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' AFUnified‘Mbdel for Diffractive and Imnelastic Scatterihg

of a Light Atom from a Solid Surface

" John E. Adams and William H. Miller

Department of Chemlstry and Materials and Molecular Research Div1sion
of Lawrence Berkeley Laboratory, Univer51ty of Callfornla,
Berkeley,.CA 94720

Abstract

A.simple mbdel for gas-surface scattering is.ﬁreéented which permits

_ treatment of inelastic effects in diffractivé systems.quhisbmodel, founded
'oh én-impulsive coilision'assﬁmption, léads t§ an iﬁtensity distribution
which is qut.a sum-of.contributigns from E;phanon scgttering events.
vFurtgermqre, by usihg a convenient form for the repuléive interaction

potential, analytic expressibns are obtained for the elastic and one-phonon

intensities that are in qualitative égreement with experimental results.



I. Introduction.

‘.Ever since the eafly days of qqantum mechanics, there has been a
Continuiﬁg interest in frying_tO»understand and describe the nature of
'the scattering bf gaseous é;oms and moleculeé from various types of
solid surfaces. With the_diScovery of diffraction péaké in tﬁé scatteré
ing of a hel@um beam from a lithium fluoride crysﬁal piane, theorists
were able_to construct the firé; crude models for the gas-surface inter-
action which gives rise to the-obSer§ed diffractive phenomena.” Not
until mpre'recently, however, has much progress been made in the develop-
ment of.a global fheory which ‘would allow bne actually to identify all -
or most of.thé-structd;é yielded By experiments, ' Notably, Goodman2 and
later Goodman.and Tan_,3 using a continuum model of the solid and obtaining
transition probabilities via:the method of Cabre;a, Celli, Goodman, and -
Manéohé.(CCGM),'were abie toaCalculate-a‘scattefing distribution for the
He~LiF(001) system:which at least_qualitativeiy‘reproduces the experimental
inelastic results. Other work by Lin and Wolken,srwho performed a close;
.coupling calculation, and by Metiu6 has also heiped to clarify.the physics
of the gas-surface collision, although botﬁ the approaches taken by these.
investigators fequire.extensive_numerical computation before tﬁe scattering
structure can'be fe§ealed. JOn,thevother hand; the state of the theory has
also benefited from the'éonsideratibn of simplified scattering models which.
‘permit one to identify the particular constituent effects that give rise to
rthe cdmbosite inténsity pattern. A gbod ekampie of jusf such an approacﬁ
is to beifound in the work 'pf}Weare,? who has examined the sPecific'caéel

in which the surface and gas temperatures are sufficiently low that a



first-order perturbative treatmeﬁt of the inelasticity adequately dgscribes-
the"scattefing from a smooth potential Surface.A: |

In the present Qofk we provide a simple alternative one-dimensional
surface model which manifestly diéplays the principal features of both
the elastic and the inelastic processes. Although the basic formalism has
been previously described elsewhere,8 thé model which we have adopted in
fact permits an analytic determination of the scattering intensities,
thereby adding substantially fo the understanding of the consequences of
such a formulation. |

There appear to be twovmajor stumbling blocks in evidence in the bulk of
the previous inelastic studies. The first is the assumption that in the absence

2,7,9 Such an assumption is

of phonon excitations, the crystal surface is flat.

clearly inadequate if -a unified model is to be constructed due to the fact that

for a flat surface specular scattering is the only elastic process allowed. .

Consequently, one should select a form for the gas-surface interaction potential

(the surface contour being classically just the turning-point surface for this

potential at the given collision energy) which iieldé a version of the corrugated

hardwall potential in the limit of zero phonon displacement inasmuch as such a

corrugated contour is known_£o produce the desired diffraction peak structure.
Secpndly, there is always a problemvinvolved in tréating the phonon

mode enumeration and averaging. Elaborate treatments, such as that by

Beeby,9 have all of the proper phohon dynamics_incorporated in them;

however, the difficulty of such inclusion makes those formalisms somewhat

cumbersome to use while apparently adding little to the construction of

a straightforward physical picture of the scattering. Furthermore it is

desirable to avoid ad hoc averagingvprocedures11 whose accuracy is hard



to evaluate. in the model described.below; we have handled these modes
.in.a very intuitive.way which dqes indeed seem to generéte the gross phonon
structﬁre but at the same ﬁime does not obscure the fundamental physics.
This_work takes advantage of thé:widely used assumption that ;he
scattering pattern arises as a resultvof avmore or leés pﬁrelf repulsive
two-body short'fange cdmponent of the_gas4surface inferacfibﬁ. Such an
assumption ldgically_leads to an impulsive collision model, wﬁich itself
haé a basis in ekperimental findings,12 so that the surface motion may be
effectively'deCOupled from the actual collision dynamics within the
interéétion time iﬁteryaig Equivalently, this particular model has been
~obtained by Weare’ in théﬂlimit that for a given initial energy state éf
tﬁe solid, the translational enérgy.of the - incident gas atom is allowed tb
become 1érge. By>making'this approximgtion, we db, however, necessarily
restrict our formalisﬁ to ;he collision of.light atoms such as helium with
the surface, althoughvin practice these are the vefy_systems which are
amenable to experiﬁental study. A more detaiied discussion of the impglsive

collision assumption is given in Section II.



