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Subclass Mapping: Identifying Common Subtypes in
Independent Disease Data Sets
Yujin Hoshida1,2*, Jean-Philippe Brunet1, Pablo Tamayo1, Todd R. Golub1,2., Jill P. Mesirov1.

1 The Eli and Edythe L. Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of
America, 2 Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America

Whole genome expression profiles are widely used to discover molecular subtypes of diseases. A remaining challenge is to
identify the correspondence or commonality of subtypes found in multiple, independent data sets generated on various
platforms. While model-based supervised learning is often used to make these connections, the models can be biased to the
training data set and thus miss inherent, relevant substructure in the test data. Here we describe an unsupervised subclass
mapping method (SubMap), which reveals common subtypes between independent data sets. The subtypes within a data set
can be determined by unsupervised clustering or given by predetermined phenotypes before applying SubMap. We define
a measure of correspondence for subtypes and evaluate its significance building on our previous work on gene set enrichment
analysis. The strength of the SubMap method is that it does not impose the structure of one data set upon another, but rather
uses a bi-directional approach to highlight the common substructures in both. We show how this method can reveal the
correspondence between several cancer-related data sets. Notably, it identifies common subtypes of breast cancer associated
with estrogen receptor status, and a subgroup of lymphoma patients who share similar survival patterns, thus improving the
accuracy of a clinical outcome predictor.

Citation: Hoshida Y, Brunet J-P, Tamayo P, Golub TR, Mesirov JP (2007) Subclass Mapping: Identifying Common Subtypes in Independent Disease
Data Sets. PLoS ONE 2(11): e1195. doi:10.1371/journal.pone.0001195

INTRODUCTION
DNA microarray-based whole genome expression profiling is

subject to poor reproducibility of discovered molecular disease

subtypes and can lead to biomarkers that do not generalize [1].

This problem arises from various technical and biological sources

including platform differences [2], and has been a major obstacle

to moving microarrays into the clinic as a tool to uncover as yet

unrecognized disease subtypes.

Comparison and integration of the molecular disease subtypes,

independently defined in different data sets, has been a highly

challenging problem. Subtypes are often based on subtle

differences in gene expression, which can be dominated by the

measurement variation between different experiments and/or

platforms. A widely used method to connect such independent

data sets, supervised learning, does not completely solve this

problem. Subtype models depend on one particular ‘‘training’’

data set with its own platform-specific data structure. This

structure may not be present in new ‘‘test’’ data sets.

Here we describe subclass mapping (SubMap), an unsupervised

method that reveals common subtypes observed in independent data

sets without relying on, or being biased by, one model data set. By bi-

directionally evaluating association of predetermined subtypes

between independent data sets, our method identifies more reliable

molecular disease subtypes and subpopulations of cohorts that share

similar clinical behavior. These results indicate the great potential of

this method to maximize the use of the vast amount of accumulating

genomics data and to improve current clinical practice through the

development of better diagnostics and therapeutics.

RESULTS

Overview of Subclass mapping (SubMap)
SubMap is an unsupervised method, which estimates the significance

of an association between subclasses observed in two independent

data sets. The subclass labels are predetermined as manually

assigned phenotypes or by clustering prior to the application of the

SubMap algorithm (i.e., the SubMap algorithm does not assign a de

novo class label to each sample). Because the subclass correspondence

is evaluated for all pairs of subclasses, one subclass drawn from each

data set, the number of subclasses or subtypes in the two data sets

does not need to be the same or even similar.

The mapping information obtained by SubMap can be used to

reveal general subclasses common to both data sets and thus

expose the likelihood that they share the same or similar

underlying biological property. Details of our approach are

described in the Materials and Methods section and Figure 1.

Here we review the three key steps in the SubMap method:

Step 1: Measure similarity between subclasses We start

with two independent data sets, A and B, with candidate subclasses

independently determined in both. For simplicity, suppose we

have two candidate subclasses in each data set: A1 and A2 in data

set A; B1 and B2 in data set B. We define a set of marker genes,

marker(A1) for subclass A1, and similarly for A2, using any suitable

subclass discrimination metric. Using the same metric, genes in

data set B are rank-ordered according to their correlation with B1

vs. B2 to yield a gene list, ranking(B1). Association between A1 and
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B1 is evaluated by quantifying the over-representation of

marker(A1) in the up-regulated end of the list ranking(B1) using

Gene Set Enrichment Analysis (GSEA) as described in [3]. The

latter provides both an enrichment score (ES) and a corresponding

nominal p-value by means of an empirical permutation test. We

repeat this process, interchanging the roles of A1 and B1, to

compute a nominal p-value for the enrichment of marker(B1) in

ranking(A1). We can generalize this process straightforwardly when

there are more than two candidate subclasses in either data set and

compute a pair of nominal p-values for every possible pair-wise

combination of subclasses. Thus if there are nA subclasses in A and

nB subclasses in B, then we have mutual association information

for each of the nA*nB pairs of candidate subclasses from the two

independent data sets.

