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Abstract 

Two experiments were conducted in order to test the effects 
of cue predictability on serial dependencies in response times 
and response durations. Predictability in the timing 
(Experiment 1) and identity (Experiment 2) of response cues 
was manipulated. Results of both experiments showed that 
long-range dependencies in response times were stronger 
when cues were predictable versus unpredictable. By contrast, 
long-range dependencies in response durations were 
unaffected by cue predictability. Results are discussed in light 
of five hypotheses about the source of long-range 
dependencies in human behavior. 

Introduction 
In most psychological experiments, the variability in human 
behavior is divided into two categories: some variations in 
measurement are explained by the experimental factors, and 
other variations are not. The latter category is often termed 
error variance, and it usually does not play a role in 
theorizing about the psychological processes under 
examination. One reason why researchers ignore error 
variance is because they often assume that it is effectively 
random, or possibly the product of mundane factors such as 
practice, fatigue, or perseveration. These assumptions lead 
one to think of error variance as uninformative or, at best, 
irrelevant. 

A growing body of experimental results has recently 
prompted some researchers to pay closer attention to the 
ostensibly random fluctuations in human behavior. It 
appears that, contrary to popular belief, these fluctuations 
tend to exhibit patterns that persist over time. A transparent 
way to think about these patterns is through the 
autocorrelation function. Suppose that Xt is a time series of 
measurements taken from a participant in an experiment. 
The autocorrelation of this time series is defined as 
(Wagenmakers, Farrell, & Ratcliff, in press), 

, 
where E[] is expected value, µ is the mean of Xt, and k is 
some number of measurements between the time series and 
an offset copy of itself.  

If measurements are strictly independent of each other, 
then C(k) is zero for all k > 0. The time series is not 

correlated with itself at any offset, and hence, there are no 
persisting patterns in the fluctuations. This condition is 
often referred to as white noise (see top series in Figure 1), 
and it is common to assume that error variance is some type 
of white noise (e.g., Gaussian). However, it turns out that 
measurements of human behavior are often not 
characterized by white noise. Instead, they exhibit serial 
dependencies such that C(k) is positive for some k > 0.  

 

 
Figure 1: Illustrations of white noise (top) and pink noise 

(bottom; from Gilden, 2001). 
 

Serial dependencies have been found in a wide variety of 
human behaviors (for a review, see Van Orden, Holden, & 
Turvey, 2003). With respect to the study of perception and 
cognition, serial dependencies have been found in 
experiments on mental rotation (Gilden, 1997), lexical 
decision (Gilden, 1997), perceptual learning (Wagman, 
Dahle, & Schmidt, 2002), simple reaction time (Ward & 
Richard, 2001), and visual search (Aks, Zelinsky, & Sprott, 
2002). 

A major question about these findings concerns the kind 
of dependencies that were observed. The authors of these 
studies interpreted their findings as evidence for a particular 
kind of serial dependency often referred to as long-range 
dependency, of which 1/f noise or pink noise are special 
cases (see bottom series in Figure 1). In a long-range 
dependent series, C(k) is positive and decreases as a power 
of k,  
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Long-range dependency is of special interest because it 
appears to be ubiquitous in nature (see Van Orden et al., 
2003), and it has some intriguing properties such as fractal 
structure, i.e., a change in the time scale of measurement 
does not affect the distributional properties of a long-range 
dependent time series. Long-range dependencies have 
motivated a number of general theories about the sources of 
fluctuations in human behavior, and these theories were the 
focus of the current experiments. 

However, before the theories are addressed, it must be 
noted that long-range dependencies can be difficult to 
distinguish from short-range dependencies, in which C(k) 
decreases exponentially with k (Wagenmakers et al., in 
press),  

 
where -1 < Φ1 < 1. Although C(k) declines more quickly in 
short-range dependent series compared with long-range 
dependent series (hence their names), the difference in rates 
of decline can be rather small. Nonetheless, short-range 
dependent series have very different properties (e.g., they 
can be generated by simple autoregressive processes), and 
they lead to different kinds of theories about fluctuations in 
human behavior. Therefore, Wagenmakers and his 
colleagues argued that empirical tests of long-range 
dependency must treat short-range dependency, rather than 
white noise, as the null hypothesis. Using this more 
stringent criterion, Wagenmakers et al. still found long-
range dependencies in measurements of human behavior 
under a variety of experimental conditions. Their findings 
and analyses confirm that long-range dependency is a real 
phenomenon. 

