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ABSTRACT OF THE THESIS

Modern Applications of Cross-classified Multilevel Models (CCMMs) in Social and

Behavioral Research: Illustrations with R Package PLmixed

by

Sijia Huang

Master of Science in Statistics

University of California, Los Angeles, 2021

Professor Yingnian Wu, Chair

Respondents in social and behavioral studies often belong to two or more non-nested

higher-level groups of aggregation simultaneously, yielding the so-called cross-classified

data structure. For example, in education, students belong to the schools they attend and

the neighborhoods they live in, and there exists no exact nesting between the schools and

neighborhoods. The cross-classified multilevel model (CCMM; Goldstein, 1994; Rasbash

& Goldstein, 1994) was introduced as an extension of the standard multilevel model

to accommodate the prevalent cross-classified data. The CCMM has been mainly ap-

plied in education to study the impacts of various contexts on certain outcomes, such as

the influence of schools and neighborhoods on smoking behaviors among adolescents

(Dunn, Richmond, Milliren, & Subramanian, 2015). However, applications of the CCMM

in other fields are relatively scant and little-known. One potential reason for this lack of

applications could be the limited availability of software programs that allow the easy

fit of the CCMM.

To advocate more applications of the CCMM in a broader spectrum, in this article, we

first show the connections between the CCMM and several widely used psychometric

models, including the random effect item response theory (IRT) model (Van den Noort-

gate, De Boeck, & Meulders, 2003), the model for rater effects (e.g., Murphy & Beretvas,
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2015), the multitrait-multimethod (MTMM) model (Campbell & Fiske, 1959), and the

generalizability theory (G-theory) model (Shavelson & Webb, 1991). Then we review a

few modern applications of the CCMM, such as its applications to meta-analyses and

social network analysis (SNA).

To address the issue of software programs, we introduce a flexible and efficient R

package PLmixed (Jeon & Rockwood, 2017), and show how the above-mentioned related

models and applications of the CCMM can be estimated with PLmixed and other exist-

ing R packages. Finally, we conclude that the CCMM would be applied more broadly

with the support of computer software such as PLmixed.

iii



The thesis of Sijia Huang is approved.

Chad Hazlett

Minjeong Jeon

Yingnian Wu, Committee Chair

University of California, Los Angeles

2021

iv



TABLE OF CONTENTS

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Model Formulation and Software Programs . . . . . . . . . . . . . . . . . . . . . 6

2.1 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Software program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Existing packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 R package PLmixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Models in Psychometrics as CCMMs . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Random Effects Item Response Theory (IRT) Model . . . . . . . . . . . . . . 11

3.2 Modeling Rater Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Multitriat-Multimethod Model . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Generalizability Theory Model . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Modern Applications of CCMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Meta Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Social Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Immigration Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Multiple-Membership Multiple-Classification (MMMC) Model . . . . . . . 34

4.4.1 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

v



4.4.2 An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Conclusion Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vi



LIST OF FIGURES

1.1 Unit Diagrams for Multilevel Data . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Diagram of the Multitriat-Multimethod Model . . . . . . . . . . . . . . . . . . . 19

vii



CHAPTER 1

Introduction

This chapter starts with a review of the prevalent multilevel data structures in social and

behavioral sciences in order to facilitate the understanding of the cross-classified multi-

level model (CCMM; Goldstein, 1994; Rasbash & Goldstein, 1994). Then, we elaborate

the issue regarding applications the CCMM and discuss our research goals.

1.1 Background

The respondents in social and behavioral studies often belong to one or more higher-

level groups of aggregation. Thus, data in these studies often possess multiple levels

(Bryk & Raudenbush, 1992). The ubiquitous multilevel data can be either hierarchical, or

have non-hierarchical structures, such as the cross-classified or the multiple membership

structures. To take into account the multilevel structures while analyzing data, several

multilevel models, including the standard multilevel model (Bryk & Raudenbush, 1992),

the CCMM and the multiple membership model (Hill & Goldstein, 1998) have been

developed.

An essential feature of the hierarchical data is that each lower-level unit belongs to

one and only one higher-level unit. An example of the three-level hierarchical data

in education is that students are nested within classrooms, and classrooms are nested

within schools. As shown in the unit diagram (Figure 1.1a), each student (level 1) belongs

to one and only one classroom (level 2), and each classroom belongs to one and only one

school (level 3). Another example of the hierarchical data is that in family studies, family

members such as parents and children are the level-1 units, and they are considered to
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be nested within the families at a higher level (level 2). In addition, data collected

in longitudinal studies, where respondents are measured at multiple time points, are

also hierarchical. The measurements (level 1) can be viewed as being nested within

respondents (level 2).

In cross-classified data, there exists no such exact nesting as in the hierarchical data.

Instead, lower-level units are nested within combinations of higher-level units defined

by two or more classifications. For example, an shown in Figure 1.1b, students (level 1)

belong to schools (level 2) and neighborhoods (level 2) simultaneously. The schools are

not nested within neighborhoods (e.g., school sc1 does not belong to any of the neighbor-

hoods), and vice versa. The students are cross-classified by schools and neighborhoods.

Another example of the cross-classified data arises in clinical studies where patients are

nested within their residential areas and, at the same time, their clinicians. Since patients

who live in the same area do not typically go to the same clinician and patients of the

same clinician do not live in the same area, residential areas and clinicians are not nested

within one another. Thus, the patients (level 1) are considered to be nested within the

cross-classifications of their residential areas and clinicians (i.e., two crossed factors at

level 2).

When lower-level units belongs to more than one higher-level units of the same clas-

sification, the data possess the so-called multiple membership structure. For example,

in Figure 1.1c, the student s2 moves between schools and belongs to both schools sc1

and sc2. Outcomes of students such as the academic performance are influenced by two

schools.

The assumption of independent observations that underlies models for single-level

data (e.g., regression models) is violated in the context of multilevel data analyses. For

example, in a longitudinal study in which the respondents’ loneliness levels are mea-

sured at multiple time points, the measurements of the same respondent would not be

independent, and would be more similar than those of different respondents. Thus, the

multilevel data structures have to be taken into consideration while analyzing multilevel
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data.

To account for the lack of independence in hierarchical data, the standard multilevel

model, also known as the hierarchical linear model (Bryk & Raudenbush, 1992), was de-

veloped and has been broadly applied in education and psychology. The cross-classified

multilevel model (CCMM; Goldstein, 1994; Rasbash & Goldstein, 1994) and the multiple

membership model (Hill & Goldstein, 1998) have also been proposed as extensions of

the standard multilevel model to accommodate the cross-classified and multiple mem-

bership data structures. Browne, Goldstein, and Rasbash (2001) synthesized these two

extensions and introduced the multiple membership multiple classification (MMMC)

model, in which lower-level units are cross-classified by higher-level units of two or

more classifications and can belong to more than one higher-level units of the same clas-

sification. In Chapter 2, the general model formulations of the CCMM and the MMMC

are introduced.

1.2 Research Goal

It is worth noting here that in addition to the above-mentioned examples of cross-

classified data, data in various studies in social and behavioral sciences also possess

cross-classified structures. For example, item response data can be viewed as cross-

classified data, where the item responses are cross-classified by persons and items. Al-

though data with cross-classified structures are prevalent, applications of the CCMM

are relatively scant, and are mostly in the field of education (e.g., Goldstein, Burgess, &

McConnell, 2007; Leckie, 2009; Rasbash, Leckie, Pillinger, & Jenkins, 2010). The CCMM

has been mainly applied to study the impacts of various contexts on certain outcomes

such as students’ academic achievement.