Step 2: Estimate significance of association between

subclasses To summarize and estimate the significance of the

mutual association information, i.e., the pair of nominal p-values for

the ES, we use the Fisher inverse chi-square statistic, F [4]. To

estimate a nominal p-value for F, we generate an appropriate null

distribution by randomly picking ES scores from the null

distributions corresponding to each direction of the enrichment

analysis (e.g., marker(A1) in ranking(B1) and marker(B1) in ranking(A1))

and generating the corresponding Fisher inverse chi-square statistic.

Step 3: Construct and cluster subclass association

matrix We use a Bonferonni adjustment to account for multiple

hypotheses testing, and summarize the adjusted p-values in a matrix

called the subclass association matrix (SA matrix). Two-way

clustering of this matrix reveals general subclasses common to

these data sets.

We applied our method to four pairs of publicly available data sets

(Table 1). We first validated our method by correctly recovering

expected associations of subclasses using a pair of data sets comprised

of multiple tissue types (Example 1). Next we analyzed diffuse large B

cell lymphoma (DLBCL) data sets to show the superiority of our

method to standard supervised prediction methods (Example 2). We

then applied our method to breast cancer data sets to identify

a common subtype we found to be associated with the estrogen

receptor status (Example 3). The final example shows that our

method has the potential to improve the performance of molecular

marker-based patient outcome prediction (Example 4). We note that

all of these analyses were performed on data sets acquired on a wide

variety of DNA microarray platforms.

Example 1. Multiple tissue types
For a straightforward validation of subclass mapping, we used two

data sets of multiple normal tissue types acquired on two different

generations of the Affymetrix GeneChip oligonucleotide micro-

array platform, Multi-A [5] and Multi-B [6]. This represents the

case where subtypes are determined by ancillary phenotype

information rather than ‘‘discovered’’ by clustering. Both data sets

include four distinct tissue types, i.e., breast, prostate, lung, and

colon. The only cross-dataset pairs of subtypes showing significant

association corresponded to the same tissue type (Figure 2a).

In actual biological or clinical data sets that nominally include

the same or similar samples, the entire range of sample diversity in

one data set may not be represented in the other data sets, i.e.,

a subclass in one data set may not be represented in others. To

assess whether such a situation would lead to false positive

associations, we removed the samples corresponding to one tissue

type in Multi-B and re-ran SubMap with the Multi-A (Figure 2b).

Importantly, only subsets of the same tissue type were significantly

associated, and there were no false positive calls.

We next investigated whether the choice of the number of

marker genes to be mapped might affect the result of SubMap.

The number of strongly differentially expressed genes for cross-

dataset subclass pairs might differ. Since we are using the same

number of marker genes for all comparisons we sought to confirm

that the enrichment score was robust. We believed this would be

Figure 1. Subclass mapping (SubMap) methodology. Two independent
data sets, A and B, are clustered separately, compared and integrated.
(a) Candidate subclasses are defined by clustering A and B (predetermined
phenotype can also be used). Marker genes of each candidate subclass in
A (Ai) are selected, and mapped onto a gene list ranked according to their
differential expression with respect to a subclass of B (Bj). Their over-
representation at the top of the ranking is evaluated using the enrichment
score (ESAiBj), and significance is assessed as a nominal p-value, pAiBj, by
randomly permuting sample class labels in B. This process is repeated by
interchanging the role of A and B to compute ESBjAi and pBjAi. (b) Mutual
enrichment information, pAiBj and pBjAi, are combined using the Fisher
inverse chi-square statistic, Fij. Its significance is estimated based on a null
distribution for the Fij generated by randomly picking the nominal-p from
corresponding null distributions for ESAiBj and ESBjAi. After multiple
hypothesis testing (MHT) correction, p-values for Fij are summarized in the
subclass association (SA) matrix. Clustering of the SA matrix reveals
subclasses common to A and B.
doi:10.1371/journal.pone.0001195.g001
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the case based on the robustness of the GSEA score. We tested the

effect of using 20, 50, and 200 ranked marker genes from a list of

differentially expressed genes, as they represent the number of

markers commonly used in classification and prediction studies for

microarray data, as well as the level at which we might expect to

begin to see noise. The resulting observed significance calls were

quite stable for pairs of same tissue type irrespective of the number

of the marker genes used (Figure S1).

Example 2. Diffuse large B cell lymphoma:

comparison with other methods
Here we show the superiority of SubMap in directly highlighting

all three of the corresponding, common subtypes in two

independent Diffuse Large B-Cell Lymphoma (DLBCL) data sets.

We first compare with our previous work in [7] where two of the

three common subtypes could only be associated after removing

the third. Importantly, we also show how supervised approaches,

building a model from one data set to identify the subtypes in the

other, also fail to identify all three shared subtypes.