Explanations of Long-Range Dependence 
Why do fluctuations in human behavior exhibit long-range 
dependencies? Only certain kinds of processes are known to 
produce long-range dependencies (for a review, see 
Wagenmakers et al., in press). The ostensibly special status 
of long-range dependencies has prompted researchers to 
search for general properties of human behavior that might 
explain their source(s). Here we review five explanations 
that have been offered. 
 
Three Time Scales. Any specific observation of long-range 
dependence can be mimicked mathematically by the 
combination of three sources of white noise that operate on 
different time scales, each scale separated by an order of 
magnitude. In the context of perceptual and cognitive 
processes, Ward (2002) has suggested that unconscious, 
preconscious, and conscious processes may be three such 
sources of white noise whose combination is observed in 
fluctuations of human behavior. 

While the transparency of this explanation is appealing, it 
is somewhat brittle because any three particular scales of 
white noise will mimic long-range dependence only for a 
single, particular scale of measurement (see Van Orden et 
al., 2003). What this means is that three-scale accounts must 
be fit to data posthoc. By contrast, true long-range 
dependence exists over all scales of measurement (within 
the limits of the system in question) due to its fractal 

structure. Long-range dependence in human behavior has, in 
fact, been found across a range of scales of measurement 
(for a review, see Van Orden et al., 2003). 

 
Many Short-Range Dependencies. Granger (1980) showed 
that, under certain circumstances, the summation of many 
short-range dependent series can produce a true long-range 
dependent series. Ding, Chen, and Kelso (2001) proposed 
that long-range correlations found in timing tasks (and, by 
extension, in other kinds of tasks) may be the result of such 
summations. Their argument was based on the premise that 
cognitive processes are supported by large-scale networks of 
neural processes. Ding et al. reasoned that, in at least some 
cases, such neural networks will be characterized by large 
sets of short-range dependent processes. If the timing of 
behavior is driven by the summation of these processes, 
then fluctuations in timing will exhibit long-range 
dependence. 

Ding et al. (2001) made the further statement that more 
difficult tasks require larger numbers of short-range 
dependent processes. This statement leads to the prediction 
that long-range dependencies will be stronger in more 
difficult tasks. In support of this prediction, they reported 
two timing tasks in which participants were asked to match 
their rates of tapping with the beat of a metronome. In one 
condition, participants were asked to tap in synchrony with 
the metronome. In another condition, participants were 
asked to tap at the midpoint between each pair of beats (i.e., 
to syncopate). Syncopation is a more difficult tapping task 
(e.g., less stable; see Kelso, DelColle, & Schner, 1990) 
compared with synchronization, and fluctuations in 
syncopated tapping exhibited stronger evidence of long-
range dependence compared with synchronized tapping. 

 
Mental Set. Gilden (2001) proposed that experimental tasks 
whose demands are relatively consistent across trials invoke 
a “mental set” in the participant. Gilden’s definition of 
mental set entailed the repeated formation of mental 
representations necessary to perform the task. When the task 
is consistent, Gilden proposed that a dynamic of memory is 
created by this repetition such that memory components 
interact on multiple time scales. Under some circumstances, 
interactions of this nature have been shown to generate 
long-range dependencies (e.g., see Jensen, 1998).  

Gilden (2001) left the nature of his proposed memory 
components unspecified, but his hypothesis was nonetheless 
formulated in sufficient detail to make a testable prediction. 
If mental set is broken by sudden changes in task demands, 
then the hypothesized dynamic of memory would not have 
an opportunity to form, and long-range dependencies in 
response fluctuations should disappear. Gilden tested this 
prediction by measuring series of reaction times to color or 
shape discriminations when each of these tasks was 
blocked, compared with a mixed condition in which 
participants had to switch between tasks across trials. 
Gilden found evidence of long-range dependence in the 
blocked conditions, but not the mixed conditions. These 
findings were consistent with his mental set explanation of 
long-range dependence. 
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Strategy Shifts. By definition, a long-range dependent 
series is stationary in the sense that its distributional 
characteristics do not change over time. However, a long-
range dependent series can be difficult to distinguish from 
some kinds of non-stationary series that go through changes 
in their distributional characteristics over time.  

