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Abstract

Bayesian Inference on the Stiefel Manifold: Models, Applications and

Algorithms

by

Fanqi Meng

In finance, it is crucial to use recent data to model the relationship between the

companies since the market environment is evolving constantly. In particular,

estimating time-varying covariance matrices has been an important topic for

both portfolio optimization and risk management. Market measures such as

betas for companies, beta dispersion, and market volatility are also closely

related to the eigenvectors and eigenvalues of the covariance matrices. The

current approaches for dynamic covariance estimation are focused on vector

autoregressive processes and have shared parameters for the eigenvalues and

eigenvectors. This inevitably introduces dependencies and fails to reveal the

relationships between the model parameters. We contribute to the field of time-

varying covariance estimation by proposing a Bayesian autoregressive model

on the Stiefel manifold for high dimensional data. Our model considers the

eigenvalues and eigenvectors separately, and provides a reliable solution to the

relationships between the eigenvalues and eigenvectors. To our knowledge,

this is the first attempt for an autoregressive time series model on the Stiefel

manifold, and it can be extended to a class of models that are widely applicable

viii



to datasets in finance, biology, climate changes, etc.

Our Bayesian model involves sampling and inference on the Stiefel mani-

fold, which has been a challenging task. We contribute to Bayesian modeling

on the Stiefel manifold by writing a new package using the Stan program. In

our StanStiefel package, we extend the sampling method in [Jauch et al., 2020],

and propose novel parameter inference methods for popular distributions. Our

package takes much less time to generate comparable amount of effective sam-

ples than the rstiefel package, especially in high dimensions.

ix



Contents

1 Introduction 1

2 Statistics on the Stiefel Manifold and the StanStiefel Package 3

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Probability Distributions over the Stiefel Manifold . . . . . . . . . . . . . . . . . 4

2.2.1 Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.2 Matrix Von Mises-Fisher Distribution . . . . . . . . . . . . . . . . . . . . 5

2.2.3 Matrix Bingham Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.4 Generalized Matrix Bingham Distribution . . . . . . . . . . . . . . . . . . 8

2.2.5 Matrix Bingham–von Mises–Fisher Distribution . . . . . . . . . . . . . . . 10

2.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Givens Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Cayley’s Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.4 Householder Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.5 Monte Carlo Simulation via Polar Expansion . . . . . . . . . . . . . . . . 19

2.4 Sampling Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Inference Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Inference for the von Mises-Fisher Distribution . . . . . . . . . . . . . . . 22

2.5.2 Inference for the Bingham Distribution . . . . . . . . . . . . . . . . . . . 24

2.5.3 Inference for the Generalized Bingham Distribution . . . . . . . . . . . . 27

2.5.4 Inference for the Matrix Bingham–Von Mises–Fisher Distribution . . . . . 28

2.6 The StanStiefel Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Comparisons with rstiefel Package . . . . . . . . . . . . . . . . . . . . . . . . . . 30

x



2.8 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8.1 Bayesian Principal Component Analysis . . . . . . . . . . . . . . . . . . . 33

3 Time Series Modeling on Stiefel Manifold and Applications on Covariance

Estimations 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Model Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Time Series Modeling for Eigenvector Parameters . . . . . . . . . . . . . . 41

3.2.2 Modeling Principal Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3 Modeling the Idiosyncratic Variances . . . . . . . . . . . . . . . . . . . . . 44

3.2.4 Model Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Model Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Derivation of Full Posterior Distribution . . . . . . . . . . . . . . . . . . . 46

3.3.2 Markov Chain Monte Carlo Algorithm . . . . . . . . . . . . . . . . . . . . 48

3.3.3 Summary of Markov Chain Monte Carlo Algorithm . . . . . . . . . . . . 53

3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Smoothness between Eigenvectors over Time . . . . . . . . . . . . . . . . 54

3.4.2 Estimation of A and B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.3 Estimation of Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Bayesian Covariance Modeling for Financial Markets and its Implications 72

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.1 Contributions and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Autoregressive Prior for Eigenvectors . . . . . . . . . . . . . . . . . . . . . 78

4.2.2 Autoregressive Prior for Eigenvalues . . . . . . . . . . . . . . . . . . . . . 79

4.2.3 Modeling the Idiosyncratic Variance . . . . . . . . . . . . . . . . . . . . . 80

4.2.4 Model Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Bayesian Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.1 Derivation of Full Posterior Distribution . . . . . . . . . . . . . . . . . . . 82

4.3.2 Markov Chain Monte Carlo Algorithm . . . . . . . . . . . . . . . . . . . . 83

xi



4.3.3 Summary of Markov Chain Monte Carlo Algorithm . . . . . . . . . . . . 87

4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.1 Smoothness between Eigenvectors over Time . . . . . . . . . . . . . . . . 89

4.4.2 Estimation of A and B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.3 Estimation of Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4.4 Comparison with Alternative Approaches . . . . . . . . . . . . . . . . . . 93

4.5 Results on S&P500 Returns Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5.1 Estimated Dynamic Betas over Time . . . . . . . . . . . . . . . . . . . . . 95

4.5.2 Volatility Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5.3 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5.4 Relationship between Dispersion and Volatility . . . . . . . . . . . . . . . 98

4.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xii



Chapter 1

Introduction

Many modern statistical applications involve time-varying covariances. In finance, practitioners

need to keep up with the changing financial environment and make constant updates for the

portfolio weights and risk measures. In biology, people are interested in how the relationships

amongst the metabolites evolve as an individual ages, so as to improve our understanding about

age-related diseases. Current time series covariance models either focus too much on vector au-

toregressive processes, or have shared parameters for modeling the eigenvalues and eigenvectors.

This hinders the discovery of true relationships between the model parameters, and makes it an

inferior choice for some applications.

We propose the first Bayesian autoregressive model for dynamic covariance estimation on

the Stiefel manifold. Our model successfully addresses the high dimensional data issue by as-

suming a spiked covariance model at each time point, and utilizing information across all time

points. It allows separate modeling of the eigenvalues and eigenvectors, which is crucial for some

applications where the relationship between eigenvalues and eigenvectors is of great importance.

We apply our new Bayesian dynamic covariance model on the S&P500 historical returns dataset.

Our model can validate the dynamic nature of market beta, and reveal the relationship between

the beta dispersion and market volatility.

The novel model is in fact a general framework, and can be easily extended to different

variations. We can generate new models by either changing the autoregressive processes on

the eigenvectors, or the eigenvalues. In addition, the model requires sampling on the Stiefel

manifold, which is a challenging task in its own right. My work reinforces the foundation of

Bayesian statistics on the Stiefel manifold. I summarized the state-of-the-art sampling algorithms

1



and developed the inference algorithms for various popular distributions. These algorithms are

wrapped up in the handy StanStiefel package. This package outperforms the rstiefel package in

high dimensions, and serves as a powerful toolbox for more complicated models with orthogonal

matrix parameters.

Dissertation Organization

The dissertation consists of three major components. We start with the theoretical part, which

involves an exploration of the statistical foundations on the Stiefel manifold. The building blocks

of Bayesian statistics are then discussed, including the essential distributions, as well as ways to

generate samples from them. In the second component, we propose a Bayesian autoregressive

model for dynamic covariance estimation. To our best knowledge, this model is the first attempt

for Bayesian autoregressive time series models on the Stiefel manifold, and it can be easily tailored

to model datasets in different domains. Lastly, we consider a sophisticated problem motivated

by the financial context, and provide our solution via the novel Bayesian dynamic covariance

estimation approach.

2



Chapter 2

Statistics on the Stiefel Manifold

and the StanStiefel Package

2.1 Introduction

The Stiefel manifold Vp,r is the Riemannian submanifold referring to the collections of unit-

length vectors in high-dimensional spaces. It consists of all p× r orthonormal matrices in Rp×r.

The elements of the Stiefel manifold Vp,r are known as r-frames, which is an orthogonal set of

r p-dimensional unit-length vectors. The orthogonal constraints between the r vectors can be

succinctly expressed as

Vp,r := {Y ∈ Rp×r : Y TY = Ir}.

The column vectors all have Euclidean norm 1 and they are orthogonal with each other. These

constraints reduce the degree of freedom of Vp,r from pr to pr− 1
2r(r+1). One special case is the

unit hypersphere Vp,1 in Rp, where each element corresponds to a particular direction pointed

by the unit vector. Another extreme is the orthogonal group, where elements represent rotation

matrices. In general, Vp,r can be considered an orientation extending the notion of a direction

in Rp.

The Stiefel manifold is drawing more and more attentions as many statistical models can be

parameterized in terms of orthogonal matrices. In Chrétien and Guedj (2020), the latent variable

matrix is modeled with the orthogonal group. Tan et al. (2019) proposes a stabilized alternating

direction method of multipliers (ADMM) solution to solve the sparse PCA problem directly over

3



the Stiefel manifold. This avoids deflation technique and convex relaxations, which usually suffer

from approximation errors. Moreover, Yang and Bauwens (2018) develops multivariate state-

space models where the latent states follow a conditional matrix Langevin distribution over the

Stiefel manifold. Outside of the statistical realm, the Stiefel manifold has been traditionally and

consistently emphasized in computer vision and robotics, such as in Turaga et al. (2008) and Lui

(2012).

In recent years, there has been a surge in utilizing orthogonality on the parameter matrices

for estimating neural networks. This brings up multi-faceted benefits. Bansal et al. (2018)

shows that orthogonality improves accuracy and boosts convergence rate for convolutional neural

network models, and Cogswell et al. (2015) shows that orthonormality helps with tackling the

overfitting problem. In addition, it is shown in Arjovsky et al. (2016) that orthogonal parameters

can reduce the ingrained vanishing and exploding gradient problems for recurrent neural network

models. The benefits obtained from imposing the orthogonal constraints highlight its power and

mark its potentials in the machine learning community.

Besides the above-mentioned developments, Bayesian models over orthogonal parameters

have also gained their significance. In particular, Pal et al. (2020) establishes a unified Bayesian

framework for inference on the Stiefel manifold with the matrix Langevin distribution, and Lin

et al. (2017) takes a generative non-parametric approach which takes advantages of kernel mix-

tures that can approximate a large class of distributions on the Stiefel manifold. For applications,

a stream of thoughts applied the Bayesian technique on covariance estimations with orthogonal

matrices parameters, as shown in Hoff (2009a) and Franks and Hoff (2019).

In this chapter we take an overview of the substantial probability distributions on the Stiefel

manifold with discussions on their properties. Then we move on investigating the various proce-

dures for sampling from these distributions via different parametrizations. Last but not least, we

propose inference algorithms that complete the Bayesian framework. The sampling and inference

algorithms are well-packed in the handy StanStiefel package.

2.2 Probability Distributions over the Stiefel Manifold

2.2.1 Uniform Distribution

By definition, the uniform distribution assumes identical density values at all elements in Vp,r.

For X ∈ Vp,r, both left rotations and right rotations give other elements in the same space.

4



Namely, QX ∈ Vp,r and XH ∈ Vp,r for Q ∈ Op,p and H ∈ Or,r. The uniform density ought

to reflect this rotational invariance property. Denote the uniform density by f , then it should

follow

f(X) = f(QX) = f(XH), ∀Q ∈ Op,p, H ∈ Or,r, (2.1)

which are called the left-invariance and right-invariance.

To be exact, the invariant measure on the Stiefel manifold Vp,r is denoted by [(dXT )X].

Here X0(p × p) = (X X1), XT
0 X0 = Ip, and X1 is the complement of X that makes X0 an

orthogonal matrix. It has been shown in Gupta and Nagar (2018) that

V ol(Vp,r) =

∫
Vp,r

[(dXT )X] =
2rπ

pr
2

Γr(
p
2 )
. (2.2)

Therefore,
1

V ol(Vp,r)
[(dXT )X] (2.3)

defines the probability element of the invariant distribution of random matrix X on Vp,r. There

are a few more related theorems on the uniform distribution, which can be referred to on page

281 of Gupta and Nagar (2018).

2.2.2 Matrix Von Mises-Fisher Distribution

The matrix von Mises-Fisher distribution is also well-known as the matrix Langevin distribution.

The distribution is obtained by imposing the orthogonality constraints on a multivariate normal

distribution. Denoted by L(p, r;F ), the explicit expression of the density function for random

variable X is
1

a(F )
etr
(
FTX

)
, (2.4)

where F is a p× r matrix and a(F ) the normalizing constant.

In particular, we can write out the singular value decomposition of F as F = ΓΛΘT , where

Γ ∈ Vp,r,Θ ∈ O(r), and Λ = diag ({λ1, . . . , λr}), λ1 ≥ · · · ≥ λr ≥ 0. The λi’s control the

concentrations in the directions pointed by the orientations Γ and Θ. The mode is unique when

the λ′s are distinct, and is given by X0 = ΓΘT . Because

max
X

tr(FTX) = trFTX0 = tr Λ =

n∑
i=1

λi. (2.5)
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According to Gupta and Nagar (2018), the normalizing constant a(F ) can be evaluated by

a(F ) =

∫
X∈O(p,r)

etr
(
FTX

)
dX

= 0F1

(
1

2
p;

1

4
FTF

)
= 0F1

(
1

2
p;

1

4
Λ2

)
.

(2.6)

Notice that the normalizing constant depends on F only through the singular values Λ, not the

principal components Γ or Θ.

The Langevin distribution plays an important role in directional statistics. Its vector version

is primarily used in modeling high-dimensional vector dynamics. An interesting probabilistic

property is that the first exit point from the p − 1 dimensional sphere of the drifted Wiener

process on Rp starting from the origin follows a von Mises-Fisher distribution, see Gatto (2013)

for more details.

2.2.3 Matrix Bingham Distribution

The Bingham distribution is the analogue on the sphere of the isotropic bivariate normal distri-

bution in the plane. A random matrix X on Vp,r is said to have the matrix Bingham distribution

if its density function has the form:

1

b(G)
etr
(
XTGX

)
, (2.7)

where G is a p by p symmetric matrix. We can write out the spectral decomposition of G as

G = V AV T , where V ∈ O(r), and A = diag ({a1, . . . , ap}). The normalizing constant b(G) can

be explicitly calculated as

b(G) =

∫
X∈O(p,r)

etr
(
XTGX

)
dX

= 1F1

(
1

2
r;

1

2
p;G

)
.

(2.8)

There are a few characteristics marking the specialness of this distribution.

Right-rotational Invariance

The matrix Bingham distribution is invariant under right-orthogonal transformation. Let X1 =

XH, for H ∈ Or, then

tr(XT
1 GX1) = tr(HTXTGXH) = tr(HHTXTGX) = tr(XTGX), (2.9)

since HHT = Ir.

6



Identifiability

There is identifiability issue with the Bingham distribution since for A′ = A+ aI, we have

tr(XTV A′V TX) = tr(XTV (A+ aI)V TX)

= tr(XTV AV TX) + tr(XTV aIV TX)

= tr(XTGX) + bp

However, bp is a constant and it will be subsumed in the normalizing constant. Therefore the

kernels for both distributions are the same, suggesting that the distribution depends on A only

through its differences. To ensure its identifiability, we choose the version where a1 ≥ a2 ≥ ... ≥

ap−1 ≥ ap = 0. In case G is low-rank, we can remove the constraint on ap = 0, as it is implied

already by the low-rank property.

Antipodal Symmetry

A density f(x) for vector x is considered antipodally symmetric if f(x) = f(−x) for all values

x ∈ Rp. Bingham (1974) discusses in detail this property for the vector Bingham distribution on

the sphere. For matrix distributions, by analogy, the definition implies that flipping the signs of

any columns of X does not change the density value. As for the matrix Bingham distribution,

for any diagonal matrix S with diagonal elements equal to ±1, let X ′ = XS,

tr(X ′TGX ′) = tr(STXTGXS) = tr(XTGXSST )

= tr(XTGX).

The last step holds since S is a diagonal matrix with elements ±1. Hence the antipodal symmetry

is confirmed, which makes it a good candidate for modelling axes, instead of directions. This

property is highly respected in the field of directional statistics, see Prentice (1982) for more

details.

Multi-modality

The matrix Bingham distribution is an analogy of the centered normal distribution on the Stiefel

manifold, where the mode and concentration are controlled by V and A. Meanwhile, since the

signs of the columns can be flipped arbitrarily, there are 2p modals even when the diagonal

elements of A are all distinct.

7



2.2.4 Generalized Matrix Bingham Distribution

The generalized Bingham distribution introduces an extra parameter H in addition to the usual

Bingham parameter G. It has a density of the format

p(X|G,H) =
1

c(H,G)
etr(HXTGX), (2.10)

whenX ∈ Vp,r, G is a p×p symmetric matrix andH is an r×r symmetric matrix. LetG = V AV T

and H = WBWT , V ∈ Op, W ∈ Or and A and B are diagonal matrices of non-negative values.

the density can then be rewritten as

p(X|A,B, V,W ) ∝ etr(WBWTXTV AV TX) = etr(B(WTXTV )A(V TXW )). (2.11)

Notice that WTXTV is the transpose of V TXW . For any fixed V and W , there is a one-to-one

relationship between V TXW and X on the same space, therefore the density is equivalent to

p(X|A,B, V,W ) ∝ etr(BXTAX). (2.12)

Identifiability

The density depends on A and B only through the differences between their respective diagonal

elements. This can be seen by considering

tr{(B + dI)XT (A+ cI)X} = tr(BXTAX) + d tr(XTAX) + c tr(BXTX) + cd tr(XTX)

= tr(BXTAX) + d tr(XTAX) + c tr(B) + cdr.

c tr(B) and cdr are constants not associated with X, so they will be subsumed in the normalizing

constant. We can see the density depends on A+ cI only through the elements of A. Therefore,

only the differences amongst the diagonal elements of A matter. A special case is when p = r,

then d tr(XTAX) = d tr(AXXT ) = d tr(A), in which case the density depends on both A and

B only through the differences amongst the diagonal elements. Furthermore, for any constant

c > 0, we have

etr((cB)XT (c−1A)X) = etr(BXTAX). (2.13)

Hence scaling A and B together while keeping the product won’t affect the density value. In

light of the above two properties, we choose the version of parameterization when p > r:

diag(A) = (a1, a2, ..., ap), a1 ≥ a2 ≥ ... ≥ ap = 0,

diag(B) = (b1, b2, ..., br), b1 ≥ b2 ≥ ... ≥ br > 0,

a1 = b1.
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And when p = r:

diag(A) = (a1, a2, ..., ap), a1 ≥ a2 ≥ ... ≥ ap = 0,

diag(B) = (b1, b2, ..., br), b1 ≥ b2 ≥ ... ≥ bp = 0,

a1 = b1.