We analyzed two DLBCL data sets, DLBCL-A [7] and DLBCL-

B [8]. The data sets were generated using one-channel oligonucle-

otide microarrays and 2-channel custom cDNA microarrays,

respectively. In previous work we found three robust subtypes in

both DLBCL-A and DLBCL-B using resampling-based multiple

clustering trials and three different clustering algorithms [7,9]. The

three clustered subtypes were designated as ‘‘oxidative phosphory-

lation (OxPhos)’’, ‘‘B-cell response (BCR)’’, and ‘‘host response

(HR)’’ according to relevant molecular mechanisms.

In this precedent analysis, we associated these subtypes between

the data sets by assessing the overlap of each subtype’s marker

genes in both data sets one-by-one using the Fisher test for a 262

table. However, unlike SubMap, this approach is highly sensitive

to the criteria for marker gene selection and the total number of

genes common to both platforms. Notably, initially only the HR

clusters from the two datasets showed a significant association, and

only after their removal could we identify the significant

association for the OxPhos and BCR subtypes [7]. However,

our SubMap method immediately and automatically recovered

the three-subclass structure common to both data sets without

removing any samples (Figure 3). This is likely due to the method’s

ability to capture subtle, but reproducible, subclass associations by

incorporating bi-directional marker gene enrichment information.

Next we compared SubMap with supervised methods for their

ability to identify similar subtypes from distinct data sets using

DLBCL-A and DLBCL-B. Supervised learning methods are widely

used to associate two independent data sets; the model of the

subtype is defined in a ‘‘training’’ data set, and assessed in a ‘‘test’’

data set. We employed two standard supervised methods, k-nearest

neighbors (k = 7, and 10 marker genes) and support vector

machines (using all genes in common) and interchanged the roles

of the two sets as train and test (details are described in the

Materials and Methods). Both the k-NN and SVM predictors failed

to reliably predict all three DLBCL subtypes. When the DLBCL-B

was used to train the model, only the HR clusters were associated

by prediction (accuracy$90%). When the DLBCL-A was used to

Table 1. Data sets
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group Data set No. of samples
Type of
microarray Platform description GEO platform ID reference

1. Multiple tissue types (breast, lung, prostate, colon) Multi-A 103 1-channel HG-U95A* GPL91 [5], (a)

Multi-B 32 1-channel HuGeneFL, Hu35k-A* GPL80, 98 [6], (a)

2. Diffuse large B cell lymphoma DLBCL-A 141 1-channel HG-U133A* GPL96 [7], (a)

DLBCL-B 180 2-channel Lymphochip N/A [8], (b)

3. Breast cancer Breast-A 98 2-channel Hu25K** N/A [11], (c)

Breast-B 49 1-channel HuGeneFL* GPL80 [12], (a)

4. Diffuse large B cell lymphoma (with survival data) DLBCL-C 58 1-channel HuGeneFL* GPL80 [14], (a)

DLBCL-D 129 1-channel HG-U133A* GPL96 [7], (a)

1-channel: sample RNA is labeled by single dye, 2-channel: sample and reference RNA are labeled by different
dyes and competitively hybridized.
GEO: National Center for Biotechnology Information’s Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo/),
GPL and GSE are accession number for miceroarray platform and gene set, respectively, depositted in th GEO.
(a) http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgix
(b) http://llmpp.nih.gov/DLBCL/
(c) http://www.rii.com/publications/default.htm
Microarrays manufactured by *Affymetrix (Santa Clara, CA) or ** Agilent Technologies (Palo Alto, CA)
doi:10.1371/journal.pone.0001195.t001..
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Figure 2. Example 1: Multiple tissue types. (a) SubMap was applied to
two data sets, Multi-A and Multi-B, containing multiple tissue types:
breast (Br), prostate (Pr), lung (Lu), and colon (Co). Bonferroni-corrected
p-values for breast, prostate, lung, and colon tissues were 0.002, 0.002,
0.002, and 0.002, respectively. (b) Each tissue type in Multi-B was
removed before applying SubMap. Only subsets of the same tissue type
were significantly associated (Bonferoni-corrected p,0.05). The p-
values for ‘‘Multi-A-Br and Multi-B-Lu (left-upper)’’, ‘‘Multi-A-Lu and
Multi-B-Br (left-bottom)’’, and ‘‘Multi-A-Co and Multi-B-Br (right-bot-
tom)’’ are 0.330, 0.547, and 0.517, respectively
doi:10.1371/journal.pone.0001195.g002
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train the model, only the BCR clusters were associated by the SVM

classifier (accuracy$90%), and none by the k-NN predictor (all

accuracies#51%). (See Table S1 for full results). In addition, we

tested a recently reported method, called clusterRepro [10]. This

method assumes a model of subclassification in one data set, and

evaluates it in another data set. Again we only observed significant

reproducibility (accuracy$90%) for the HR cluster, in this case

when DLBCL-A was used as the model set (Table S2).