One potential reason for this lack of applications is the limited availability of software

programs that allow users to easily fit the CCMM. To the best of our knowledge, MLwiN

(Charlton, Rasbash, Browne, Healy, & Cameron, 2020) is the most widespread software
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package for multilevel analyses. However, fitting a CCMM with MLwiN is not straight-

forward. Although the Markov Chain Monte Carlo (MCMC) estimation procedure is

available in MLwiN, it could be somewhat challenging for users who are not familiar with

the Bayesian modeling approach. For example, improper priors would introduce biases

to model parameter estimates, resulting in misleading interpretations. Another option

for fitting the CCMM is the R (R Core Team, 2017) package lme4 (Bates, Mächler, Bolker,

& Walker, 2015). However, lme4 cannot estimate models with unknown factor loadings

or item discrimination parameters.

The goal of the present study is two-fold. First, we present how several measure-

ment models and methods that are broadly used in psychology are connected with the

CCMM, including the random effect item response theory (IRT) model, the model for

rater effects, the multitrait-multimethod (MTMM) model, and the generalizability theory

(G-theory) model. We also introduce a few modern applications of the CCMM, including

its applications in meta-analyses, social network analysis (SNA), and contextual effects.

Second, to address the issue of software programs, we introduce a flexible and efficient R

package for estimating models with multiple hierarchical levels and/or crossed random

effects, PLmixed (Jeon & Rockwood, 2017, 2018), and demonstrate how the CCMM can

be estimated with PLmixed and other existing R packages in various contexts.
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(a) A Unit Diagram for Three-level Hierarchical Data

(b) A Unit Diagram for Cross-classified Data

(c) A Unit Diagram for Multiple Membership Data

Figure 1.1: Unit Diagrams for Multilevel Data
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CHAPTER 2

Model Formulation and Software Programs

In this chapter, we first present the general formulation of the CCMM in an educational

context. Then we review existing software programs for the estimation of the CCMM,

and introduce the functionality of the R package PLmixed (Jeon & Rockwood, 2017,

2018).

2.1 Model Formulation

To set up the notations, let’s consider a study in which researchers would like to study

the effects of schools and neighborhoods on students’ math performance. The math

performance can either be students’ scores of a standardized test or binary evaluations

of pass of fail. The researchers also want to explore how characteristics of schools (e.g., if

the school is a public school), neighborhoods (e.g., residential income deprivation score),

and students (e.g., student age, ethnicity) are related to the outcome measure. There

is no nesting between schools and neighborhoods, because students attend the same

school can live in different neighborhoods and students live in the same neighborhood

can attend different schools. Thus, the level-1 units, students, are cross-classified by two

level-2 crossed factors, school and neighborhoods.

Let yi(jk) denote the math performance of student i’s (i = 1, . . . , I) who goes to

school j (j = 1, . . . , J) and lives in neighborhood k (k = 1, . . . , K). I, J and K are the

total numbers of students, schools and neighborhoods, respectively. We can specify the
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model below,

g
[
yi(jk)

]
= Xi(jk)β + uj + uk + εi(jk) (2.1)

where g(·) is a link function that transforms the linear predictor on the right-hand side

to the conditional expectation of the response variable yi(jk). Using a link function allows

accommodating outcome variables of various distribution families. For example, if yi(jk)

is continuous and assumed to be normally distributed (e.g., scores of standardized tests),

an identity link function can be used; and if yi(jk) is binary (e.g., pass/fail), a probit link

function can be applied so that the linear predictor (which ranges from −∞ to ∞) is

mapped to a 0 to 1 scale.

On the right-hand side of Equation (2.1), Xi(jk) is a covariate matrix, each row of

which corresponds a student and each column of which corresponds to a covariate. β is

a vector of fixed effects or regression coefficients. The first column of Xi(jk) is usually 1

so that the first element of β represents the intercept. If we have yi(jk) as the math score,

the intercept can be interpreted as the grand mean and represents the math score of an

”average” student in an ”average” school and an ”average” neighborhood. If no covariates

were included in the model, Equation (2.1) would reduce to the so-called ”intercept-only

model”,

g
[
yi(jk)

]
= β0 + uj + uk + εi(jk) (2.2)

In both Equations 2.1 and 2.2, uj and uk are respectively the random effects associated

with the two level-2 crossed factors, schools and neighborhoods, and are assumed to be

normally distributed, uj ∼ N (0, σ2
sch) and uk ∼ N (0, σ2

nei). The last term εi(jk) repre-

sents the level-1 residual, with εi(jk) ∼ N (0, σ2
e ). Note here the parentheses are used to

emphasize that the schools and neighborhoods are at the same level. For more details

regarding the formulation and extensions of the cross-classified multilevel model, we re-

fer interested readers to comprehensive review articles (e.g., Fielding & Goldstein, 2006;

Cafri, Hedeker, & Aarons, 2015).
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2.2 Software program

In this section, we review existing computer softwares for the estimation of the CCMM,

and introduce the functionality of PLmixed (Jeon & Rockwood, 2017, 2018), which can

be downloaded from CRAN (https://cran.r-project.org/web/packages/PLmixed/).

2.2.1 Existing packages

MLwiN. MLwiN (Charlton et al., 2020) is one of the most widely used statistical soft-

ware packages for fitting multilevel models and has many advantages. For example, it

can model various response types, including continuous, binary variables, and count.

In addition, MLwiN can accommodate models with inconstant level-1 variance (i.e., het-

eroscedasticity). It implements the iterative generalized least squares (IGLS) and MCMC

estimation procedures. However, MLwiN is not straightforward as long as the CCMM

is concerned. As estimating the CCMM is usually computationally intensive, it is rec-

ommended that the users split the data into separate groups to make additional levels

to reduce the storage needed. Although the MCMC estimation procedure is available

in MLwiN, using the MCMC procedure requires some fundamental knowledge about the

Bayesian modeling approach. For example, users have to be carefully about selecting

priors for parameters, especially the priors for variances of random effects (which are of

great importance in the CCMM). Inappropriate priors would result in biased parameter

estimates and misleading interpretations.

lme4. The R package lme4 (Bates et al., 2015) includes functions to fit various kinds

of models with both fixed and random effects, including the linear, generalized linear

and nonlinear mixed effect models. lme4 can easily incorporate models with nested and

crossed random effects, of which the CCMM is an example. It has also been applied

to estimate the one parameter logistic (1PL) item response model (Doran, Bates, Bliese,

Dowling, et al., 2007). However, lme4 cannot estimate models with unknown factor

loadings or item discrimination parameters.
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2.2.2 R package PLmixed

The R package PLmixed (Jeon & Rockwood, 2017, 2018) extends the capabilities of lme4

to estimate extended generalized linear mixed models with factor structures. PLmixed

maintains all merits of lme4 and requires minimum learning of new syntax for users

who are already familiar with lme4, as the syntax structure of PLmixed follows directly

from lme4. In terms of model estimation, PLmixed implements a profile maximum

likelihood estimation approach (Jeon & Rabe-Hesketh, 2012) through using lme4 and

the optim function (Byrd, Lu, Nocedal, & Zhu, 1995).

To demonstrate the major advantage of PLmixed, let’s consider a standard general-

ized linear mixed model (GLMM), which takes the form,

g(µ) = Xβ + Zδ. (2.3)

In Equation (2.3), g(·) is the link function, µ is the conditional expectation of the response

variable, X and Z are respectively the covariate matrices associated the vectors of fixed

effects β and random effects δ. Equation (2.3) can be extended by introducing a factor

structure Λ so that

g(µ) = Xβ + WΛη, (2.4)

where η is the random effect vector, with η ∼ N (0, Σ), W is the corresponding covariate

matrix, and Λ is the matrix of factor loadings. If all elements in Λ are fixed to 1, Equa-

tion (2.4) becomes Equation (2.3). Popular measurement models in psychological and

educational studies, including factor analysis and item response theory models, can be

formulated as an extended GLMM described with Equation (2.4). PLmixed allows the

factor loading matrix Λ to be freely estimated (which is not feasible with lme4), leading

to more flexibility in model fitting.