Condition for Antipodal Symmetry

The antipodal symmetry is guaranteed for Bingham distribution, but not for the generalized

Bingham. Hoff (2009a) provided the necessary and sufficient conditions for a generalized Bing-

ham distribution to have the antipodal symmetry as follows:

Proposition 1. If G and H both have more than one distinct eigenvalue, then a necessary and

sufficient condition for the generalized Bingham density 2.10 to be antipodally symmetric in the

columns of U is that H be a diagonal matrix.

Parameter Interpretations

Restricting ourselves to the antipodally symmetric generalized Bingham distributions, we can

write them as

pB(X|A,B, V ) = c(A,B) etr(BXTV AV TX), (2.14)

based on the above necessary and sufficient conditions. Here A and B are diagonal matrices with

a1 ≥ a2 ≥ ... ≥ ap = 0, b1 ≥ b2 ≥ ... ≥ br > 0 and V ∈ Op. The diagonal elements of A and B

play important roles in controlling the variability of X around V , as well as similarities between

eigenvectors. To interpret the parameters, it is easier to write the density in terms of the vector

inner products.

tr(BXTV AV TX) =

p∑
i=1

r∑
j=1

aibj(v
T
i xj)

2. (2.15)

When a1 and b1 are large, the density would be large when vT1 x1 is close to 1, suggesting that

the samples x1 would center around v1. Meanwhile, the orthogonality constraint prevents vT1 x2

and vT2 x1 from being large since xT1 x2 = 0 and vT1 v2 = 0. This sets v2 and x2 free so they can

be closer when a2b2 is large. Other similarities between the vectors can be deduced in the same

manner. For more details on the implications on eigenvectors, one can refer to Hoff (2009a).
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2.2.5 Matrix Bingham–von Mises–Fisher Distribution

The matrix Bingham-von Mises-Fisher distribution is a flexible probability distribution involving

both the linear and quadratic terms. The distribution is the general normal distribution on the

Stiefel manifold and the density can be written as

pBMF (X|Ip,Φ,M) = {K(Ip,Φ,M)}−1 etr((X −M)TΦ(X −M)). (2.16)

The normalizing constant K(Ip,Φ,M) is complicated and is given in page 286 of Gupta and

Nagar (2018). After expanding the parentheses and simplification, the density can be rewritten

concisely as

pBMF (X|A,B,C) ∝ etr(CTX +BXTAX), (2.17)

where A and B can be assumed to be symmetric and diagonal matrices, respectively. The matrix

von Mises-Fisher Distribution is a special case where either B or A has all 0 diagonal elements,

and the generalized matrix Bingham distribution is a special case where C is the zero matrix.

2.3 Literature Review

Generating samples from target distributions are the fundamental building blocks for Bayesian

statistics. There has been a plethora of sampling techniques developed for various domains and

objective distributions. Some basic techniques are the rejection sampling and the importance

sampling, which are only efficient for a special class of problems. In addition, Laplace approxi-

mation and variational Bayes methods are designed in the spirit of replacing the target posterior

distribution with computationally feasible alternatives. Another prominent stream of thought,

which is well-known as Markov chain Monte Carlo (MCMC), is based on constructing a Markov

chain with the target distribution as the stationary distribution. The Metropolis-Hastings algo-

rithm and Gibbs sampling both fall into this category. Recently, a sub-class of MCMC methods

gains popularity with their abilities to propose long distance moves in the state space and high

acceptance rates. Being known as Hamiltonian Monte Carlo (Neal et al. (2011)), the method

simulates Hamiltonian dynamics in an augmented parameter space, and the trajectories that are

projected back to the original space are retained as samples.

In the unconstrained scalar or vector Rp domains, the famous Stan program (Gelman et al.

(2015)) can be utilized to explore thoroughly most distributions with high efficiency. However,

when it comes to sampling on the Stiefel manifold, the unit-length constraints and the orthogo-
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nality constraints create extra difficulties in addition to the multivariate sampling problem. In

this section, we review some excellent papers on addressing this issue from various perspectives.

2.3.1 Gibbs Sampling

Hoff (2009b) discusses the Gibbs sampling algorithm for sampling from the matrix Bingham-

von Mises-Fisher distribution. It starts with some discussions on rejection sampling based on

a uniform envelope, which is a feasible method with increasing rejection rate as the dimensions

grow. Gibbs sampling schemes corresponding to different distributions were proposed with tweaks

to accommodate respective properties. We summarize the most clever techniques in relaxing the

tough constraints, which is of great help for related sampling problems.

Removing the Orthogonality Constraint

For X ∈ Vp,r, the columns of X are orthogonal to each other. In order to sample X using MCMC

techniques, it would be beneficial to consider sampling the columns of X iteratively, instead of

regarding X as a whole variable. Bearing that in mind, we rewrite X as X = {X[,1], X[,−1]}.

Notice that there are two constraints involved with X[,1], the unit length and the orthogonality.

Since XT
[,−1]X[,1] = 0r−1, we know X[,1] is in the null space of X[,−1], which we will denote by

Np,r−1. Since N stands for an orthonormal basis we have NTN = I. There exists z ∈ Sr−1 such

that X[,1] = Nz, and z = NTX[,1]. The newly-introduced variable, z, now only has to reside on

the unit sphere. We then move on considering the posterior distribution of z instead of X[,1].

Removing the Unit Length Constraint

As for the unit length constraint, consider y ∈ Sp,
∑p
i=1 y

2
i = 1. Suppose we are dealing with a

simple Bingham distribution with Λ = diag{λ1, λ2, ..., λp}, then

p(y|Λ) = c(Λ) exp(yTΛy)

∝ exp(

p∑
i=1

λiy
2
i )

Due to the constraint, we will write y2
p = 1−

∑p−1
i=1 y

2
i . Then the density with respect to Lebesgue

measure on y1, y2, ..., yp−1 becomes

p(y|Λ) ∝ exp(

p∑
i=1

λiy
2
i )|yp|−1, y2

p = 1−
p−1∑
i=1

y2
i . (2.18)
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Now instead of sampling y1, y2, ..., yp−1, we let θ = y2
1 and q = {y2

1/(1− y2
1), ..., y2

p/(1− y2
1)}, so

that {y1, y2, ..., y
2
p} = {θ, (1 − θ)q−1}. The reason is to relax the constraints and encourage the

mixing of Markov chains. In addition, it is apparent that the signs of y′is do not affect the density.

Hence we would assign the positive and negative signs to y′is randomly with equal probability.

Removing the Orthogonality Constraints for p by p Orthogonal Matrices

For the technique of removing the orthogonality constraints, there is a problem when the variable

is a p by p orthogonal matrix. In that case, conditioning on X[,−1] will result in a one-dimensional

vector subspace containing only X[,1] and its reverse direction. Therefore, the samples would

only be changing signs of the columns of the starting point. In order to effectively explore the

parameter space, we sample two columns at a time and apply a similar procedure. To be specific,

suppose the goal is to sample from

p(X) ∝ etr(CTX +BXTAX), (2.19)

where X is a p × p orthogonal matrix. In this case sampling column 1 and 2 is done in the

following way. Let X = {X[,(1,2)], X[,−(1,2)]}, and N be the null space of X[,−(1,2)]. Then there

exists a 2× 2 orthogonal matrix Z such that X[,(1,2)] = NZ. The density of Z given X[,−(1,2)] is

p(Z|X[,−(1,2)]) ∝ etr(C̃TZ + B̃ZT ÃZ), (2.20)

where C̃ = NTC[,(1,2)], B̃ = diag({b1,1, b2,2}) and Ã = NTAN . Notice that Z is a 2 × 2

orthogonal matrix, we can parametrize it as

Z =

cos(φ) s sin(φ)

sin(φ) −s cos(φ)

 (2.21)

for some φ ∈ (0, 2π) and s = ±1. The joint density of (φ, s) is p(Z(φ, s)), and now it becomes

sampling φ and s. See Hoff (2009b) for more details.

Gibbs sampling algorithm is one of the most intuitive and natural algorithms for sampling

from multivariate distributions. This is the first effective attempt to achieve great sampling per-

formance on this challenging manifold. The main spirit is to simplify the problem by relaxing the

constraints and focusing on elementary cases like vectors. However, we see from the implemen-

tations that there are many techniques involved and also special cases being treated separately.

A more unified and holistic method is still highly desirable. Meanwhile, the efficiency is lim-

ited by the essence of Metropolis Hastings algorithms, which is a lot inferior than the modern

Hamiltonian Monte Carlo algorithms.
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2.3.2 Givens Representation

An orthogonal matrix can be reparametrized based on Givens representations (Shepard et al.

(2015)). The idea is to decompose an orthogonal matrix into a sequential product of rotational

matrices, which can be represented using the angles with respect to corresponding axes. Pourzan-

jani et al. (2021) adopts this notion and proposes an innovative sampling algorithm by sampling

on the unconstrained angle space. Meanwhile, it also addresses the topological issues that oc-

cur during the transformation, providing insights into how topology plays a role in the shift of

probability spaces.

Givens Representation

The Givens rotations can be used to zero out individual isolated entries in a matrix. To start

with, we consider a 2× 2 orthogonal matrixcos(θ) − sin(θ)

sin(θ) cos(θ)


applied to a vector y = [y1, y2]T . If y2 6= 0, the rotation matrix that can zero out the second

entry of y can be computed via

y1 sin(θ) + y2 cos(θ) = 0. (2.22)

Hence θ = arccot(−y1y2 ). The observation is that we can zero out an entry by applying a rotation

matrix on essentially a two dimensional plane. For higher dimensional matrices, in order to zero

out the (i, j)th entry, we would consider the plane rotation matrix

Gi,j,θ =



I 0 0 0 0

0 cos(θ) 0 − sin(θ) 0

0 0 I 0 0

0 sin(θ) 0 cos(θ) 0

0 0 0 0 I


,

where the ith row contains cos(θ) and − sin(θ), and the jth row contains sin(θ) and cos(θ).

Now we fully understand the idea to zero out a single entry. This step can be applied

iteratively to perform the QR-factorization. For any n×p (n ≥ p) matrix A, the QR-factorization

finds an orthogonal matrix Q and a right-triangular matrix R, such that A = QR. Since all the
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entries below R’s diagonal are null, we can create R by eliminating the entries one at a time.

Following the notation in Pourzanjani et al. (2021),

R = R−1
pn (θpn) · · ·R−1

p,p+1(θp,p+1) · · ·R−1
1n (θ1n) · · ·R−1

12 (θ12)A, (2.23)

where R−1
ij (θij) is the rotation matrix to zero out the ij-th entry in A. Therefore,

A = R12(−θ12) · · ·R1n(−θ1n) · · ·Rp,p+1(−θp,p+1) · · ·Rpn(−θpn)R. (2.24)

Let Q = R12(−θ12) · · ·R1n(−θ1n) · · ·Rp,p+1(−θp,p+1) · · ·Rpn(−θpn). Now Q is a again an or-

thogonal matrix since it is a product of orthogonal matrices.

In case the original matrix A has orthogonal and unit-length columns, we actually get a

stronger result that R is the first p columns of the n×n identity matrix. The result can be argued

inductively. For the first column, only the first entry is non-zero. Therefore it is constrained to

be a11 = ±1. For the second column, suppose the first two elements are (a12, a22). We would

have

a2
12 + a2

22 = 1

a11a12 = 0.

Again, a12 = 0 and a22 = ±1. Inductively one can get app = ±1 for all p, while all the other

entries are 0. See section 3.3 of Pourzanjani et al. (2021) for more detailed arguments.

Change-of-measure Adjustment

Givens transformation achieves one-to-one mapping between an element in the Stiefel manifold

and an element in [0, 2π]np−
p(p+1)

2 . As is often the case, we need to account for the distortion

of probability measure whenever there is a transformation and adjust accordingly. However, in

our context the Givens representation is map from np − p(p+1)
2 dimensional space to a space

of dimension np. The counterpart of a Jabobian term is non-square and we need to resort to

differential forms to find its value. To be exact, let

G = R12(θ12) · · ·R1n(θ1n) · · ·Rp,p+1(θp,p+1) · · ·Rpn(θpn). (2.25)

Muirhead (2009) shows that the signed surface element measure is given by the absolute value

of the differential form:
p∧
i=1

n∧
j=i+1

GTj dAi, (2.26)
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where Gj is the jth column of G and dAi are differential 1-forms representing infinitesimal

directions on along the Stiefel manifold. Pourzanjani et al. (2021) provides a succinct formula

for this measure adjustment term as:

JA(Θ)(Θ) =

p∏
i=1

n∏
j=i+1

cosj−i−1 θij , (2.27)

and the details can be referred to in the appendix of the paper.

Sampling via Givens representation is a very innovative approach since it cleverly takes ad-

vantage of the orthonormal property. The thought of zeroing out individual entries via rotation

on an extracted two dimensional space decomposes Q into a product of a sequence of rotation

matrices, whose inverses can be easily determined by substituting −θij . However, this approach

requires the computation of a complicated change-of-measure term, which involves the knowledge

of differential forms. In addition, the topology of the Stiefel manifold and the Given represen-

tation differ slightly, and that leads to some topological issues, for which the paper introduces

some ad-hoc techniques and empirical proof.

2.3.3 Cayley’s Transformation

Cayley (1846) introduced the classical result that for any n×n rotation matrix R, if R does not

admit −1 as an eigenvalue, then there is a unique skew-symmetric matrix S, such that

R = (I − S)(I + S)−1. (2.28)

Here R is called the Cayley transform of S. Beautiful as it is, the result is limited to square

orthogonal matrices without −1 as its eigenvalues. Fortunately, Shepard et al. (2015) extends

the result to general m× n orthogonal matrices Q. To be exact, the matrix X is taken as

X =

B −AT

A 0

 (2.29)

with B ∈ Rn×n, BT = −B and A ∈ R(m−n)×n. Q can be represented as

Q = (Im +X)(Im −X)−1Im×n

=

In − F
2A

 (In + F )−1, F = ATA−B,
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and Im×n is defined as the matrix having the identity matrix as its top block and the remaining

entries zero. Reversely, given an orthogonal m× n matrix Q, we can find X by computing

F = (In −Q1)(In +Q1)−1

B =
1

2
(FT − F )

A =
1

2
Q2(In + F ),

where Q = [QT1 , Q
T
2 ]T . Under this definition, the Cayley transform is well-defined for any skew-

symmetric matrix X since Im −X is always invertible.

Based on this improved Cayley transformation for general orthogonal matrices, Jauch et al.

(2020b) developed a novel sampling scheme. It first proves the Cayley transform is a continuously

differentiable map, then computes the derivative matrix according to

∂Q

∂Xjk
= 2(I −X)−1 ∂X

∂Xjk
(I −X)−1. (2.30)

The challenging question is again to compute the change-of-variable adjustment term. Ben-

Israel (1999) resolves this problem by introducing the concept of matrix volume. Essentially, for

a derivative matrix A, the volume of A is defined as the product of the singular values of A,

hence if A is of full column rank,

volA =
√

det(ATA). (2.31)

It is easier to understand this concept in terms of singular value decomposition. Let A = UDV T ,

det(ATA) = det(V DTUTUDV T )

= det(DT (UTU)D(V TV ))

= det(D2)

=

n∏
i=1

d2
i .

So volA = |
∏n
i=1 di|. The geometric meaning of singular values characterizes how each dimension

is scaled in the transformed space. Therefore, the absolute value of the product represents the

volume of the transformed cube from the unit cube, which is exactly the adjustment term for

the change of probability measures.

After obtaining the change-of-measure term, we are able to derive the density on the un-

constrained space, where the Markov chain will be built on. After all the samples are generated,

we simply compute their Cayley’s transform to obtain desired samples on the Stiefel manifold.
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This work is similar to Pourzanjani et al. (2021), which was based on a Givens rotation

parametrization of the Stiefel manifold. They both involve reparametrizations of the Stiefel

manifold and computations of the change-of-measure adjustment terms. Markov chains will be

constructed on the transformed (unconstrained) spaces via Metropolis-Hastings algorithm or

more modern Hamiltonian Monte Carlo (HMC) algorithm. Desired samples from the original

Stiefel manifold will be generated via corresponding inverse transformations.