In this example we see the difficulty of identifying common

subclasses and how SubMap outperforms four other approaches.

Example 3. Breast cancer: estrogen receptor status
We next compared SubMap method with another more

straightforward approach, i.e., to merge the two independent

data sets into a single data set, and and then to run clustering to

find subtypes observed in the combined data. To this end, we

employed two breast cancer data sets, Breast-A [11] and Breast-B

[12] generated using one-channel oligonucleotide and two-

channel microarrays, respectively. Hierarchical clustering, after

simply merging the two data sets, only revealed the dominant

experiment-of-origin-specific structure despite several attempts of

normalization (Figure S2), whereas SubMap identified common

subtypes associated with a key molecular determinant of a disease

as described below.

Using hierarchical clustering as described in Materials and

Methods, we identified three (A1, A2, and A3) and four (B1, B2, B3,

and B4) candidate subclasses in Breast-A and Breast-B, respectively

(Figure 4a) as described in the Materials and Methods section.

SubMap revealed the common subtypes as two sets of significant

associations, ‘‘A1 < A2 and B1 < B3‘‘ and ‘‘A3 and B2 < B4‘‘

(Figure 4b). We note the dominant substructure (i.e., first splitting

in the dendrogram in Figure 4a) in Breast-B is B1 < B2 and B3 <
B4. Thus, the subgrouping of samples from Breast-B that associate

with Breast-A might not be evident by looking at Breast-B alone.

Both data sets have immunohistochemistry data of estrogen

receptor (ER) status, which is known to play important role in

breast cancer biology, e.g., BRCA1 mutation, lymphocytic

infiltration, and early occurrence of distant metastasis [11,13]. In

fact, this was the only sample-phenotype information common to

both data sets. Thus, we sought to evaluate if the common

subtypes obtained by our method captured this ancillary

phenotypic information. We found that the common subtypes

defined by SubMap were significantly associated with the ER

status in each data set (Breast-A: ER was positive in 50/61 cases of

A1 < A2, and 3/36 cases of A3. p = 4.2e-13. Breast-B: ER was

positive in 18/19 cases of B1 < B3, and 7/23 cases of B2 < B4.

p = 8.0e-7. Fisher’s exact test). This result leads us to speculate that

ER status may indeed be a significant factor in determining the

subclasses and subclass associations.

To investigate this hypothesis further, we evaluated the

expression status of ER signaling-related genes in the common

subtypes to confirm that the subtypes are relevant to the biology of

ER signaling. In both input data sets, we ranked genes by the extent

of their up-regulation in the subtypes with more ER positive cases

(A1 < A2 and B1 < B3), and evaluated the over-representation of

the ER-related gene set (Table S3) using Gene Set Enrichment

Analysis [3]. The ER-related gene set was significantly over-

expressed with p-values of 0.033 and 0.010 in A1 < A2 within

Breast-A and B1 < B3 within Breast-B, respectively.

The association between A1 and B3 was not statistically

significant (Figure 4b). In fact, the number of cases with lymph

node metastasis in B1 (8/12, 67%) is larger than that of B3 (2/7,

29%). Although this difference is not statistically significant

(p = 0.170, Fisher’s exact test), this might suggest the existence of

some biological heterogeneity among the ER-positive subclasses,

and cause such ‘‘step-like’’ shape.

Example 4. Diffuse large B-cell lymphoma: patient

survival
In this final example, we applied SubMap to see if identifying the

corresponding subtypes in two diffuse large B-cell lymphoma data

sets would enable us to distinguish subpopulations relevant to patient

survival. We analyzed two independent DLBCL data sets, DLBCL-

Figure 3. Example 2: Common subtypes of Diffuse Large B-cell
Lymphoma (DLBCL). SubMap was applied for three subclasses of
DLBCL pre-determined in DLBCL-A and DLBCL-B data sets. Bonferroni-
corrected p-values for ‘‘oxidative phosphorylation (OxPhos)’’, ‘‘B-cell
response (BCR)’’, and ‘‘host response (HR)’’ subtypes were 0.008, 0.001,
and 0.001, respectively. The association for the pair of DLBCL-A-BCR and
DLBCL-B-OxPhos was not significant (p = 0.362).
doi:10.1371/journal.pone.0001195.g003

Figure 4. Example 3: Common subtypes of breast cancer associated
with estrogen receptor (ER) status. (a) Candidate subclass labels were
assigned using hierarchical clustering in Breast-A and Breast-B data sets
independently. (b) Subclass association (SA) matrix for Breast-A and
Breast-B. Bonferroni-corrected p-values for the combinations of ‘‘A1 and
B2’’, ‘‘A1 and B4‘‘, ‘‘A2 and B1’’, ‘‘A3 and B1’’, and ‘‘A3 and B3’’ were 0.070,
0.002, 0.023, 0.001, and 0.055, respectively (FDR-corrected p-values of
0.014, 0.001, 0.008, 0.001, and 0.014, respectively). *: ER status is missing
for one case.
doi:10.1371/journal.pone.0001195.g004
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C (n = 58) [14] and DLBCL-D (n = 129) [7]. DLBCL-D contains the

samples in DLBCL-A from Example 2 for which survival

information was available. DLBCL-C is a third independent data

set. These data sets were generated using different generations of the

Affymetrix GeneChip oligonucleotide microarray.

