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LBL-869l 

A Unified Model for Diffractive and Inelastic Scattering 

of a Light Atom from a Solid Surface 

John E. Adams and William H. Miller* 

Department of Chemistry and Materials and Molecular Research Division 
of Lawrence Berkeley Laboratory, . University of California, 

Berkeley, CA 94720 

Abstract 

A simple model for gas-surface scattering is presented which permits 

treatmertt of inelastic effects in diffractive systems. This model, founded 
'/ 

on an impulsive collision assumption, leads to an intensity distribution 

which is just a sum of contributions from n-phonon scattering events. 

Furthermore, by using a convenient form for· the repulsive interaction 

potential, analytic expressions are obtained for the elastic and one-phonon 

intensities that are in qualitative agreement with experimental results. 
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I. Introduction. 

Ever since the early days of quantum mechanics, there has been a 

continuing interest in trying to understand and des~ribe the nature of 

the scattering of gaseous atoms and molecules from various types of 

solid surfaces. With the discovery of diffraction peaks in the scatter':" 

ing of a helQum beam from a lithium fiuoride crystal plane, theorists 

were able to construct the first crude models for the gas-surface inter-

1 action which gives rise to the observed diffractive phenomena. Not 

until more recently, however, has much progress been made in the deve10p-

ment of a global theory which 'would allow one actually to identify all 

or most of the· structure yielded by experiments. 2 Notably, Goodman and 

later Goodman.and Tan,3 using a continuum model of the solid and obtaining 

transition probabilities via the method of Cabrera, Celli, Goodman, and' 

4' , 
Manson (CCGM), were able to' calculate a scattering distribution·for the 

He-LiF(OOl) system which at least qualitatively reproduces the experimental 

inelastic results. Other work by Lin and Wolken,S who performed a c10se­

coupling calculation, and by Metiu6 has also helped to clarify the physics 

o'f the gas-surface collision, although both the approaches taken by these 

investigators require extensive numerical computation before the scattering 

structure can be revealed. On. the other hand, the state of the theory has 

also benefited from the consideration of simplified scattering models which 

permit one to identify the particular constituent effects that give rise to 

the composite intensity pattern. A good example of just such an approach 

is to be found in the work~f Weare,7 who has examined the specific case 

in which the surface and gas temperatures are sufficiently low that a 
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first-order perturbative treatment of the inelasticity adequately describes· 

the·scattering from a smooth potential surface •. 

In the present work we provide a simple alternative one-dimensional 

surface model which manifestly displays the principal features of both 

the elastic and the inelastic processes. Although the basic formalism has 

been previously described elsewhere,8 the model which we have adopted in 

fact permits an analytic determination of the scattering intensities, 

thereby adding substantially to the understanding of the consequences of 

such a formulation. 

There appear to be two major stumbling blocks in evidence in the bulk of 

the previous inelastic studies. The first is the assumption that in the absence 

f h "t t" th t 1 f 1."s flat. 2 ,7,9 o p on on exc1. a 1.ons, e crys a sur ace Such an assumption is 

clearly inadequate if a unified model is to be constructed due to the fact that 

for a flat surface specular scattering is the only elastic process allowed. 

Consequently, one should select a form for the gas-surface interaction potential 

(the surface contour being classically just the turning-point surface for this 

potential at the given collision energy) which yields a version of the corrugated 

hardwall potential in the limit of zero phonon displacement inasmuch as such a 

10 
corrugated contour is known to produce the desired diffraction peak structure. 

Secondly, there is always a problem involved in treating the phonon 

mode enumeration and averaging. Elaborate treatments, such as that by 

9 
Beeby, have all of the proper phonon dynamics incorporated in them; 

however, the difficulty of such inclusion makes those formalisms somewhat 

cumbersome to use while apparently adding little to the construction of 

a straightforward physical picture of the scattering. Furthermore it is 

11 desirable to avoid ad hoc averaging procedures whose accuracy is hard 
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to evaluate., In the model described below, we have handled these modes 

in a very intuitive way which does indeed seem to generate the gross phonon 

structure but at the same time does not obscure the fundamental physics . 