2.3.4 Householder Transformation

Nirwan and Bertschinger (2019) tries to resolve the identifiability of the Bayesian principal

component analysis models, which are notoriously known for their rotational symmetry. The

corresponding posterior distributions possess continuous subspaces of equal density, making it

difficult to infer and interpret the parameters. The Householder Transformation is able to elim-

inate the rotational symmetry in the posterior and bridge the gaps between Bayesian models on

the Stiefel manifold and modern sampling softwares, such as Stan.

Householder Transformation

Householder transformations are orthogonal transformations that can introduce zeros into the

lower triangle of a matrix, in the same spirits of Gaussian elimination algorithm and the Givens

rotations. It is primarily used as a stable way to implement the QR-decomposition. Geometri-

cally, the Householder transformation of a vector x with respect to a unit normal vector y is the

reflectional symmetry of x in the direction pointed by y, as shown below.

The line that evenly separates the angle formed by x and y is the axis of symmetry. The unit

vector y provides the direction of the transformed result, while the norm of x characterizes its
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magnitude.

Algebraically, the Householder operator can be expressed as H = I − 2vvT , where u =

x− ||x||y and v = u/||u||. Notice that

(
I − 2vvT

)
x = x− 2

(x+ ‖x‖y)
(
xTx+ ‖x‖xT y

)
‖x‖2 + 2xT y‖x‖+ ‖x‖2‖y‖2

= x− (x− ‖x‖y)

= ‖x‖y.

For a p × r matrix Z, if all the elements of Z are i.i.d. Gaussian with zero mean and unit

variance, the orthogonal matrix Q satisfying Z = QR would be Haar distributed. To implement

the QR-decomposition, we follow the procedure indicated by the following theorem, which was

summarized in Mezzadri (2006).

Theorem 1 Let vp, vp−1, ..., v1 be uniformly distributed on the unit sphere Sp−1,Sp−2, ...,S0 re-

spectively, where Sp−1 is the unit sphere in Rp. Furthermore, let Hn(vn) be the nth Householder

transformation defined as

Hn =

I 0

0 H̃n

 ,

where

H̃n (vn) = − sgn (vn1)
(
I − 2unu

T
n

)
∈ Rn×n

and

un =
vn + sgn (vn1) ‖vn‖ e1

‖vn + sgn (vn1)‖vn ‖e1‖
.

Finally,

Q = Hp(vp)Hp−1(vp−1) · · ·H1(v1)

is a random orthogonal matrix with distribution given by the Haar measure on O(p), and a draw

from the Stiefel manifold Vp,r is formulated by multiplying the first r matrices.

The procedure based on Householder transformation avoids the expensive computation of

the Jacobian determinant term, which is constantly required for other transformation-based

methods. In addition, the Householder parameters v are unconstrained and we won’t encounter

the dilemma of hitting the boundary of the space, or topological issues arising from mappings

between different spaces. Despite the above advantages, it also suffers the inherent combinatorial

symmetry, which is akin to the label switching problem in Gaussian mixture models. To resolve

that, post-processing needs to be conducted, such as making the first entry of each column of the
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eigenvector to be positive, or always taking the direction which has acute angles to benchmark

vectors.

This method circumvents rejection sampling and variational approximations. When com-

bined with Stan, it extends the realm of Bayesian models on the Stiefel manifold since it does not

require conditional conjugacy for the prior distributions. The prior can be flexibly added to the

target variable in the Stan program. Nirwan and Bertschinger (2019) integrates this idea with

the prominent Gaussian process latent variable model (GPLVM). This move opens the door to

incorporating orthogonal matrix parameters to modern machine learning models, such as deep

neural networks.

2.3.5 Monte Carlo Simulation via Polar Expansion

This ingenious method was proposed in Jauch et al. (2020a), which can be seen as a generalization

of the method for simulating from the unit sphere Vp,1. It avoids most of the well-established

challenges in simulating from the Stiefel manifold. The idea is in the same spirit as Pourzanjani

et al. (2021) and Jauch et al. (2020a). To sample random orthogonal matrix Q ∈ Vp,k (p ≥ k),

we will construct a Markov chain on the unconstrained random matrix space X, such that QX ,

the orthogonal component of the polar decomposition, is equal in distribution to Q.

To start, we first briefly review how to get samples on Vp,1. Based on Muller (1959) and

Marsaglia et al. (1972), we can implement the algorithm in the following two steps:

1. Generate N independent standard normal random samples x1, x2, ..., xN .

2. Locate a point y on the unit N -sphere by

yi =
xi√∑N
i=1 x

2
i

The point y then will be uniformly distributed on the unit N -sphere. As an intuitive non-rigorous

proof, we can consider the joint density of (x1, x2, ..., xn):

p(x1, x2, ..., xn) =

N∏
i=1

p(xi)

=

N∏
i=1

1√
2π
e−

x2
i
2

=

(
1√
2π

)N
e−
||y||2

2 .
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The joint density depends on y only through its magnitude, rather than the directions. Hence

at each fixed radius, the density is uniformly distributed on its spherical surface area.

Now for a matrix X ∈ Rp×k, its singular value decomposition is denoted as X = UDV T , let

QX = X(XTX)−1/2 = UV T ,

SX = XTX = V DTUTUDV T = V DTDV T ,

S
1/2
X = V DV T .

Then X = QXS
1/2
X and SX = S

1/2
X S

1/2
X , where QX is an orthogonal matrix while S

1/2
X is a

symmetric positive definite matrix. Analogous to the polar expansion z = reiφ for complex

numbers, S
1/2
X is the counterpart for r while QX is comparable to eiφ.

To sample Qp×k from the Stiefel manifold Vk,p, we aim to sample X1, X2, ..., XN from an

appropriate density fX on the unconstrained real matrix X ∈ Rp×k. For each Xi, we compute its

polar expansion Qi = Xi(X
T
i Xi)

−1/2, the distribution of Q would match our target distribution

and thus Q1, Q2, ..., QN are samples from the target distribution fQ. To achieve these, we need

to find how fQ and fX relate to each other.

The advantage of introducing QX and Sx together is that now the mapping from a real, full

rank matrix X to the components (QX , SX) of its polar decomposition is one-to-one, and the

density fX can be derived as

fX(X) = fSX |QX
(SX |QX)fQX

(QX)× J(QX , SX ;X). (2.32)

In contrast with Cayley’s transformation and Givens representation, where it is expensive to

compute the Jacobian, J(QX , SX ;X) is a standard result shown in Chikuse (2012).

J (QX , SX ;X) =
Γk
(
p
2

)
π

pk
2

|SX |−
p−k−1

2 . (2.33)

This convenience makes this approach much more attractive than other competitors.

As indicated above, fQX
(QX) would be our target distribution fQ. Therefore, once the

conditional distribution of fSX |QX
is determined, we would have a corresponding density on

X. It is easily seen that there are various densities fX(X) that have the margin distribution

matching our desired distribution.

As a default choice, Jauch et al. (2020a) recommended fSX |QX
to be the density of the

Wishart distribution Wk(p, Ik) and it is independent of QX . With this choice, the density of the

distribution of X simplifies to

fX(X) =

(
1√
2π

)pk
etr(−XTX/2)fQ(QX). (2.34)
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In particular, if we consider the problem of sampling uniformly from the Stiefel manifold,

fQ(QX) ∝ 1, then the density of X will be

fX(X) =

(
1√
2π

)pk
etr(−XTX/2). (2.35)

This density shows that all the entries of X are independent standard normal random vari-

ables. Notice that this is equivalent to the situation of sampling from the unit sphere. This

correspondence motivates the author to select the Wishart distribution as the default choice.

This is by far the most elegant and flexible method for sampling on the Stiefel manifold. It

bypasses the obstacles encountered in Pourzanjani et al. (2021), Jauch et al. (2020a) and Nirwan

and Bertschinger (2019), including but not limited to topological inconsistency, the expensive

computation of super complicated change-of-measure adjustment terms, and sophisticated con-

struction of transformations. It is also flexible for a wide range of distributions, in contrast to

the confinements to specific distributions in Hoff (2009b), which involves lots of ad-hoc tweaks

to satisfy the various properties on the Stiefel manifold.

2.4 Sampling Algorithms

We consider sampling algorithms for popular distributions on the Stiefel manifold. Fortunately,

they can all be derived from 2.34. The corresponding distributions are displayed in the following

table.

Distribution fQ(QX)

Uniform Distribution 1

von Mises-Fisher Distribution etr(FTQX)

Bingham Distribution etr(QTXGQX)

Matrix Bingham-von Mises-Fisher Distribution etr(CTQX +BQTXAQX)

Generalized Bingham Distribution etr(BQTXAQX)

For example, if we want to draw n samples from the Bingham distribution, we substitute

fQ(QX) = etr(QTXGQX) in 2.34. Essentially we would be sampling X in

fX(X) =

(
1√
2π

)pk
etr(−XTX/2) etr(QTXGQX). (2.36)

Once we get samples X1, X2, · · · , Xn, the orthogonal matrices samples can be obtained by Qi =
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Xi(X
T
i Xi)

−1/2, i = 1, 2, · · · , n. The algorithm can be implemented in Stan directly, and other

distributions can be sampled in the same manner.

2.5 Inference Algorithms

2.5.1 Inference for the von Mises-Fisher Distribution

Problem Setup

To infer the parameter F of a von Mises-Fisher distribution, we collect samples U1, U2, ..., Un

from the target distribution 2.4. Then the likelihood for F is

L(F |U1, U2, ..., Un) = p(U1, U2, ..., Un|F )

=

n∏
i=1

1

a(F )
etr
(
FTUi

)
= a(F )−n etr

(
FT

n∑
i=1

Ui

)
.

(2.37)

By 2.6, a(F ) = 0F1

(
1
2p;

1
4Λ2

)
, which is a hypergeometric function of one matrix argument, and

Λ is the diagonal matrix of the singular values of F . One should notice that the value of the

hypergeometric function depends on F only through its singular values. Therefore, we can write

a(Λ) = a(F ) = 0F1

(
1

2
p;

1

4
Λ2

)
.

In addition, Butler et al. (2002) provides the approximation result using Laplace approximation.

If X = diag{x1, ..., xm},

0F̂1(n/2;XXT /4) = R
−1/2
0,1

m∏
i=1

{(1− ŷ2
i )n/2exiŷi}, (2.38)

where

R0,1 =

m∏
i=1

m∏
j=i

(1− ŷ2
i ŷ

2
j )

and ŷi = ŷ(xi) is given by

ŷ(x) = u/(
√

(u2 + 1) + 1),

where u = 2x/n.
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Inference

Let us get the singular value decomposition of F , F = ΓΛΘT , both Γ and Θ are orthogonal

matrices, and Λ is a diagonal matrix. Inferencing F can be achieved by finding the joint posterior

distribution of Γ,Λ and Θ. The posterior distribution is

p(Γ,Λ,Θ|U1, ..., Un) ∝ p(Γ,Λ,Θ)p(U1, U2, ..., Un|F ) (2.39)

In most cases, we will assume a uniform prior p(Γ,Λ,Θ) ∝ 1, or one can assume independence

and add prior distributions for Γ,Λ,Θ, respectively. By 2.37 the posterior distribution becomes

p(Γ,Λ,Θ|U1, ..., Un) ∝ a(Λ)−n etr
(
ΘΛΓTS

)
, (2.40)

where S =
∑n
i=1 Ui.

Direct inferences in this joint matrix parameter space is challenging but fortunately we can

utilize the MCMC technique, which converts the inference problem into a few sampling problems.

The conditional distributions can be easily obtained,

p(Γ|Θ,Λ, S) ∝ etr((SΘΛ)TΓ) (2.41)

p(Θ|Γ,Λ, S) ∝ etr((STΓΛT )TΘ) (2.42)

p(Λ|Θ,Γ, S) ∝ a(Λ)−n etr(ΓTSΘΛ) (2.43)

The first two are von-Mises Fisher distributions on Γ and Θ, whose samples can be generated by

our sampling algorithm. The conditional distribution of Λ can be considered as a multivariate

distribution of r scalars, which can be efficiently explored by the Stan software.

Algorithm
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Algorithm 1: Bayesian Algorithm for von-Mises Fisher Parameter

Result: Bayesian samples of F,Γ,Λ,Θ.

Initialization: initialize Γ,Λ,Θ ;

for i in 1 : Iterations do

Sample Γ from p(Γ|Θ,Λ, S);

Sample Θ from p(Θ|Γ,Λ, S);

Sample Λ from p(Λ|Θ,Γ, S);

Compute F by F = ΓΛΘT .

end

2.5.2 Inference for the Bingham Distribution

Problem Setup

To infer the parameter G of a matrix Bingham distribution, we collect samples U1, U2, ..., Un

from the target distribution 2.7. Then the likelihood for G is

L(G|U1, U2, ..., Un) = p(U1, U2, ..., Un|G)

=

n∏
i=1

1

b(G)
etr
(
UTi GUi

)
= b(G)−n etr

(
G

n∑
i=1

UiU
T
i

)
.

(2.44)

By 2.8, b(G) = 1F1

(
1
2r;

1
2p;G

)
, which is a hypergeometric function of one matrix argument.

Since G is a positive definite matrix, there exist V and Λ such that G = V ΛV T . Similar to

the normalizing constant of von-Mises Fisher distribution, b(G) = b(Λ) = 1F1

(
1
2r;

1
2p; Λ

)
, where

Λ is the diagonal matrix containing the eigenvalues of G. Butler et al. (2002) provides the

approximation result based on Laplace approximation. Let X = diag {x1, x2, ..., xp}, the raw

Laplace approximation is given by

1F̃1(a; b;X) = 2p/2πp(p+1)/4Bp(a, b− a)−1J
−1/2
1,1

p∏
i=1

{
ŷai (1− ŷi)b−a exiŷi

}
,

where

J1,1 =

p∏
i=1

p∏
j=i

{a(1− ŷi)(1− ŷj) + (b− a)ŷiŷj}.
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The calibrated approximation 1F̂1(a; b;X) is given by

1F̂1(a; b;X) =
1F̃1(a; b;X)

1F̃1 (a, b; 0p)

= bbp−p(p+1)/4R
−1/2
1,1

p∏
i=1

{(
ŷi
a

)a(
1− ŷi
b− a

)b−a
exiŷi

}

R1,1 =

p∏
i=1

p∏
j=i

{
ŷiŷj
a

+
(1− ŷi) (1− ŷj)

b− a

}
,

where

ŷ(x) =
2a

b− x+
√

(x− b)2 + 4ax
.

Inference

For a Bingham distribution, G is a positive definite matrix, and we represent G = V ΛV T as

before, where V is an orthogonal matrix and Λ is a diagonal matrix consists of all the eigenvalues.

It suffices to obtain estimates of V and Λ separately to get estimates of G. The posterior

distribution is

p(V,Λ|U1, ..., Un) ∝ p(V,Λ)p(U1, U2, ..., Un|G). (2.45)

We might choose independent priors on V and Λ or just use the uniform prior. Suppose the

uniform prior is adopted and let S =
∑n
i=1 UiU

T
i , the posterior distribution is now

p(V,Λ|U1, ..., Un) ∝ b(Λ)−n etr
(
V ΛV TS

)
. (2.46)

It is difficult to sample V and Λ simultaneously since the Bingham distribution is highly irregular

with multiple modes. Nevertheless, multiple modes may corresponds to the same parameter G as

one can always flip the signs of the columns of V . Here we apply Gibbs sampling to decompose

into conditional posterior distributions for V and Λ separately.

p(V |Λ, U1, ..., Un) ∝ etr
(
ΛV TSV

)
,

p(Λ|V,U1, ..., Un) ∝ b(Λ)−n etr
(
ΛV TSV

)
.

The first conditional distribution is a generalized Bingham distribution, whereas the second one

can be simplified to a sophisticated multivariate likelihood, which can be explored by Stan.

Algorithm
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Algorithm 2: Bayesian Algorithm for Bingham Parameters

Result: Bayesian samples of V,Λ, G.

Initialization: initialize V,Λ, G ;

for i in 1 : Iterations do

Sample V from p(V |Λ, S);

Sample Θ from p(Λ|V, S);

Compute G by G = V ΛV T .

end

Special Case

There is a special case for Bingham distribution with full rank. The above sampling method works

for random variables of dimension p × r where r < p. When p = r, the Bingham distribution

degenerates to the uniform distribution on the space. Because of full rank, we have UTU =

UUT = Ip. Therefore,

p(U |G) =
1

b(G)
etr(UTGU)

=
1

b(G)
etr(GUUT )

=
1

b(G)
etr(G)

=
1

b(Λ)
etr(V ΛV T )

=
1

b(Λ)
etr(ΛV TV )

=
1

b(Λ)
etr(Λ)

We can see this holds for all values U on the space, hence this is actually the uniform distribution.

If we want to have a full rank distribution of the Bingham type, it has to be the generalized

Bingham distribution, which is to be discussed in the next section.
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2.5.3 Inference for the Generalized Bingham Distribution

Problem Setup

To infer the parameters A, B and V for a generalized matrix Bingham distribution, we collect

samples U1, U2, ..., Un from the target distribution

Ui ∼
1

c(A,B)
etr(BUTi (V AV T )Ui) (2.47)

Since we have two groups of parameters, A,B and V , hence we consider Gibbs sampling. The

conditional likelihood for A,B is

L(A,B|V,U1, U2, · · · , Un) = p(U1, U2, · · · , Un|A,B, V )

=

n∏
i=1

1

c(A,B)
etr
(
BUTi V AV

TUi
)

= c(A,B)−n etr

(
n∑
i=1

BUTi V AV
TUi

)
.