Using hierarchical clustering, four candidate subclasses were

defined in each data set (C1, C2, C3, and C4 in DLBCL-C, and D1,

D2, D3, and D4 in DLBCL-D). There was no statistically

significant difference in the survival curves among these subclasses

(data not shown). SubMap identified two significantly correspond-

ing pairs of subclasses between these two data sets, ‘‘C3 and D2’’

and ‘‘C4, and D3’’ (Figure 5a).

We next sought to determine whether we could improve the

survival distinction between samples by restricting our consideration

to the corresponding subclasses. Based on the sample labeling of

poor prognosis in DLBCL-C defined in [14], we built a survival

predictive model using a supervised learning method, k-nearest

neighbor algorithm (k = 3, and 10 marker genes), and tested it in

DLBCL-D (Figure 5b). When the model was built using only

matched subclasses, C3 < C4 (n = 25), and tested in their counter-

parts, D2 < D3 (n = 61), the predictive model yielded better

separation of survival than a model built using all of the samples

(Figure 5b) in spite of having many fewer, nearly half, the number of

samples to build and test the predictor. On the other hand, the

predictor trained using unmatched subclasses, C1 < C2 (n = 33) did

not work on D1 < D4 (n = 68) This suggests that the predictive

survival signature common to both of the data sets is carried by the

‘‘corresponding’’ cases, which our method identified.

DISCUSSION
Genomic profiling is a powerful approach to discovering molecular

disease subtypes. However, the uncovered subtypes may also reflect

idiosyncrasies, technical variation, representational and measure-

ment biases that limit the ability of the model and results to

generalize to other studies or platforms. In this paper, we have shown

how SubMap can address these issues and be an effective approach

to recognizing subtypes across different data sets.

In the four examples presented above the method clearly

outperforms several more traditional, alternative approaches such

as, i) using supervised models (e.g., k-NN and SVM) to learn the

subclasses obtained in one of the datasets and then predicting the

subclass membership of the samples in the second set, ii) merging the

two data sets and clustering samples to search for common subtypes,

iii) associating the subtypes between the data sets by assessing the

overlap of each subtype’s marker genes in both data sets, or iv)

creating an explicit model of subclassification in one data set, and

evaluating it in another data set (e.g., clusterRepro). All of these

alternative methods have serious limitations and do not always

produce reproducible results. While two different datasets may claim

to represent the same biological phenotype, they often contain differ-

ent molecular subtypes or biased representations and samplings with

different dynamic ranges, measurement biases, probe efficiencies etc.

These differences violate the common underlying assumption, of these

other approaches-that two instances of the data, such as the train and

test set, are samplings from the same probability distribution.

SubMap associates the subclasses between datasets by using

a more abstract, higher-level similarity measure (i.e., the

Figure 5. Example 4: Survival prediction in Diffuse Large B-cell lymphoma (DLBCL) data sets. (a) Subclass association (SA) matrix for the
comparison between DLBCL-C and DLBCL-D data sets. Bonferroni-corrected p-values for the pairs of ‘‘C3 and D2’’ and ‘‘C4 and D3’’ were 0.002 and
0.002, respectively, (b) Survival prediction models were built using DLBCL-C and applied to DLBCL-D. Kaplan-Meier survival curves for the predicted
groups in DLBCL-D are shown. Left: Prediction model was trained using all cases in DLBCL-C (n = 58), and tested on all cases in DLBCL-D (n = 129).
Middle: Survival prediction using only cases from ‘‘matched’’ subclasses. Model was trained using C3 < C4 samples (n = 25) and tested in D2 < D3

(n = 61). The survival separation was better than that in the left panel in spite of having fewer samples. Right: survival prediction using only cases from
‘‘unmatched’’ subclasses. Model was trained using C1 < C2 (n = 33) and tested in D1 < D4 (n = 68). The numbers of events were 61, 22, and 39 for all
(D1 < D2 < D3 < D4), ‘‘matched’’ (D2 < D3), and ‘‘unmatched’’ (D1 < D4) patients, respectively. p-values were calculated using the log-rank test. DFS:
disease free survival.
doi:10.1371/journal.pone.0001195.g005
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enrichment score of ranked subclass markers). SubMap focuses on

the concordant collective behavior of groups of genes rather than

specific gene expression values, and does not rely on one particular

data set to define a ‘‘model’’ like supervised learning methods. The

result of this approach, which concurrently and bi-directionally

evaluates similarity by treating the two input data sets equally within

a self-contained unit, is that SubMap is able to provide solutions to

the mapping problem that are more robust, more generalizable and

more tolerant of the platform idiosyncrasies and biases.

