?ator GW( &) for the W functions is

, then defined by

. I 1 j. . (n) ; n n : _— '
Ga) = B —ar ) X7l . (2.3)
In this equation, Wo is taken to be unity. Employing the technique of

' functional differentiation with respect to the parametric function, as expressed
by

o Me) = s G-a),

At J o @ e - He, e

we recover each Wﬁ from the»generator by the recipe:

N 5 8 : L)
' - ' o i o a =0

A many particle function which vanishes when its arguments separate
into isolated clusters will be termed a cluster function. The expansion of

Wﬁ in terms of éluster functions will now be derivédo. Iet us define, as

in (2.3), a generator G.(A) for a set of functions U (rN and consider

thé relation
| g la)
G(@) = o (2.5)

which serves as a definition of the U functions in terms of the W functions..

The fundamental property of Eqs (2.5) is that each Uy so defined is a cluster

 function if and ohly if each ‘WN is separab1e°‘ A proof of this theorem is

_given in the Appendix. Applying (2.4) to (2.5), we infer
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N o : L .
(z) = U(r) * Z‘N g Uy + e+ Uplzg) Uy(zp) iUy (e
| (2.6)
The general term of (2.6) is
U, U e, : - ZN, =N,
ZN Nl»_NQ Nn' 1

where the symbol ZN indicates summation over all ways of alloting N,

arguments to the functions which follow. For example, -
' 23 U, U, = Ue(al, 52) 61(55). + U2(51,153) Ul(ge) + Ue(ﬁg’ 55):U1(£l).

Solving (2.6) for the U functions, oné'obtainsv

U = 0, Uylxy) = )
Us(zys Zpo B3) = W (rl, Tor Eg) = Ix w2 W+ an(z)) W (x,) Wl(sa),

etc.
(2.7)

We suppésé hereafter that the cluster functions of interest depend
on coordinate differences‘only, When n is sufficiently smail, a coﬁnected
n-particle cluster will occupy a:negligible fraction of the volume V which
encloses the gas particles. In this case, thé cluster integral ljfUn(EN)q;F
is'propgrtional,to V. - For if thé integrations over /a_f are carried out
-':with 'ﬁﬁ, fixed, the effective limits of integrétion ar;‘set by the;range’of
molecular forces rather than the size of the enclosure. Then the result must

Ay and the fingl integration over rm

‘be independent of both V and r

supplies a factor of V.
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We now consider separable funetiéns 'WM N(gy,’gy) which are symmetric
functions of the group5'££% and g? separately. A second parmetric function

b( Q) 1s required for the definition of the generator:

—

Gla ) = 5 2 [ @ (B P el

v m! - nl!
where W. . =1, It follows that
0,0 = 7% T _
M N, 8 | ' ‘
W (rM, 8 ) = > oo " G (&, b) \ °
M,N'm? o ) a{glj [} bgiNs W a=b=0

With a similar definitbn for the generator GU(a, b) of the cluster functions,

we have .

Ggla, B) = eGU(a, ) . | (2.8)

The derivation of Uy M(g?, sM) in terms of the W functions closely
. ’ o~ . . .
resembles the method of the previous case.
The relations between the integrals of the functions at hand are

also of interest. If we define.

1 1 ' M N\ M.N
Tl 5 Wy p(2 2% 4

W =

M,N (2.9)
1 1 oM N MO N

Yy,Nn T TM! END y Uy, (2 84 ds

and replace a(p) and b(¢) by the constants a and b, respectively,
'~ Vg

then (2.8) becomes

s atbvtw = exp(z b u ) . | (2.10)
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The extension to situations of still loWer'Symmetry is obvious.
As an‘application of the féfegding work, we‘determine'the‘density
. expansion for the thermal'aveiaée"<log;) $T " of an operator function Ogi).
The operator may depend, in general, on all molecular coordinates of the N
particle assembly; the notatioﬁ indicates, howéver; a.lack.of symmetry between
r and the remaining coordinates. |
-We. d$f-ine wO,N
states vL :

as thé:Slater sum over a complete set of molecular

N/2 Ny/e o
Y- 2«)5 o ® (MBS T Ny
Wo,N(:i) = (ﬁ A7 (s )e e P Y(sT) (2.11)
-and W as the generalized Slater sum:
1,N-1

omate 29 - (3™ sar e Y o e £, gy
| - (2.12)
Functions WM,N ﬁith M 2 2 remain undefined, But nb definitions are needed.
The relations implicit in?(2,8) and (2.10) are still of value; one simply
ignéreé“ali terms containing a power of @ highé% %h;ﬁvth; first. Utiliziﬁg

the definitons above, we find that

<o(g) >, = (J/N) (Wl,N-l/WO_,N)' | | »(2,131)
Equating coefficients of a in (2.10), we obtain