This work takes advantage of the widely used assumption that the 

scattering pattern arises as a result of a more or less purely repulsive 

two-body short range component of the gas~surface interaction. Such an 

assumption logically lea,ds to an impulsive collision model, which itself 

h b ·· . 1 f' d' 12 h h f . b as a aS1S 1n exper1menta 1n 1ngs, so t at t e sur ace mot10n may e 

effectively decoupled from the actual collision dynamics within the 

interaction time intervaL Equivalently, this particular model has been 

obtained by Weare7in the limit that for a given initial energy state of 

the solid, the translational energy of the incident gas atom is allowed to 

become large. By making this approximation, we do, however, necessarily 

restrict our formalism to the collision of light atoms such as helium with 

the surface, although in practice these are the very systems which are 

amenable to experimental study. A more detailed discussion of the impulsive 

collision assumption is given in Section II. 
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II. Impulsive Collision Approximation. 

The basic problem in which we are interested is the calculation of a 

transition probability (i.e., a scattering intensity) from some initial 

~ . . 

wavevector ki' which describes the unperturbed motion. of the incident gas 

-+ 
atom, to a final wavevector for the scattered atom kf , with a concurrent 

energy loss (or gain) due to inelasticity, l'.E. Practically, since at 

present one cannot experimentally characterize precisely the quantum 

states of the solid' before or after the collision, it is necessary to 

average appropriately over the phonon modes if one is to obtain a quantity 

which can actually be observed. Thus, the scattering intensity may be 

written in terms of an S-matrix element as 

-13£ . n 

E 
~2 

-1 E _e_~ 
Q o[l'.E + (£ -£ )]Is-+ . -+ 12 

n
2 

nl kf ,n2+k.,n
l ~l - _ - _1_ 

where ~l and ~2 label respectively the initial and final phonon states 

having energies £ and £ 
n n 
-1 _2 

[In addition, Q is the phonon partition 

function, and 13 = (~TS)-l (with kB being Boltzmann's constant and TS 

the characteristic surface temperature).] 

(2.1) 

As indicated in the Introduction, one then commonly proceeds by taking 

the short-range gas-surface interaction to be repulsive, the limit of 

which being a simple hard wall. Certainly if diffractive elastic scattering 

dominates the intensity pattern, then it is reasonable to assume that the 

collision may be modeled in zeroth order by a hard sphere rebounding 

elastically from an infinitely hard surface. More realistically, the 

surface is described as being a c9rrugated wall which undergoes distortions 

due to the excitation of phonon modes in the solid, these distortions 

.• 
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presumed to be a small percentage of a lattice dimension, and that this· 

motion is slow compared to the collision time (which, of course, in the 

case of a perfectly hard wall is infinitesimal). 

The above impulsive collision assumption may be introduced into 

Eq. (2.1) by writing the S-matrix element in the sudden approximation 

13 
form, 

+ 2in(x'q) + = <k n Ie '- Ik.n > f_2 1_1 (2.2) 

where in this particular case the phase shift n depends not only upon the 

coordinate parallel to the surface plane, x, but also parametrically upon 

the vector of phonon normal mode displacement coordinates, q = {q.}. Since 
'.. . - J 

we have assumed, the gas-surface repulsive interaction to be well described 

by a hard wall potential, it, then follows that the phase shift is given by 

14 
the hard sphere scattering result, i.e., 

n(x;q) = -kZ(x;q) 

where Z(x;~) is the equation of the surface contour. 

But now how does one actually determine a form for this surface contour? 

Pres\1mably, if the distortions which arise as a result of the excitation 

of the phonon modes are, as was previously suggested, sufficiently small 

in amplitude, then the contour should be adequately described by a 

truncated Taylor series, the expansion being made about the equilibrium 

surface position, 

Z(x;q) Z(x;O) + az~:;~) I . q=O·~ (2.3) 
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(q = 0 corresponding to the undistorted surface). In order to simplify the 

notation somewhat, we rewrite Eq. (2.3) in the following 'form: 

Z(x;q) = Z(x) + ~(x)·q (2.4) 

with the vector ~(x) having components given by • 

~j (x) = aZ(x;g) I 
dq. q=O 

J 

Within this expansion the product ~.(x)q. may be interpreted then as being 
J J 

the displacement of the surface contour at x as a result of the excitation 

of the jth normal mode, the total displacement at x being obtained by 

summing over all of the N modes of the surface atoms. Unfortunately it 

will in general not be possible to determine ~(x) analytically; however, for 

the case which we shall examine in Section IV, these vectors may be 

constructed, and hence the surface contour (and thus the phase shift) may 

be obtained. 
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III. Formal Considerations. 