It is probably true that any given experimental task can be 
performed in a number of ways, despite any and all efforts 
to make the task demands as explicit and precise as 
possible. If each means of performing a task is termed a 
“strategy”, then it is very possible that a participant will 
change his or her strategy for performing a task over the 
course of an experiment. If strategy shifts occurred 
repeatedly over the course of measurement, they would have 
the potential to mimic long-range dependence. 
Wagenmakers et al. (in press) presented a computational 
demonstration of how strategy shifts (shifts in response 
criteria, in this case) can create non-stationary fluctuations 
in response times that mimic long-range dependencies.  

 
Interaction-Dominant Dynamics. Van Orden et al. (2003) 
proposed that, at a very general level, humans are composed 
of many component processes that all interact on multiple 
time-scales. Their proposal was based on the fundamental 
idea that the structure and complexity seen in human 
behavior is a phenomenon of self-organization, and that 
self-organizing systems are ones that have interaction-
dominant dynamics. They argued that it is these dynamics, 
intrinsic to human beings (and many other types of 
systems), that give rise to long-range dependencies in 
human behavior. 

As general as they are, the ideas put forth by Van Orden 
and his colleagues (2003) lead to a testable prediction. If 
long-range dependence is the intrinsic signature of self-
organization in human behavior, then any perturbations to 
behavior caused by external factors should disrupt the 
intrinsic dynamics, thereby obscuring their signature. Van 
Orden et al. argued that the results to date on long-range 
dependencies in human behavior (e.g., as cited in the other 
explanations listed here) are consistent with this prediction.  

Current Experiments 
Two experiments are reported here that were designed to 
explore a factor that was predicted to modulate the degree of 
long-range dependence in RT fluctuations. The factor was 
motivated by the explanations just listed. In particular, we 
tested whether sources of variability external to the 
participant would reduce the degree of long-range 
dependence in fluctuations of human behavior. Key presses 
were the measured behaviors, and sources of external 
variability were manipulated by the degree of cue 
predictability. 

In Experiment 1, predictability in the timing of response 
cues was manipulated to be either completely predictable or 
completely unpredictable. When cues were predictable, 
fluctuations in response times were driven primarily by the 
participant. The cues themselves had little bearing on 
behavior because they were entirely redundant; participants 
knew that the next cue would always appear one second 

after the previous response (see Methods section). By 
contrast, when the timing of cues was unpredictable, the 
timing of responses had to be driven primarily by the cue 
itself, rather than any expectancies internalized by the 
participants. 

If long-range dependence is internal to human behavior, 
then external variability should mask it. This idea is 
consistent with some previous explanations of long-range 
dependence (see Discussion section). This idea also leads to 
a further prediction that is quite counterintuitive. 
Participants were asked to press a key as soon as they 
perceived a cue. Thus, the task demands were satisfied when 
the finger moved down and the key made contact with its 
sensor. The task made no demands on when participants 
should lift their finger off the key. Therefore, fluctuations in 
the durations of key presses should be free to reflect internal 
variability, provided that the timing of the downward 
motion can be dissociated from timing of the upward 
motion. If so, we should observe no effect of predictability 
on the degree of long-range dependency in response 
durations.  

In Experiment 2, sources of external variability were 
introduced by a different means. The identity of cues, 
instead of the timing of cues, was manipulated to be 
predictable or unpredictable. Two different cues signaled 
two different responses. Cue identity was made predictable 
or not by giving a preview or not of each upcoming cue. 
Analogous to the manipulation of predictability in 
Experiment 1, the preview manipulated the degree to which 
behavior was driven by the cues themselves, versus 
expectancies about the cues.  

Experiment 1 
Participants. Eighteen participants were recruited for the 
experiment. Sixteen were undergraduates who participated 
for course credit, and two were graduate students who were 
compensated for their participation. 
 
Procedure. Each participant saw one block of predictable 
cues and one block of unpredictable cues, with block order 
counterbalanced across participants. Participants were 
instructed to press the space bar with their dominant hand as 
quickly as possible every time they saw an “X” flash on the 
screen. Demonstrations and practice blocks were given 
before each experimental block. Participants were instructed 
to wait till they saw an “X” before responding; if they 
pressed the space bar before a cue appeared, they heard a 
warning tone. Each block consisted of 1100 cues and took 
about 25 minutes to complete. The experimenter stayed in 
the room with the participant throughout the experiment. 
Participants took a short break between blocks. 