. .n
LD Wl’n‘

n .k
b LI exp(Z b uO,k)‘

= 2btu b w -

7 We omit consideration of guantum statistics in this paper. The Slater sums
require an additional factor of N! if the wave functions represent Bose

Oor Fermi systems.
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whence
N~l . ) . . R . u
,N-1 T n%_ - M,5%,N-1-n . o ' (2.14)

We introduce the quantities Dn’
D, = (¥V) L o | (2.15)

which, for small n, aré essehtially volume independent. The partition sums
Wy , &re connected with the fugacity z of the gas by5
J

= " : ' : | |
Wo,N-n = % Yoy - | - | (2.16)

The substitution of (2.1&) into (2.13) yields, in virtue of (2.15) and (2.16),

' N-1 - : o '
<o(x) > = (Y™ I, D, »z‘n+l | (2.17)

Finally, we take advantage of the equation
) . . . { .

2 - W) em—F s,

(v/v)" ] - | - (2.18)
which expresses the fugacity in terms of the,mblecular density and the
irreducible cluster integrals Bn' The latter are derivable from the

molecular potential. With the help of (2.18), we conclude that

} 2 1,2
<9(3')?r. = Dy + (;xr/v)‘(n1 - B, D) + (§/v) [o, - 28, D) - (B, - 5 B,7)D, AR
_ ' (2.19)
which is the desired density series.
In terms of the molecular potential V&{i - »53), the classical

expressions for the first fwo irreducible cluster integrals are

By = Sewa , (2.20)
- 3 JH@ -0 ) s
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where £(x) = ’V('K)/T -
For later use, we compute the thermal average < O(r, r ) > where

no symmetry is assumed between r and. r' or between these coordlnates and

the others. We define W by the expression (2 11), and Wl 1,N-2 by

0,0,N

= __<Em >3N/é ;;

N-2
——— t H
¥1,1,8-2 T 2, ¥y (o rt, s77) ofz, z7)
N o o Ne2yipo L N=-2
e"’H(};: }:\'),‘,sw )/T ‘l’i(};) f‘:} 5. ).
- . Additional functlons W and W are inferred from the ‘aSsumed

0,1,N-1 1,0,N=-1

separabllity of wl,l N~l° The cluster expan51on of Wl 1,N- 2 is obtalned

using generators which depend on three parametrvc functions, and integrals

Y 4 N Y etc. are defined in analogy to (2.9). The equation corresponding to
s LoNT o . ) )
. (2.10) is
s & b ck W, | (= exp(z a® b (2.22)
_ ~myn,k m,n,k
so that
o N= m
",1,N-2 [ U100t oiet,0,m0,1, n-m] 0,0,N-2n .
With the definitions
,'In - (I/V) ?l,l:n“‘f J
(_l). B ‘ l (7_) _
Ly = (/) “om . a7 (]/V)AuO,l,n ’

we get



~12« UCRL-3931

o |
<oz, r') >, = [n(w- )] "’1 1y-2 /Wo,o,n'
- vlmw-n) SCARS SRS T
= (J/V) I, + (N/Vz)(I 231 I )+ ees
+ IO(1) . (N/V)[I (1) (2) .1, (1) (2) P (9)}+

, - (2.23)
- To arrive at (2.23) from the preceding line, we have eqpated N/KN - 1) to

unity.

~ The generator eqﬁatiéné and fhe process of functional differentiation_
were of value in proving the‘cluster propertonf the U functions. We observe,
howevéf, that forvthe calculation of terms in the density‘series, the simpler
relations among integrals, as expressed by‘(2;10) and (2.22), are sufficient.