Using the results of the previous section (Eqs. (2.1), (2.2), and (2.4)), 

the scattering intensity iS,given in the impulsive approximation by 

-s€ . n 
.-.1 

=LL e Q 

~2~1 

-iilk x 
o[ilE + (€ -€ )]1 lcix~q e x 

~2 ~l 1)'"'1--

e 
-iilk 

z (3.1) 

where ~ and ~ are, respectively, the initial and final quantum states 
~l ~2 -+- -+-

of the solid, and ilkx and ilkz are the projections of ilk = Ikf-kil parallel 

and perpendicular to the plane of the surface. One then notes that since 

the coordinate representation of the transition operator is given here by 

T(q) 
-Uk x 

= fox e x 
Eq. (3.1) may be rewritten as 

e 
-iilk Z(x) 

z 
-iilk l,; (x)· q z_ _ 

e 

Furthermore, by employing the Fourier transform identity for the delta 

function, this last equation may be cast into a particularly convenient, 

form, namely the well-known correlation function expression,8 via the 

following transformations: 

(3.2) 



I -+-+ 
flE k +-k , f i 

-8-

-Be: 
~1 

= (21Th) -1ft e-iflEt/lt E E e Q 

. ~2 ~1 

-iflEt/lt 
= (271h)-1 fit e Q . 

-BH 
Tr[e 0 Tt(O) T(t)] 

where T(t) is the time-evolved transition operator T in the Heisenberg 

representation, 

T(t) 
-iHot/lt iHOt/lt 

= e T e 

and HO is the phonon Hamiltonian. 

The time correlation function thus defined may be evaluated by 

re~expanding in terms of the T-matrixelements, 

-Se: 
~1 

= E E ~ Q 

~2 ~l 
e 

-i(e: -e: )tIlt 
~2 ~1 

l -iflk (x-x') 
= Q-1 fix fix' f~Jd~' e x 

-iflk (Z(x)-Z(x'» 
z 

-iflk Z;(x)eq z_ _ 
ee 

,,[ I:<~1~1> e 

~1 

-Se: 
~l 

e 

ie: tilt 
~1 

e 

-ie: tilt 
~2 

(3.3) 

• 
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Assuming that the phonon modes are harmonic, the terms in ·square brackets 

in Eq. (3.3) are Just harmonic oscillator propagators in the coordinate 

. . . 15 
representation. Thus the above equation may be written 

<T \0) T(t» = fdx fox' e 
-ib.k (x-x') x -ib,k (Z(x)-Z(x'» z 

e C (x,x' j t) 

(3.4) 

the new instantaneous position correlation function C(x,x' ;t) being given 

by 

C(x,x' ;t) 
1 fi p.. -ib.k (I:;. (x)q .-1:;. (x' )qj) 

Q - IT dq.·. dq' .e Z J J J . 
. J J 
J 

1/2 imw. 2 2 
sinw.t sinW.(t+ihB)( exp{Zh J . [(q. +q~ )cosw.t 

J J . s in(ll j t J J J 

(h d h d f f . h .th d) ere m an w. are te mass an requency 0 t e Jmo e • J . 
The integrals 

over phonon mode displacement coordinates are of the general gaussian form 

and therefore ~ay be done analytically, the details of which will not be 

given here. Suffice to say, after a substantial amount of algebra one 

obtains 

C(x,x' jt) 

. 2 
hb.k 2 2 

= exp{~L-4 Z [(I:;. (x) '+ 1:;. (x') -
. mw. J J 
J J . 

+ 2il:;.(x)I:;.(x')sinw.t]} 
J J J 

.. 

hw.B 
21:;. (x) 1:;. (x')cosw.t)coth ~2 

J J J 

Then, recognizing that the mean square displacement of a harmonic osci11ator
16 

is just 
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2mw.hw.B -1 
= (i?- tanh + ) 

the correlation function may be rewritten as 

2 2 hw.B 
e exp{ ~ ilk <qj > /;. (x) /;. (x') [cosw. t - i sinw. t tanh --L2 ]} 

~ Z J J . J. J 

At this point one may identify the Debye-Wa11er factor, defined by 

W(x) . , 

hw.B hw.B 
Furthermore,· if we pass to the classica11itnit then tanh .-L -+ --L 

2 2' 

with the result being that Eq. (3.5) takes the form 

htil. B 
e[cosw.t - i ~ sinw.t]} 

J 2 J 

-W(x) -W(x') {(1 hB.2...) ~ ilk 2 < 2> 
= e e exp + i"""2 dt ~ Z qj 

J 

-/;.(x)/;.(x')COSWjt} 
J J ' 

-W(x) -W(x')' . hB d = e e exp{ (1 + ]. """2 dt)ilW(x,x' ; t)} 

(3.5) 

(3.6) 

(Note that the completely classical result (h = 0) is obtained by totally 

neglecting the imaginary part of ilW.)' 