The main function of the PLmixed package is PLmixed. Main arguments of the

PLmixed function that are identical to the glmer function of lme4: formula (a two-sided

linear formula that describes the model), data (a data frame containing variables in

formula), and family (a GLMM family to specify the distribution of µ). To estimate

9



factor loadings in the extended GLMM, three new syntax commands are introduced:

load.var (a vector of variables correspond to lambda and factor), lambda (the factor

loading matrix), and factor (a list of factor names in lambda). We will further illustrate

the usage of the PLmixed function in the following chapter through multiple applications

of the CCMM in various contexts.
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CHAPTER 3

Models in Psychometrics as CCMMs

Many measurement models and methods that are broadly used in psychology can be

viewed as CCMMs. In this chapter, we present the connections between the CCMM and

several popular psychometric model, including the random effect item response theory

(IRT) model (Van den Noortgate et al., 2003), the model for rater effect, the multitrait-

multimethod (MTMM) model (Campbell & Fiske, 1959), and the generalizability theory

(G-theory) model (Shavelson & Webb, 1991). We also show how these models can be

fitted with PLmixed. For each model, we first provide a brief summary of related studies,

then describe a sample data and the model formulation, and finally analyze the data

using PLmixed.

3.1 Random Effects Item Response Theory (IRT) Model

Item response theory (IRT) models aim to describe the relationship among categorical

item responses, psychometric properties of items, and the latent variable(s) theorized

to influence the item responses. A classic unidimensional IRT model for items scored

at two categories (e.g., 1/0 as correct/incorrect response to an test item, present/not

present a symptom) is the Rasch model (Rasch, 1960),

P(xij = 1 | θ) =
exp(θj − δi)

1 + exp(θj − δi)
. (3.1)

where θj is the theorized latent variable, and is often assumed to follow a standard

normal distribution, θj ∼ N (0, 1). δi is an item parameter and indicates item i’s difficulty.

Equation 3.1 describes how the conditional probability that person j’s (j = 1, . . . , J)
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response to item i (i = 1, . . . , I) equals 1, P(xij = 1 | θ), changes as a function of θj and

δi. This classic IRT model assumes random person effect and fixed item effect.

Van den Noortgate et al. (2003) proposed a new type of IRT models by combining

the CCMM with the traditional IRT model. This new type of IRT models assume that

both persons and items are random samples from the person and item populations so

that both person and item effects are random. The item responses (level 1) are nested

within the cross-classifications of persons (level 2) and items (level 2). For an item with

two score categories, the proposed random item effect IRT model is,

logit(πij) = β0 + u1j + u2i (3.2)

where πij denotes the probability that person j endorses item i, β0 is the logit of πij of

an average person on an average item (i.e., u1j = u2i = 0), or the difference between the

overall item easiness and the overall person trait levels. u1j represents person j’s latent

trait level, and is assumed to follow a normal distribution with mean 0 and standard

deviation σu1, u1j ∼ N (0, σ2
u1). u2i indicates item i’s easiness level, and is also assumed

to be normally distributed, u2i ∼ N (0, σ2
u2). This random item effect model allows

researchers to incorporate person- and item- characteristics as covariates, and including

additional levels such as a school level.

We analyze a simulated dataset in the PLmixed package to show how an IRT problem

is approached with the cross-classified model. The simulated dataset IRTsim contains

responses of 500 students from 26 schools to 5 dichotomously-scored items. We install

the PLmixed package to print out the first six rows.

> install.packages("PLmixed")

> library(PLmixed)

>

> data(IRTsim)

> head(IRTsim)

sid school item y

1.1 1 1 1 1

1.2 1 1 2 1

1.3 1 1 3 1

12



1.4 1 1 4 0

1.5 1 1 5 1

2.1 2 1 1 1

The outcome variable (y; 1: correct, 0: incorrect) is the response of a student (sid) in

a school (school) to an item (item).

Model In this example, item responses (level 1) are cross-classified by items and

students (level 2), and one of the level-2 factors, students, are nested within schools

(level 3). Thus, we specify the following model:

logit
[
πij(k)

]
= β0 + ui + uj(k) + uk (3.3)

where πij(k) is the probability that the student j in school k correctly answer item

i, and via the logit(·) function, the linear predictor on right-hand side of the equation

(−∞ to ∞) is mapped to the probability scale (0 to 1). β0 is the overall intercept, and

represents the baseline logit when ui = uj(k) = uk = 0. ui is the item random effect

and indicates how easy an item is. uj(k), and uk are student and school random effects,

respectively. These random effects are assumed to follow normal distributions, ui ∼

N (0, σ2
item), uj(k) ∼ N (0, σ2

stu), uk ∼ N (0, σ2
sch). Note here the parentheses in the uj(k)

term is used the emphasizes that students are nested within schools.

Fitting the model The model is fitted with the below PLmixed syntax,

> IRT.example <- PLmixed(formula = y ~ 1 + (1|item) + (1|sid:school)

+ + (1|school),

+ data = IRTsim, family = binomial)

The argument formula follows Equation (3.3): y is the binary outcome variable, 1

represents the overall intercept of the linear predictor at the right-hand side of Equation

(3.3) and corresponds to β0, and (1|item), (1|sid:school) and (1|school) are the three

random-effect terms. The colon in the term (1|sid:school) indicates that the students

are nested within schools. Here, we use the argument family = binomial so that the

binomial family with a logit link function is applied. This corresponds to the logit(·) on
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the left side of Equation (3.3). If not specified, the default identity link function would

be used. We save all results in an object named IRT.example.

After fitting the model, we can print all the results through the summary() function.

> summary(IRT.example)

Profile-based Mixed Effect Model Fit With PLmixed Using lme4

Formula: y ~ 1 + (1 | item) + (1 | sid:school) + (1 | school)

Data: IRTsim

Family: binomial ( logit )

AIC BIC logLik deviance df.resid

2981.94 3005.24 -1486.97 2407.03 2496

Scaled residuals:

Min 1Q Median 3Q Max

-2.2215 -0.9390 0.5634 0.8253 1.9891

Random effects:

Groups Name Variance Std.Dev.

sid:school (Intercept) 0.8322 0.9122

school (Intercept) 0.7293 0.8540

item (Intercept) 0.1592 0.3990

Number of obs: 2500, groups: sid:school, 500; school, 26; item, 5

Fixed effects:

Beta SE z value Pr(>|z|)

(Intercept) 0.6966 0.2545 2.737 0.006192

lme4 Optimizer: bobyqa

Optim Optimizer: NA

Optim Iterations: 1

Estimation Time: 0.02 minutes

The first section of results echos the formula, the dataset that contains variable in

the formula and the link function. The second section of results presents model fit

indices including AIC, BIC, and the residual summary. Then in the Random effects

section, the estimates of variances of random effects and the associated standard errors

are presented. These parameter estimates indicate that within a school, the students’

math proficiency follows a normal distribution with variance 0.83, the school average

math proficiency follows a normal distribution with variance 0.73, and the item easiness
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parameter follows a normal distribution with variance 0.16. Numbers of observations,

students, schools and items are shown in this section as well. Following the Random

effects section, in the Fixed effects section, the estimate of the fixed effect (the overall

intercept in our case) is presented. An estimate of about 0.70 indicates that the probabil-

ity of the an average student (i.e., uj(k) = 0) from an average school (i.e., uk = 0) correctly

answers an average item (i.e., ui = 0) is about 0.69 (1/[1 + exp(−0.70)]). The last section

of results lists lme4 optimizer, optim optimizer, the number of optim iterations, and the

estimation time.

3.2 Modeling Rater Effect

Many research questions in psychology and education uses ratings provided by raters.

These ratings are inevitably subject to the rater bias. The CCMM has been applied to

both cross-sectional (e.g., Murphy & Beretvas, 2015; Lei, Li, & Leroux, 2018; Jayasinghe,

Marsh, & Bond, 2003) and longitudinal data (e.g., Guo & Bollen, 2013) to model rater

effects. For example, in Jayasinghe et al. (2003), the impact of rater characteristics (e.g.,

gender) and grant proposal characteristics on ratings of these proposals were studied

using the cross-classfied multilevel model.