At high temperatures, the thermal averages and Slater sums approximate

their classical analogues. In qoncluding'this section, we show how the Baker-
Hausdorff theorem may be used to éffect fhe passage to the classical 1limit in
an elémentary way. The quoted theorem is an operétor ;dentity which states
that if \

Hf P o | | o (2.24)
then C is given by a series,

C = A+B +-‘}£-_(_A,‘B] ; f—% [A-3B, [a B]] - '%E B, [a, (&, BJI] + ...
| (2.25)
whose higher terms are successivé qdmmutators of ,A and B.
To illustrate the principle; we examine a two particle system with

the Hamiltonlan

H = (p12'+ pge)/2M + V(zy -_32"), , | (2.26)
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The corresponding classical Hamiltonian Hc is formed by repvlacing the
operator momenta in (.2.2'6)"__by. c-numbers g, and G let Z(/gr .,-52,): ~devote
the generalized Slater sum7 over a complete set of states,

.H/T Wi(}\:l’ ,52) P)

Uryr Fo) = (%) T, W (rx) Ay oy Rple
| | (2.27)

whose integral, properly normalized, ..v.reprevsen'ts the thermal average of the
operator Q. If a suita.ble‘ classi’ca‘l analogue, .Qc(“z:ﬂl,““ae, .&l’ mqe) of Q can

be defined, we expect (2.27) to reduce, at high temperatures, to 'Zc('?«l’ mx':e)

- . .3 : | o ,'.,"HC/T |
Zc(lx'l’ re)' = (an"MT)» f Q'c(rl’ Ty s qe) e dg, da,

. Since the complete set of states %'- is arbitrary, we chobse plane waves,

: ‘ ' =V e i r + 1 qgqer
"’ql,qe(ﬁl’ »Ee? xp‘ ( il L YTy )

A An

a.nd‘replace the swmtiéh in (2.27) by »V2('211t)’6 : [ dg, dg, " in the usual

way. In virtue of the translation property,

. =i(g,er i(q. -r,) , .
e g‘i""i) e"g"_‘L"“1 = byt 4 | i=12 .

o et T

Eq. (2.27) assumes the form

]

4' ‘B : ' ' ‘ B -
(2n MT) »3 j Arys 70 Py + 95 2o %) ¢ 324 (2.28)

L B = -(p, + q1)2/2MT - (p + q,_e Yo T - v/'T
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The operator momenta eppearing as arguments of Q in (2.28) are now to be
commited to the extreme left where they disappear, leaving a function 4
QC(EQ’ 52,‘gl,‘22). The occurrences of p, and ng2 in the exponentigl are
to be commuted to the extreme right with the aid of (2.24). Thus if we set

A = Hc/T’ then o ‘

B HT exp[-_‘viv . (vg)a L Mg-gomy (g - - V]* +]

aMT 3MT iy 6M1° ‘
. . . . S (2629)
. iqy - gaz-VV
- -&-!-;»;-%%—lu- + 7 (2.30)
. 8M°T . ‘

The gradients are with respect t°A£| o

In the calculation of the bracketed series in (2.29) via (2.25), each
-additional commutation supplies another 'gradient applied to V. Thus, eB is
equal to exp(ch/T) multiplied by a series of powers>of ﬁhe gradienf. Each
gredient carries with it a factor of R , although this is not evident in our
notation. Then the series proceeds in powers of ® . The use of (2.30) in
(2.28) yields the classical limit with quantum,correctidns, Since, however,

Qc may itself cohtain'a dependence on h , the so-called quantum cerrections

are not always smaller than all contributions from the leading term, even in

the limit of large T. (Compare the treatment of interference séattering in

Sec. 4 where these corrections cancel against other terms.) The effects of guantum
statisties may also be_compﬁted by this formalism without difficulty.
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3. ELASTIC SCATTERING

In the absence.of extensiﬁe-experimenﬁal info;mation'onvneutron |
scattering by imperfect gases, we shall be content to mark out the general
features of the problem rather than essay an exhaustive treatment of different
vexamples. For this purpose, we neglect the role of internal degrees of
freedom which formed the principal concern of ZG. A temperature sufficiently
high to permit an approximately classical evaluation of thermal averages
(including 1owest order qpantum corrections) will be assumed.°

The initlal term arising from the time expansion procedure is treated
in the present section. This forms the ststic_approxtmation which is valid
wheh the scattering is predominantly elastic. The direcf scattering is then
found to be independent of molecular coordinates. 'Accordingly,ﬁimperfect
gas correciions to elastic scattering musf be sought>in the interferenoe terms.