'.' 
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While Eq. (3.6) is the exact result for the correlation function 

within the impulsive 'collision assumption, in its present form one is 

not able to identify easily the elementary physical processes which give 

rise to the observed effect. In order to reveal,these prQcesses, the 

last exponential is expanded in a power series, which when substituted 

with Eq. (3.4) into (3,.1) leads to the following equation for the 

scattered intensity: 

e 
-illk (x-x') x 

1 ~ d 2 + "2 [(1 + i 2 dt)llW] + ... } 

-illk (Z(x)-Z(x'» z 
e 

Since the time enters into llW through a cosine term only, the time integral 

simply yields energy delta functions, 

f 
-illk x 

= o (llE) 1 dx eX e 
-illk Z(x) 

z e-W(x)12 

hw.S 
+ t I: {[ 0 (llE-hw .) + 0 (llE+hw . )] ...; -t-[ 0 (llE-bw j ) 

j J J 

-illk x 
o(llEfhw.)]llk 2<q.2>lfdX e x 

J Z J 

-W(x) 12 • e 1';j(x) } + .•.. 

e 
-illk Z(x) 

Z 
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(terms through first order in 6W being shown explicitly). In this form 

the component elementary scattering processes may be easily recognized: 

the first term produces just the purely elastic spectrum with peak 

intensities attenuated by Debye-Waller factors, the second term represents 

the one-phonon inelastic event, and the remaining terms account for higher • 
order phonon processes. Note that in the one-phonon term the phonon 

annihilation (6E = + hw.) and creation (6E = - hw.) contributions are 
J J 

symmetric in the completely classical result, and that even though when 

quantum effects begin to become significant such that the intensity symmetry 

is broken, the positions of the inelastic peaks are unaltered. 

Due to the periodicity of the surface, it is advantageous to transform 

the x-integrals into sums of integrals over a unit cell. Since the details 

of this transformation are given in Appendix A, we will only indicate the 

final results here. For the component intensities one finds that 

2 6k a 1 1: -i6k x 
Na o (6E) E o(~ -+) 1- dx e x 

~ TI a 0 
e 
-i6k Z{x) 

z e-W{x) 12 

, (3.7a) 

and 

- O{6E+hw.)}6k 2 <Q.2>1 dx e x e Z 1 -i6k x -i6k Z (x) 

J Z J 0 

W{) -i6k na 2 
• e - x E e x Z; • (x+na) I 

n J 
(3.7b) 
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where N is the number of unit cells within the experimental interaction 

zone. 

Eqs. (3.7) represent the general result for the scattering intensity .. ' 
'due to el8,stic and one-phonon inelastic processes. (We are ignoring for 

the time being any higher order processes which give rise to any effective 

elastic or single~phonon transitions, e.g~~ a two-phonon event in which 

the same phonon is first annihilated and then created or vice versa.) 

Although higher~order phonon terms may be similarly constructed, it will 

be convenient to restrict ourselves to consideration of only these two 

contributions, al~hough there seems to be no general consensus as to the 

. f h h '-.. 7,9 appropr1ateness 0 t e one-p onoh approx1mat10n. 
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IV. Interaction Potential. 

The formal solution given.in the previous section. while perhaps 

somewhat illustrative, does not really provide a physical picture of the 

collision due to the presence of the as yet unknown s-vectors. In order 

to obtain analytical formulae which clearly reveal the scattering structure, 

it is necessary to adopt a model potential which at least qualitatively 

represents the true gas-surface interaction while at the saine time permits 

.a tractable solution to the problem. Remembering that the impulse approxi-

mation supposes that the interatomic forces are fundamentally repulsive. 

we take as our model potential the simple two-body form 

-a, (x-x .)2 
V = V Ee J 

o j 

-y(z-z.) 
e J (4.1) 

whereVo is some scaling parameter which also sets the units properly. the 

adjustable parameters ex. and yare measures of the range of the potential. 