II. Impulsive Collision Approximation.

The basic problem in which we are intereeted is the calculation of a
transition prebabiiity (i.e., a scattering intensity) from some initiai‘
weveVector.Ki, which desctibes the unperturbed motion of the incident gas
~atom, to a'final.wevevectot for the scattered atom if; with a concurrent
energy lossv(or gaiﬁ) due to inelasticity, AE. Practically, since at
present one cannot experimentally characterlze prec1sely the quantum
states of the SOlld before\or after the colllslon, it is necessary to
average appropriately over the phonon -modes if one is te obtain a quantity
‘which can actually be observed. 1Thus, the scattering intensity may be
written in terms of an S-matrix element ae

fBén .
~1 : ,2

e
AEkﬂ( }: Y ——— SI[AE + (e -e_)1|sy >
£ n, ny oy kf’i‘z<~k gol

(2.1)

~1

having energtes € and en . [In addition, Q is the phoﬁon partition
: ~ ~2 o : o
function, and B = (kBTS) 1 (with kB being Boltzmann's constant and TS

where n. and n, label respectively the initial and final phonon states

the characteristic surface temperature).]

As indicatedin the Introduction, one then commonly proceeds by taking
the short-range gas-surface interaction to be repqlsive, the limit of
which being a simple hard wall. Certainly ifidiffractive elastic scattering
dominates the intensity pattern, then it is reasonable to assume that the
collision may be medeled in zeroth order by a hard sphere rebouﬁding
elastically from an infinitelyvhard surface. More realistically, the
-surface is described as be1ng a corrugated wall which undergoes distortions

due to the excitation of phonon modes in the Solld these distortions



presumed to be a émall péiééptage of a lattice dimension, and that this
motién is slow compared to the collision time.(which, of coﬁrse, in the
case of abﬁerfectly hafd wall is infinitésimal). |

The above impuléive collision assumption‘may be introduced into
qu (Z;l)Iby writing the S-matrix element in the_sudden approximation

form,13

. ' S2in(x;q) 1 ‘ . -
sr .7 = <kcn, =k, > (2.2)
Tkenyekiny £-2 i~

where in this particular case the phase shift n depends not only upon the
coordinate paralle1 to the surface plane, X, but also parametrically upon

. the vector of phonon normal mode displacement coordinates, q = {qj}. Since
we have assumed the gas-surface repulsive intéraction to be well described

by a hard wall potential, it. then follows that the phase shift is given by

the hard sphere scattering result,14 i.e.,
n(x;q) = -kZ(x;q)

E where Z(x;g) is the équation:of the surfacercontour.
. But now hpw does'one actually determine a form fo; this surface contour?
Presumabiy, if the distortions which arise as a result of the excitation
" of thé'phbnon modes;afe, és.was;pfeviously'suggested, sﬁfficiently small
in amplitude, thénvthe coﬁtour should be adequately.described 5y a

truncated.Taylor series, the expansion being made about the equilibrium

f .

surface position, = -

.'Z(x;g) = ,Z(,Xio) + 9?—%;—3—)— (2.3)

-~

o't



(gq=0 correspénding to the‘undistortédrsurface); In order to simplify the

notation somewhat, we rewrite Eq. (2.3) in the following form:
Z(x3q) = 2(x) + t(x)*q , - o (2.4)
with the vector 7(x) having componenté given,By 

. - 9Z(x;39) .
2, () ba, l4=0

-~

Within this expansion the product Cj(x)qj may be interpreted then as being
the displacement of the surface contour at x as a result of the excitation

"of the jth

normal mode, the total displacemgnt at x being obtained by
sumﬁing over all 6f the N modes of the surface atoms. Unfortunately it
will in general not bé bossibie to determine 5(#) analytically; however, for
the case which we shall examine in Section Iv; thesé'veétoré may be

éonstructed, and hence the surface contour. (and thus the phase shift) may

be obtained.



" I1I. Formal Considerations.