Let (6) represent one of the two ternw of the elastic cross

l 2

section due to interference between molecules (1) and (2):

2 | 2 S
°1,2(9) =_A <xl,2 > = A" <exp 15«,’(& 552) >0 s (3.1)
where /&» is evaluated with k = ko° ‘Then the elastic interference cross

-section per molecule is given by

ont('o.)(e) =z 01,'n(9) . (3.2)

We suppose that molecular interaction is due to a spherically
symmetric two partiéle potential Véﬁi -433). We shall frequently write

I1j for ‘ai - I and vij, fof: Vﬁii -'ag), Avereging classically, we have
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jexp (_- 5__‘.Vig /'1‘ + iKers 2) . . e ‘ (3.3)

<x -
L2 T [exo (- zv, /T )&l

- Quantum cérrections to (3.3) are considered 'bogether with inelastic corrections
in the next secti_on. Eq_. (3. 3) leads to the Zernike-Prins formula8 and the
final result below can be obtained from the known density exp’ansion of the
pair distribution ﬁmction. The tteatment here illustrates the methoﬁs of
Sec. 2 a.ﬁd serves as an introduction to the work of the next section.

The first two terms in the density series for (5 3) will be determined.,

- We define the separable func'bions'

WJ_,O»,"O(M{I) - e@(iﬁ"al) , ' ‘, WO,l,O(n{:E) = exP(»Pi.’f;{é)A ’
..wl,'l,O(fvl" ) = . exp(ikeryp)

and

10,1050 55 - T ntier

Wo,1,1{T2r I3) = 2 & ex(-1fx,) v

", T I5) - e._(‘,rla + V23 + Vaxl)/'T e"P(“"rlz)

The u integrals are now deduced from (2.22). Thus,

8 J. deBoer, Reports on Progress in Physics XII, 305 (1949);

N. S. Gingrich, Revs. of Modern Physics 15, 90 (1943).
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o =V T
o ” | |
"1,1,0 7 ¥1,3,0 ~ ¥0,1,0 *1,0,0 j (e ™ - 1) emireryy)an &rp

(3.4)
Y1151 5 V1,1 7 Y1,1,0 ¥0,0,1 T Y1,0,1 Y0,1,0 T Y1,1,0 Y0,0,1
/ T+ 2V 4.0 ¥%,1,0 ¥0,0,1
| ﬁ “(Vyp + Vg + V1) /T -V, /'1’ Vys/ T
= e & -e Fiae
=V T . .
- e 13/ + 2 J exp(iker. . )dr. dr., etc.
: ' w127 Al w2’ °
(3.5)
The terms In(l) and Iﬁ(e)  are seen to be
proportional to the integrals
v | exp(ike.r )d,’g . ’ ‘V’l. . éxp(—ilcar )dr
w1l 1 ’ . : v ml m2 ’
(3.6)

réépéctively and may be.droppéd, For when the volnmevof integration is
mécroscopically large, one readily confirma that for_ééattering angles
differing even minutely frdm:the-precise fqrward dire¢tion;-the integrals
(3.6) are vanishingly smalls -

l We get, by (2.19) and (3«4)x

Further, by (3.5) and (2.18), ve have .
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-v(r)/T o ' -
.,Il = e f(};- i) f(;.;\) exp(iﬂ:af;'\)d}"\ ds +2 8, I, .

It follows from (2.25) and (3.2) that

ot = 28 [ @/m [ 22 emiena
+ (N/V)2 ;/e*vgr)/Tf(fw- ,i)f(i)

X e}@(ix’r)dr dS + e o0 g °

M Am A A

Using the notation

< F(A};N) > = fF(gf) eXP(i§°£l)§fiq/ fF(ﬁN)df 5

and the definitions (2.16), (2.17), we obtain for the interference cross

section in the present approximation:

°1nt(o)(9) = A% { (ﬁ/V)Bl < £(r) > + (N JV)(2 132 + $12)< eV(r)/Tf(iwi\)f(i) >

v } ' - (3.7)