Participants were seated about two feet away from a CRT 
monitor, and each cue appeared for about 50 ms in the 
center of the screen in Times New Roman font. A pair for 
visual flankers appeared immediately following each cue, 
and remained on the screen until the participant pressed the 
space bar. The flankers provided a redundant cue that the 
computer was awaiting a response (in case the participant 
missed a cue by accident). 
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Each subsequent cue was timed relative to the previous 
response. In the predictable condition, the next cue always 
appeared 1 s after the previous response was given. In the 
unpredictable condition, the timing of the next cue was 
sampled randomly from an exponential distribution with a 
mean of 1 s, a minimum of 1 ms and a maximum of 12 s. 
The exponential distribution was used because it has a flat 
hazard function, which means that the probability of 
receiving a cue was constant as a function of wait time 
(Simpson et al., 2000). The time from cue to key press was 
recorded (response time), as well as the length of time that 
participants pressed each key (response duration). 

Results 
To illustrate the time series structures that were typically 
observed, the series of response times for one participant in 
the predictable and unpredictable conditions are shown in 
Figure 2. The series of response durations for this 
participant are shown in Figure 3. 
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Figure 2. Response times for one participant in the 

predictable (top) and unpredictable (bottom) conditions of 
Expt 1 (responses above 500 ms have been truncated). 

 
Averaged across participants, the percentage of 

anticipatory responses was 1.99% in the unpredictable 
condition, and 3.9% in the predictable condition. All 
anticipatory responses were removed from the analyses. The 
mean correlation of response times with response durations 
was r = .02 in the unpredictable condition, and r = -.21 in 
the predictable condition. 

Spectral analyses are standardly used to measure the 
degree of long-range dependence in a time series, and we 
adopted the method of spectral analysis described by 
Holden (unpublished; also see Gilden, 1997). In particular, 
outliers were first removed from each time series (values > 
1000 ms or outside 3 SDs of each participant’s mean for 
each measure in each condition). Then, linear and quadratic 
trends were removed to avoid dependencies caused by 
practice or fatigue. A power spectrum was then computed 
over 1024 of the remaining data points, and log frequency 

was regressed against log power. The slope of this 
regression line in log-log coordinates was used as a measure 
of serial dependence: more negative slopes correspond to 
stronger degrees of serial dependence.  
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Figure 3. Response durations for one participant in the 
predictable and unpredictable conditions of Expt 1. 
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Figure 4. Aggregate spectral plots for Expt 1.  

 
The aggregate power spectra, averaged across participants 

for each condition, are plotted in Figure 4. For response 
times, slopes in the predictable condition were reliably more 
negative than slopes in the unpredictable condition, t(17)= 
4.26, p < .001. For response durations, there was no reliable 
difference in slopes, t(17) < 1. Moreover, slopes for 

X Predictable: O Unpredictable 
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response durations were reliably more negative than slopes 
for response times, t(35) = 7.21, p < .001.  

Experiment 2 
Participants. Eighteen undergraduates participated in the 
experiment in exchange for course credit.  
 
Procedure. The procedure was identical to that used in 
Experiment 1, except for the following changes. The 
response cue was either ‘>’ or ‘<’, and participants were 
instructed to press the right arrow key for the former, and 
the left arrow key for the latter. Flankers appeared on either 
side of the response cues as signals to respond, and the 
flankers always appeared 1 s after the previous response 
was given. In the preview condition, the next response cue 
always appeared immediately following the previous 
response; thus, participants had 1 s to process the cue and 
prepare their response. In the no-preview condition, each 
cue appeared in conjunction with its signal to respond; thus, 
participants had to process the cue and choose their 
response as quickly as possible. 

Results 
Averaged across participants, the percentage of 

anticipatory responses was .03% in the unpredictable 
condition, and .45% in the predictable condition. The 
percentage of errors was .80% and .27%, respectively. All 
anticipatory responses were removed from the analyses, but 
the few errors were retained. The mean correlation of 
response times with response durations was r = .05 in the 
unpredictable condition, and r = -.08 in the predictable 
condition. 

The aggregate power spectra are plotted in Figure 5. For 
response times, slopes in the predictable preview condition 
were reliably more negative than slopes in the unpredictable 
no-preview condition, t(17) = 2.31, p < .05. For response 
durations, there was a small but unreliable difference in 
slopes, t(17) = 1.80, p < .09. Moreover, slopes for response 
durations were reliably more negative than slopes for 
response times, t(35) = 3.55, p < .001. 