and (x .• z.) is the instantaneous position of. the jth surface atom. 
J J 

Furthermore. let us assume that the solid atoms have only two unique 

vibrational frequencies. wand w, respectively corresponding to oscillation x z 

parallel or perpendicular to the surface plane. Such an assumption implies 

that we are considering some sort of modified Einstein solid. a consideration 

which shall be discussed in more detail in Section V. The phonon mode 

displacement coordinates, q.x and q.z, are therefore just the displacements 
J J 

of the jth atom from its equilibrium position. Thus, if the coordinate. 

system is fixed with the origin at the equilibrium position of one of the 

surface atoms 

.1' 
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ja + x 
x. = qj J 

z 
z; = qj J 

Substituting Eq. (4.2) into (4.1) and defining the surface contour to 

be the classical turning-point surface for the interatomic potential, 

i. e., V(Z(x,q)} = E, one may solve for the contour analytically, 

Z(x, q) 
V 

-1 n' 0 + ~l n y ·!Vn E 'Y !Vn 

( . x)2 .' " -a x-Ja-q. Ee, J 

j 

z 
yq. 

e J 

As m,entioned in the Introduction, "in the static surfac,e limit (q = 0), 

this contour should resemble a corrugated hard wall. Thus, 

-1 ,V 0 -1 ,,-a(x-ja) 2 
Z(x,O) - Z(x) = y 'R.n E + Y R.nLJe 

'j 

17 
Using the Poisson sum rule, the summation may be written 

r::: 2 / 2 27TX ~~ (1 + 2e-7T aa cos ---) 
a~ a 

(Since the sum is presumed to be rapidly convergent, we retain only the 

R. = 0", ± 1 terms). Consequentiy. Eq. (4.3) becomes 

Z(x) - -1 Vo JTI -1 2e-7T2/aa2 27TX 
y R.n (-E 'r,iJ + y R.n (1 '+ cos -, - ) 

. ava a 

, 2 2 
-7T / aa «l) (assuming e 2 

- 27Tx 
Zo +. ha cos -;- , 

(4.2) 

(4.3) 

(4.4) 
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where Zo is jlust a constant (and which therefore only scales Z(x» and ha 

is the surface amplitude. One may easily see now that Z(x) does indeed 

.have the canonical form of a corrugated surface and is, as required, 

periodic in x. 

Having made the assumption that the surface atoms oscillate with the 

normal mode frequencies, the s-vectors may be easily generated: 

s (x) 
z. 

J 

and 

s (x) x -
j 

aZ(x,g) I 

aq.z q=O 
J 

= aZ(x,g)I 

aq.x q=O 
J -

= 

= 

-a(x-ja)2 
e '. . 

~ '-a(x-j'a)2 LJ e . 
j' 

2a 
y 

-a(x-ja)2 
(x-ja) e . 

( ,2 
~ -a x-j a) 
£.Jle . 
j' 

(4.5) 

B'efore proceeding further, notice that the vector involving displacement 

of the surface atoms parallel to the surface, s (x), is inversely 
x. 

J 
proportional to the potential parameter y. Just by looking at the form 

of Eq. (4.1). it is clear that if the potential function is to mimic a 

strongly repulsive interaction, then y must be large, otherwise the 

impulsive collision approximation is invalid. But for large y, s (x)« 
x. 

s (x). and thus the x-motion of 
z. J . 

neglected with respect to motion 

J . 
the surface atoms may essentially be 

perpendicular to the surface. This 

neglect of in-plane motion is used almost universally in the work of 

others, and therefore it is encouraging that our model shows this feature 

explicitly. 

v 
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The same methods which lead to the simplification of the summation 

in Eq. (4.3), namely the use of the Poisson·sum rule and retention of 

only the first harmonic terms, when applied to Eq. (4.5) yield 

l;; (x) = ap 
z. ..fif' 