We simulated a dataset that mimic the empirical dataset introduced in Jayasinghe et

al. (2003). The simulated dataset consists of 2,401 evaluations of 1,580 assessors on 673

grant proposals. Each assessor and proposal belong to one of the 28 fields. We first print

out the first six rows of the simulated dataset.

> head(RATERsim)

field rating assessor assessor_gender proposal researcher_gender

1 1 0.75122876 19 0 446 0

2 1 -0.30709805 20 0 579 0

3 1 -0.03705511 20 0 184 0

4 1 -0.40030331 20 0 71 0

5 1 -0.46344476 28 1 117 0

6 1 0.43064563 34 0 293 1
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The outcome variable is the rating (rating) of a proposal (proposal) provided by an

assessor (assessor) in a field (field). The mean and standard deviation of the ratings

are 0.14 and 1.05, respectively. The number of proposals assessed by each assessor ranges

from 1 to 3. The number of ratings each proposal receives ranges from 2 to 7. The field

variable indicates the field the ratings belong to. The numbers of assessors, proposals

and ratings in the fields range from 15 to 83, from 12 to 33, and from 37 to 122, respec-

tively. Other covariates included in the simulated dataset are genders of the assessor

(assessor gender) and first author of the proposal (researcher gender). For these two

covariates, 0 indicates the assessor/author is male, and 1 indicates the assessor/author

is a female.

Model Since each assessor evaluates more than one proposals and each proposal

receives more than one ratings, the ratings (level 1) are cross-classified by assessors and

proposal (level 2). These two level-2 factors are both nested within fields (level 3). In

addition to the effects of assessor and author genders on ratings, another interesting

question to ask could be how genders interact with ratings (e.g., if female assessors

rate proposals written by female authors consistently higher). To answer these research

questions, the model for the simulated rating data can be specified as,

yij(k) = β0 + β1xik + β2xjk + β3xij(k) + ui(k) + uj(k) + uk + εij(k) (3.4)

where yij(k) is the rating of proposal j provided by assessor i in field k . xi(k), xj(k) are

respectively the gender of assessor i and the first author of proposal j. To address the

gender-rating interaction question, a variable xij(k) is generated, and takes the value of

1 if the assessor and the first author are both females and 0 otherwise. Note that xi(k)

and xj(k) are covariates of level-2 units, while xij(k) is associated with lelve-1 units. β0

to β4 are the intercept and regression coefficients associated with the three covariates.

ui(k), uj(k) and uij(k) are the assessor, proposal and field random effects, respectively, and

are assumed to be normally distributed, ui(k) ∼ N (0, σ2
assessor), uj(k) ∼ N (0, σ2

proposal),

uk ∼ N (0, σ2
field). εij(k) is the residual term and is also assumed to follow a normal

distribution, εij(k) ∼ N (0, σ2
e ).
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Fitting the model The below PLmixed syntax is used to fit the model specified in

Equation (3.4),

> rater.example <- PLmixed(formula = rating ~ 1 + assessor_gender

+ + researcher_gender

+ + assessor_gender*researcher_gender

+ + (1|assessor:field) + (1|proposal:field)

+ + (1|field),

+ data = RATERsim, family = gaussian)

In the syntax, rating represents the ratings in the simulated data. The assessor gender,

researcher gender, and assessor gender*researcher gender are the three covariate

terms. The (1|assessor:field), (1|proposal:field) and (1|field) are the three ran-

dom effect terms. In this example, the default identify link is used through the argument

family = gaussian.

After fitting the model, we use the summary() function to obtain the estimation re-

sults. To save space, we present here only parameter estimates and the associated stan-

dard errors in the Random effects and Fixed effects sections.

> summary(rater.example)

Random effects:

Groups Name Variance Std.Dev.

assessor:field (Intercept) 8.876e-01 0.942151

proposal:field (Intercept) 1.672e-01 0.408946

field (Intercept) 2.541e-02 0.159413

Residual 9.575e-06 0.003094

Number of obs: 2401, groups: assessor:field, 1580; proposal:field, 673;

field, 28

Fixed effects:

Beta SE t value

(Intercept) 0.12239 0.043287 2.827

assessor_gender -0.15918 0.080937 -1.967

researcher_gender 0.14543 0.042842 3.395

assessor_gender:researcher_gender -0.03682 0.002183 -16.866

In the Random effects section, estimates of variances and the corresponding stan-

dard deviations are shown. As consistent with results in Jayasinghe et al. (2003), asses-
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sors explain 82% of the total variation in ratings (0.8876/[0.8876+0.1672+0.02541]), pro-

posals explain about 15% of the variation, and fields explain 3% of the variation. In the

Fixed effects section, estimates of regression coefficients and the associated standard

errors are presented. All estimates are significant at a 95% level, indicating that female

assessors on average provide lower ratings (-0.16) than male assessors, female authors on

average receive higher ratings (0.15) than male authors, and proposals written by female

authors receive lower ratings (-0.04) from female assessors.

3.3 Multitriat-Multimethod Model

The multitrait-multimethod (MTMM; Campbell & Fiske, 1959) model allows researchers

to establish convergent and discriminant validity between traits and investigate effects

of methods. The MTMM approach has been applied in psychology to study personality

(e.g., Biesanz & West, 2004; DeYoung, 2006) and life satisfaction (e.g., Lance & Sloan,

1993). Typical MTMM data consist of measures of multiple traits (e.g., the Big Five)

obtained through multiple methods (e.g., self report or peer report). These (often con-

tinuous) measures can be viewed as being cross-classified by traits and methods, since

each trait is evaluated with multiple methods and each method is applied to measure

more than one traits. Jeon and Rijmen (2014) applied the Monte Carlo local likelihood

(MCLL; Jeon, Kaufman, & Rabe-Hesketh, 2019) algorithm to categorical MTMM data

and provide an empirical illustration.

To show the connection between the MTMM appraoch and the CCMM, we simulated

a dataset that reproduces the MTMM covariance matrix reported in DeYoung (2006). The

simulated data include ratings (in a 5-point Likert scale) on the Big Five obtained from

subjects (n = 500) and three of their peers. For each subject, the five self-reported ratings

are treated as responses to item 1-5, and the 15 peer-reported (five for each peer) ratings

are treated as responses to separate items (labeled as item 6-10). A diagram is shown in

Figure 3.1, in which the circles are the variables (E = Extraversion, A = Agreeableness, C
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Figure 3.1: Diagram of the Multitriat-Multimethod Model

= Conscientiousness, N = Neuroticism, O = Openness/Intellect, P = peer report effect)

and the squares are observed ratings (item 1-5 are self-reported ratings on five latent

traits, item 6-10 are peer-reported).

The first six row of the simulated data are shown below.

> head(MTMM.data)

subject item method trait peer score

[1,] 1 1 1 1 0 4.464043

[2,] 1 2 1 2 0 3.619863

[3,] 1 3 1 3 0 4.301094

[4,] 1 4 1 4 0 4.301457

[5,] 1 5 1 5 0 3.121121

[6,] 1 6 2 1 1 5.131464

The variable subject, item, method, trait and peer are indicators of subject, item,

method (1: self report, 2: peer report), trait (1 = Extraversion, 2 = Agreeableness, 3 =

Conscientiousness, 4 = Neuroticism, 5 = Openness/Intellect) and peer (0: self report).

The last column, score, is the outcome variable.

Model The model for the data can be specified as,

yitpj = βi + λT
itθ

T
tj + λM

ip θM
p + εitpj (3.5)
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where yitpj represents peer p’s rating to item i on trait t of subject j. βi denotes the inter-

cept of item i, λT
it and λM

ip are item i’s loading on θT
tj, the latent variable that corresponds

to trait t, and θM
p , the rater effect latent variable, respectively. θT

tj is subject j’s level in

trait t, and it is assumed that all five trait latent variables follow a multivariate normal

distribution θT
j ∼ N (0, ΣT). θM

p represents peer p’s effect on the items, θM
p ∼ N (0, σ2

M).