SubMap performs marker gene selection multiple times. For

example, in the case where data set A and B have 3 and 4

subclasses, respectively, it performs maker gene selection 7 times, 3

times in data set A and 4 times in data set B. We cannot assume

the same number of statistically ‘‘significant’’ marker genes for all

of them, and to compute the significance for each round of marker

selection by, e.g., permutation testing is highly computationally

intensive. The GSEA enrichment score (ES) is weighted by the

correlation between gene expression signals and the subclass.

Therefore, genes having small correlation with phenotype (i.e., less

significant genes) show negligible contribution in the computation

of the ES. For this reason, there is no need to set significance

thresholds to select the marker genes. The fixed number of marker

gene set only needs to include sufficient significant marker genes to

produce a robust ES (see Figure S1).

Another important and useful property of SubMap is that it

helps to identify an appropriate level of subclass granularity to

select the best overall concordance. Typically in unsupervised

clustering, the depth of splitting of the clustering solution is

somewhat arbitrary. Even when a model selection method is used,

there is the possibility of over-fitting to a dataset structure that

represents batch effects or platform idiosyncrasies. As a conse-

quence, a dominant structure in one data set might not necessarily

show the best concordance with the other data set. A concrete

example of this was shown in Example 3, where the second

dominant splitting in Breast-B, rather than the first, showed the

best concordance with Breast-A. The clustering of the subclass

association matrix gives an indication of which candidate

subclasses show the best concordance between the data sets.

The use of more robust and generalized subclasses enables the

better utilization of microarray data and the construction of better

classification models. For example, the possibility of mapping the

corresponding classes across a large collection of cross-platform or

cross-laboratory datasets provides a method to increases the

number of available samples related to a given phenotype. This

translates to a better signal to noise ratio and thus improves the

selection of biomarkers and the training of more accurate, robust,

and generalizable supervised classifiers. Moreover, SubMap can

provide a more precise stratification of the data for the application

of predictive models. In Example 4, our method identified

subpopulations in two independent data sets, where a clinical

outcome predictor is more accurate than one modeled by all the

samples. This additional resolution might help explain why an

outcome predictor works only on a subset of the population. The

integration and utilization of multiple datasets, representing

a wider span of the biological space of interest, can both increase

the accuracy of models as described above and provide models

that are more interpretable, realistic, and biologically meaningful.

The ability of SubMap to find common subtypes across data sets

is, of course, dependent on the representation of the subtypes in

those data sets, and the quality and granularity of their labeling.

This is true whether the samples are labeled manually by, for

example, a pathologist, or computationally by clustering. At

a coarser granularity (i.e., smaller number of larger candidate

subclasses), a biological subclass of interest might be missed. On

the other hand, a finer granularity (i.e., larger number of smaller

candidate subclasses) could yield an unbalanced comparison in

selecting the marker genes. In addition, too fine a class splitting might

yield multiple similar candidate subclasses, which might cause

a failure to detect distinct marker genes resulting in lower sensitivity

in detecting subclass association. However, we note here that, aside

from the issue of increasing runtime, there is no a priori limit on the

number of the candidate subclasses that can be associated as long as

they have robust corresponding marker genes.

SubMap is an exploratory method, and the optimal (or

biologically reasonable) number of the candidate subclasses would

depend on the particular data sets with complex trade-offs. One

possible approach is to define multiple possible candidate

subclassifications in each data set, and evaluate the subclass

association structure in all combinations of candidate subclassifica-

tions (Figure S4). To define an appropriate measure or statistic to

evaluate such a search for optimal candidate subclasses will require

further consideration and investigation.

In summary, SubMap is a method that provides more general

molecular subclass identification and correspondence among

a collection of microarray data sets. By allowing the integration

of multiple data sets measured on different platforms, from

different laboratories, it increases the possibility of extracting more

meaningful biological subclasses and their corresponding bio-

markers and classifiers. This has the potential to improve gene

expression-based clinical classifiers where robustness, generaliza-

tion, and reproducibility across platforms are paramount.

The entire methodology is implemented as the SubMap module

of the GenePattern software and is freely available from http://

www.broad.mit.edu/genepattern/.