J 1 + 

-a (x-j a) 2 
e 
,2 2 

2e-n /aa 27TX 
cos-­a 

Introduction of this form into the expression for W(x) followed by application 

of the above summation convention then permits one to write, after some 

algebra, 

2/ 2 2nx 
1 + 2e-n2aa 

a# ilk 2 < 2> 
cos --

W(x) = a (4.6) 2..JZn' z qz 
_n2/ aa2 2nx) 2 (1+ 2e cos --a 

Once these last two equations have been obtained, one may construct the 

one-phonon scattering intensity, 11' within the context of the preceding 

approximations, remembering that for our model the sums over phonon modes 

have been reduced to sums ·over individual surface atoms. Inasmuch as that 

calculation is not particularly instructive, we shall dispense with the 

details here and only indicate the result, 

11 = N2 a2 ilk 2 <q 2>{ [6 (ilE-hw )+6 (ilE+hw )] -
z z zz 

2 ilk a . 
_ ~ (J/, __ x_)2 

2 2n 2 
- <5 (ilEihw )]} E e aa ( I Kn (1) I 

z J/, IV 
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K~ (1) = !1 dx F(x) . 

(2) 21 K~ = a 0 dx F(x) 
2 2 

-'IT /2aa 'lTX 
e cos-a 

2 2 
-'IT /2aa . 'lTx e S1n-· a 

K (3) = ~ 1dX F(x) 
~ a 0 

2Tri~ 
- -- x -iLlk Z(x) 2 2 

a e Z 'e -W(x) [1 + 2e -'IT /aa F(x) = e 
2'ITx -1 

cos 7] 

The integrals appearing above as well as the one which appears in the 

expression for 10 may all be done as indicated in Appendix B after 

inserting the forms for Z(x) and W(x) given by Eqs. (4.4) and (4.6). 

Doing so, the final result for the. elastic and one-phonon intensity 

2 contributions through order ~ is 

where ~ -·l/2aa2 
= e (assumed to be small) 

v 

(4.7) 

(4.8) 
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J~(A) = Bessel function of order ~ 

and the itltegra1s SR, and C~ are given by the following series: 

(n) b 
m 

00 
(iA)n 
n 

2 n!1T 

n (_1)~-n+2m 1 1 1: (n)[_ 2][ 1+ 1] 
m=O m ~-n+2m+- ~-n+2m- -2 

2 

n 

I: 
m=O 

(_1)~-n+2m [1 _ 1 ] 

2 ~-n+2m+ 1 ~-n+2m- .! 
2 2 

eing the conventional binomial, coefficient. 

(4.9) 
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v. Discussion. 

The final equations of Section IV provide an analytic form for the 

scattering intensity pattern which is produced by the assumed pairwise 

repulsive potential, Eq. (4.1), through first order in the inelastic 

phonon effects. Clearly, the basic structure is dominated by the elastic 

diffraction term, producting delta-function peaks whenever ~k is equal 
x 

toa reciprocal lattice vector, although the intensities of these peaks 

are attenuated by a Debye-Waller ,factor. This primary structure is then 

augmented by inelastic lobes on either side of each diffraction peak. 

(Of course, the actual peak profile may be greatly complicated by the 

overlap of inelastic lobes with nearby elastic structure). Any direct 

broadening of the elastic peaks can only be caused in our model by 

"experimental" effects such as a distribution of incident velocities; , 

broadened inelastic peaks, however, are explicitly predicted as a result 

ofa gaussian distribution of ~k values which is centered about the 
x 

diffraction condition. We should note, though, that if the phonon 

frequencies are sufficiently low, the expected peak shape-would more 

closely resemble a sharp spike with broad inelastic "wings" near the 

base. But in any case we would predict that any observed diffraction 

peak width should correspond roughly to the width of the incident velocity 

distribution. 

To make a quantitative comparison between the theoretical results we 

have obtained and experimental measurements requires considerable 

computational work. It would be necessary, e.g., to average our expressions 

over the appropriate distributions of initial velocities as well as over 

the finite detector width, and then one could vary the various parameters 

• 
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in the interaction potential to see if the data were explicable in terms 

of reasonable values of the parameters. 'Although such calculations are 

desirable, they are,beyond the scope of this paper, which has been to show 

how a simple analytical model can account qualitatively for the various 

aspects of diffraction and of energy transfer. With these limitations 

in mind, however, a qualitative comparison of Wi11iams
18 

results with our 

,model is useful and somewhat encouraging. For example, otirmodel ,does, 

appear able, to reproduce the basic structure and positions of the inelastic 

scattering lobes, which are seen as low bumps slightly separated from the 

strong elastic peaks. We also note that some asymmetry in the 

annihilation and creation intensities may be observed in the ~xperimental 

measurements, although it appears that those results tend to show the 

phonon annihilation lobe (1. e., the lobe shifted toward the surface normal) 