= c(A,B)−n exp

 r∑
i=1

r∑
j=1

aibj(

n∑
k=1

X
(k)2

ij )

 ,

(2.48)

where X(k) = V TUk. And the conditional distribution for V is

L(V |A,B,U1, U2, · · · , Un) = p(U1, U2, · · · , Un|A,B, V )

=

n∏
i=1

1

c(A,B)
etr
(
BUTi V AV

TUi
)

∝ etr

(
AV T (

n∑
i=1

UiBU
T
i )V

)
.

(2.49)

This is a generalized Bingham distribution, from which we can already sample. Therefore we

should focus on devising a method for sampling A,B from 2.48.

Inference

In order to estimate A and B, we need to find an adequate numerical approximation of c(A,B).

According to corollary 2.1 in Constantine and Muirhead (1976):

If R1 and S are k × k and m × m diagonal matrices respectively, k ≤ m, with unequal
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elements ordered in descending order, then∫
V (k,m)

exp(tr(1/2)n R1H
T
1 SH1)(dH1)

∼ 2k exp

(
(1/2)n

k∑
i=1

risi

)
k∏
i<j

(
2π

ncij
)1/2

k∏
i=1

m∏
j=k+1

(
2π

ndij
)1/2,

where cij = (ri − rj)(si − sj) and dij = ri(si − sj) for i = 1, 2, · · · , k and j = k + 1, · · · ,m.

V (k,m) is the Stiefel manifold consisting of all m× k matrices H1 with orthonormal columns.

In the above corollary, we take n = 2,m = p, k = r,R1 = B, the first r diagonal elements of

S to be A, and the last p− r elements to 0. We obtain a good approximation of c(A,B) as

2rπ
2pr−r(r+1)

4 exp

(
r∑
i=1

aibi

)
r∏
i<j

(ai − aj)−1/2(bi − bj)−1/2
r∏
i=1

(aibi)
r−p
2 . (2.50)

Notice that as parameters of a generalized Bingham distribution, A and B are non-identifiable

under some transformations. As mentioned in Hoff (2009a), the likelihood p(A,B|U ′is) behaves

the same as that with p(kA, 1
kB|U

′
is) for k > 0. Meanwhile, p(A+ cI,B+ dI|U ′is) gets a density

proportional to that with A and B, and that suggests only the differences amongst the diagonal

elements matter. Taking these properties into consideration, we reparametrize A and B as:

diag(A) = (a1, . . . , ar) =
√
w (α1, . . . , αr) (2.51)

diag(B) = (b1, . . . , br) =
√
w (β1, . . . , βr) , (2.52)

where w > 0, 1 = α1 > α2 > · · · > αr−1 > αr > 0 and 1 = β1 > β2 > · · · > βr−1 > βr > 0. The

final expression using w, α′s and β′s can be coded into a Stan program. In order to represent the

positive real numbers in (0, 1], we create ordered positive numbers α′i and represent αi =
α′i
α′i+1 .

Similar reparameterization was done for β′is.

The inference for V is achieved by sampling from a standard generalized Bingham distribu-

tion.

Algorithm

The sampling algorithm is summarized as follows:

2.5.4 Inference for the Matrix Bingham–Von Mises–Fisher Distribu-

tion

This is a very challenging problem up till the moment the dissertation was written. In particular,

there is no sufficient closed-form approximation for the normalizing constant, which is a compli-
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Algorithm 3: Bayesian Algorithm for Generalized Bingham Parameters

Result: Bayesian samples of A,B, V .

Initialization: initialize A,B, V ;

for i in 1 : Iterations do

Sample A,B from p(A,B|V,U1, U2, · · · , Un);

Compute Sample V from p(V |A,B,U1, U2, · · · , Un);

Save samples A,B, V .

end

cated function of two matrix arguments F and A. The current best achievements in estimating

the normalizing constant of the Fisher-Bingham distributions are Kume et al. (2013), Kume and

Sei (2018) and Chen and Tanaka (2020). They adopt the maximum likelihood perspective and

try to estimate the numerical values using gradient descent approaches.

However, the lack of closed-form approximations in terms of the parameter values makes

it extremely hard to utilize the Stan program to inference the parameters. As more accurate

closed-form approximations are exploited, it is promising to use the same procedure as above to

tackle this challenging task.

2.6 The StanStiefel Package

We wrap up all the functions for sampling and inference the various distributions on the Stiefel

manifold. We create a new package based on the Stan program, and name it StanStiefel. Here

we provide a pictorial description of the structure of the package in Figure 2.1. This package

contains fundamental Bayesian algorithms for sampling from popular distributions and inferring

parameters for the distributions.
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StanStiefel
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infbingham
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Figure 2.1: StanStiefel Package

2.7 Comparisons with rstiefel Package

The current default package for Bayesian sampling on the Stiefel manifold is rstiefel, which is

developed and maintained based on Hoff (2009b). In this section we conduct an experiment

to compare the performance of our new StanStiefel package with it. Under different setups,

the performance may vary. Since both the matrix Langevin distribution and the generalized

Bingham distribution are special cases of the matrix Bingham-von Mises-Fisher distribution,

we conduct the experiment under the most general distribution. In particular, we consider

four cases where C, and A,B can be either large or small, and we vary the dimensions for

p ∈ {5, 10, 50, 100, 200, 500}, and fix the number of factors to r = 5. We keep track of the time

elapsed for 200 iterations with the first 100 as burn-in samples. And for the obtained samples,

we compute counterparts for effective sample sizes (ESS), which is designed for computing the

equivalent number of independent samples by adjusting for the autocorrelations. Moreover, we

are interested in the effective sample sizes per second (ESPS). For vector samples, we compute

two alternative measures for effective sample sizes.
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Entry-wise Average ESPS

This is a straight-forward analogue of the scalar samples. We compute the effective sample sizes

for all the entries. For a sequence of samples of N p × r matrices. We first compute the pr

effective sample sizes for each element in the matrix samples, then compute the average of the

pr effective sample sizes. Finally divide the time spent to get the ESPS.

Vector Angles Average ESPS

Alternatively, we consider the angles between the columns of samples to a fixed anchor. We

choose the eigenvectors of A as our anchor V , since the sample are supposed to be close to that

when B and the eigenvalues of A are large. For a matrix sample X, we compute the r angles

between the columns of V and X, the average effective sample sizes of the angles, and divide the

time spent to get the ESPS.

When C is small, C is a uniformly chosen orthogonal matrix on the Stiefel manifold, and when

C is large, it refers to a uniformly chosen orthogonal matrix multiplied by ten. When A and B

are small and large, they are set to

A = B = diag({10, 8, 6, 4, 2})

A = B =
√

10× diag({10, 8, 6, 4, 2}),

respectively. The results are collected in Table 2.1.

From the results, we see when p is equal to r, both methods require more time since the

problem becomes sampling a full rank orthogonal matrix. This is a special case, and both

methods take more time than other cases with similar dimensions. When p > r, the sampling

time starts to increase drastically as the dimension increases. In particular, when both C and

A,B are large, p = 5 takes more than one hour to run.

For each case, as p increases, the time for rstiefel package increases significantly, whereas

that for the StanStiefel package grows at a much slower rate. The chains for both methods mixed

well and in most of the experiments, StanStiefel package has a higher effective sample size under

the above two measures. Combining the effects from both aspects, StanStiefel package achieves

a much higher ESPS at all cases where p ≥ 100.
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rstiefel StanStiefel

p Time(s) Entrywise ESPS Angle ESPS Time(s) Entrywise ESPS Angle ESPS

Small C, small A and B

5 1.99 42.74 47.34 14.56 6.86 6.86

10 0.39 223.46 233.79 0.92 102.21 100.46

50 0.96 100.58 104.17 1.02 94.19 98.04

100 4.31 22.11 20.87 1.68 57.45 59.52

200 23.88 4.06 3.94 3.18 30.78 29.11

500 300.25 0.32 0.33 9.69 10.07 10.32

Big C, small A and B

5 49.48 0.5 0.47 14.4 6.7 6.94

10 0.43 87.49 80.32 0.68 144.37 147.06

50 0.85 103.42 90.59 1.06 92.27 94.34

100 4.36 22.22 22.94 1.62 59.5 57.25

200 24.36 4 3.9 3.4 28.67 24.8

500 308.26 0.31 0.32 9.92 9.68 10.08

Small C, big A and B

5 141.98 0.67 0.7 14.09 6.97 7.1

10 0.43 204.37 185.07 1.37 71.3 72.99

50 1.08 90.58 91.49 1.91 49.79 48.47

100 4.57 21.45 21.88 3.04 31.41 32.89

200 23.81 4.03 3.98 4.53 21.35 22.08

500 300.63 0.32 0.29 13 7.51 7.69

Big C, big A and B

5 ¿ 3600 N/A N/A 14.06 7.03 7.11

10 0.56 82.75 43.45 1.61 58.5 51.25

50 1.31 57.18 53.31 2.01 48.2 44.07

100 4.49 20.76 18.57 2.91 33.74 34.36

200 23.63 4.02 4.23 4.47 21.55 19.01

500 299 0.32 0.3 13.18 7.35 7.59

Table 2.1: Running Time and ESPS Comparisons of rstiefel and StanStiefel
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2.8 Example

2.8.1 Bayesian Principal Component Analysis

In this example, we demonstrate a Bayesian principal component analysis model on simulated

data. In the simulation, p is set to 50 and r is chosen as 4, the four principal eigenvalues are

spaced out as {50, 30, 10, 5}, and the idiosyncratic variance is 1. We choose the spiked covariance

model,

Σ = UΛUT + σ2Ip,

Λ = diag({50, 30, 10, 5}),

and generate 100 observations from this covariance matrix. The goal is to apply our Bayesian

principal component analysis model on the observations data to retrieve the parameters U , Λ

and σ2. The MCMC algorithm was run for 400 iterations with the first half as burn-in samples,

and the samples was saved every 2 iterations after the burn-in period.

In Figure 2.2, 2.3, 2.4 and 2.5 we show the posterior distribution of the first 4 eigenval-

ues, respectively. The red vertical lines indicate the true eigenvalues, and the blue vertical lines

represent the empirical estimates. Our bayesian PCA model is able to produce samples con-

centrating on the maximum likelihood estimates from observations, with appropriate posterior

uncertainties.
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Figure 2.5: Fourth Eigenvalue

In Figure 2.6, 2.7, 2.8 and 2.9 we plot posterior summaries of the first four eigenvectors. In

our model, the likelihood is invariant to the direction of the axes, so we summarize the results

by the absolute values of the inner product between posterior samples and a particular fixed

target vector. We compare the posterior samples to both the empirical eigenvectors and the

true eigenvector, and show the corresponding histograms on the same plot. Intuitively, when the

Bayesian eigenvectors are close to the target, the absolute inner product ought to be close to 1.

In all four figures, we see the red histograms all have high mass near 1, indicating our Bayesian

estimates concentrate at the empirical values. In 2.6 and 2.7, the blue histograms also have high

mass near 1, meaning our estimated first and second eigenvectors are closer to the truth as well.

In contrast, since the fourth eigenvalue is relatively smaller than the rest, and there is more

posterior uncertainty because the eigenvalue is smaller.
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Figure 2.9: Fourth Eigenvector

Next we consider the comparison between the Bayesian samples and the true eigenvectors.

The conditional distribution for the eigenvectors is proportional to

etr(ΩUT
S

2σ2
U), (2.53)

where S = Y Y T , ωi = λi

λi+σ2 , and Ω = diag({ω1, ω2, · · ·ωr}). Hence the log-likelihood is

tr(ΩUT
S

2σ2
U). (2.54)

It is well-known that the mode of the Bayesian estimates would be the empirical eigenvectors,

as shown in Hoff (2009a). Once we observe the generated data, S is fixed, in the following we

consider the conditional distribution of the eigenvectors, and compare our estimated samples

with the true eigenvectors. To achieve that, we use the true values of Ω and σ2 to compute the

log-likelihood. The histogram for the log-likelihood of the samples is shown in Figure 2.10, in

which the red line represents the log-likelihood computed with the truth. It is clear that the

log-likelihood computed with the truth near the mode of the Bayesian samples, indicating that

our Bayesian samples resemble estimates for the true eigenvectors as well.
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Figure 2.10: Histogram for Log-likelihood

In total, our Bayesian principal component analysis works well based on the sampling algo-

rithm on the Stiefel manifold. The model would provide less accurate Bayesian samples when

the eigenvalues are less distinguishable. We demonstrate the effectiveness of the sampling algo-

rithm for the generalized Bingham distribution, algorithms for other distributions can also be

illustrated under a similar simulation setup.
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Chapter 3

Time Series Modeling on Stiefel

Manifold and Applications on

Covariance Estimations

3.1 Introduction

Most time series models are focused on time-varying or conditional means, assuming homoskedas-

tic covariances over time. However, many modern statistical applications involve heterogeneous

covariances. In finance, practitioners need to keep up with the changing financial environment

and make constant updates for the portfolio weights and risk measures. Hence they need infor-

mation about dynamic covariance matrices, as indicated in Harris et al. (2017) and Engle et al.

(2019). In biology, people are interested in how the relationships amongst the metabolites evolve

as an individual ages, so as to improve our understanding about age-related diseases, such as

Hwangbo et al. (2021) and Franks and Hoff (2019). Heterogeneous covariance matrices are also

critical for gaussian processes, quadratic discriminant analysis, and other predictive techniques.

Historically, some prominent models have been proposed for modeling heterogeneous covariances.

As the pioneer in this subfield, Flury (1987) developed the common principal components model,

where the covariance matrices share the same eigenvectors. Based on Flurry’s work, Boik (2002)

relaxed the assumption to eigenvectors being shared among some or all the groups. In lieu

of the strict assumption where eigenvectors are either shared or completely different, a school
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of Bayesian statisticians have developed hierarchical models to accommodate both similarities

and differences. Specifically, Hoff (2009a) established a hierarchical model, where the eigenvec-

tor matrices are samples from the same matrix Bingham distribution. The shared parameters

of the distribution are designed for the similarities, whereas the randomness characterizes the

distinction. With the mind of explicitly expressing the shared information about the subspace

spanned by group-level eigenvectors, Franks and Hoff (2019) proposed a shared subspace model

to characterize the resemblance at the subspace level.

As a special case for heterogeneous covariances, time-varying covariance estimation has

gained its significance in recent years. Engle (2002) applied the idea of generalized autoregres-

sive conditional heteroskedastic (GARCH) to the factored components of conditional correlation

matrices. Engle and Kroner (1995) further proposed multivariate extension of GARCH called

BEKK, where the dynamic covariances follow an autoregressive moving average model (ARMA)

process. Wu et al. (2013) improved the computational efficiency and provided uncertainty quan-

tification by solving a variation of BEKK using Bayesian approaches. Analogous to linear re-

gression, Hoff and Niu (2012) proposed a covariance regression model, where the covariance is

posited to be the sum of a fixed positive definite matrix and a quadratic form involving the

explanatory variables. Moreover, Franks and Hoff (2019) successfully extended the model to

high-dimensional settings. This advance was quite beneficial for applied tasks since there are nu-

merous cases in which the problem dimension exceeds the size of available data. In biological and

medical applications, not only the data are difficult and expensive to collect, but practitioners

also face privacy and moral issues. Meanwhile, there are hundreds, if not thousands of chemicals

influencing the human metabolism, as well as other biological reactions. In finance, data are

vastly noisy, and the relationship between the stock returns is constantly changing due to social,

political and psychological factors. In order to obtain satisfactory analysis, one would better use

more recent and relevant data, which is usually scarce. For low to mid-frequency investors, the

goal is usually to discover profitable patterns amongst enormously available products with the

help of several years’ daily data, which again manifests a high-dimensional problem.

Fortunately, high-dimensional data generally can be approximated by a smaller number of

factors, enabling insights to be drawn from limited samples. In biological applications, Heimberg

et al. (2016) showed that the effective dimensionality is thought to scale with the number of gene

regulatory modules, not the number of genes themselves. Analogously, Fama and French (1992)

discovered a linear relationship between mean excess returns and exposures to three factors, the

market factor, a size-based factor and a book-to-market-based factor. In 2015, they appended
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the profitability and investment factors to deliver better performance, see Fama and French

(2015). Based on the above evidences, it is believed that with appropriate modeling techniques

and experiences, people are still able to exploit the small samples and extract useful insights.

In this paper, we develop a modern Bayesian model to sufficiently estimate a temporal

sequence of covariance matrices. In particular, we would like our model to be well-suited to

high-dimensional data, such as biology and finance. To address the dimensionality issue, at each

time point, we adopt the spiked principal components model (spiked PCA), which is studied

scrupulously in Johnstone (2001). Mathematically, we assume a low dimensional structure of

covariance matrices

Σt = UtΛtU
T
t + σ2

t I, (3.1)

where Ut is a p × r matrix, and Λt is an r × r diagonal matrix, and p � r. The leading

r factors that dominate the covariance matrix corresponds to the first r eigenvalues, and σ2
t

models the idiosyncratic variances for errors. This special structure preserves the importance of

dominant factors, while simultaneously models the idiosyncratic variances σ2
t . Meanwhile, our

model is motivated by the benefits of hierarchical modeling in Hoff (2009a), where the shrinkage

modeling on the eigenvectors was accomplished over the Stiefel manifold towards a grand pooled

target. To tailor the idea to the time series context, we extend the shrinkage to a fixed target to

an autoregressive process among the neighboring eigenvectors. This extension reduces the high

variance for high-dimensional data and captures the evolution in the eigenvectors. Moreover, to

further reduce the variability resulting from the scarcity of the data, we also propose a shrinkage

model over the eigenvalues to exert proper regularizations. The final full Bayesian model can be

efficiently inferred with Markov chain Monte Carlo algorithms via R and Stan.