Using the results of the prev1ous sectlon (Egs. (2.1), (2.2), and (2.4)),

the scatterlng 1nten31ty is given in- the 1mpulslve approx1mat10n by

-Be_
_ 21; —1Ak X
Lpitd "LL g ole+ (s ¢ )]Mi}fflqe'
f 1 n_mn
~2 ~1
ok _—1Ak Z(x) —1Ak Q(x) q 5 :
* o, (@70 (@) e e s (3.1)

~2".‘1_

where ¢ and ¢ are, respectively, the initial and final quantum states
of the ;illd agg Ak and Ak are the projections of Ak = Ik —k | parallel
and perpendicular to the plane of the surface. One then notes that since
the coordinate representation of ﬁhe transition operator is givén here'by

o ~ifk x -iAk Z(x) -iAkzr,f(x)-q, -
T(q) —ﬁx e e e R . : (3.2)

"Eq. (3.1) may be rewritten as

-Be_
. n
a2 =T E:VEL——:i SAE + (e —€ )< 17" [n,>
g gk, T . T Q [ SRR L L)
i n, n L, y
2 T |
"<, lTln>

Furthermore, by employing the Fourier transform identity for the delta

function, this last equation may be cast into a particularly convenient.
. . . ] 8 .

form, namely the well-known correlation function expression, via the

following transformations:



_Ben

= @™ fae e B> z S <alT@lny>
2 0 :

-
ki
i

"<n, |T(e) |n,>

. i _ : ~iAEt/h -BH |
@m)™ far S e 0 T*<o> T(6)]

= (2mh)"L ﬁt LB/ ot oy re)s

where T(t) is the time-evolved transitidn operator T in the Heisenberg
representation,

-iH _t/h 'iHOt/h ‘

T(t) = 0 T e .

and HO is the phonon Hamiltonian.
. The time cofrelationvfunction thus defined may be evaluated by

re-expanding in terms of the T—matrix_élements,
'-Be

Tx-

2 h

n —1(8 - )t/h
~1 oy _31

<T+(0) T(t)> <51|T+|E >

lﬁﬁﬁwu :

-iAk C(X) q 1Ak C(X )+q

e e Z<q In)e

-ie t/h
n

488 ie t/h
o R | '
--[2:<q|n > e e <Bl|g'>] .

1Ak (x-x" ) —iAkz(Z(X)-Z(X'))

<n,|q>]

(3.3)
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‘Assuming that the phonon modes are harmonic, the terms in ‘square brackets

in Eq. (3.3) are just harmonic oscillator’propagators in the coordinate

Tepresentation. 3 Thus the above equation may be written

| _ Sifk (x-x')  -1Ak (ZG0-Z(x'))
<t (0) T(t)> = ﬁxﬁx' e T e o C(x,x"';t)
| | | WA

the new instantaneous position correlation function C(x,x';t) being given

by

-ifk, (g, (0)q =g, (x ?qj)

Cx,x';t) = QL Wﬁq.ﬁq'. e
- RS

2 | . | .

. lmzh . o woaa—1/2 ey 2 .2

[mzw 7 sinw e sinw, (e +ihB)] 77 exp{Zhsin(th [(qj_ *q) )eosw, t
-3

, imwj
- v -— - .
quqj-]" 2hsinwj(t+ih8) [(qj

2 2. - 'y
+q' t+ih -2 s
9 )coswj( R) qjqj]}

v(here m and w, are the mass and frequency of the jth.mode). The integrals

over phonon mode displacement coordinates are of the general gaussian form

and therefore may be done analytically, the details of which will not be

. given here. Suffice to Say, after a substantial amount of algebra one

obtains
, 2 ' . v ,
. . hAk 2 9 hw.B
C(x,x";t) = »exp{—’ JZ‘T"‘_”f [(Fj G+ zs (x*) - 2t (x)cj.(x')coswjt)cot,h———z-"—
+.240 (x)Z.(x")sinw t]} .
73 b j }
16

Then, recognizing that the mean square displacement of a harmonic oscillator

is just



2 2mw, ‘hw B -1 _
<q "> = (———lh_ tanh —-1——2 ) »

the correlation function may be rewritten as

| ' 1 220,22 S ’
2, 2 o ho,8
. exp{zAk <q; > t.(x);.(x")[cosw,t ~i sinw. t tanh —L 13
Tz h| 3 i 3 Ty 2
(3.5)

At this point one _x_nay identify the:Deb'ye—Wa»ller factor, defined by
12 el 202
W(x) = exp{- 5 Ak ° 35<q. "> £ .(x)7}
| | o | he B hw B
Furthermore, if we pass to the classical limit then tanh ——g— > —g—— s

‘with the result being that Eq. (3.5) takes the form

cLx,x'st) = e W) e—w(?")-exp{ZAkzz <q;%> ACOINC

3 3
ho B
e[cosw,t - i —a— sinw.t]}
: h| 2 h|

hg

_ . . ' ] . . |
= e W(x) e W(X )_exp{(l +1 T agg) ZAkzz <qj 2>
: SR

: .Cj (%) Cj (X"’)coswjt}.