MATERIALS AND METHODS

Data preprocessing
We started from data sets that were already normalized for their

respective study without any additional normalization procedure

to account for different platform derivation. For the signal

intensity data generated by one-channel oligonucleotide micro-

arrays, Affymetrix’s GeneChip, we applied a lower threshold of

20U and a upper threshold of 16,000U. For the log2 transformed

ratio data generated by cDNA microarrays, we first removed

genes whose values were missing in more than 5% of the samples,

and then imputed the missing values for the rest of the genes using

a k-nearest neighbor algorithm [15] (ImputeMissingValues.KNN,

in the GenePattern software package, http://www.broad.mit.edu/

genepattern/).

Before marker gene selection, we used following gene filtering.

For the oligonucleotide array data, only genes exhibiting at least 3-

fold differential expression and an absolute difference of at least

100 units across the samples in the experiment were included. For

the cDNA array data, only genes with an absolute log2 ratio

greater than one and whose difference in log2 ratio across all the

samples in the data set was greater than one were included.

Before applying the SubMap, each microarray probe ID was

converted into its corresponding HUGO gene symbol (http://

www.gene.ucl.ac.uk/nomenclature/), and multiple probe data

corresponding to a single gene symbol was averaged. The number

of genes remaining for our analyses of multiple tissue types,

DLBCL, breast cancer, and DLBCL (with survival data) data sets

were 5565, 661, 1213, and 3795, respectively.

Subclass mapping (SubMap)
The algorithm and pseudocode for SubMap is shown in Box S1.

We describe the algorithm in more detail below.
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i) Candidate subclasses We emphasize here that SubMap is

an approach to evaluate the relationship between otherwise

determined subclass structures in independently generated data

sets. Thus, any clustering method can be used to generate

candidate subclass labels. Alternatively, biologically/clinically known

phenotype information can be used as candidate subclass labels. For

the specific examples described in the results section, we chose to use

agglomerative hierarchical clustering to generate candidate subclass

labels (Figure 1a) [16]. We used the Pearson correlation coefficient as

a distance metric and the average linkage method from the dChip

software (www.biostat.harvard.edu/complab/dchip). We deter-

mined subclass splitting by tracing from the root of the

dendrogram. A subclass that contained at least 10% of the samples

was considered as a possible candidate subclass. We set the

maximum number of the candidate subclasses as four. Any other

criteria could be used to define a candidate subclass.

ii) Similarity between candidate subclasses in each data

set: enrichment score (ES) Suppose data set A and B have nA

and nB candidate subclasses, respectively. First, we take the top 100

differentially expressed genes between a candidate subclass (CS) and

the rest of the candidate subclasses (nonCS) the data set A. Such

marker genes are identified for each candidate subclass in A. In data

set B, genes are ordered according to their differential expression

with respect to CS vs. nonCS. To evaluate differential gene expression

between CS and nonCS, any measure, e.g., t-statistic, can be used. In

this study, we used the signal-to-noise ratio (SNR), (mCS-mnonCS)/

(sCS+snonCS), where mi and si denote, respectively, the sample mean

and sample standard deviation within class CS or nonCS [17]. Thus,

every candidate subclass in A has a set of marker genes, and every

candidate subclass in B has a gene list ranked by differential

expression between the candidate subclass and the remaining

candidate subclasses in B. Alternatively, other methods for gene

selection and ranking such as neighborhood analysis [17],

Significance Analysis of Microarrays [18], and the false discovery

rate (FDR)-based approaches [19] can easily be used.

For every pair-wise combination of nA marker gene sets and nB

gene rankings, class similarity is measured by calculating a gene set

enrichment score (ES) and estimating its significance as previously

described in [3]. Briefly, in each ranked gene list for Bj (jM{1,…,nB}),

a marker gene set of a candidate subclass Ai (iM{1,…,nA}) is

identified, and its enrichment or over-representation at the top of the

list is measured by computing a ES (observed ESAiBj). The ES is

essentially a Kolmogorov-Smirnov score weighted by the SNR.

We recompute the ESAiBj for 1000 random assignments of the

subclass labels in Bj to generate a null distribution for ESAiBj. We sort

the resulting ES scores in the null distribution, and estimate the

significance of the observed ESAiBj from its rank in the list as

a nominal p-value (pAiBj). We repeat this process by interchanging

the role of the data sets A and B. Thus, we compute pAiBj and pBjAi.

iii) Significance of association between candidate

subclasses We next sought a summary statistic for pAiBj and

pBjAi in order to obtain combined mutual marker gene enrichment

information as a measure of similarity of subclasses in the two

input data sets. We use the Fisher inverse chi-square statistic, Fij =

-2(log(pAiBj )+log(pBjAi)) to summarize the two p-values (Figure 1b)

[4,20]. The significance of Fij is estimated as a one-sided nominal

p-value in a null distribution for Fij generated by randomly picking

one rank p-value from the null distribution for each of ESAiBj and

ESBjAi and evaluating their Fisher statistic 10,000 times.

iv) Subclass association (SA) matrix We now have nA*nB

nominal p-values for all Fij (iM{1,…,nA}, jM{1,…,nB}). To correct

for multiple hypothesis testing, a Bonferroni correction is applied.