εitpj denotes the residual term, εitpj ∼ N (0, σ2
e ).

Fitting the model To fit the model, we have to specify the factor loading lambda

matrix according to the diagram (Figure 3.1) first. Rows of the lambda matrix correspond

to items, and columns correspond to latent variables. For identification purpose, we fix

some loadings to be 1. Note here that as only item 6-10 are peer-reported items, the first

five elements of the rater effect latent variable (i.e., the last column of the lambda matrix)

are zeros. NA represents unknown parameters that are to be estimated.

> lambda <- rbind(c(1, 0, 0, 0, 0, 0),

+ c(0, 1, 0, 0, 0, 0),

+ c(0, 0, 1, 0, 0, 0),

+ c(0, 0, 0, 1, 0, 0),

+ c(0, 0, 0, 0, 1, 0),

+ c(NA,0, 0, 0, 0, 1),

+ c(0,NA, 0, 0, 0, NA),

+ c(0, 0,NA, 0, 0, NA),

+ c(0, 0, 0,NA, 0, NA),

+ c(0, 0, 0, 0,NA, NA))

The full PLmixed syntax can be specified as the following:

> MTMM.example <- PLmixed(score ~ 0 + as.factor(item)

+ + (0+E+A+C+N+O|subject)

+ + (0+rater|peer),

+ data = as.data.frame(MTMM.data),

+ lambda = list(lambda), load.var = "item",

+ factor = list(c("E","A","C","N","O",

+ "rater")))

The 0 is included in the formula argument to avoid estimating extra random intercepts.

We use as.factor(item) so that item-specific intercepts are estimated. The five trait
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latent variables are named E, A, C, N and O. As assumed, these latent variables are

correlated and vary across subjects. If independence is assumed among the trait la-

tent variables, we can use (E|subject) + (A|subject) + (C|subject) + (N|subject)

+ (O|subject). The last term in the formula argument corresponds to the random rater

effects. The lambda argument reads in the factor loading matrix we specified earlier. The

load.var argument indicates the variable that defines the factor loading matrix. And

the factor shows the names of the latent variables.

After fitting the model, we can use the summary function to extract the results.

>summary(MTMM.example)

Profile-based Mixed Effect Model Fit With PLmixed Using lme4

Formula: score~0+as.factor(item)+(0+E+A+C+N+O|subject)+(0+rater|peer)

Data: as.data.frame(MTMM.data)

Family: gaussian ( identity )

AIC BIC logLik deviance df.resid

19181.24 19440.82 -9554.62 19109.24 9964

Scaled residuals:

Min 1Q Median 3Q Max

-3.3027 -0.5599 -0.0007 0.5554 3.0555

Lambda: item

E SE A SE C SE N SE O SE rater SE

1 1.000 . . . . . . . . . . .

2 . . 1.000 . . . . . . . . .

3 . . . . 1.000 . . . . . . .

4 . . . . . . 1.00 . . . . .

5 . . . . . . . . 1.000 . . .

6 0.905 0.035 . . . . . . . . 1.000 .

7 . . 0.992 0.075 . . . . . . 0.913 0.064

8 . . . . 0.829 0.044 . . . . 0.828 0.042

9 . . . . . . 1.84 0.14 . . 1.536 0.120

10 . . . . . . . . -2.406 0.177 1.164 0.097

Random effects:

Groups Name Variance Std.Dev. Corr

peer rater 0.06228 0.2496

subject E 0.46781 0.6840

A 0.15870 0.3984 0.11
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C 0.18075 0.4251 0.11 0.12

N 0.40576 0.6370 -0.10 -0.44 -0.28

O 0.31660 0.5627 0.27 0.01 0.08 -0.16

Residual 0.21202 0.4605

Number of obs: 10000, groups: peer, 1501; subject, 500

Fixed effects:

Beta SE t value

as.factor(item)1 3.336 0.03687 90.48

as.factor(item)2 4.064 0.02723 149.23

as.factor(item)3 4.060 0.02803 144.86

as.factor(item)4 2.572 0.03515 73.18

as.factor(item)5 3.670 0.03252 112.87

as.factor(item)6 3.670 0.03081 119.12

as.factor(item)7 4.104 0.02438 168.31

as.factor(item)8 4.185 0.02324 180.06

as.factor(item)9 2.610 0.03065 85.17

as.factor(item)10 3.734 0.02513 148.58

lme4 Optimizer: bobyqa

Optim Optimizer: L-BFGS-B

Optim Iterations: 1120

Estimation Time: 36.61 minutes

The first section of the results echos the formula, and the second section shows model fit

indices. The Lambda section includes estimates of factor laodings and the corresponding

standard errors. Following that in the Random effects section, estimates of variances

of all six latent variables and the corresponding standard errors are presented. The

estimated correlation between the trait latent variables are shown as well. In the Fixed

effects section, item-specific intercepts are presented. In the last section, information

about lme4 optimizer is shown.

3.4 Generalizability Theory Model

Generalizability theory (G-theory) is a statistical framework for evaluating the general-

izability (reliability) of behavioral measurements (Shavelson & Webb, 1991). In G-theory,

observed scores of a measurement are decomposed into additive effects of multiple facets
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(i.e., sources of variations). If levels of a facet in a measurement design are viewed as

random samples from the universe of all possible levels and researchers would like to

generalize beyond these observed levels, this facet is considered as a random facet. In

contrast, if all possible levels a facet are included in the design or there is no need for

generalization, this facet is a fixed facet. G-theory includes two types of studies, the gen-

eralizability study (G study) and the decision study (D study). The aim of a G study is to

computed the variances associated with the facets. In a D study, different generalizabil-

ity coefficients are to be constructed, using the variance estimates from the G study. A

generalizability coefficient is analogous to a reliability coefficient but depends on which

facets are considered random.

Vangeneugden, Laenen, Geys, Renard, and Molenberghs (2005) adopted the idea of

G-theory and utilized a flexible linear mixed effect model framework to derive the gen-

eralizability/reliability coefficients. They applied the proposed approach to individual

patient data of five double-blind randomized clinical trials to compute different gener-

alizability coefficients of the Positive and Negative Syndrome (PANSS).

To demonstrate the connection between generalizability theory studies and the CCMM,

we analyze the Brennan.3.2 dataset that can be found in the gtheory package. The

dataset contains scores of 10 persons’ performance on 3 tasks, each of which is rated by

4 raters (i.e., the classical person*[rater:task] design). In this data set, the ratings can be

viewed as being cross-classified by persons and raters, while the raters are nested within

tasks.

We first print the first six rows of the data.

> install.packages("gtheory")

> library(gtheory)

>

> head(Brennan.3.2)

Task Person Rater Score

1 1 1 1 5

2 1 2 1 9

3 1 3 1 3

4 1 4 1 7
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5 1 5 1 9

6 1 6 1 3

The outcome variable is the score (Score), which ranges from 1 to 9. The 10 persons

(Person) complete all three tasks (Task). Raters (Rater) 1 to 4 assess task 1, raters 5 to 8

assess task 2, and raters 9 to 12 assess task 3.

Model In this simple person*(rater:task) design, there are five sources of variations:

persons, tasks, raters (nested within tasks), person-task interactions and residuals. We

can specify the following model:

yij(k) = β0 + ui + uj(k) + uk + uik + εij(k) (3.6)

where yij(k) is person i’s score on task k by rater j. Equation (3.6) can be viewed as

a cross-classified multilevel model, where ui represents the person random effect, uj(k)

is the rater random effect, uk is the task random effect, uik is the person-task random

effect, and εij(k) is the residual term associated with each observation. Each of random

effect and residual terms is assumed to follow a normal distribution, ui ∼ N (0, σ2
person),

uj(k) ∼ N (0, σ2
rater), uk ∼ N (0, σ2

task), uik ∼ N (0, σ2
person*task), and εij(k) ∼ N (0, σ2

e ).