I N %i’)ﬂw(x,x' s} . (3.6)

(Note that the compietely classical result (h = 0) is obtained by totally -

_negiecting the imaginary part of AW.)'.
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While Eq.

-11-

(3.6) is the exact result for the correlation function

within the impulsive collision assumption, in its present form one is

not aﬁle to identify easily_the'elementary physical processes which give

rise to the observed effect.

In order to reveal these processes, the

- last exponential is expanded ih a power series, which when-Substituted

with Eq. (3.4).into (3.1) 1ead$ to the following equation for the

scattered intensity:

*e

+—[(1+i~—8—

W(x ) {l + (1 + i

)AW]

hB

.}

-1Ak (x—x' )

4 2 o ~iAEt/h T
IAE’Ef"_IZi - (2m) ﬁt © fﬁx €

-W(x)

e

d SHow

—iAkz(Z(x)—Z(x'))

Since the time enters into AW through'a cosine term oniy, the time integral

simply yields ehergy delta functions,

+

8 (AE) |

| 2. 2
S (AE+hw,) JAk "<q, >
(o wJ)]‘ 2 <44 | 

W(X)

-iAk x
dx e X e

-iAk Z(x)
z

dx e

E,Z()|}+...

I+ I, + ...

0

1

W2

' hw,B
22{[6(AE—hw ) + § (AE+H, )] - -J—[a(AE-nw )

—iAk X
xR

e

—iAkzZ(x)
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(terms  through firsﬁ.order in AW being shown explicitly). In this form
the component elementafy scattering_proceSSes may béveaéily recognized:
" the first’tefm prbduces just the purély elastic épectrum with peak
intensities attenuatéd b& Débyé—Waller factors, the second term represents
the bne—phonoﬂ inelastic event, and the rémaining terms acqount fox higher
ordér phonon processes. Notg that ip tﬁe oné?phonon'term'the phonon
‘annihilation (AE = + hwj) and creation (AE =—:hwj)‘cohtributions are
symmetric in fhe completely cléssical result, and that even though when
quantﬁm effects begin to becomevsignificant such that the intensity symmetry
is broken, ﬁhe positions of ‘the inelastic peéks are unaltefed.

Due to the peribaicity of the surface, it is advantageous to transform
the x-integrals into sums of integrals over a unit cell. Since the details
of this transformation are given in Appendix A, we will only indicate the

final results here. For the component intensities one finds that

Ak a -iAk x  -1Ak_Z(x) _
) ll' ]dx e X z e W (x) IZ
a 0 ) '

- Na2 X

I, = Na 6(AE)§6(SL— 5 e
Ak a .
- X 012
= Na“§(AE) 2235(1- o )|SU R (3.7a)
and
1 ' hw.B

I, =% Z{[a(AE-ﬁwj) + 8(AEHL )] - —- [8(AE-hw,)

J

9 2 -iAk x -iAk Z2(x)
G(AE-i-hwj)}Akz '<q:,I >| 7dx e X e z
0

: -iAk né'
. e-—W(x) Z e X I;J_ (x+na) |2 . (3.7b)
- n
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where N is the number of unit cells within the experimental interaction
zone.

‘Eqs. (3.7) répresent the general result for the scattering intensity

"due to elastic and one-phonon inelastic processes. (We are igﬁoring for

the time being gny'higher:ofder proceséés which give rise to any effective

‘elastic or single-phonon transitions, e.g., a two—phonon event in which

the aame phonon is first annihilated and then created or vice versa.)

Although higher-order phonon terms may be similéfly constructed, it will

"be convenient to restrict ourselves to consideration of only these two

contributions, although there seems to be no general consensus as to the

- . R s o T,9
appropriateness of the one~phonon approximation. ’
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IV. 1Interaction Potential. -

The formal solution giben.in the p?evioué section; whilevperhaps_
sdmewhet illustrative, dbee ﬁOt'really ptb&ide e pﬁyeiea1 picture of the
collision due to fhe presence of ﬁhebas yetiunknown C—Qectors. In erder
to thain analyticel formulae'whieh“clearly reveal thé s;attering structure,
it is necessary to.adopt a model potential which at leestvquaiitatively
.represents.the truevges-surfaee interactien while at the saﬁe time permits
.a tractable solution to the problem. 'Reﬁembering tﬁat<the impulse appro#i—
mation supposes that the interatomicvforées-are fundementally repulsive,

LI

we take as our ‘model potential the simple two-body form

o ‘
—o(x-x.)"  ~y(z-z.) .
V=1V 2:63 J e J . (4.1)

© e

0 is some scaiing parameter which also sets the units prdperly, the’

where V
adjustable parameters o and Y are measures of the range of the potential,

aﬁd (x,,zj) is the instentaneous,position of the jth surface atom.