The expressions in angular brackets above are essentially Weighted.
averages of exp(j;yﬁfn). They are equal to unity for k = 0  (forward
sca‘t‘tering) and oscillate with decreasing amplitude as K incréa.ses, For
molecular potential.é of the Lennard-Jones type, these functions can be “
computed, for example-,_ by the method Kihara employed for the virial

coefficients.9

9 T. Kibara, J. Phys. Soc. Japan 3, 265 (1948) and 6, 184 (1951).
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Quantitative statements are more easily made if the molecules are
assumed to be hard spheres° In fermS“Cf the hérd sphere diameter, we have
B, = (ke /3)a%, B, = ~(56°/ 12)a°, e costPicients of the angular
brackets are'conyeniently expressed in terms of the ratic Vq/V where
= (hﬂ//B)N d3 ‘is the total "interaction volume." If a hard sphefe is
'introduced into a rare gas of N hard spheres, 'Vo is essentially the
volume from which the first sphere is excluded in virtue of the particle
interactions, The coefficients of the first and second angular brackets are
then =(V_ / V) end (17 32)‘(?JV)2, respectively. The first term of (3.7)
is simply the Debye formula for the oufer effect. The second brecket is
reducible to the form | - |
<e aV(r) Tf(r a‘gg fgi) > = (6/@5)-5 (Ka)°1 sin(Kaz)(zh - 12 2° + l6A£)dz,‘
which, if desire&, can be integrated in tefmevof'elementary functions.
The terms which appear in the densit& eipeﬁeicc fof the cross
section are qpite similar to the cluster .integrals and the virial coefficients°
Their evaluation presents difficulties of a comparable order of magnitude
and the domain of convergence is probably equivalent to that of the virial

expansion.
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%. INEIASTIC CORRECTIONS

We hqﬁg_obser#ed that'apart from the first’term the‘ﬁérms of the
dgnsity series for tge expectation vglué5~-<)<y,?>% ‘yield only inelastic
correetions to the direct scattering. To investigate the relative importance
of tﬁe succeeding part we examinevthe.portion which is linear in (N/V) and
compuﬁe the leading terms obtained by the‘éime expansion method.

The development of < X”“’>T in powers pf ‘t gives rise to terms
of two;types. From“the ciassical‘evéluation of tﬁe thermal averages, we
obtaiﬁ spatial integrals of Vz.V,- (VV)E, and higher derivatives, multiplied
by‘certéin powers. of t. The latter cause the appearance of inverse powers
of'fay.the incident negtrons energy,'in the cross section. Iﬁ addition, we
have the quanfum'cofrecﬁions to the classical averaging process which contain
- similar integrals ovér derivatives.of the potential, divided by powers of .T.

Since the two kinds of terms may be of comparable magnitude, it is necessary
to considef them together in a consistent célculation. It is then natural to
order the various quantities according to the number of derivatives applied
to the potential that they contain and to study, in a first.approXimation,
the initial terms of the resulting series. 4
This p’roceduré is quite analogous to the familiar method for

approximating‘the partition function which was discussed earlier, and may
be eipected to have the same validity; that is, the series in powers of
vzv,/g; s .Vg V//T, ete. is_ preéumably asymptotic, and its leadingvtermm
yield an adequate approximation when 80 'az;d T are not .much lower than
ordinary thermal energies.

. We consider now the difect‘écattering by a gas‘particle specified
by the coordinate f . We seek to determine the lineai térm in the densiﬁy

ml

expansion of the thermal average of the operator
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. ¢ . 1
iHt . =-iHt _ iHt _aiﬂ(l) t
e exp(ifg;}:l) e exp(-‘idlf\-}:‘l) = e e (5.1)

?
1)
the momentum p with p, - K. If the particle at r. is free, we have,

The operator H( ;, as defined in ZG, is obtained from H by replacing the

simply, H = ple/éM and (5.1) vreduces to a quantity we denote by Xo(t):

X, (8) = ex» [1 (2 p,x - K2) Jou] B | | (5.2)

But if the first particle interacts ";v'ith a éecozid through a potential, then

H = p°/aM + 922/_2M A+ W(ry -x) | (5.3)

whence

H(l)' = (,}'i\l"'/f)g/em + p22/2M + ‘V(rlu,‘fQ) .