Fitting the model The PLmixed syntax and Random effects and Fixed effects sec-

tions of the results are shown below,

> g.example <- PLmixed(formula = Score ~ 1 + (1|Person) + (1|Rater:Task)

+ + (1|Task) + (1|Person:Task),

+ data = Brennan.3.2, family = gaussian)

> summary(g.example)

Random effects:

Groups Name Variance Std.Dev.

Person:Task (Intercept) 0.5730 0.7570

Rater:Task (Intercept) 0.6475 0.8047

Person (Intercept) 0.4290 0.6550

Task (Intercept) 0.1561 0.3951

Residual 2.3802 1.5428

Number of obs: 120, groups: Person:Task, 30; Rater:Task, 12; Person, 10;

Task, 3
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Fixed effects:

Beta SE t value

(Intercept) 4.75 0.4334 10.96

With these parameter estimates, we can derive multiple generalizability/reliability

coefficients, which are often desired in G-theory studies. For example, if we want to

generalize persons’ score over raters and tasks, we can construct the following general-

izability coefficient,

Rρ2Rel =
σ2

person

σ2
person + σ2

rater + σ2
task + σ2

person*task + σ2
e

=
0.5730

0.5730 + 0.6475 + 0.4290 + 0.1561 + 2.3802
= 0.14
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CHAPTER 4

Modern Applications of CCMM

In this chapter, we introduce a few modern and recent applications of the CCMM and

demonstrate these applications with R packages, including the CCMM’s applications to

meta analysis, social network analysis (SNA), and to the study of impacts of contexts

on educational achievement of immigrant students. In addition, we introduce the for-

mulation of the multiple membership multiple classification (MMMC) model (Browne

et al., 2001), which can be viewed as a general form of the CCMM. We also show an

application of the MMMC to SNA.

4.1 Meta Analysis

Meta-analysis is a systematic approach that combines results from multiple primary

studies that address the same research question and is able to derive more statistically

powerful findings. As pointed out in Hox, Moerbeek, and Van de Schoot (2017), the

meta-analysis can be viewed as special case of multilevel analysis, where the quantities of

interest (e.g., the effect size; ES) are nested within primary studies. However, often each

primary study in a meta-analysis calculate more than one ESs based on the same sample,

and at the same time, multiple primary studies report ESs of the same outcome, creating

additional dependency between ESs. Fernández-Castilla et al. (2019) illustrated the use

of cross-classified multilevel model to deal with the dependency between ESs caused

by multiple crossed random factors (e.g., studies and outcomes). Through simulations,

they found that the cross-classified modeling approach yields unbiased parameter es-

timates in the context of meta-analysis, outperforming the multilevel and multivariate
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approaches.

To illustrate the application of the CCMM to meta-analysis, we use a subset of data

of the Meta-Analytic Study of Loneliness (MASLO; Maes et al., 2017) project. The data

used can be also found in Appendix A of Fernández-Castilla et al. (2019). This dataset

includes 68 standardized mean gender differences in loneliness, reported from 54 studies

on seven possible subscales, including the UCLA Loneliness Scale (coded as 1) and the

Social dimension of the SELSA (coded as 2). The first six rows of the dataset are shown

below.

> head(meta)

Study Outcome Subscale g Variance Precision

1 1 1 1 -0.251 0.024 41.455

2 2 1 1 -0.069 0.001 1361.067

3 3 1 5 0.138 0.001 957.620

4 4 1 1 -0.754 0.085 11.809

5 5 1 1 -0.228 0.020 49.598

6 6 1 6 -0.212 0.004 246.180

The outcome variable that of interest is standardized gender difference in loneliness

(g), the Variance shows the associated sampling variance, the variable Precision varible

is the reciprocal of the corresponding Variance. Study is the study identification number,

Outcome indicates the outcome reported across studies, and Subscale is the tool used in

the study to measure loneliness.

Model The meta-analysis data possesses a three-level data, which can be specified as

the following

yi(jk) = β0 + uj + uk + ui(jk) + εijk (4.1)

where yi(jk) is the ith outcome that is measured with subscale j in the kth study – that is

to say, the outcomes (level 2) are nested within the cross-classifications of subscales and

studies (level 3). εijk represents the known level-1 sampling variance. The intercept β0 is

the pooled gender difference.

Fitting the model The model specified in Equation 4.1 can be fitted using the blmer

function in the blme package (Dorie & Dorie, 2015). The blme package extends the lme4
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package and allows the estimation of linear and generalized linear mixed-effects models

in a Bayesian setting.

> library(blme)

> meta.example <- blmer(g ~ 1 + (1|Study) + (1|Subscale)

+ + (1|Outcome:Study:Subscale),

+ data=meta, weights = Precision,

+ resid.prior = point(1), cov.prior=NULL)

in which the formula argument corresponds to the model. The two blmer specific ar-

guments resid.prior = point(1) and weights = Precision fix the level-1 variance to

1 and assigning weights to each observation so that we have ε2
ijk fixed to the value of

Variance associated with each observation.

After fitting the model, we use the summary function and present estimates of the

random and fixed effects.

> summary(meta.example)

Random effects:

Groups Name Variance Std.Dev.

Outcome:Study:Subscale (Intercept) 0.009446 0.09719

Study (Intercept) 0.011897 0.10907

Subscale (Intercept) 0.036287 0.19049

Residual 1.000000 1.00000

Number of obs: 68, groups: Outcome:Study:Subscale, 68; Study, 57;

Subscale, 7

Fixed effects:

Estimate Std. Error t value

(Intercept) -0.03809 0.08370 -0.455

Estimates in the Random effects section indicate there is more variations among sub-

scales (0.04) than among studies (0.01). As shown in the Fixed effects section, the

estimate of the combined gender difference is -0.04, and the corresponding t-value is

-0.46, meaning that the gender difference is not significantly different from zero.
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4.2 Social Network Analysis

Social network analysis (SNA) is a new but rapidly growing field. SNA is a strategy for

studying social structures and how structural regularities would influence individual

behaviours (Otte & Rousseau, 2002). Tranmer, Steel, and Browne (2014) included the

network configurations (e.g., ego-nets, cliques of size 2 and 3) as a type of classification

in a CCMM so that the social network dependence is accounted for. They found that

ignoring the network would lead to biased estimates to both fixed and random parts of

the model. Koster, Leckie, Miller, and Hames (2015) present a multilevel formulation of

the Social Relations Model (SRM) to address the endogeneity problem in dyadic network

data analysis. This multilevel SRM can be formulated as a CCMM whose outcome

follows a Poisson distribution under reasonable assumptions.

De Nooy (2011) applied the cross-classified model to longitudinal social network

analysis and developed a multilevel discrete-time event history model for time-stamped

longitudinal network data. He illustrated the approach using a data set that contains

all reviews and interviews among 40 most frequently-appearing literary authors and

critics in the Netherlands, 1970–1980, in which the book reviews are cross-classified by

authors (heads) and critics (tails). He used the discrete-time hazard (the probability of

an event happening in a time period conditional on no such event happened in earlier

time periods) as the dependent variable and estimated the model with multilevel logistic

regression.

To illustrate the application of the CCMM in the context of social network analysis,

we analyze a dyadic network dataset that can be found in supplementary materials

of Koster et al. (2015). The dataset was collected in a village of indigenous Ye’kwana

horticulturalists with eight households in Venezuela. These eight house household lead

to 28 dyads. We first order the dataset by dyad, and then print out the first six rows

(three dyads).