Furthermore, let us assume that the solidvatems have enly two unique
viBrational frequencies, w# and wz, respectively. corresponding to oscillation
parallel or perpendicular to the surface plane. Sﬁch an assumption implies
that we are considering some sort of modified Einstein sélid, a consideration
which shall be discussed iﬁ mofe deteil in Section V. The phonon mode
displacement coordiriates,-qjX and qu, arevtherefore just the'displacements &
of the jth atom ffoﬁ its equilibrium position. Thus, if the coordinate.

system is fixed with the origin at the equilibrium positidn of one of the

surface atoms



Substituting Eq. (4.2) into (4.1) and defining the suffate contour to

i.e., V(Z(x,q))

this contour should

USing the Poisson sum rule,l7

- 1
Z(x,q) =Y

Z2(x,0)

'3

‘As mentioned in the

| 0] —a(x-ja)?
zﬁj e21r123 . oc(x ja)

=15~

L X
x, = ja +-q,
57 9

E, one may ‘solve for'the‘contour analytically,

H

Z2(x) = Y " an 2 +

Se

L ox.2 z
(x-ja-q,”) vq,
: 3 e

resemble a corrugated hard wall. Thus,

Introduction, ‘in the static surface limit (q

-1 Zn-z_e—oz,(x-fja)z

the summation may be written

2 2mif

Z—ﬂl/aa a
e

L
2

= (1 + 2e -’ faa

)

-be the c13531cal turning- p01nt surface for the 1nteratom1c potentlal

(4.2)

=v‘0)a

(Since the sum is presuméd to be rapidly convergent, we retain only the

8=

o, £+ 1 terms).

S Z(x)

ne

e

~

Cousequently, Eq.

Yo i,

Y ln G—_ VPQ +
'Z;e—ﬂz/aaz

Zg + ha cos 2=
. 08—

3) becomes

(4.
'ﬁZ/a 2
2n (1 + 2e aA
2mx A
2 (assuming e

Zﬂx

--Trz/oza2

<<

1
2

(4.3)

=)

(4.4)
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where Z0 is just a constgnt (and whiqh therefore only scales Z(x)) and ha
is the surface amplitude. One may easily see now that Z(x) doesvindéed
_have the. canonical fbrmbof a cbrrugated‘éurféce'and is, ésrrequiréd,
.periodic in x;

Having made the assumption that the_surface'atoms oscillate with the

normal mode frequencies; the Z-vectors may be easily generated:

—a(x—ja)z.
f o =2Ed) e LT
. Z . 'Y |
j 9" 9=0 3 alx-jla)”.
j' -
and
L o(x) =22d)) |20 (x-ja) e q(foa) (4.5)
xj ’ .aqjx q=0 Y Z(e-ot(x—j'a_)'z

)

]

 Before proceeding further, notice that the vector involving displacement
-of the surface.atoms parallel to the surfaée, ;x.(x); is invefsely
proportional to the potential parameter Y. Jusi by looking at the form
of Eq. (4.1), it is clearbthat if the potential function is to mimic a
strongly repulsive interaction, then y must be large, otherwise the
impulsive golliéion approximation is invalid;_ But forvla:ge Y,-Cx.(x) <<

- : _ _ h|
Qz (x), and thus the x-motion of the surface atoms may'essentially be

J v
neglected with respect to motion perpendicular to the surface. This
neglect of in-plane motion is used almost universally in the work of

others, and therefore it is encouraging that our model shows this feature

explicitly.

&

Y
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The same methods which lead to the simplification of the summation -
in Eq. (4.3); namely the use'of the Poisson sum rulé and retentibn of
only the first harmonic terms, when applied to Eq. (4.5) yield

i e’

g (x) = , =
2z, v .2 2 ,
J _ 1+ 2" [aa- cosggE

Introduction of this form into the expression for W(x) followed by application

of the above summation convention then permits one to write, after some

- algebra,

'-ﬂz/Zaaz 2
e » cos ——

o o A
= .8vQ >
Koo vz e St " ‘ —Trz/oca2 o 2 -
(1 + 2e cos —)
: : a’

Once these last two equations have been obtained, one may construct the

'one—phonon scattering intensity, Il, within the context of the preceding

approximations, remembering that for our model the sums over phonon modes

have been reduced to sums -over individual surface atoms. Inasmuch as that

.calculation is not particularly instructive, we shall dispense with the

details here and only indicate the result,

o . h 8-

I1 =.§ azAk22<qzz>{[6(AE—hwz)+6(AE+hwz)] - __zL;[g(AE_hwz)
‘ _‘EE%_. Akxa) ‘ ’

o ' 2 2T 2 2 2
- G(AEfﬁ_lwz)F]‘}%:e .oa ‘ | (IKQ,( )l + le( )l + lKQ,( )l )