Our model contributes to the community of Bayesian modeling in high-dimensional dynamic

covariance matrices as a general framework encompassing various specific models. Compared

with existing literature, which focus mostly on vector autoregressive processes, our approach sep-

arately models the dynamics of eigenvectors and eigenvalues. Our model allows unrelated priors

and separate parameters that prevents the introduction of correlation through prior knowledge

and model structure. The model is particular useful for problems where people want to discover

the relationship between eigenvectors and eigenvalues. For instance, in finance the eigenvectors

can be interpreted as a scaled version of the market beta, which characterizes the risk that an

asset is exposed to with respect to a well-diversed market portfolio. The eigenvalues describe

the variances of the latent factor that explain the cross-sectional correlations. In particular, the

first eigenvalue, which corresponds to the market factor, serves as a proxy for market volatil-
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ity. The discussion about the relationship between beta and volatility has been active in the

financial literature, and our model offers a distinct perspective in this topic. The details can be

found in the next chapter of this dissertation. Moreover, we are the first to propose a Bayesian

autoregressive model on the Stiefel manifold, which opens the door to a new set of time series

models on non-Euclidean space. Similar models were demonstrated in Chikuse (2006) and Yang

and Bauwens (2018). In Chikuse (2006), both the observation and the latent variables locate on

the Stiefel manifold, whereas in Yang and Bauwens (2018), only the latent variables stay on the

Stiefel manifold. Our work provides a Bayesian version for the dynamics. Insofar, our work is

the pioneer in weaving ideas from Stiefel manifold sampling, Bayesian autoregressive modeling

and time series modeling.

In Section 2 we expound the model definition in greater detail. Separate explanations will

be provided on how the eigenvector matrices and eigenvalues are manipulated with shrinkage

models. Section 3 is devoted for thoroughly dissecting the Markov chain Monte Carlo algorithm

for inferencing all the parameters and hyper-parameters. The comprehensive full posterior dis-

tribution is provided and full conditional distributions for different Gibbs sampling procedures

will be extracted. In Section 4 we run simulations to demonstrate the effectiveness and power

of the model in mitigating high-dimensional variabilities and improving the accuracy. Finally,

the model is applied to a real temperature dataset on the mean surface temperature change of

the domains from Food and Agriculture Organization of the United Nations (FAO). We aim to

discover the latent factors that influence the covariance of change of temperatures for different

areas, and investigate the dynamics of these factors over time.

3.2 Model Definition

In this paper we aim to address a high-dimensional dynamical covariance estimation problem.

There are T time points, and nt observations were collected at time point t. We would like to

estimate T corresponding covariance matrices simultaneously. Specifically, the nt observations

of dimension p are assumed to be independent and they are identically distributed. We model

the marginal distributions of the observations as multivariate normal distributions N(0p,Σt).

The mean-adjusted observations are denoted as y
(1)
t , y

(2)
t , ..., y

(nt)
t , and are stacked column-wise

to create the data matrix Yt at time t. As a result, Yt is a p × nt matrix with p � nt, and

St = YtY
T
t follows a possibly degenerate Wishart(Σt, nt) distribution with density

p(St|Σt, nt) ∝ l(Σt : St) = |Σt|−nt/2 etr(−Σ−1
t St/2), (3.2)
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where etr is the exponentiated trace.

At each time point, p � nt, hence the empirical covariance matrix fails to be a full rank

matrix. Thus, it is not an ideal candidate for estimating the true covariance matrix. Fortunately,

according to Udell and Townsend (2019), high-dimensional data often manifest a low rank struc-

ture and can be explained by a few significant factors. We thus posit a spiked covariance model,

which involves a low rank component representing the dominant factors, and a diagonal com-

ponent that models the idiosyncratic variances for the errors. The diagonal component bridges

the gap between the low rank structure and a full rank covariance matrix. Johnstone (2001),

Paul (2007) and Baik and Silverstein (2006) studies the theory of the asymptotics of the spiked

covariance model. Under this model, the covariance matrix at time point t can be represented

as

Yt = UtXt + εt, (3.3)

Xt ∼ N(0,Λt), (3.4)

Λt = diag({λ(1)
t , λ

(2)
t , · · · , λ(r)

t }). (3.5)

εt ∼ N(0, σ2
t Ip), (3.6)

Σt = UtΛtU
T
t + σ2

t Ip, (3.7)

Ut is a p by r orthogonal matrix denoting the leading r eigenvectors, and UTt Ut = Ir. Notice that

σt represents the common variance of the idiosyncratic factors, and {λ(1)
t +σ2

t , λ
(2)
t +σ2

t , · · · , λ
(r)
t +

σ2
t } represent the variances of the latent factors at time t. Meanwhile, Σt is fully determined by

three groups of parameters: {Ut}, {σ2
t }, {λ

(1)
t , λ

(2)
t , · · · , λ(r)

t }.

In fact, for the problem we are studying, we can assume that the eigenvectors and eigenvalues

evolve smoothly, and the high variations in the empirical estimates due mainly to the sampling

variabilities under the high-dimensional setup. In our model, we strive to exploit the similarities

amongst time points and combine information across the whole timeframe, and we propose

autoregressive time series models on eigenvectors and eigenvalues to achieve those ideas.

3.2.1 Time Series Modeling for Eigenvector Parameters

At each time point t, Ut is by definition an element on the Stiefel manifold Vp,r, which contains

all p × r semi-orthogonal matrices in Rp, such that UTt Ut = Ir. Columns of Ut reflects the

principal axes, and the directions are not identifiable since multiplying by −1 on any column

does not change the model in any sense. Since we are mainly interested in the axes rather than
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the directions, sign-agnostic distributions will be adopted. To translate the time series idea into

probability, we propose an autoregressive model on the sequence of eigenvector matrices with the

generalized Bingham distribution. Mathematically, the conditional distribution can be expressed

as

Ut|Ut−1, A,B ∼ c(A,B) etr(BUTt Ut−1AU
T
t−1Ut), (3.8)

A = diag({a1, a2, · · · , ar}), a1 ≥ a2 ≥ · · · ≥ ar > 0 (3.9)

B = diag({b1, b2, · · · , br}), b1 ≥ b2 ≥ · · · ≥ br > 0, (3.10)

where Ut−1 denotes the eigenvectors at time t− 1, and c(A,B) is the inverse of the normalizing

constant for the generalized Bingham distribution. Notice that the parameters A and B are

diagonal matrices shared across different time points, and they facilitate the alignment of the

columns of U ′ts.

The idea is analogous to Hoff (2009a), where the population of eigenvectors are modeled as

samples from a common distribution. Our model serves as a similar counterpart for time series

modeling. We briefly discuss the interpretations of A and B in the following, and leave more

interested readers to check out section 2 in Hoff (2009a). In general, consider two matrices U

and V in the Stiefel manifold Vp,r, and

U ∼ c(A,B) etr(BUTV AV TU), (3.11)

then

tr(BUTV AV TU) =

r∑
i=1

r∑
j=1

aibj(v
T
i uj)

2 =

r∑
j=1

bju
T
j

(
V AV T

)
uj . (3.12)

Based on the principle of maximum likelihood, when ai and bj are large, uj will be close to vi.

For instance, if a1 and b1 are larger than the rest, we would expect a1b1 to be large, hence u1

revolves around v1. One should also keep in mind the built-in orthogonality amongst u′is and

v′is. Therefore, when u1 is close to v1, other columns of U must be nearly perpendicular to v1.

Alternatively, ai = ai+1 implies vTi uj behaves the same in distribution as vTi+1uj , and bj = bj+1

implies that uj follows the same distribution as uj+1.

3.2.2 Modeling Principal Eigenvalues

Since there are only relatively few observations at each time point compared with the number of

features, the empirical eigenvalues tend to overestimate the truth, making them poor estimates of

the true eigenvalues. Moreover, evidence shows that the first several empirical eigenvalues can be
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volatile across time, which contradicts our assumption that the eigenvalues evolve smoothly. To

introduce smoothness into the model, we propose time series models to allow information sharing

across all time points. Possible choices involving traditional statistics, such as linear regression

models, autoregressive model AR(p), Gaussian processes models and non-parametric regression

models. Notice that there is no perfect solution in the choice of models. Simpler models are often

preferred for at least two reasons. First of all, the main purpose of the shrinkage model is to bring

the estimates closer, so as to avoid variabilities created by the high-dimensional issue. Flexible

models can easily overfit the data and concentrate on the empirical values, thus mitigates the

shrinkage effect. An overly flexible model, which might have a reduced bias, will inevitably add

high variance into the context, thus contaminate the estimated results.

In light of the above concerns on the selection of the shrinkage model, we hereby discuss

two convenient well-studied options: the constrained simple linear regression and the constrained

first-order autoregression. One should keep in mind that there might be better-suited alternatives

based on the problem structure and prior knowledge. It is encouraged to try a few different

alternatives before deciding on the one with the best interpretations for the underlying dataset.

In the following, we demonstrate the above model. Due to the positiveness of eigenvalues, the

parameters are constrained to the positive real line, which can be handled in Stan by setting the

lower bound to 0.

Constrained Simple Linear Regression

We propose a constrained simple linear regression using the time index as the explanatory vari-

able:

λ
(j)
t > 0,

λ
(j)
t = α(j) + β(j)t+ ε

(j)
t , ε

(j)
t ∼ N(0, τ (j)2).

where j ∈ {1, 2, ..., r}, representing the index of the principal eigenvalues, and t ∈ {1, 2, ..., T}

stands for the time index. This model is appropriate when the researchers postulate that the

variance of the factor evolves in a linear fashion, such as the variance of the concentration of

chemicals in a person’s body. In addition, we might put a prior on τ (j)2 to achieve smoother

estimates.
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Constrained First-order Autoregression

The constrained first-order autoregression is proposed as

λ
(j)
t > 0,

λ
(j)
t = c(j) + ϕ(j)λ

(j)
t−1 + ε

(j)
t , ε

(j)
t ∼ N(0, τ (j)2).

where j ∈ {1, 2, ..., r}, representing the index of the principal eigenvalues, and t ∈ {2, ..., T}

stands for the time index. This model is used to capture the situation where the variance of the

factor is believed to be dominated mostly by the one-step-ahead predecessor, such as the variance

of the factors that explain the financial returns, see Fama and French (1992) and Fama and French

(2015). In addition, we might alter the distribution of the error term εt to accommodate the

black swan events in the market.

An alternative approach is to model the eigenvalues in their logarithmic scales to avoid the

positive constraint. Here we show an example, and other models can be constructed similarly.

First-order Autoregression on Logarithmic Scale

The first-order autoregression on logarithmic scale is proposed as

log(λ
(j)
t ) = c(j) + ϕ(j) log(λ

(j)
t−1) + ε

(j)
t , ε

(j)
t ∼ N(0, τ (j)2).

The advantage is getting refrained from the constraint. However, biases on the logarithmic of

the eigenvalues would induce higher biases when they are transformed back to the original scale

via the exponential function.

3.2.3 Modeling the Idiosyncratic Variances

To satisfy the full-rank assumption of the covariance matrix, we have the diagonal part σ2
t I in

the model. For time point t, the common trailing eigenvalue is denoted by σ2
t . We choose not to

utilize information from other time points, as opposed to estimating the principal eigenvalues.

On one hand, there is sufficient information at time t to provide a good estimate of σ2
t . Evidences

show that the median of the trailing empirical eigenvalues serves as a satisfactory candidate. On

the other hand, we reserve this parameter for adjusting for the uniqueness for time point t.
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3.2.4 Model Summary

From the temporal perspective, the model can be summarized pictorially in Figure 3.1. For

the eigenvalues, here we take the general model for illustration purposes. Model summaries for

specific eigenvalue processes, such as the first-order autoregressive models or linear regressions,

can be constructed similarly.
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Figure 3.1: Model Summary

3.3 Model Inference

This section is devoted to the technical details about inferring the parameters. There are many

parameters and they can be grouped up as across-group and group-specific parameters. We

first derive the full posterior distribution and move on to the conditional distributions for the

Gibbs Sampling. The full Bayesian hierarchical model can be decomposed into four components
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depending on their functionalities, as shown in 3.2. The observations contribute to the likelihood,

which are products of normal distributions for all the observations at different time points. The

model parameters can be divided into two main groups, across-group and group-specific. Across-

group parameters involve the hyperparameters for the generalized Bingham distribution, as well

as the β’s and τ ’s for different eigenvalue sequences, assuming the first-order autoregressive

processes is adopted. The group-specific parameters at time point t contain the eigenvector

Ut, r principal eigenvalues λ
(1)
t , λ

(2)
t , · · · , λ(r)

t , and the trailing eigenvalue σ2
t . Standard priors or

conjugate priors are adopted to facilitate the inference process. Figure 3.2 shows the organization

of the model parameters.
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Figure 3.2: All Model Parameters

3.3.1 Derivation of Full Posterior Distribution

The centered marginal likelihoods are normal, y
(k)
t ∼ N(0,Σt) for k = 1, 2, · · · , nt. The full

likelihood for all the observations across all time points is

p(S1, ..., ST |Σ1, ...,ΣT , n1, ..., nT ) ∝
N∏
t=1

nt∏
k=1

f(y
(k)
t |Σt), (3.13)
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where f(y
(k)
t |Σt) represents the centered multivariate normal likelihood with covariance matrix

Σt. Furthermore, under the spiked covariance model assumption, the determinant and the inverse

of Σt can be expressed as:

|Σt| = det(Σt) = (σ2
t )p

r∏
j=1

λ
(j)
t + σ2

t

σ2
t

, (3.14)

and

Σ−1
t =

1

σ2
t

(
Ip − UtΩtUTt

)
, (3.15)

where Ωt is a diagonal matrix and w
(j)
t =

λ
(j)
t

λ
(j)
t +σ2

t

, j ∈ {1, 2, ..., r}.

Therefore, the full likelihood can be written explicitly in terms of the parameters as

p(S1, ..., ST |Σ1, ...,ΣT , n1, ..., nT ) ∝
T∏
t=1

(σ2
t )−

ntp
2 etr

(
1

2σ2
t

(UtΩtU
T
t − I)St

) r∏
j=1

(
σ2
t

λ
(j)
t + σ2

t

)nt
2

(3.16)

The priors, on the other hand, are induced by the autoregressive processes. The prior distribu-

tion for the eigenvectors is a sequence of generalized Bingham distributions characterizing the

evolution:
N∏
t=2

c(A,B) etr(BUTt Ut−1AU
T
t−1Ut). (3.17)

The priors for the eigenvalues depend on which eigenvalue model is adopted. For simpler models

such as linear regressions or first-order autoregressive models, the priors can be easily written as

r∏
j=1

T∏
t=2

1√
2πτ2(j)

exp

(
− (λ

(j)
t − β

(j)
0 − β(j)

1 t)2

2τ2(j)

)
. (3.18)

or
r∏
j=1

T∏
t=2

1√
2πτ2(j)

exp

(
−

(λ
(j)
t − β

(j)
0 − β(j)

1 λ
(j)
t−1)2

2τ2(j)

)
. (3.19)

As for the trailing eigenvalues, the family of inverse gamma distributions serves as good conjugate

priors. We eventually decide on the uninformative prior on the positive real line to avoid biases

when we are not equipped with enough domain knowledge.

Finally, the fixed priors on the across-group parameter are chosen at the discretion of the

modeler. Non-informative priors on corresponding domains are selected provided no possession

of prior knowledge.

The full posterior distribution is formulated via multiplying the full likelihood 3.16, priors on

the eigenvectors 3.17, priors on leading eigenvalues (3.18 or 3.19 or other models) and priors on

idiosyncratic variances, which is assumed to be non-informative, as well as all the fixed priors on
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the across-group parameters. The final result is too complicated to be classified as any standard

distribution and it would be extremely slow and troublesome to attempt working in the whole

parameter space. Therefore, we are going to apply the Gibbs sampling technique.

3.3.2 Markov Chain Monte Carlo Algorithm

Inference A and B

Since A and B are diagonal matrices, essentially we are inferring 2r parameters in total. They

can be done separately, subject to the order constraints. The full conditional distribution is

p(A,B|U ′ts) ∼
T∏
t=2

c(A,B) etr(BUTt Ut−1AU
T
t−1Ut). (3.20)

In order to estimate A and B, we need to find an adequate numerical approximation of c(A,B).

According to corollary 2.1 in Constantine and Muirhead (1976):

If R1 and S are k × k and m × m diagonal matrices respectively, k ≤ m, with unequal

elements ordered in descending order, then∫
V (k,m)

exp(tr(1/2)n R1H
T
1 SH1)(dH1)

∼ 2k exp

(
(1/2)n

k∑
i=1

risi

)
k∏
i<j

(
2π

ncij
)1/2

k∏
i=1

m∏
j=k+1

(
2π

ndij
)1/2,

where cij = (ri − rj)(si − sj) and dij = ri(si − sj) for i = 1, 2, · · · , k and j = k + 1, · · · ,m.

V (k,m) is the Stiefel manifold consisting of all m× k matrices H1 with orthonormal columns.