> network <- network[order(network$dyad),]

> head(network)
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giver receiver dyad relationship sharing association distance kinship

1 1 2 12 1 1 0.234 162 0.0156

8 2 1 12 8 0 0.233 162 0.0160

2 1 3 13 2 1 0.144 286 0.0000

15 3 1 13 15 5 0.144 286 0.0000

3 1 4 14 3 0 0.120 327 0.0000

22 4 1 14 22 2 0.120 327 0.0000

The outcome variable is the total number of meals (sharing) provided from one

household (giver) to another (receiver). Each giver-receiver pair defines a relation-

ship (relationship). Note the relationship variable is directed – it is not the same

for household A-B and B-A pairs. Other covariates included in the dataset are the

distance between households (distance), the genetic relatedness between households

(kinship), and a association index that provides measure of interactions between each

pair of households (association).

Model The model for the dyadic network data can be specified as:

g(πij) = β0 + β1x1|ij| + β2x2|ij| + β3x3|ij| + gi + rj + u|ij| + eij (4.2)

where g(·) is a link function so that the number of meals household i provides to house-

hold j, yij, follows a Poisson distribution of mean πij, yij ∼ Pois(πij). β0 is the inter-

cept in the linear predictor, and β1, β2, β3 are regression coefficients associated with

the relationship-level covariate, x1|ij|, x2|ij|, and x3|ij|. gi and rj represent the giver and

receiver random effects, respectively, and are assumed to follow normal distributions,

gi ∼ N (0, σ2
giver), rj ∼ N (0, σ2

receiver). u|ij| is the dyad random effect, and is assumed

to follow a normal distribution with mean 0 and standard deviation σrelation. eij is the

residual term, and eij ∼ N (0, σ2
e ).

Fitting the model For simplicity, we fit the a CCMM with no covariates using the

below PLmixed syntax,

> network.exp <- PLmixed(sharing ~ 1 + (1|giver) + (1|receiver)

+ + (1|dyad) + (1|relationship),

+ data = network, family = poisson)
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Then we use the summary() function with the name of the object for the fitted model

within the parentheses to obtain the output.

> summary(network.exp)

Random effects:

Groups Name Variance Std.Dev.

relationship (Intercept) 0.2401 0.4900

dyad (Intercept) 1.1990 1.0950

receiver (Intercept) 0.1060 0.3256

giver (Intercept) 1.8853 1.3731

Number of obs: 56, groups: relationship, 56; dyad, 28; receiver, 8; giver, 8

Fixed effects:

Beta SE z value Pr(>|z|)

(Intercept) 0.3114 0.5668 0.5495 0.5827

With estimates of giver, receiver and relationship random effects, we can compute the

variance partition coefficient (VPC) to quantify the contribution of each variation source

to the total variance. For example, the VPC of giver is

VPCgiver =
1.8853

0.2401 + 1.1990 + 0.1060 + 1.8853
= 0.549

4.3 Immigration Studies

The CCMM has also been applied to study how multiple contexts help explain differ-

ences in educational achievement of immigrant students. We demonstrate how PLmixed

can be used to disentangle the effects of origin country, destination country, and com-

munity on immigrant students’ math achievement using a simulated data set that mimic

the 2003 PISA survey (Levels, Dronkers, & Kraaykamp, 2008). The simulated data set

includes observations of 7,403 immigrant students who were born in 35 different coun-

tries and took the test in 13 different countries. We first print out the first six rows of the

simulated data set.

> head(round(PISAsim))

student destination origin community score
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1 1 1 6 1 429

2 2 1 6 1 479

3 3 1 6 1 569

4 4 1 6 1 428

5 5 1 6 1 596

6 6 1 6 1 436

The outcome variable is the math achievement (score) of a student (student) who

was born in a country (origin) and took the PISA test in another country (destination).

The mean and standard deviation of scores are 503 and 98, respectively. Each com-

bination of the origin and the destination countries defines a immigrant community

(community). Since not all origin countries are presented in all destination countries, the

simulated dataset contains 67 (instead of 13× 35 = 455) different immigrant communi-

ties. The number of students in the communities ranges from 90 to 144.

Model In this example, we have the students (level 1) nested within communities

(level 2), and communities are cross-classified by countries of origin and destinations

(level 3). To disentangle these contextual effects, we specify the following model with no

covariate,

yi(jk) = β0 + uj + uk + ujk + εijk (4.3)

where yi(jk) represents the math score of student i’s, who was born in country j, took the

test in country k and lives in the immigrant community defined by these two countries.

β0 is the overall intercept and can be interpreted as the grand mean of math scores. uj

and uk are origin country and destination country random effects, and each is assumed

to follow a normal distribution so that uj ∼ N (0, σ2
ori) and uk ∼ N (0, σ2

des). ujk is an

interaction term of the countries of origin and destination, and represents the community

random effect, ujk ∼ N (0, σ2
com). εijk is the residual term associated with student i in

the community defined by the origin and destination countries of this student, and is

assumed to follow a normal distribution, εijk ∼ N (0, σ2
e ).

Fitting the model The above model can be estimated with the syntax,

> PISA.example <- PLmixed(formula = score ~ 1 + (1|origin) + (1|destination)

+ + (1|origin:destination), data = PISAsim)

32



Elements of the formula argument correspond to the terms in Equation (4.3). The

1 represents the overall intercept, and three terms (1|origin), (1|destination) and

(1|origin:destination) correspond to the three random-effect terms.

After fitting the model, we obtain the results through the summary() function.

> summary(PISA.example)

Profile-based Mixed Effect Model Fit With PLmixed Using lme4

Formula: score ~ 1 + (1|origin) + (1|destination) + (1|origin:destination)

Data: PISAsim

Family: gaussian ( identity )

AIC BIC logLik deviance df.resid

87238.60 87273.15 -43614.30 87228.60 7398

Scaled residuals:

Min 1Q Median 3Q Max

-4.2489 -0.6745 0.0057 0.6636 3.7325

Random effects:

Groups Name Variance Std.Dev.

origin:destination (Intercept) 511.2 22.61

origin (Intercept) 803.2 28.34

destination (Intercept) 681.4 26.10

Residual 7459.7 86.37

Number of obs: 7403, groups: origin:destination, 67; origin, 35;

destination, 13

Fixed effects:

Beta SE t value

(Intercept) 500 9.478 52.75

lme4 Optimizer: bobyqa

Optim Optimizer: NA

Optim Iterations: 1

Estimation Time: 0.02 minutes

The first part of the results echos the model formulation. Then, the Random effects

section shows estimates of variances of random effects and associated standard errors.

Based on these estimates, the proportions of the total variation in math scores explained

by the community students stay in, country of origin and destination country are 5.4%
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(511.2/[511.2+803.2+681.4+7459.7]), 8.5% (803.2/[511.2+803.2+681.4+7459.7]) and 7.2%

(681.4/[511.2+803.2+681.4+7459.7]), respectively. Following the Random effects section,

the Fixed effects section presents the estimate of intercept and its standard error. The

last section of the results summarizes the lme4 optimizer.

4.4 Multiple-Membership Multiple-Classification (MMMC) Model

Recall that the multiple membership model (Hill & Goldstein, 1998) was proposed to

accommodate the multiple membership data structure, in which each lower unit can be-

long to more than one high-level units of the same classification (e.g., a student can move

between schools). Browne et al. (2001) combined the CCMM with the multiple member-

ship model and introduced the multiple membership multiple classification (MMMC)

model.

4.4.1 Model Formulation

Before presenting the formulation of the MMMC model, we first introduce the multiple

membership model. Let’s consider an example of the multiple membership data in

education. Students may change schools throughout their schooling, and their academic

achievement are impacted by all schools they attend. For students who attend more than

one school, it is natural to assume that the impacts of schools on them vary, since they

spend different amount of time in these schools. In the multiple membership model, a

weighting scheme is introduced,

yi = β0 + ∑
j∈School(i)

wi,juj + ei

uj ∼ N (0, σ2
u) and ei ∼ N (0, σ2

e ) (4.4)

In Equation 4.4, yi represents student i’s (i = 1, . . . , N) academic achievement, where N

is the total number of students. β0 is the intercept. uj is the random effect of school j,

uj ∼ N (0, σ2
u), wi,j is the associated weight, and ∑j∈School(i) wi,j = 1. This term indicates

34



that the impact of schools on student i’s academic achievement is a weighted sum of

effects of all schools this student attend. Usually, the weight wi,j is specified by the

researchers. ei is the residual term and is assumed to follow a normal distribution,

ei ∼ N (0, σ2
e ).