92
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(1) _

~
[
R

Z- dx F(x)

' ' : 32 _
(2) 2 J7.dx F(x) e—Tr /20a cos Ix
a J v . _

Ry =% ~ B .
| | 2,2
L - a v , a
. 0 - . ‘ ,
21if
- x -iAk_Z(x) - ... 2,2 2mx
F(x) = e a - o z ) W(X)V[l + 2e m /oa cos g3 | -1 .
(4.7)
. The integrals appearing above as well as the one which appears in the
expression for IO may all be done as indic;at'ed in,Appendix B after
1nsert1ng the forms for Z(x) and W(x) glven by Eqs. (4.4) and (4.6).
D01ng so, the flnal result for the elastlc and one-—phonon intensity
contributions through order uz is
Ak a
_ 2 -2W
Iip 2<%, = NS(8E)a"e 2:5(2- =3, n?2
f i
1 S . hw 8
+ N{i[G(AE-—hwz) + §(AE ~l_—hwz)]‘— [(S(AE—hwz)
2'n2 Akxa 9
_ G(AE-FTI(» )]}azAk 2<q 2>e—2Wz:e oa
z z 'z e
2 2 2 e 12042
T T+ @ T+ 1Sy [T+ [ ;o (4.8)

' —172/ 26> '
where 4 = e (assumed to be small)
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A - =_Ak ha .
. z
= a2 2 S o o
W : = Akz <qz > | o _ (4.9)
)
JR(A) = Bessel function of order %

. o d
JQ(A) = J,(A)

and the integrals Si and Ci arérgiven by the following series:

-n+2m

il n ‘n : , .

S . _ _ _ _ 1 . _
S, =% AL e oy g ]
- n=0 2 n!m m=0 _ _ %—n+2m*“§ l—n+2mr-§

QR EY & a it oy 1
n=0 2 n!m m=0 ' 2—n+2m+‘7 2,—n+2m—-—2-

n ) : . o " .
(m) being the conventional binomial coefficient.
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V. Discussion.

The final equations of Section 1V provide an aﬁaiytic form for the
scattering intensity pattern‘whiéh is producedlby the assumed pairwise
repulsive potential, Eq. (4.1), through first order in the inelastic
phonon effects. Clearly, the basic structure is.doﬁihated by the elastic
diffraction term, producting delta—functioh peaks whenever Akx is equai
to a reciprocal 1é£tice Vector, aithqugh the intensities of these peaks
are attenuated by a Debye-Waller factor. This'primary structure is then
:augmentedvby'inelastic lobes on either side of each diffraction peak.

(of cdurse, the actual peak profile may be greatly complicated by the
overlap of inelastic lobes with nearby elastic structure). Ahy direct
broadening of the elastic peaks can only be caused in our.model by
"experimental" effects such as a distribution of incident velocities;
broadened inelastic peaks, however, are explicitly predicted as a result
of'a gaussian distribution of Akx values which is centered about the
diffraction cohdition.- Wé should note, though, that if the phonon
frequencies areHsuffiCiently lbw,.the exéected'peak shape- would more
'closély resemble a sharp spike with broad inelastic "wings" neaf the
base. But in any case we would. predict that any observed diffraction
peak width should correspond roughly to the width of the incident velocity
distribution. |

To_make a quantiﬁative comparison betweén the theoretical results we
have obtained and experimental measurements requires considerable
computational work; Itvﬁduld be necessary, e.g., to average our expressions
over the appropriate distributiqns of initial velocities as well as over

the finite detector width, and then one could vary the various parameters
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in the interaction potehtiai to see if the data were explicable iﬁiterms
of reasonable valuesvof‘thé-parametefs. -Althougﬁ such Calculationé are
desirable, they are beyond the scope'of'this paper, which has beenyto show
how a,simplé énal&tital model cén account ﬁualitétively for the various
aspécts of difffaction and of eﬁergy transfer. ﬁith fhese limitations

in mind, however, a qualitative cdmparison of Williams18 results with our

.model is ﬁseful and somewhat encouraging. For example, our model .does

appear. able to reproduce the basic structure and positions of the inelastic

scattering‘lobes, which are seen as low bumps slightly separated from_the

_strong elastic peaks. We also note that some asymmetry in the

annihilétibn'and creation intensities may be observed in the éxperimental
méasufements, althbughvit appears that those’results tend to show the
phonon annihilation lobev(i.é., the 1obe shifﬁed toward the surface normal)
to be somewhét.more’intense than‘thé corréspoﬁding cfeatién lobe, whereas our
model would predict that phbnon creation would be the dbminan; effect if
any asymmetry is present. [In the’limi£>of a very coid surface, it is
clear that phonon creation should be. the principal énergy transfer process
gimply because theré afe rélatively few‘excifed phonon modes available for
annihilation. Eq; (3.75) explicifly yiélds such a fesult‘fqr appreciabie
valuesbofrB (i.e;,.for iow‘Surface.temperatufe).] Although at present one
really canhot élaborate further on the agreeﬁent with experiment, it should
be mentionéd that essentially‘no featurgs‘afe Yielded by the proﬁosed