A

In the latter case, (5.1) is a function of greater complexity which we shall
call Xl(t). Hereafter, the symbol H will be reserved for the two ps.rticle'
Hamiltonian (5.3). and we shall write H, for (p12 + p22)/2Mo

Following the prescription of Sec. 3, we have

, %/ o
o - e § G, Ve xoe™

o
i

¥ (zy) | Ty

©
i

L = (/(e/m)’ ﬁ z, vz x) _[xl(t)e"ﬁ/“’ - K0T ]

%V, (ry, 52)} da%, -

Then the latter equation can be rewritten
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D, = B, Dy + (1/V)(ex/um)? g_gz& v (ry, 3, [y (e

g BT '
o s e xge T T G xp) { s an,
(5.4)
where Bl is the quantum version of the first irreducible cluster integral.
The identity (2.25) allows us to express Xl(t) as the exponential -

of a series in ascending powers of t. A fac‘boi' of Xé(t) can then be

separated from Xj_(’t) by a second application of (2.25) so that

. 13 )
+iHt -'-iH(l) t
e =

Xl(‘b) = e
= %@ [e-197 + o0+ o0'e T (5
where
¢ = % ey /M,
o5 = Lee® v+ (3 - p)w] [
o = -3 W

The gradients oceurring above are with respect to r In computing the
: ~

l.
coefficients c 40 we have discarded ﬁerms containing more than two
derivatives. We now insert (5.5) imto (5.4), use momentum eigenfunctions for .
the wi.(ﬁl’ "1:2) and reduce e"H/T to the form (2.30). Upon integration

over momentum and space coordinates, we find

. y : 2 2 :
» g n [ -itk® £2m°
D, =~ Blyno = Zp o (-1t)" exp [ ™M - T M ] J '($°6_)

* o = @erpm) [ (5, PGLE,) (0 ) e &,
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where

eyt = (#/18 MeT)’)); - (Ka/zu M2i2)‘?); .
cs' = (/9 M2)V1 v (/12 M2T)’l/,;
o' = (Fr/181)V] -(Kg/eumz)?/é ,

and

' =V T
V- f D

vToo feav(f“)/‘T FVar ,

[

As was shown in ZG, the exponential in (5.6) produces corrections

to the cross section of relastive order (m/M) and o where
2
a“ = mT/MF,O .

Although their calculation involves no special difficulty; they are best
omitted in a first estimate'of inter-molecular effects. 'ACGordingly, we
replace the exponential by unity.

Iet us write @ r(l)(e) for the part of the direct cross section

di
under calculation. .Then, by (2.19) and (2G. I, %.7),

_"dir(l)@) = 'B?(N/,.V) . H (ic /2x ko)eﬂiet(pi - By D)dt de
- B g2 g e | 5
. fo) =

where B2, apart from a faster 6f-;hx5 is the inecoherent cross section for

a gas particie° Consedquently, we obtain
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(1) __'2~2N _7 ’V"/ o '
O340 () = B° (1 5,° 18}&2 " ) - (5:8)

In order to estimate the magnitude of (5.8), we choose for V +the Lennard-

Jones potential

o rol2 r, 6 ] 4 | : 4
W) = v, [(R2)-(2) N (5.9)
and suppose the scattering to be performed at room temperature. The values
= (3.5) x 10-8 em, V_= 0.05 ev are typical of&the magnitudes assumed

o

by,the.LennardQJones parameters. One may show, very approximately, that
()/1 R2 100 V r, % ~x 1:-0 V o+ For Ep »’;:'/ T, (5.8) becomes

ARSI = /v =(m/m)2(u.x'1o‘?5_¢;n5)e. B . (5.10)

Eqﬁation (5.10) is to be compared with the leading term in the direct cross
section which is of the order of‘sz, Thus,_the calculated correction is.too
small to be of importance athtandard conditions of temperature and pressure

3 but it may be of significance under

, whefe, for a gas, N//V ~ 3x 1019
other circumstances. | |

Our methods are not‘powerfnl enough to analee'in"detail the
convergence properties of either the density expansion or the time expansion,'
But it is probably safe to assert that for gas densities which are not too
great and neutron energies which are not teo small the development presented

here is valid.° Eqpation (5 8) contains the 1argest imperfect gas corrections

to the direct cross section in this development.
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We turn now to a considération bf inelastic effects in the (EVV) part
ofbthe interference cross seetiQh. ‘Again, only terms having fewer than three
dgrivatives applied to thg pqtgniial are to be retained, and quantum
.modifications of the classicélly'computéd thermal a#erages are included to
‘this order. As in the previous section, we’may drop all interference terms
ianl#ing Qw(l) and ‘(2)0 The latter.are}in fact, identiéal to their time

independent analogues and do not contribute noticeably to the cross section.