to be somewhat more ,intense than the corresponding creation lobe, wher~as our 

model would predict that phonon creation would be the dominant effect if 

any asymmetry is present. [In the limit of a very cold surface, it is 

clear that phonon creation should be the principal energy transfer process 

simply because there are relatively few excited phonon modes available for 

annihilation. Eq. (3.7b) explicitly yields such a result for appreciab+e 

values of S (i.e., for low surface temperature).] Although at present one 

really cannot elaborate further on the agreement with experiment, it should 

be mentioned that essentially no features are yielded by the proposed 

model which cannot be roughly correlated with the observed intensity 

strUcture. 
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Inasmuch as there does seem to be reasonable qualitative agreement 

between the model and experiment. it is ;enteresting to consider why the 

modified Einstein description of the solid appears to be adequate. The 

obvious conclusion to draw is that actually only a narrow range of phonon 

mode frequencies contributes significantly to the scattering, and thus most 

solid descriptions give essentially the same results. Generally it 

appears that our basic assumptions, namely an Einstein solid and a 

periodic surface, compare very favorably with the more customary 

postulate of a Debye solid with a flat surface. Certainly in the limit 

where the two solid models do yield effectively identical phonon structures, 

the ability to describe both diffraction and inelastic transitions within 

a single unified formalism is indeed a definite advantage. 

Aside from the omission of any experimental averaging as mentioned 

above, there is one more general feature of the gas-surface scattering 

problem which we have ignored. That feature involves the presence of a 
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long-range attractive part in the actual two-body potential. As mentioned 

by others, inasmuch as the detailed structure of such an attractive potential 

apparently has little or no bearing on the scattering pattern in the absence 

of surface trapping, a simple square well form for the attraction seems 

adequate. We have chosen to ignore the well altogether in our model by 

making the assumption that the only consequence of considering such a well 

is the addition of a momentum increment perpendicular to the surface to an 

approaching gas atom and the subtraction of a corresponding increment from 

the scattered atom. Naturally, this quasiclassical assumption leads to a 

change in the actual incident and predicted scattered angles, although these 

modified angles may, of course, be simply related to the experimentally 

19 
observed angles. But because the scattering pattern has the same qual ita-

tive features with or without a well, we have opted to neglect completely 

the presence of any attractive well. 

Before concluding, we wish to stress the point that the width of the 

inelastic scattering lobes are, as expected, related to· the degree of 

inelasticity present. This width, arising as a result of a gaussian 

distribution of ~k values in. the I term, may be correlated with the 
x 1 

effective Debye-Waller factor, Eq. (4.9), which to' order ]12 is just a 

multiplicative constant. Specifically, for this particular gaussian 

distribution the standard deviation may be written 

= a../a' 
a 2lf 

Notice then that with this definition one may write the effective Debye-

Waller exponent as 
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Hence for smaller cr, i.e., for a narrower distribution in ~k , W is also 
x 

-2W 
smaller~ which implies that e is closer to unity--this is indeed the 

expected concerted behavior for a system which is becoming less inelastic. 

Furthermore, since crdepends on the potential parameter a, one may conclude 

that a decrease in a, corresponding to a "loosening" of the potential in 

the x-direction, would simultaneously cause a reduction in the observed 

inelastic intensity. 

Finally, in conclusion, we summarize the qualitative features of the 

results obtained from our scattering model: 

(1) the elastic scattering peaks are infinitely sharp if the incident 

atomic beam is monoenergetic; 

(2) the inelastic scattering peaks are broadened even for a monoenergetic 

beam, with the peak widths being dependent upon the interaction potential 

parameters and not upon either the surface temperature or the collision 

energy; 

(3) the effective Debye-Waller factor, Eq. (4.9), shows the expected 

2 
temperature dependence (inasmuch as it is a function of <q », and appears 

z 

to first order as just a multiplicative term; 

(4) the surface amplitude, ha~ is independent of the collision energy 

ill the static surface limit, although the actual position of the potential 

turning-point contour is a function of E; 

(5) the effect of the in-plane motion of the surface atoms is negligible 

as compared with the effect due to motion-perpendicular to the surface plane; 

(6) the symmetry of the one-phonon annihilation and creation lobes does 
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exhibit a temperature dependence, with the two being totally symmetric 

only in the high temperature limit (the positions of the lobes do not, 

however, . show any such dependence). 