model which éannét be roughly_cdrrelated,with the observed intensity

structure.
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Inasmuch as there does seem to be reasohéble qﬁalitative agréement
 between the‘ﬁodel and experiment,'it is interesting to conSider why the
_médified Einstein despription of the solid appears té be adequate. The ‘ »
obvious conclusion to draw is that actualiy only a narrow range of phonon
- mode frequenciesAcontriButes significéntly_to the scattering, and thus most-
solid descriptions give essentiélly the same reéults. Generally it
appears that our basic assumptions, namely an Einsteiﬂ solid and a
periodic surface, compare very favorably with the more customary
postulate of a Debye solid with a flat surface. Certainly in the 1imit
where the two solid models do yield effectiVely iden;ical phonon structures,
the ability to describe both diffraction and‘inelastic_transitions within .
a single unified»formalism is indeed a definite advantageﬁ

Aside from the omission of any.experimental aQeraging as mentioned
above, there.is one more general feature of the gas—surfaée scattering

problem which we have ignored. That feature involves the presence of a

&

1
i
|
{
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iong—range attractive part in the actual.twb—body‘potential. As mentioned
by others, inasmuch as the detailed structure of such an attractive potential

apparently has little or no bearing on the scattering pattern in the absence

‘of surface trapping, a simple square well form for the attraction seems

adequaté. We have chosen to igndre the well altogether in our model by

making the assumption that the only consequence of considering such a well

is the addition of a momentum increment perpendicular to the surface to an

approaching gas atom and the subtraction of a corresponding increment from

. the scattered atom. Naturally, this'quasiclassical assumptidn leads to a

change in the actual incident and predicted scattered angles, élthough these
mo&ified angles may, of course, be simply related to the eiperimentally_
observed angleé.lg_ But because the scattering-ﬁattern has the same qualita-
tive features with or without a well, we have opted to neglect compietely |
the presence of any attractive well, .

Before‘cohclﬁding,'we wish to stress the point that thé‘width of the
inelastic scattering lobes are, as expected, related to the degree of.
inelasticity present. This width, arising as a result of a gaussian
disttibution of Ak.x values in.the Il term, may be correlated with the
effective‘Debye—Walléf factor, Eq.  (4.9), which to order uz is just a
multiplicative constant. .Specifically; for this particular gaussian
distributibn the standard deviation-méy be written

- A
2m \"
Notice then thatvwith this définition 6ne may write the effective Deﬁye—

Waller exponent as
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W=Z Akzz_<qzz>' .
Hence for smallgr G,'i.e.; for a narréwer distribﬁtion in Akx, 1) is.also
smaller, which implieé that e—ZW ié closer to unity--this is indeed the
expeéted_concerted behayior for a system which is becoﬁihg less inélastic.

'Furthermbte, since d'dependé on the potential parametéf o, one mgy conclude
that a dgcréase in d, corresponding to a "loosening" of the pofential in
the”x—direction, would  simultaneously cause é’reduction in the observed
inelastic intensity;

Finally, in coﬁclusioh,'we summarize the quaiitative features of the
results obtained from our scattering model: |

(1) the elastic scattering peaks are.infinitely.sharp if the incident
a;omicbbeam‘is monoenergetic;

(2) the inelasﬁic scattering peaks are broadened even for a monoenergetic
beam, with the peak widths being deéendent upoh the(interaction potential |
parameters and‘not_@pon eitherlthe surface femperature'or the collision
energy; |

(3) tﬁe effective Debye-Waller factor, Eq. (4.9), shows the expected
temperature dependence (inasmuch as it is a funption of <qzz>), and appeérs
to first order as just a multiplica;ive term;

(4) the surface amplitude, ha, is indepéndent of the collision energy
in the static sufface limit, although the actual position of the potential
turning-point contour ig_a function of E;

(5) the efféct of the in-plane motion of the surface atoms is negligible

as comparedeith the effect due to motion -perpendicular to the surface plane;

(6) the symmetry of the one-phonon annihilation and creation lobes does
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exhibit a temperature dependence, with the two being totally symmetric \
only in the high temperature limit (the positions of the lobes do not,
however, show ény_such dependence).