In the above corollary, we take n = 2,m = p, k = r,R1 = A, the first r diagonal elements of

S to be B, and the last p− r elements to 0. We obtain a good approximation of c(A,B) as

2−rπ
1
2 (

r(r+1)
2 −pr) exp

(
−

r∑
i=1

aibi

)
r∏
i<j

(ai − aj)1/2(bi − bj)1/2
r∏
i=1

(aibi)
p−r
2 . (3.21)

Notice that as parameters of a generalized Bingham distribution, A and B are non-identifiable

under some transformations. As mentioned in Hoff (2009a), the likelihood p(A,B|U ′is) behaves

the same as that with p(kA, 1
kB|U

′
is) for k > 0. Meanwhile, p(A+ cI,B+ dI|U ′is) gets a density

proportional to that with A and B, and that suggests only the differences amongst the diagonal

elements matter. Taking these properties into consideration, we reparametrize A and B as:

diag(A) = (a1, . . . , ar) =
√
w (α1, . . . , αr) (3.22)

diag(B) = (b1, . . . , br) =
√
w (β1, . . . , βr) , (3.23)
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where w > 0, 1 = α1 > α2 > · · · > αr−1 > αr > 0 and 1 = β1 > β2 > · · · > βr−1 > βr > 0. The

final expression using w, α′s and β′s can be coded into a Stan program, which can explore the

parameter space well.

Inference Parameters for the Eigenvalue Processes

Again, the full conditional distribution of the parameters underlying the eigenvalues model is not

fixed. And one has lots of flexibility to choose the desired shrinkage model. In case of a simple

linear regression model, the full conditional distribution is given by

p(β
(j)
0 , β

(j)
1 , τ2(j)

|Λ′ts) ∝
T∏
t=2

1√
2πτ2(j)

exp

(
− (λ

(j)
t − β

(j)
0 − β(j)

1 t)2

2τ2(j)

)
, (3.24)

and that for a first-order autoregressive model would be

p(β
(j)
0 , β

(j)
1 , τ2(j)

|Λ′ts) ∝
T∏
t=2

1√
2πτ2(j)

exp

(
−

(λ
(j)
t − β

(j)
0 − β(j)

1 λ
(j)
t−1)2

2τ2(j)

)
. (3.25)

To achieve shrinkage effects, we ought to put another shrinkage prior on τ2(j)

, the exact value of

the prior distribution depends on the scale of the problem as well. Meanwhile, if we postulate

that the eigenvalues should follow a stationary process we might also put a prior on β
(j)
1 and

restrict it to the range of (0, 1). Besides, there is no ordering issue as long as we keep the

correspondence between the factors (columns of U ′s) and their variances.

Inference Ut

The full conditional distribution of Ut varies, based on the location of Ut and the number of

neighbors it has. There are three cases, the first time point, the last time point, and any time

point in between.

1. U1.

It only has one neighbor, U2. The full conditional distribution is

p(U1|A,B,U2, U3, · · · , UT ) ∝ etr(BUT2 U1AU
T
1 U2) etr

(
1

2σ2
1

U1Ω1U
T
1 S1

)
(3.26)

2. Ut, t ∈ {2, · · · , T − 1}.

There are two neighbors: Ut−1 and Ut+1.

p(Ut|A,B,U1, · · · , Ut−1, Ut+1, · · · , UT ) ∝

etr(BUTt Ut−1AU
T
t−1Ut) etr(BUTt+1UtAU

T
t Ut+1) etr

(
1

2σ2
t

UtΩtU
T
t St

)
(3.27)
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3. UT .

It has only one neighbor, the second last time point UT−1.

p(UT |A,B,U1, U2, · · · , UT−1) ∝ etr(BUTT UT−1AU
T
T−1UT ) etr

(
1

2σ2
T

UTΩTU
T
T ST

)
(3.28)

After algebraic manipulations, they can be unified in the general format etr(AUTBU+CUTDU+

EUTFU), where A,C,E are diagonal matrices and B,D,F are p× p matrices.

The sampling on the Stiefel manifold is challenging and there are attempts from various as-

pects. Some basic techniques are the rejection sampling and the importance sampling, which are

only efficient for a special class of problems. In addition, Laplace approximation and variational

Bayes methods are designed in the spirit of replacing the target posterior distribution with a

computationally feasible alternative. Another prominent stream of thought, which is well-known

as Markov chain Monte Carlo (MCMC), is based on constructing a Markov chain with the tar-

get distribution as the stationary distribution. The Metropolis-Hastings algorithm and Gibbs

sampling both fall into this category. Recently, a sub-class of MCMC methods gains popularity

with their ability to propose long distance moves in the state space and high acceptance rates.

Being known as Hamiltonian Monte Carlo (Neal et al. (2011)), the method simulates Hamilto-

nian dynamics in an augmented parameter space and the projected trajectories are retained as

samples.

Hoff (2009b) discusses the Gibbs sampling algorithm for sampling from the matrix Bingham-

von Mises-Fisher distribution. Reparameterization was adopted to remove the built-in con-

straints of the Stiefel manifold. In most cases, we can use Gibbs sampling to sample the column

vectors iteratively, and special treatments need to be applied for the full rank case. Pourzanjani

et al. (2021) utilizes the idea of Givens representation to develop a nice algorithm in Stan. How-

ever, it takes great efforts to theoretically compute the change-of-measure term and it pays to

adjust to the topological difference between the transformed parameter space and the original

space. Moreover, Jauch et al. (2020b) developed a novel sampling scheme on the basis of the

Cayley transformation, and Nirwan and Bertschinger (2019) works on the Householder transfor-

mation. In this paper we are going to adopt the latest, and probably the best algorithm devised

by Jauch et al. (2020a), which reparametrizes the Stiefel manifold by unconstrained matrices of

the same dimension. For a matrix X ∈ Rp×k, its singular value decomposition is denoted as
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X = UDV T , let

QX = X(XTX)−1/2 = UV T ,

SX = XTX = V DTUTUDV T = V DTDV T ,

S
1/2
X = V DV T .

Then X = QXS
1/2
X and SX = S

1/2
X S

1/2
X , where QX is an orthogonal matrix while S

1/2
X is a

symmetric positive definite matrix. Analogous to the polar expansion z = reiφ for complex

numbers, S
1/2
X is the counterpart for r while QX is comparable to eiφ.

The advantage of introducing QX and Sx together is that now the mapping from a real, full

rank matrix X to the components (QX , SX) of its polar decomposition is one-to-one, and the

density fX can be derived as

fX(X) = fSX |QX
(SX |QX)fQX

(QX)× J(QX , SX ;X). (3.29)

In contrast with Cayley’s transformation and Givens representation, where it is expensive to

compute the Jacobian, J(QX , SX ;X) is a standard result shown in Chikuse (2012).

J (QX , SX ;X) =
Γk
(
p
2

)
π

pk
2

|SX |−
p−k−1

2 . (3.30)

This convenience makes this approach much more attractive than other competitors.

As indicated above, fQX
(QX) would be our target distribution fQ. Therefore, once the

conditional distribution of fSX |QX
is determined, we would have a corresponding density on

X. It is easily seen that there are various densities fX(X) that have the margin distribution

matching our desired distribution.

As a default choice, Jauch et al. (2020a) recommended fSX |QX
to be the density of the

Wishart distribution Wk(p, Ik) and it is independent of QX . With this choice, the density of the

distribution of X simplifies to

fX(X) =

(
1√
2π

)pk
etr(−XTX/2)fQ(QX). (3.31)

In particular, if we consider the problem of sampling uniformly from the Stiefel manifold,

fQ(QX) ∝ 1, then the density of X will be

fX(X) =

(
1√
2π

)pk
etr(−XTX/2). (3.32)

This density shows that all the entries of X are independent standard normal random vari-

ables. Notice that this is equivalent to the situation of sampling from the unit sphere. This

correspondence motivates the author to select the Wishart distribution as the default choice.
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Inference λ
(j)
t

Besides the specific model used for the eigenvalue processes, the posterior distribution also de-

pends on the location and the number of neighbors. Here we demonstrate using the first-order

autoregressive model, where j represents the index of the eigenvalues, and j ∈ {1, 2, · · · , r}.

1. λ
(j)
1 . It only has one neighbor, λ

(j)
2 . Hence the full conditional distribution is:

p(λ
(j)
1 |β

(j)
0 , β

(j)
1 , τ2(j)

, λ
(j)
2 , · · · , λ(j)

T ) ∝

exp

(
− (λ

(j)
2 − β

(j)
0 − β(j)

1 λ
(j)
1 )2

2τ2(j)

)
etr

(
1

2σ2
1

U1Ω1U
T
1 S1

)(
σ2

1

λ
(j)
1 + σ2

1

)n1
2

(3.33)

2. λ
(j)
t , t ∈ {2, · · · , T − 1}. Every element here has two neighbors.

p(λ
(j)
t |β

(j)
0 , β

(j)
1 , τ2(j)

, λ
(j)
1 , · · · , λ(j)

t−1, λ
(j)
t+1 · · ·λ

(j)
T ) ∝

exp

(
−

(λ
(j)
t − β

(j)
0 − β(j)

1 λ
(j)
t−1)2

2τ2(j)
−

(λ
(j)
t+1 − β

(j)
0 − β(j)

1 λ
(j)
t )2

2τ2(j)

)
etr

(
1

2σ2
t

UtΩtU
T
t St

)(
σ2
t

λ
(j)
t + σ2

i

)nt
2

(3.34)

3. λ
(j)
T . Its only neighbor is the second last time point.

p(λ
(j)
T |β

(j)
0 , β

(j)
1 , τ2(j)

, λ
(j)
1 , · · · , λ(j)

T−1) ∝

exp

(
−

(λ
(j)
T − β

(j)
0 − β(j)

1 λ
(j)
T−1)2

2τ2(j)

)
etr

(
1

2σ2
T

UTΩTU
T
T ST

)(
σ2
T

λ
(j)
N + σ2

T

)nT
2

(3.35)

These are complicated univariate distributions, from which we can use Stan programs to sample.

Notice that we need to constrain the λ
(j)
t ’s to the positive real line since they are parameters for

the eigenvalues.

Inference σ2
t

Without prior knowledge, we will put a non-informative uniform prior on [0,∞).

p(σ2
t |Ut, λ

(j)
t , St) ∝ (σ2

t )−
ntp
2 etr

(
1

2σ2
t

(UtΩtU
T
t − I)St

) r∏
j=1

(
σ2
t

λ
(j)
t + σ2

t

)nt
2

(3.36)

This is again a complicated univariate distribution, and we resort to Stan programs.
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3.3.3 Summary of Markov Chain Monte Carlo Algorithm

Initialization

The initial values of the parameters are assigned by the empirical values provided by the data.

In particular, at time point t, Ut takes the first r empirical eigenvectors and {λ(1)
t , λ

(2)
t , ..., λ

(r)
t }

take the leading r empirical eigenvalues, whereas σ2
t is initialized as the median of the p− r tail

eigenvalues. The initial values of the across-group hyper-parameters are assigned by running the

corresponding Gibbs sampling steps once with the initialized group-specific parameters.

Sampling Algorithm

Algorithm 4: MCMC Algorithm for Dynamic Covariance Estimation

Result: Samples of Ut’s, Λt’s, σ
2
t ’s, Σt’s.

Initialization: initialize Ut’s, Λt’s, σ
2
t ’s using empirical values;

for i in 1 : (Burn-in + Iterations) do
Update the across-group parameters:

1. Sample A,B with 3.21;

2. Update general parameters for the eigenvalue processes;

Update the group-specific parameters:

3. Update Ut with 3.26, 3.27 and 3.28;

4. Update {λ(1)
t , λ

(2)
t , ..., λ

(r)
t }

5. Update σ2
t with 3.36;

Save the samples for every 5 iterations;

end

3.4 Simulation Results

For the simulation results, we aim to show that our method is able to recover the correct parame-

ters when the data are indeed generated from the specified model, which includes the parameters

for the dynamic process on the Stiefel manifold, the eigenvectors, and the eigenvalues. The model

should work nicely when the eigenvalues are well-separated, which suggests that the eigenvectors

be clearly identified.

In the following simulation study, we consider a three-factor dynamic model in the 100

dimensional space, namely p = 100, r = 3. We assume that there are 30 time points for
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the temporal evolution process and there are twenty observations at each time point. The true

distribution that governs the first-order Markov dynamics on the Stiefel manifold is a generalized

Bingham distribution with A = B = diag({50, 20, 10}). For the eigenvalues, the truth comes

from stationary distributions of three first-order auto-regressive processes

λ
(j)
t = c(j) + ϕ(j)λ

(j)
t−1 + ε

(j)
t , ε

(j)
t ∼ N(0, (σ(j))2), j = 1, 2, 3.

The parameters for the auto-regressive processes are displayed in table 3.1. The MCMC algo-

c ϕ σ2

First Eigenvalue 100 0.7 10

Second Eigenvalue 50 0.7 5

Third Eigenvalue 10 0.7 2

Table 3.1: Parameters for the first-order autoregressive processes

rithm was conducted for 2000 iterations, with the first half as burn-in samples. In addition, the

Stan functions have a smaller burn-in period with 50 burn-in samples.

3.4.1 Smoothness between Eigenvectors over Time

Under this setup, the eigenvalues are well-separated apart, which means the directions of the

eigenvectors can be relatively unambiguously detected. To see how aligned the estimated samples

are across time, we consider the metric

x
(j)
t = |〈v(j)

t , v
(j)
t+1〉| (3.37)

for j ∈ {1, 2, 3} across t. x
(j)
t will be close to 1 if v

(j)
t and v

(j)
t+1 are aligned, and close to 0 if they

are almost orthogonal to each other, which is common in the high-dimensional space.
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Figure 3.3: First Eigenvector
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Figure 3.4: Second Eigenvector
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Figure 3.5: Third Eigenvector

Computing x
(j)
t for all the empirical estimates and posterior samples. The empirical values

are denoted by blue lines, while the true values are in red. For the Bayesian samples, we compute

the median of all the remaining samples and show them in green, together with a grey ribbon

characterizing the uncertainty using the 95% posterior interval. The first two eigenvectors are eas-

ily detectable since they correspond to larger eigenvalues. The magnitudes of A11, A22, B11, B22

also indicate dynamic processes where the sequential eigenvectors are more closely aligned. For
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the third eigenvector, its direction is slightly more difficult to decide, and the eigenvectors are

not as closely aligned as other eigenvectors. Nevertheless, we can observe that connecting them

via a dynamic process can effectively boost the performance, as the median of the estimates are

more closer to the truth than the raw principal component estimates.

To sum up, in all cases, the median estimates matches the truth much better in contrast to

the noisier empirical estimates, and the 95% posterior intervals recover the smoothness between

the nearby eigenvectors well. This demonstrates the effectiveness of our shrinkage approach in

utilizing the information across time points.

Notice that the method works more effectively when the eigenvalues are spaced out, and less

so when the eigenvalues are similar. In that case, the eigenvectors are not clearly identifiable,

hence the autoregressive model on the eigenvectors will produce results with high uncertainties.

3.4.2 Estimation of A and B

Next we want to check if the parameters for the generalized Bingham distribution are reasonably

recovered. This is not always achieved, especially when the diagonal values of A and B are not

spaced apart. However, we generally care more about how the smoothness of the eigenvectors

are recovered rather than the parameters themselves.

In figure 3.6, the density plots for the Bayesian samples of the diagonal elements of A and B

are shown. The thick vertical lines represent the true values of the respective diagonal elements,

which are close to the modes of the samples. Hence, under the situation where eigenvalues are

separated out, our method achieves satisfying results for recovering the smoothness parameters.
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Figure 3.6: Estimated Samples for A and B
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3.4.3 Estimation of Eigenvalues

The eigenvalues are estimated using shrinkage Bayesian first-order auto-regressive models. In-

tuitively, our estimates would be more smooth than the noisy empirical estimates, since the

variances of the noises possess shrinkage priors. The comparisons are demonstrated as below,

with the lines and ribbons carrying the same meanings as before. Again we can clearly observe

from Figure 3.7, 3.8 and 3.9 that the shrunk results provide smoother estimates which match

better with the true eigenvalues, regardless of the magnitudes. Hence our method successfully

utilizes information across time points to obtain more accurate results.
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Figure 3.7: First Eigenvalue
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Figure 3.8: Second Eigenvalue

20

30

40

50

60

0 10 20 30
Time Index

E
ig

en
va

lu
e

Empirical
Bayesian Median
True

Comparison of Estimates for the Third Eigenvalues

Figure 3.9: Third Eigenvalue

3.5 Example

Our dataset is retrieved from Kaggle, the famous website for data analysis and machine learning

competitions, with the link https://www.kaggle.com/sevgisarac/temperature-change. The

dataset describes the mean surface temperature change of the domains from Food and Agriculture

Organization of the United Nations (FAO). The changes were recorded by country and updated
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annually from 1961 to 2019. We take the monthly records and divide the data into time points of

five years, with the last time point having only four years. This is based on the assumption that

the factors that explain the temperature changes are moving slowly. As a result, most of the time

points have 60 observations. As for the countries, the original dataset consists of information

of 190 countries and 37 other territories. However, some regions have missing records and we

decide to remove them. In the end, 137 regions with full historical records are left for further

analysis.

The model focuses on estimating the covariance matrices of the residuals, therefore for

practical datasets, we need to first remove the mean levels. Let the raw data for time points

1, 2, ..., n be represented by Y1, Y2, ..., Yn, where each Yt is a p×nt matrix, and each column is an

observation of dimension p. For instance, one time point might contain observations for a whole

month and each column corresponds to one day. Our covariance model assumes that the means

of the variables are 0, so we can demean the raw observations by subtracting the row-wise means.