- We observe that

int

-iHt . _1Ht -iH(1)'t
e exp(iker,)e ™" exp(aikory) = et e7THL)

exp( iﬁg\m)

X3 (%) é’?P( 1K E0) .

Proceeding as before, we obtain for the cross section'oiﬂt(e),

includihg presently calculated corrections;

°int? () =A" (ﬁ/v) H (1-{/2’: k) e € I, dtde

where

I = (l/V)cé’t/m)B.f{ Zy ."'z:*(,ﬁl’ Eo) L)él(t,)exl’(igﬁ‘ﬁlz) W

exp(ik-r),) e ]""(L(}Ca.’ o) dry 9o - (5a1)

The reduction of (5.11) will yield a single spatial integral whose integrand

contains the factor e°v//T exp(%x}gg; . Since

X\[eav/T'em_( iKer) ] = [~(XY)/T + ik :I.e'.'V/T exp(ik-r)

it follows that by an integration by parts,‘factorsof K can be replaced
by derivatives of V inside the integralo' Accordingly, such factors of K

are to be counted equivalent to derivatives for the purpose of determining
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which terms in the expansion are to be retained or rejected. Hence, from (5.11),

we derive
I, (e'vQ5) T 1) exp(15;£).q5ﬁ
+fe‘v(£)l/T exp(ieer) [ gy +apt + a,t? ) ar o (52)
‘with - | .
3 = (WP/rewm - %) fow®
a, = (xkvv)/2 Mp - 1Bfom |
a, = -i(kav)/2m - T fam .

But when the suggested integrations by parts are performed in (5.12)
the t end t° terms diseppear. - . All that is left is the
term which represents the quantum correction to the classically evaluated

int (B)

=¥/ T ) o (EQE
1n1;(9) = cint(o)(e) + A2(N/V)§ © / exp(jﬁ«a) ;g . 12MT _%i ar-

Nothing remains of the inelastic corrections, to the order considered. Thus,
in neutron diffraction by imperfect gases as in diffvaction by free molecules,
inelastic effects are much less prominent in the
interference terms thaﬁ ih the direct scattering.
In ceﬁclusion, one of us (R. M. M.) would like t6 thank Professor
J. E. Mayer for stimilating discussions. The hospitality of the Radiation
Laboratory of the University of Californias to one of us (A. C. Z. ) during the

final stages of the work is also gratefully acknowledged.
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APPENDIX

For a given integer N, comsider the proposition P(N) that for.
a1l n< N, each U ‘defined by Eq. (2.5) is a cluster function if and
only if each Wn is sepa.rabieo The truth of P(N) for'the smailest

velues of N is inferred 'directly from (2.7). Assuming P(N), we shall
prove P(N + 1) and so establish, by mathematical induction, the fundamental

relation between U and W functions for clusters of arbitrary size.

. N X,
N : 2
Let x be compos;:rd of two clusters r =  and I Nl + 1\!2 = N,
‘with the coordinates of r - labeled r 5 oeey Iio Then
A _ M\I\Tld-l N
5. 5 'eGU(a) . 'e%(i&) [ (er)
d a(aij oo 5»aj£N§ ’ =00 N,

) N

) N N ' CoT
+ (N. 'E/N.',) a(p 2) u (r 1, P e)dp 2 | other terms] .
. {A.1)
We note that the right side of (A.l) reduces to Wy (r ) when a = 0.

: 1
ILet (A.1l) be differentiated with respect to each of the functicnal

variables a(ri) with Nl +1 &£ 1 £ N, and the parametric function
AN

then set equal to zero. We find that

N N
Ny _ 1y (002 (N
WN(E\) = WNl(,I:v\ ) WN2(£\ ) + UN(NI;\) + ot'her terms.
‘ - (A.2)
where the "other terms" in (A.2) consist of certain products eonta,ihing

functions Un with n <N, At least one U_ in each product has arguments

n
N N2 Nl N2
drawn from both the groups r and r . If r and r are now
A laiad . P v .

isoclated from each other and the inductive hypothesis P(N) is invoked,
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the "other terms" vanish. The validity of P(N + 1) follows immediately.
The extension of this.probf to cases of lower symmetry requires .

only notationsl changes.