Consider a more complicated case, in which students’ academic performance are

impacted by the neighborhoods they stay in (assuming no move between neighborhoods)

and all schools they attend. Using the notation in Browne et al. (2001), the MMMC

model distinguishes the two types of classifications (i.e., neighborhoods and schools) via

superscripts and takes the following form,

yi = Xiβ + Z(2)
i u(2)

C2(i)
+ ∑

j∈C3(i)
w(3)

i,j Z(3)
i u(3)

j + ei

u(2)
C2(i)
∼ N (0, Σu(2)), u(3)

j ∼ N (0, Σu(3)), and ei ∼ N (0, σ2
e ). (4.5)

where β is a vector of fixed effects. u(2)
C2(i)

and u(3)
j are respectively the random effects of

the neighborhood student i stay in and school j, and are both assumed to be normally

distributed. wi,j is the weight assigned to the school j that student i attend. Xi, Z(2)
i and

Z(3)
i are vectors of predictors. ei is the residual term and is assumed to follow a normal

distribution.

4.4.2 An Application

We use simulated data to illustrate how the MMMC model is fitted. The simulated

data mimic the study reported in Tranmer et al. (2014) and consist of two parts: the

academic performance of a sample of 968 (N) students in 10 schools, and a network

adjacency matrix D. The first six rows of the academic performance data are shown

below, whose first column (stu.id) indicates students ids, the second column (sch.id)

shows the schools the students are in, and the third column (y) are standardized test

scores, y ∼ N (0, 1).

> head(mmmc)

stu.id sch.id y
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1 1 1 -1.03085195

2 2 2 -1.34750042

3 3 6 -0.96452530

4 4 2 0.48814972

5 5 8 0.03055814

6 6 8 -2.14955272

Each student in the sample can nominate up to ten friends, who can be either in the

sample or out of the sample. The student who nominates friends is defined as ego in

an “ego-net” and the nominated friends are defined as alters. This friendship network

can be summarized using a 968× 968 network adjacency matrix D. The element in the

i-row and j-th column of D takes the value of one if student i nominates student j as

a friend and zero otherwise. For example, if student i nominates three students in the

sample as friends, three elements in the i-th row of the D matrix are ones and all the

other elements in the i-th row are zeros. The ego-net size of student i’s is three. Among

the 968 students in the sample, 651 (N.ego) students have non-zero ego-nets. The mean

size of the non-zero ego-nets is 1.80 with a standard deviation of 1.22.

Model The students are cross-classified by the schools they are in and ego-nets of

other students in the sample (if they are nominated as friends by other students). Since

the students can be nominated by more than one other students, they can be alters

of multiple ego-nets, and the model is a multiple-membership multiple-classification

(MMMC) model.

yi = β0 + uschool(i) + ∑
j∈group(i)

wi,juj + ei (4.6)

where yi is student i’s test score, β0 is the grand mean test score, uschool(i) is the random

effect of the school student i belongs to, uschool(i) ∼ N (0, σ2
sch). The term ∑j∈group(i) wi,juj

involves J random effects, where J is the total number of ego-nets defined. group(i) is

the ego-nets that student i is an alter of, group(i) ⊂ (1, . . . , J). wi,j is the weight assigned

to each ego-net of student i is an alter of, and the weights sum up to one for each student.

For example, if student i is nominated as a friend by three other students in the sample,

wi,j1 = wi,j2 = wi,j3 =
1
3 . uj is the ego-net random effect, uj ∼ N (0, σ2

ego). ei is the residual
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term, ei ∼ N (0, σ2
e ).

Fitting the model To fit the MMMC model, a weight matrix whose rows are individ-

uals and columns are groups has to be specified. In our example, ego-nets are treated as

groups. The weight matrix can be simply obtained by eliminating all-zero rows of the D

matrix, transposing it and dividing its elements by the sums of rows. Note, since there

are students that do not belong to any ego-nets, the weights associated these students

are all zeros.

> D.row.sum <- rowSums(D)

> W <- D[rowSums(D)!=0,]

> W <- t(W)

> Weight <- W/rowSums(W)

>

> Weight[is.na(Weight)] <- 0

Then we specify two design matrices required for the estimation of models with random

effects directly. To do that, we need to generate all components required for estimation

by assigning each individual a fake ego-net level and storing them in the an object

(lmod).

> fake.ego.id <- rep(1:N.ego, length.out=N)

> mmmc <- as.data.frame(cbind(mmmc, fake.ego.id))

> lmod <- lFormula(y~(1|fake.ego.id)+(1|sch.id), data=mmmc)

In this process, a matrix named Zt and a list named Ztlist that both indicate mem-

berships of individuals are generated. Since the ego-net random effect term is specified

first, the first 651 (the number of ego-net levels) out of 661 (the sum of ego-nets and

school levels) rows of the Zt matrix and the first (out of two) element of the Ztlist need

to replaced with the right weight matrix.

lmod$reTrms$Zt[1:N.ego,] <- Matrix(t(Weight))

lmod$reTrms$Ztlist[[1]] <- Matrix(t(Weight))

The next step is to let the program estimate the model using correct weight matrix.
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> devfun <- do.call(mkLmerDevfun, lmod)

> opt <- optimizeLmer(devfun)

> MMMC.example <- mkMerMod(environment(devfun), opt, lmod$reTrms,

+ fr = lmod$fr)

The results can be extracted with the summary function. Due to space constraint, only

the random effect estimates are shown below. The estimates are very close identical to

the true values (the School+Network model reported in Table 3 of Tranmer et al. (2014)).

> summary(MMMC.example)

Random effects:

Groups Name Variance Std.Dev.

fake.ego.id (Intercept) 0.2142 0.4629

sch.id (Intercept) 0.1135 0.3369

Residual 0.8303 0.9112

The parameter estimates indicate that ego nets explain about 18% of the total varia-

tion (0.2142/[0.2142+0.1135+0.8303]), and schools explain about 10% of the total varia-

tion (0.1135/[0.2142+0.1135+0.8303]).
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CHAPTER 5

Conclusion Remarks

Data with the cross-classified structure are ubiquitous in social and behavioral sciences.

A canonical example of the cross-classified data in education is that students are cross-

classified by schools they attend and neighborhood they stay in. Item response data also

possess the cross-classified data structure, since item responses are cross-classified by

persons and items. The cross-classified multilevel model (CCMM; Rasbash & Goldstein,

1994; Goldstein, 1994) has been proposed to model the cross-classified data. However,

the applications of the CCMM are relatively scant and are mostly in the field of educa-

tion, which can be partly attributed to the lack of computer software.

In the present study, we present the connections between the CCMM and a few

measurement models and methods that are widely applied in psychology, including the

random effect item response theory (IRT) model (Van den Noortgate et al., 2003), the

model for rater effect, the multitrait-multimethod (MTMM) model (Campbell & Fiske,

1959), and the generalizability theory (G-theory) model (Shavelson & Webb, 1991). We

also introduce several relatively little-known applications of the CCMM, including its

applications to the meta analysis, social network analysis, and the study of immigrant

students.

In addition, to address the issue of computer software, we introduce a flexible and

efficient R package PLmixed that allows users to easily fit the CCMM. We show how the

above-mentioned psychometric models, which can be viewed as CCMMs, applications

of the CCMM, and the multiple membership multiple classification (MMMC) model can

be fitted with PLmixed, with some aid of the R packages lme4 and blme.
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In sum, as the cross-classified data structure is prevalent in social and behavioral

research, the CCMM would have many more applications with the support of computer

software such as the R package PLmixed.
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