‘We remove the mean levels at each time point to make the data satisfy our model assumption.

The algorithm was implemented with 2000 iterations with the first half as burn-in samples. After

conducting exploratory data analysis on the empirical eigenvalues, we decided to fit a five factor

model.

Factor Interpretations

We visualize the factor loadings on the world map, trying to discover interpretations of these

five latent factors. Figure 3.10 shows that the first factor measures the contrast between most

European countries, especially the central European countries, and the Greenland and western

African countries. It contributes to the difference between the central European countries and

their neighbors, and is probably the ocean current for North Atlantic. The second factor, as

shown in Figure 3.11, shows the contrast between northern European countries and countries

around the Mediterranean Sea, such as southeastern European countries northern African ones.

Since it is well known that the countries around the Mediterranean Sea has little rain in the

summer and more in the winter, the factor driving this rainfall phenomenon is more likely

to be the second latent factor. Figure 3.12 stands more of northern European countries, as

well as Spain, Portugal, Morocco and Western Sahara. Hence the third factor could be the

latent factor driving the difference between cold Sweden and hot dessert in Western Sahara.

Furthermore, the fourth factor is characterized by the northern European countries, mideastern

countries, and Mongolia. This wide-spread range indicates that this factor might not relate to
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local geographical features, but some cultural or agricultural customs. Lastly, the fifth factor

stands for Mongolia mostly. More transparent factor interpretations can be consulted with

geographical and Meteorological experts.
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Figure 3.10: Loadings for the First Factor

Dynamic Factor Variances

For the factor variances, we adopt a shrinkage first-order autoregressive model. The results show

that there are no significant changes in the factor variances over time for the above-mentioned
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five factors, indicating that the factors fluctuated on a similar scale over time.

Dynamic Factor Loadings

We also consider the estimated dynamic factor loadings on different factors for the countries. No-

tice the signs of the eigenvectors are not identifiable, so we can only make sense of the magnitude

of the loadings and the relative sign for times series over 1961-2019. We fix the first eigenvector

for the first time point, and switch the sign of the latter eigenvectors if the inner product for

the nearby eigenvector is negative. Meanwhile, for each latent factor, we selectively visualize the

countries with larger average loadings, since they are more exposed to this factor. Figure 3.15

shows that most countries have stable loadings across time. In particular, these countries are

located in the European area, middle eastern and north Africa. The loadings of Albania and

Bulgaria tend to increase in magnitude, whereas that for Poland is decreasing in magnitude. This

indicates that Albania and Bulgaria are more affected by the factor, and Poland is less sensitive

to the first latent factor. Moreover, it is surprising that Greenland, which is the farthest north

of Europe, is negatively correlated with all other European countries, and positively correlated

with some middle eastern countries. Also notice that even though Greenland and the northern

European countries are geographically close, but they are the most negatively correlated regions

on the first latent factor.

In Figure 3.16, most countries also have stable loadings, with Romania and Austria having

decreasing loadings in scale across time, and Saudi Arabia increasing loadings. This means the

second latent factor is exerting more influence on the temperature change in the mid-eastern

countries, while less influence on some European countries.

In Figure 3.17, it is apparent that the loadings for Norway and Sweden are much larger

than the rest, and they are decreasing slightly in scale with time. The loadings for Afghanistan

and Western Sahara are dropping over time in magnitude and that for Turkey, Algeria, Poland,

Denmark are increasing. Compared with the above three figures, on the fourth and fifth factor,

the loadings are changing more severely. Figure 3.18 shows two changing patterns, concave

and convex. Concave pattern involves East Asian countries such as Japan, Hong Kong, Macao,

Taiwan and mainland China, whereas the convex pattern involves middle eastern countries like

Iraq, Kuwait, Saudi Arabia, Qatar, and United Arab Emirates, etc. This shows that the effect

of this factor is getting more significant in the East Asian countries, and losing its force in

the mideastern countries. Similar conclusion can be found for the last factor, with Mongolia,

Republic of Korea, and Democratic People’s Republic of Korea as the most highly influenced
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countries. We can see the dynamics for Iraq, Bahrain and Kuwait all decrease first until around

1992, and bounced back afterwards. Canada and Netherland follow another pattern, where the

loadings first went up, then down, and went up again. Meanwhile, Japan, Republic of Korea,

and Democratic People’s Republic of Korea all moved at similar paces, while it is also true for

Mainland China, Hong Kong, Macau and Taiwan. It is worth further investigation for these

similar patterns.

In summary, the dynamics for the factor loadings serve as another source to determine

the meanings of these latent factors. They also characterize how the influence of these factors

change over time on different countries. There are some similar changing pattern worth further

discussion and they also provoke more insightful questions about the way the loadings change

over time.

3.6 Discussions

The method proposed in this paper successfully achieves information sharing for the eigenvectors

and eigenvalues through autoregressive models. It works better when the eigenvalues are spaced

out, in which case the eigenvectors would be more identifiable. When the eigenvalues are similar

to each other, the directions are difficult to obtain, thus contaminates the autoregressive results.

The approach represents a class of models. Apart from the illustrated linear regression and first-

order autoregressive models, other models for the eigenvalues can be explored and incorporated

to add more models into this class. In addition, since the eigenvalues are strictly positive, we can

also propose the eigenvalue model on the logarithmic scale. As for the autoregressive model on

the Stiefel manifold, it can be extended by using alternative distributions, such as the Von-Mises

Fisher distribution or Watson distribution.

Our current model focuses on the centered observations and assumes the observations have

zero means. This is a simplified assumption, and it can be extended to incorporate the mean

information. Franks (2020) demonstrates the benefits of obtaining better covariance estimates by

incorporating the mean information. Future work can involve modeling jointly the mean levels

and the covariance matrices, and taking advantages of the correlation between the two. Similar

ideas can be found in Niu and Hoff (2019) and Pourahmadi (1999).
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3.7 Appendix

 0°

20°N

40°N

60°N

80°N

60°W 40°W 20°W  0° 20°E 40°E 60°E

−0.2

−0.1

0.0

0.1

loadings

Figure 3.11: Loadings for the Second Factor
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Figure 3.12: Loadings for the Third Factor
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Figure 3.13: Loadings for the Fourth Factor
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Figure 3.14: Loadings for the Fifth Factor
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Figure 3.15: Dynamic Loadings on the First Factor
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Figure 3.16: Dynamic Loadings on the Second Factor
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Figure 3.17: Dynamic Loadings on the Third Factor
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Figure 3.18: Dynamic Loadings on the Fourth Factor
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Figure 3.19: Dynamic Loadings on the Fifth Factor
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Chapter 4

Bayesian Covariance Modeling for

Financial Markets and its

Implications

4.1 Introduction

Variance-covariance matrices characterize the linear co-movements of every pair of assets in the

financial market. They are of great importance in understanding the financial markets, and serve

as an indispensable component in the famous Markowitz mean-variance optimization framework

for asset allocation. Since the market environment is constantly evolving over time, the port-

folio weights and risk measures need continuously updating. Therefore, accurate time-varying

covariances are essential inputs for many dynamic hedging and risk management models, such

as Harris et al. (2017) and Engle et al. (2019). When the number of assets under consideration

is large relative to the number of historical return observations, the sample covariance matrix is

singular and fails to be full rank. In addition, it is a biased and high variance estimator for the

true covariance matrix. To overcome this difficulty, various covariance estimation techniques for

high-dimensional inference have been proposed. Ledoit and Wolf (2004) provides a shrinkage es-

timator by a convex linear combination δF+(1−δ)S, where δ ∈ (0, 1), S is the sample covariance

matrix, and F a highly structured estimator. Aguilar and West (2000) assumes low rank factor

models, and utilizes the vector autoregression for the factor dynamics and stochastic volatil-
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ity. Engle (2002) introduces a new class of multivariate GARCH estimators, called dynamic

conditional correlation, that generalizes the constant conditional correlation model in Bollerslev

(1990). Time-varying covariance estimation for high-dimensional data remains an attractive and

challenging task for financial practitioners.

Let rf be the risk-free rate, rM be the return of the market portfolio, and rA be the return

of the target asset. The static capital asset pricing model (CAPM) states that the excess return

of an asset is proportional to that of the market portfolio. Mathematically,

E(rA − rf ) = βAE(rM − rf ). (4.1)

Beta measures the ratio of an asset’s excess return with respect to the excess return of the market

portfolio. Historically there have been discussions over the constancy of beta. Jensen et al. (1972)

established the standard CAPM based on the assumption that beta is constant over a period.

However, evidences against this fundamental assumption were discovered to demonstrate the

dynamic essence of market beta. In the 1970s, Blume (1971) showed that the betas across time

of a portfolio with a large number of securities, rather than the individual assets, were relatively

stationary. Blume (1975) further investigated the reasons behind. They use bivariate normal

distributions to model βit and βi,t+1, the true betas at time t and t + 1 for the ith asset. The

same assumption is applied to β̂it and βi,t+1, the estimated beta at time t and the true beta at

time t+ 1 for the ith asset. They concluded that it is due mainly to the real non-stationarities

in the betas of individual securities across time. On the other hand, Vasicek (1973) proposed

a Bayesian approach to find the posterior approximate normal distributions of the betas with

prior information.

With the accumulation of empirical evidences, people developed the consensus that static

betas do not suffice for explaining the cross-section of average returns on stocks. Jagannathan

and Wang (1996) discussed the conditional CAPM model as follows:

E[Rit|It−1] = γ0,t−1 + γ1,t−1βi,t−1, (4.2)

where βi,t−1 is the conditional beta of asset i defined as

βi,t−1 = Cov(Ri,t, Rm,t|It−1)/V ar(Rm,t|It−1). (4.3)

γ0,t−1 is the risk-free rate at time t− 1, γ1,t−1 is the conditional market risk premium and It−1

denotes the information that the investors possess at time t− 1 to make decisions. Ismaila and

Shakranib (2003) investigated evidences that support the dynamics of beta using Islamic unit

73



trusts data in Malaysia. Alternatively, Bali et al. (2017) writes the dynamic conditional beta as

E[Ri,t+1 − rf,t+1|It] = E[βi,t+1|It]E[Rm,t+1 − rf,t+1|It], (4.4)

and it further examines its significance in predicting the cross-sectional variation in stock returns.

They generated time-varying conditional betas for all stocks trading at NYSE, AMEX, and

NASDAQ, and conducted portfolio level analysis and firm-level cross-sectional regressions. The

findings confirms that there is a positive and significant link between the dynamic conditional

beta and future stock returns. Empirically, Horváth et al. (2020) studied the time-varying beta

in factor models in the Chinese market, while Šmı́dl and Quinn (2007) investigated and compared

the performance of static and time-varying beta of Fama-French five factor models in Indonesia

and Thailand.

Beta measures the risk that an asset is exposed to based on the market portfolio. The

dispersion of beta of p companies is defined as

d(β) =

√√√√1

p

p∑
i=1

(
βi
µ(β)

− 1

)2

, (4.5)

in Goldberg et al. (2018), where µ(β) = 1
p

∑p
i=1 βi. For a vector with equal entries, the dispersion

is 0. Therefore, dispersion can be viewed as a measure of how divergent the vector is from the

dispersionless vector of the same length. Lahtinen et al. (2018) constructed portfolios of stocks

with highly dispersed betas and low dispersion betas, and found that the former outperforms

the latter. In practice, the estimation process of beta under small samples will inevitably intro-

duce sampling bias, which boosts the beta dispersion, and this bias will distort the Markowitz

minimum variance portfolio, leading to extreme positions in the portfolio composition. To cor-

rect that, Goldberg et al. (2018) proposed an optimization-based approach, whereas Goldberg

et al. (2020) introduced the GPS adjustment that shrinks empirical beta estimates toward one.

Alternative methods for better estimates of beta remains an open question.

Volatility is another crucial measure characterizing the market behavior, it indicates how

much the stock market’s overall returns fluctuates up and down. Schwert (1989) discussed the

reasons why stock market volatility are changing in time. We are interested in the degree to

which the volatility vary in time. Furthermore, the relationship between volatility and beta

dispersion has aroused interests among researchers. Campbell and Lettau (1999) studied the

time series volatility of daily market returns and the dispersion on industry portfolios relative to

the market, and they found that the dispersion and volatility move together. Stivers (2003) found

a sizeable positive relation between firm return dispersion and future market-level volatility in
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U.S. monthly equity returns. Recently, Demirer et al. (2019) controled the state of the economy,

and conducted bivariate and multivariate nonlinear causality tests from equity return dispersion

to stock market volatility and excess returns. They concluded that both return dispersion and

business conditions are valid joint forecasters of stock market volatility and excess returns. The

relationship between volatility and dispersion has potential predictive power, and has become a

topic worth careful study.

In this paper, we provide a novel model to simultaneously investigate the above-mentioned

topics in the financial market. Our Bayesian covariance model is closely related to dynamic factor

models, for which there has been a vast amount of literature. Geweke (1977) proposed dynamic

factor models for modeling cross-sectional data, and Chow et al. (2011) constructs dynamic

factor models with vector autoregressive relations and time-varying cross-regression parameters

at the factor level. Recently, Forni et al. (2000) further generalizes the idea to factor models with

infinite dynamics and nonorthogonal idiosyncratic components. From the Bayesian perspective,

Aguilar and West (2000) develops the Bayesian MCMC algorithm for vector autoregression on

the factors and stochastic volatilities. Most of the dynamic factor models are based on vector

autoregressive processes due to its convenience. It is also well known that there is identifiability

issue since one can always multiply a constant for the factor variance and divide it from the

factor loadings. One way to constrain the model is by restricting the norm of the columns of

the factor loadings matrix to 1. Now if we adopt the common assumption that the factors

are uncorrelated, the factor loadings matrices become orthogonal matrices. In particular, our

spirit is the same as that in Franks and Hoff (2019), with a spiked covariance model at each

time point, and sharing information across groups. In terms of modeling the time series on the

factors, instead of the common practice with vector autoregressive processes, we consider the

eigenvector matrices as orthogonal matrices evolving on the Stiefel manifold, as mentioned in

3.10. For the stochastic volatilities, a two-stage transition model is proposed that accounts for

both the normal movements and outliers during more volatile periods.

In our approach, the estimated loadings for the first eigenvector provides a scaled version

of the market beta, and the estimated beta can be obtained by rescaling the loadings to have a

unit mean. The shrinkage effects achieved by borrowing neighboring information will mitigate

the high variation induced by the high-dimensional inference and reduce the bias. Moreover, the

model offers an intuitive geometric interpretation as a vector rotating over time. The dynamic

beta sequence for each individual asset and the beta dispersion can be explored accordingly.
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4.1.1 Contributions and Overview

To the best of our knowledge, the model proposed in this paper is the first attempt for Bayesian

modeling for time-varying covariance matrices on the Stiefel manifold. Other similar methods

including Chikuse (2006) and Yang and Bauwens (2018), which propose state space models

with latent variables evolving on the Stiefel manifold. We contribute to the literature of high-

dimensional covariance matrix estimation by introducing a full Bayesian autoregressive model on

orthogonal matrices, in addition to the common practice of vector autoregressions. Our method

offers deeper insights in how factors evolve over time as rotations of orthogonal matrices. The

shrinkage parameters are completely data-driven without human intervention, and the effects by

utilizing information from neighboring time points provide more reliable results compared with

the empirical results. More importantly, our approach separately models the dynamics of eigen-

vectors and eigenvalues, and allows unrelated priors and separate parameters that prevents the

introduction of correlation through prior knowledge and model structure. The model is particu-

lar useful for problems where people want to discover the relationship between eigenvectors and

eigenvalues, and this separation qualifies it a better candidate for investigating the relationships

between market volatility and beta dispersion.

In Section 2 we introduce the model and describe how to construct a time series model on

the Stiefel manifold. In Section 3 we describe the details about the Markov Chain Monte Carlo

algorithm and sampling procedures for the Gibbs steps. To make sure our model achieves reason-

able shrinkage results as expected, in Section 4 we construct a simulation example, for which the

model results are more smooth and closer to the underlying known truth. We further apply the

new approach on historical returns for S&P500 data in Section 5. We interpret the dynamics of

market beta for selected companies, and characterize the relationship between market volatility

and beta dispersions.

4.2 Model

In this paper we propose a novel method to address the high-dimensional time-varying covari-

ance estimation problem. Financial returns data for p assets is collected at T time points, with

nt observations at the tth time point. Our goal is to estimate the T corresponding covariance

matrices simultaneously. In practice, randomness in the returns can be considered as a result

of multiple accumulative effects from different sources. Hence we model the distributions of the
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returns as multivariate normal distributions. Probabilistically, for time point t, the nt observa-

tions are assumed to be independent and identically distributed following N(0p,Σt). We stack

the observations column-wise to create the p× nt data matrix Yt at time t, nt � p. Then

Yt ∼ N(0p×nt ,Σt ⊗ I), (4.6)

and St = YtY
T
t follows a possibly degenerate Wishart(Σt, nt) distribution with density

p(St|Σt, nt) ∝ l(Σt : St) = |Σt|−nt/2 etr(−Σ−1
t St/2), (4.7)

where etr is the exponentiated trace.