Overall, the present work provides a very convenient and instructive

-model for the'ga3ﬂsurface collision problem.. Although in principle the

 formalism allows one to treat all possible n-phonon inelastic scattering

processes, we have shown that it is pdssible to obtain a good qualitative

agreement with experiment by only examining the one-phonon effect. It is

also encouraging that such results are obtainable from a one-dimersional

surface model, even though it is reasonable to expect that extension  could

be made to a. two-dimensional lattice with little difficulty; We feel

particularly confident that the absence of the commonly used flat—surfa;ev

assumption ‘provides a definite advantage in that the treatment of a wider

" range of structured surfaces becomes possible.
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~ Appendix A: Summation Over Unit Cells
The coordinate integrals over the interval [-~,©] may be transformed to
integrals 6v¢r.the interval [0,a], where a is the unit cell length, via the
identity

_7;1}( f (x) =Z 7dx- f (xtna)
' n 0 .

-00

where the integer n numbers the unit cells. For example, by using this

‘formula the elastic contribution to the intensity may be written

—iAkx(x+na) —iAkzZ(x+qa)

I, = s(B)| Z]dk e e
v v n Y0 -

. )
-W

oW (xina) . (A1)
But since Z(x) .= Z(x+na) by assumption and since ﬁresumably W(x) = W(xtna)
inasmuch as functions 6f_x only must exhibit the periodicity of the lattice
(obviously any model for these functions must bear out this assumption),

Eq. (A.l)'becomes

‘a,  —iAk X -iAk Z(x) 1Ak _na .
I, = G(AE)I dx e X e z eTW(x)‘ e x )2
0 , , |
0 - _ n
—iAk % —iAKZ(X) . oo\ o ~iAk_a(n-n')
_ G(AE)I.Zde a X z T e W(X)|2 2::2: e X | )
'Defining n = nﬁ; and An =bnfn’ and then reshmming (nbting that the sum

‘over n just gives‘N, the total number quunit;cells within thé physical

limits of the experiment), =
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: C-ibkox -0k Z() gy 2 . -ibk afn
Iy = NG(AE)I]dx e P e g: e
0 .

n

" Then, by using the Poisson sum rule one finally o'btains. '

' o Ak_a - -iAk x  =-iAk_Z(x) _' :
Iy = NS(AE) D38(% - .zx )|de e T e % eW(X)lz
) L o _
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AEQ endix B: Debye-Waller In_tegréls
From Eq. (3.7a) we need to calculate
I Znil _
n a, - : -1Ak Z(x)
|30l2v= Il__ fdxe a ) e W(X)IZ
a
0 .
Lineafizing the Debye-Waller expomnential,

2mig : o omig

- x  -idk_Z(x) . a J 2R ik )
']Sg]?';|—-fdxe' a e z -—él;fdxe a e. 2 W(x)[2
~ 10 02
= 1Sg(sy = Sy
0
AS
2 s ¥ -t )l2
2(s) 30
Z(s)

Then by resumming, with the hope of recovering some of ‘the higher order

. e . ; . . : . . 0 2 ) - .‘ .
.contrlbutlons lost in the linearization, 'SR,I may be written in terms

of [SQ'( )I the result for the static surface limit, as
as)
: - 2 Re —8*—
02 . S2(s)
[Sy17 = |Sz(s)’ : BRI

Substituting Eqs. (4.4) and (4.6) for Z(x) é.nd‘W.(x),

- =iAk Z_. a C - 21Ti2' X -iAcos 2mx -iAk Z -i EIL
s? =l 20 e & e % -e 20,2 J, (A)
JL(s)_ a o »'0 i _ : ' o '

and -
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L | A c 2mig . 2mx 21k |
‘SO _Va Ak 2< 2>e lAkzZO dx a 1A €08 . 1+2) cos a
B39 = 4w %%z S9, 7C e e 2 21X, 2

: 0 (1+2u" cos —;;0-

~ Assuming M to be small (at constant surface amplitude, ha), one then

G

expands the quotient above in a Taylor series and integrates term by

term to obtain

e 2,0+ sa-adnm)

to order uz,

Thus, to this order in u, Eq. (B.1l) may be evaluated as

0,2 . . 2 -2u
S 17 2 3,07 e

This same épproximation procedure is then used for thé calculation of the
‘integrals in Eq. (4.7),‘still retaining only the terms through uz. By
this method, the integrals'SQ and Ci'in Eq. (4.8) are found to be of the

'form

-1 Z . . 8 i\ cosd _ i
Sz == dd sinf6 gln 5 © _ o
17 . 8 i\ cosd
CQ‘ = -.fde cos?0 cos~ e €O%Y.
X 2 9

" An expansion of the exponential followed by term-by-term integration yields

the series solutions given in Section IV.
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