Alternatively, for cases with a larger number of candidate

subclasses, we can estimate a FDR by multiplying each nominal

p-value by nA*nB and dividing by the rank of the nominal p-value.

Using these corrected p-values, we obtain a subclass association

(SA) matrix, which represents the global association structure of

the candidate subclasses in the two independent data sets. By

applying two-way clustering on the SA matrix (we used

hierarchical clustering), it becomes possible to evaluate whether

there are common subclasses that exist in both data sets.

Prediction analysis
For prediction analysis, we used k-nearest neighbor (k-NN) and

support vector machine (SVM) modules from the GenePattern

software. For k-NN, briefly, genes in the training data set were

rank-ordered by the SNR. Using the selected marker genes,

prediction was performed based upon a majority vote of the class

membership of its k nearest neighbors in the training set weighted

by the reciprocal of the cosine distance. The k and the number of

marker genes were chosen so as to minimize the leave-one-out

cross-validation (LOOCV) error rate in the training set.

In Example 4, the prediction models were built based on

LOOCV. Fractional use of each gene in the LOOCV models was

calculated, and top 5 most frequently used genes were used for

class prediction in the test data set (Figure S3).

Survival analysis
Kaplan-Meir analysis and the log-rank test were performed using

GenePattern SurvivalCurve and SurvivalDifference modules,

respectively.

SUPPORTING INFORMATION

Table S1

Found at: doi:10.1371/journal.pone.0001195.s001 (0.02 MB

XLS)

Table S2

Found at: doi:10.1371/journal.pone.0001195.s002 (0.02 MB

XLS)

Table S3

Found at: doi:10.1371/journal.pone.0001195.s003 (0.01 MB

XLS)

Figure S1 Effect of the number of marker genes on the result of

SubMap.

Found at: doi:10.1371/journal.pone.0001195.s004 (0.10 MB TIF)

Figure S2 Two breast cancer data sets, Breast-A and Breast-B,

are directly merged and clustered. (a) Each column was

normalized by subtracting the column mean and divided by the

column SD before clustering. (b) Gene expression data are

converted to their rank in each column, and clustering was

performed using the rank to compute the distance. Pearson

correlation and the average linkage method were used for the

hierarchical clustering.

Found at: doi:10.1371/journal.pone.0001195.s005 (0.08 MB TIF)

Figure S3 Genes used for the survival prediction in Example 4.

Leave-one-out cross-validation (LOOCV) is performed using C3

< C4 in DLBCL-C as described in the Method section. Bar

indicates fractional use of each gene in LOOCV models. Box

indicates top 5 most frequently used genes in LOOCV that is used

for prediction in D2 < D3 in DLBCL-D. Genes shown in red are

also included in a prediction model built using all samples.

Found at: doi:10.1371/journal.pone.0001195.s006 (0.05 MB TIF)

Figure S4 Effect of granularity of the candidate subclasses on

SubMap result. In Breast-A and Breast-B data sets in Example 3,
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the finest granularity (i.e., the largest number of candidate

subclasses) was defined as subclasses having at least 10% of the

cohort. Each subclass was labeled by ‘‘number of subclasses’’-

‘‘data set’’-‘‘subclass number’’. In Breast-A, we defined sets of two

(2-A1 and 2-A2) and three (3-A1, 3-A2, and 3-A3) candidate

subclasses. In Breast-B, we defined sets of two (2-B1 and 2-B2), four

(4-B1, 4-B2, 4-B3, and 4-B4), and six (6-B1, 6-B2, 6-B3, 6-B4, 6-B5,

and 6-B6) candidate subclasses. SubMap was performed on all

combinations of sets of the candidate subclasses. When the

coarsest granularity (i.e., the smallest number of candidate

subclasses) was assumed in Breast-B, we observed no significant

subclass association (left heatmaps). When finer granularity was

assumed for Breast-B (middle heatmaps), significant ‘‘two-class’’

correspondence started to appear, indicating the coarsest granu-

larity in Breast-B was not appropriate to find significant subclass

association. The finest granularity for Breast-A derived more

significant associations (middle bottom heatmap). When the finest

granularity was assumed in Breast-B, a small fraction of samples

(6-B6) showed no association with any subclasses in Breast-A (right

heatmaps), suggesting that this is too fine a granularity yielding

weaker marker genes and lower sensitivity to capture a counterpart

of 6-B6.

Found at: doi:10.1371/journal.pone.0001195.s007 (0.13 MB TIF)

Box S1 Algorithm to generate a SA matrix.

Found at: doi:10.1371/journal.pone.0001195.s008 (0.29 MB

DOC)
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