Discussion 
Two experiments were reported in which long-range 
dependencies were measured as a function of cue 
predictability. Results showed greater degrees of 
dependency in series of response times when the cues were 
predictable, both in terms of timing and identity. By 
contrast, results showed large and comparable degrees of 
dependency in all series of response durations. The observed 
dissociation between response times and response durations 
was consistent with the idea that external sources of 
variability mask the long-range dependence that is intrinsic 
to human behavior.  

It also appeared that the effect of predictability in cue 
timing (Experiment 1) was stronger than that in cue identity 
(Experiment 2), albeit further experiments are necessary to 
bear this out. One possible explanation is unpredictable 
timing introduces more external variability compared with 
unpredictable choice responding. However, to test this 

explanation, one would need to develop a more explicit 
means of parsing internal and external sources of variability. 
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Figure 5. Aggregate spectral plots for Expt 2.   

 
It is important to note that the hypothesis of long-range 

dependence was not explicitly tested against the short-range 
alternative in the current data. We did not conduct these 
tests because the IDD predictions could be tested without 
them. However, the long-range/short-range distinction is 
important, and we plan to address this issue in future work. 

How do the current results bear on the five explanations 
of long-range dependence outlined in the Introduction 
section? We address this question here for each explanation 
in turn. 

 
Three Time Scales. Sources of white noise on three 
different time scales could be used to mimic the long-range 
dependencies (or lack thereof) for each participant in each 
condition of the two reported experiments. However, these 
parameter fits would be posthoc, and they would offer no 
insight into the differences in degree of long-range 
dependence between experimental conditions. 

 
Many Short-Range Dependencies. As noted earlier, this 
explanation leads one to predict that greater degrees of long-
range dependence should be found in more demanding 
tasks. The unpredictable conditions were clearly more 
demanding because their mean RTs were much greater. 
However, the unpredictable conditions showed lesser 
degrees of long-range dependence compared with the 
predictable conditions. Moreover, summations of short-
range dependencies appear to offer no insight into the 
observed differences in dependencies between response 
times and response durations. 

 

X Predictable: O Unpredictable 
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Mental Set. Gilden (2001) proposed that long-range 
dependencies should be weaker when a person’s mental set 
is repeatedly broken or interrupted. One could imagine that 
participants were able to maintain a more stable mental set 
in the predictable conditions compared with the 
unpredictable conditions, which would make the current 
results consistent with the mental set explanation. It is less 
clear how the mental set explanation would apply to the 
differences in long-range dependence between response 
times and response durations. One would presumably have 
to propose that these behaviors are governed by different 
mental sets, but given the close physical relationship 
between a button press and its release, the idea of different 
mental sets seems implausible. The bottom line is that the 
mental set explanation is not yet formulated to the point 
where it might offer insight into the current results. 

 
Strategy Shifts. Wagenmakers et al. (in press) conjectured 
that participants might be more apt to shift strategies, and 
therefore exhibit long-range dependencies in their 
behaviors, when they are bored. Participants were almost 
certainly bored in all of the current experimental conditions, 
but one could argue that the predictable conditions were 
more boring than the unpredictable ones. If so, the finding 
that long-range dependencies in response times were 
stronger in the predictable conditions is consistent with the 
strategy shifts explanation. However, one would have to 
apply this explanation to response durations as well, and 
there was no such effect on long-range dependencies in this 
measure. It remains to be seen whether a strategy shift 
explanation could be made to account for these results. 
 
Interaction-Dominant Dynamics. This explanation states 
that long-range dependencies come from the interdependent 
dynamics that underlie the self-organization of human 
behavior. These dynamics are hypothesized to be perturbed 
by external forces. If sources of external variability are 
thought of as external forces, then all the results reported 
herein are consistent with the interaction-dominant 
dynamics explanation. Predictability was a force on 
response times, but not response durations, because the task 
made demands on the former but not the latter. 
 

In conclusion, the current results are, for the time being, 
most consistent with the interaction-dominant dynamics 
explanation. Of course, these explanations are all in their 
infancy; it would be an overstatement at this point to refer to 
them as theories. Be that as it may, the results were clear 
and far from trivial to explain. We believe that further 
empirical and theoretical investigations into the sources of 
long-range dependence in human behavior will prove to be 
valuable to studies of perception and cognition. 
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