Overall, the present work provides a very convenient and instructive 

\ 

,model for the gas~surface collision problem. Although in principle the 

formalism allows one to treat all possible n-phonon inelastic scattering 

processes, we have shown that it is possible to obtain a good qualitative 

agreement with experiment by only examining the one-phonon effect. It is 

also encouraging that such results are obtainable from a one-dimensional 

surface model, even though it is reasonable to expect that extension could 

be made to a two-dimensional lattice with little difficulty. We feel 

particularly confident that the absence of the commonly used flat-surface 

assumption 'provides a definite advantage in that the treatment of a wider 

range of structured surfaces.becomespossibie. 

• 
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Appendix A: Summation Over Unit Cells 

The coordinate integrals over the interval [_00,00] may be transformed to 

integrals over the interval [O,a], where a is the unit cell length, via the 

identity 

Ex f(x) =E 1 dx f(x+na) 
~ nO· 

where the integer n numbers the unit cells. For example, by using this 

formula the elastic contribution to the intensity may be written 

J: 
-it.k (x+na) -it.k Z (x+na) 2 

I ::: 6 (t.E) I I: dx e x e Z . e-W(x+na) I 
o n 0 

. (A.l) 

But since Z(x) = Z(x+na) by assumption and since presumably W(x) ::: W(x+na) 

inasmuch as functions of x only must exhibit the periodicity of the lattice 

(obviously any model for these functions must bear out this assumption), 

Eq. (A.l) becomes 

a -it.k X -it.k Z(x) TW(X) , E e-it.kxna 12 
10 6 (t.E) II dx 

x Z 
. - e e e . 

n 

"" o (!:'E) 11 dx 
-it.k x -it.k Z(x) 

e-W(x) I 2 EE -it.k a (n-n ' ) x Z x e e e 
n n' 

- n+n' . Defining n "" -.-- and t.n = n-n' and then resumming (noting that the sum 
2 

over n just gives N, the total number of unit cells within the physical 

limits of the experiment), 
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1 
-i~k x -i~k Z (x) 2 -i~k aLln 

10 = No (~E) I 0 dx e x e Z e -W(x) I Fn e x 

, Then, by using the Poisson sum rule one finally obtains 

~ .l' x I x Z e-W (x) 12 , ~k a '1 -:Uk x -:Uk Z(x) 
10 = No (t.E) t u (R, - ~) dx e ' e 
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Appendix B: Debye-Waller Integrals 

From Eq. (3.7a) we need to calculate 

1 a - 21TH x ' -iAk Z (x) 
= 1- I dx e a e z e-W(x) 12 

a 0 

Linearizing the Debye-Wiiller exponential, 

IS~12 
21fil ' 2nil 

a- -- x -illk Z(x) I a - --' x -illk Z(x) 2 
- I~ .£ dx e a 'e Z - a .£ dx e a e z W(x) I 

Then by resumming, with the hope of recovering some of the higher order 

contributions lost in the linearization, IS~12 may be written in terms 

o 12 of IS1 (s) ,the result for the static surface 
llSO 

limit, as 

1 - 2 Re--
S~(s) e 

Substituting Eqs. (4.4) and (4.6) for Z(x) and W(x), 

21fil o -illk Z a' - --, - x S 1 (s) = ! e Z 0;: dx e a 

and 

e 

., 2nx 
-1I\COS -­

a 
-illk Z 

'z 0 ,- e 

(B.I) 

. n n 
-1 -I<" 

2 
e J1 (A) 
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2'1fii 
- --;x 

a 
e 

2 'If X 
-iA cos 

a 
2,yx 

1+2p cos a 

Assuming ~ to be small (at constant surface amplitude, ha), one then 

expands the quotient above in a Taylor series and integrates term by 

term to obtain 

2 
to order ~ • 

e 

Thus, to this order in ~, Eq. (B.l) may be evaluated as 

-2W e 

This same approximation procedure is then used for the calculation of the 

2 
integrals in Eq. (4.7), still retaining only the terms through ~. By 

this method, the integralsSi and Ci in Eq. (4.8) are found to be of the 

form 

S = 1: 1 de sinie e iA cose sin- e i 'If 2 

11 e iA. cose Ci = 'If . de cosie cos- e 
0 

2 

An expansion of the exponential followed by term-by-term integration yields 

the series solutions given in Section IV. 
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