Since p� nt, the sample covariance matrix won’t be a good candidate since it is not a full

rank matrix. The main difficulty is that there are too many parameters (in the order of O(p2))

to be estimated with only a few observations. Fortunately, according to Udell and Townsend

(2019), high-dimensional data often manifest a low rank structure and can be explained by a

few significant factors. Therefore, it is beneficial to postulate a spiked covariance model, which

involves a low rank component representing the dominating factors, and a diagonal component

that models the uninfluential factors. The diagonal component bridges the gap between the low

rank structure and a full rank covariance matrix. Johnstone (2001), Paul (2007) and Baik and

Silverstein (2006) study the asymptotic theory of spiked covariance model in high dimensions.

In this paper, we develop a model for quarterly S&P500 data. In particular, we consider the

returns data from 1997 to the first quarter of 2021. Let Xt, Ut, Yt,Σt denote the latent factors,

the factor loadings, the returns data, and the covariance matrix respectively in the tth quarter

for t = 1, 2, · · · , 97. We assume the following spiked covariance model,

Yt = UtXt + εt, (4.8)

Xt ∼ N(0,Λt), (4.9)

Λt = diag({λ(1)
t , λ

(2)
t , · · · , λ(r)

t }). (4.10)

εt ∼ N(0, σ2
t Ip), (4.11)

Σt = UtΛtU
T
t + σ2

t Ip, (4.12)

where p is the number of stocks under consideration, and r the number of dominating factors

we want to model. As demonstrated by Fama and French (1992), we can adopt r = 3 in the

financial context. Ut is a p by r orthogonal matrix denoting the leading r eigenvectors, and

UTt Ut = Ir. Notice that σt represents the common variance of the idiosyncratic factors, and
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{λ(1)
t + σ2

t , λ
(2)
t + σ2

t , · · · , λ
(r)
t + σ2

t } represent the variances of the latent factors at time t. The

diagonal component σ2
t Ip is essential to turn the low rank estimator into a full rank matrix,

which is a fundamental property for covariance matrices. Meanwhile, Σt is fully determined by

three groups of parameters: {Ut}, {σ2
t }, {λ

(1)
t , λ

(2)
t , · · · , λ(r)

t }.

As mentioned above, the scarcity of data adds extra difficulty to the problem. In fact, it

is reasonable to assume that the eigenvectors and eigenvalues evolve smoothly, and the high

variations in the empirical estimates due mainly to the sampling variability. In order to improve

the estimates, we strive to exploit the similarities amongst the Σ′ts and propose a shrinkage

method to model eigenvectors and eigenvalues separately.

4.2.1 Autoregressive Prior for Eigenvectors

Each factor corresponds to a column vector in U ′s. Since we are considering a temporal prob-

lem with r dominating factors, it is natural to model the dynamics of the factors as r vector

sequences. Meanwhile, one should not overlook the fact that the factors are assumed to be uncor-

related with each other. A naive way is to model the r sequences separately and de-correlate the

estimates. However, this requires extra steps and involves order issues. Hence, instead of model-

ing them separately and post-process the samples, we propose a new approach that respects the

orthogonality amongst the factors in the model.

Importantly, we consider the stocks that have full records for 1997-2021, and there are

around 370 stocks after selection. Each time point is a quarter that contains 60-63 trading days.

Therefore, estimating Σt is essentially a high-dimensional problem where the number of observa-

tions is less than the dimension. Assuming the factors evolve smoothly and steadily with time,

each variable Ut won’t be largely different from its neighbors Ut−1 and Ut+1, provided they exist.

In light of this assumption, it would be beneficial to take advantage of the neighboring observa-

tions to obtain more accurate estimates for the current time point, and reduce the variabilities

associated with the parameters.

A bayesian autoregressive model on the Stiefel manifold would address both aspects simul-

taneously. Consider the orthogonal matrix Ut at each time point as a random variable on the

Stiefel manifold, UTt Ut = Ir. We propose an autoregressive prior on the sequence of eigenvector

matrices U ′ts, and Ut follows a Bingham distribution parameterized by Ut−1. Mathematically,
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the conditional distribution can be expressed as

Ut|Ut−1, A,B ∼ c(A,B) etr(BUTt Ut−1AU
T
t−1Ut),

A = diag({a1, a2, · · · , ar}), a1 ≥ a2 ≥ · · · ≥ ar > 0

B = diag({b1, b2, · · · , br}), b1 ≥ b2 ≥ · · · ≥ br > 0,

where c(A,B) is the inverse of the normalizing constant for the generalized Bingham distribution.

A and B are diagonal matrices shared across time points, and facilitate the alignment of the

columns of U ′ts.

The idea is analogous to Hoff (2009a), where the population of eigenvectors are modeled as

samples from a common distribution parametrized by shared parameters. Our model serves as

a similar counterpart for time series modeling. Here, we briefly discuss the interpretations of A

and B, and the details can be further found in Hoff (2009a). In general, consider two matrices

U and V in the Stiefel manifold Vp,r following the matrix Bingham distribution

U ∼ c(A,B) etr(BUTV AV TU), (4.13)

where U = [u1, u2, · · · , ur] and V = [v1, v2, · · · , vr]. Then

tr(BUTV AV TU) =

r∑
i=1

r∑
j=1

aibj(v
T
i uj)

2 =

r∑
j=1

bju
T
j

(
V AV T

)
uj . (4.14)

Based on the principle of maximum likelihood, when ai and bj are large, uj will be close to vi.

For instance, if a1 and b1 are larger than the rest, we would expect a1b1 to be large, and the

sample would be such that uT1 v1 is large, which means u1 staying close to v1. Since U and V both

have orthogonal columns, when u1 is close to v1, u2, u3, · · · , ur must be nearly perpendicular

to v1. Alternatively, ai = ai+1 implies vTi uj behaves the same in distribution as vTi+1uj , and

bj = bj+1 implies that uj follows the same distribution as uj+1.

4.2.2 Autoregressive Prior for Eigenvalues

Since there are only scarce observations at each time point compared with the number of fea-

tures, the empirical eigenvalues contain lots of noises, making them poor estimates of the true

eigenvalues. Moreover, evidences show that the first several empirical eigenvalues can be drasti-

cally volatile across time. To introduce smoothness into the model, we leverage volatility models

to allow information sharing across all time points. Some common choices involving traditional

statistics, such as linear regression models, Gaussian processes models and non-parametric re-

gression models, as well as the latest popular models, such as gradient tree boosting models and
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deep neural networks. Notice that there is no perfect solution in the choice of models. Nonethe-

less, simpler models are often preferred for at least two reasons. First of all, the main purpose of

the time series model is to bring the estimates closer, so as to reduce the common large sampling

variances in high dimensions. Flexible models can easily overfit the data and center around the

empirical values. Meanwhile, there are already quite many parameters to be estimated under the

current setup. An overly flexible model, especially if parametric, will inevitably add parameters

into the context, thus aggravate the scarcity of data and inject more uncertainty in the estimated

results.

In the financial market, it can be seen empirically that most of the time the volatility doesn’t

change much. However, Schwert (1989) analyzed data monthly stock returns data during 1857-

1987, and they found extreme high volatility during the Great Depression from 1929 to 1933.

Recently, we also had high volatilities during the tech bubble in 2002, the global financial crisis

in 2008, and the COVID-19 recession. In order to account for these two paradigms, we propose

an autoregressive model with mixture residuals. The mean for the next time point is a linear

function of the current value, with an innovation following a two-component Gaussian mixture

distribution. Mathematically,

λ
(j)
i = β

(j)
0 + β

(j)
1 λ

(j)
i−1 + ε

(j)
i , j = 1, 2, · · · , r (4.15)

ε
(j)
i ∼ π

(j)N(0, τ2(j)

S ) + (1− π(j))N(0, τ2(j)

L ). (4.16)

Here ε
(j)
i is assumed to be drawn from a low variance normal distribution (with a small standard

deviation τS) with probability π(j), and a high variance normal distribution (with a large standard

deviation τL) with probability 1− π(j). All the parameters β
(j)
0 , β

(j)
1 , π(j), τ2(j)

S , τ2(j)

L are inferred

from data with appropriate priors reflecting the empirical knowledge.

4.2.3 Modeling the Idiosyncratic Variance

To satisfy the full-rank assumption of the covariance matrix, we have the diagonal part σ2
t I in

the model. For time point t, the common trailing eigenvalue is denoted by σ2
t . We choose not to

utilize information from other time points, as opposed to estimating the principal eigenvalues.

On one hand, there is sufficient information at time t to provide a good estimate of σ2
t . Evidences

show that the median of the trailing empirical eigenvalues serves as a satisfactory candidate. On

the other hand, we reserve this parameter for adjusting for the uniqueness for time point t.
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4.2.4 Model Summary

From the time series perspective, the model can be summarized pictorially as follows.
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Figure 4.1: Model Summary

4.3 Bayesian Parameter Estimation

This section is devoted to the technical details about inferencing the parameters. There are many

parameters and they can be grouped up as across-group and group-specific parameters. We first

derive the full posterior distribution and move on to the conditional distributions for the Gibbs

Sampling. The full Bayesian hierarchical model can be decomposed into four components depend-

ing on their functionalities. The observations contribute to the likelihood, which are products

of normal distributions for all the observations at different time points. The model parameters

can be divided into two main groups, across-group and group-specific. Across-group parameters

involve the hyperparameters for the generalized Bingham distribution, as well as the β’s and τ ’s

for the first-order autoregressive processes for different eigenvalue sequences. The group-specific
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parameters at time point t contain the eigenvector Ut, r principal eigenvalues λ
(1)
t , λ

(2)
t , · · · , λ(r)

t ,

and the trailing eigenvalue σ2
t . Standard priors or conjugate priors are adopted to facilitate the

inference process. Figure 4.2 shows the organization of the model parameters.
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Figure 4.2: All the Model Parameters

4.3.1 Derivation of Full Posterior Distribution

The centered likelihoods for the observations are normal, y
(k)
t ∼ N(0,Σt) for k = 1, 2, · · · , nt.

The full likelihood for all the observations across all time points is

p(S1, ..., ST |Σ1, ...,ΣT , n1, ..., nT ) ∝
T∏
t=1

nt∏
k=1

f(y
(k)
i |Σi), (4.17)

where f(y
(k)
t |Σt) represents the centered multivariate normal likelihood with covariance matrix

Σt. Furthermore, under the spiked covariance model assumption, the determinant and the inverse

of Σt can be expressed as:

|Σt| = det(Σt) = (σ2
t )p

r∏
j=1

λ
(j)
t + σ2

t

σ2
t

, (4.18)

and

Σ−1
t =

1

σ2
t

(
Ip − UtΩtUTt

)
, (4.19)
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where Ωt is a diagonal matrix and w
(j)
t =

λ
(j)
t

λ
(j)
t +σ2

t

, j ∈ {1, 2, ..., r}.

Therefore, the full likelihood can be written explicitly in terms of the parameters as

p(S1, · · · , ST |Σ1, · · · ,ΣT , n1, · · · , nT ) ∝
T∏
i=1

(σ2
t )−

ntp
2 etr

(
1

2σ2
t

(UtΩtU
T
t − I)St

) r∏
j=1

(
σ2
t

λ
(j)
t + σ2

t

)nt
2

(4.20)

The priors, on the other hand, are constructed in an autoregressive fashion. The prior distribu-

tion for the eigenvectors is a sequence of generalized Bingham distributions characterizing the

evolution:
T∏
t=2

c(A,B) etr(BUTt Ut−1AU
T
t−1Ut). (4.21)

The priors for the eigenvalues in this application is formed by introducing the two-component

Gaussian mixture innovations:

λ
(j)
t − β

(j)
0 − β(j)

1 λ
(j)
t−1 ∼ π(j)N(0, τ2(j)

S ) + (1− π(j))N(0, τ2(j)

L ), j = 1, 2, · · · , r. (4.22)

As for the idiosyncratic variances, the family of inverse gamma distributions serves as good

conjugate priors. We eventually decide on the uninformative prior on the positive real line to

avoid biases when we are not equipped with enough domain knowledge.

Finally, the fixed priors on the across-group parameter are chosen at the discretion of the

modeler. Non-informative priors on corresponding domains are selected provided no possession

of prior knowledge.

The full posterior distribution is formulated via multiplying the full likelihood 4.20, priors

on the eigenvectors 4.21, priors on leading eigenvalues 4.22 and priors on idiosyncratic variances,

which is assumed to be non-informative in the current model, as well as all the fixed priors on

the across-group parameters. The final result is too complicated to be classified as any standard

distribution and it would be extremely slow and troublesome to attempt working in the whole

parameter space. Therefore, we are going to apply the Gibbs sampling technique.

4.3.2 Markov Chain Monte Carlo Algorithm

Inference for A and B

Since A and B are diagonal matrices, essentially we are inferencing r parameters each. They can

be done separately, subject to the order constraints. The full conditional distribution is

p(A,B|U ′is) ∼
N∏
i=2

c(A,B) etr(BUTi Ui−1AU
T
i−1Ui). (4.23)
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In order to estimate A and B, we need to find an adequate numerical approximation of c(A,B).

According to corollary 2.1 in Constantine and Muirhead (1976):

If R1 and S are k × k and m × m diagonal matrices respectively, k ≤ m, with unequal

elements ordered in descending order, then∫
V (k,m)

exp(tr(1/2)n R1H
T
1 SH1)(dH1)

∼ 2k exp

(
(1/2)n

k∑
i=1

risi

)
k∏
i<j

(
2π

ncij
)1/2

k∏
i=1

m∏
j=k+1

(
2π

ndij
)1/2,

where cij = (ri − rj)(si − sj) and dij = ri(si − sj) for i = 1, 2, · · · , k and j = k + 1, · · · ,m.

V (k,m) is the Stiefel manifold consisting of all m× k matrices H1 with orthonormal columns.

In the above corollary, we take n = 2,m = p, k = r,R1 = A, the first r diagonal elements of

S to be B, and the last p− r elements to 0. We obtain a good approximation of c(A,B) as

2−rπ
1
2 (

r(r+1)
2 −pr) exp

(
−

r∑
i=1

aibi

)
r∏
i<j

(ai − aj)1/2(bi − bj)1/2
r∏
i=1

(aibi)
p−r
2 . (4.24)

Notice that as parameters of a generalized Bingham distribution, A and B are non-identifiable

under some transformations. As mentioned in Hoff (2009a), the likelihood p(A,B|U ′is) behaves

the same as that with p(kA, 1
kB|U

′
is) for k > 0. Meanwhile, p(A+ cI,B+ dI|U ′is) gets a density

proportional to that with A and B, and that suggests only the differences amongst the diagonal

elements matter. Taking these properties into consideration, we reparametrize A and B as:

diag(A) = (a1, . . . , ar) =
√
w (α1, . . . , αr) (4.25)

diag(B) = (b1, . . . , br) =
√
w (β1, . . . , βr) , (4.26)

where w > 0, 1 = α1 > α2 > · · · > αr−1 > αr > 0 and 1 = β1 > β2 > · · · > βr−1 > βr > 0. The

final expression using w, α′s and β′s can be coded into a Stan program, which can explore the

parameter space well.

Inference for β
(j)
0 , β

(j)
1 , π(j), τ2(j)

S , τ2(j)

L

Since we have innovations following the Gaussian mixture distribution, it is difficult to explicitly

write out the full conditional distribution of the parameters underlying the eigenvalue model.

p(β
(j)
0 , β

(j)
1 , π(j), τ2(j)

S , τ2(j)

L |λ(j)
1 , · · · , λ(j)

T ) =

T∏
t=2

f(λ
(j)
t −β

(j)
0 −β

(j)
1 λ

(j)
t−1|β

(j)
0 , β

(j)
1 , π(j), τ2(j)

S , τ2(j)

L ),

(4.27)
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where f(x|β(j)
0 , β

(j)
1 , π(j), τ2(j)

S , τ2(j)

L ) denotes the likelihood of the two component Gaussian mix-

ture distribution. It is difficult to write out the likelihood. However, in Stan we can directly

display the model without interfering with the details.

Inference for Ut

The full conditional distribution of Ut varies, based on the location of Ut and the number of

neighbors it has. There are three cases, the first time point, the last time point, and any time

point in between.

1. U1.

It only has one neighbor, U2. The full conditional distribution is

p(U1|A,B,U2, U3, · · · , UT ) ∝ etr(BUT2 U1AU
T
1 U2) etr

(
1

2σ2
1

U1Ω1U
T
1 S1

)
(4.28)

2. Ut, t ∈ {2, · · · , T − 1}.

There are two neighbors: Ut−1 and Ut+1.

p(Ut|A,B,U1, · · · , Ut−1, Ut+1, · · · , UT ) ∝

etr(BUTt Ut−1AU
T
t−1Ut) etr(BUTt+1UtAU

T
t Ut+1) etr

(
1

2σ2
t

UtΩtU
T
t St

)
(4.29)

3. UT .

It has only one neighbor, the second last time point UT−1.

p(UT |A,B,U1, U2, · · · , UT−1) ∝ etr(BUTT UT−1AU
T
T−1UT ) etr

(
1

2σ2
T

UTΩTU
T
T ST

)
(4.30)

After algebraic manipulations, they can be unified in the general format etr(AUTBU+CUTDU+

EUTFU), where A,C,E are diagonal matrices and B,D,F are p× p matrices.

The sampling on the Stiefel manifold is challenging and there are attempts from various as-

pects. Some basic techniques are the rejection sampling and the importance sampling, which are

only efficient for a special class of problems. In addition, Laplace approximation and variational

Bayes methods are designed in the spirit of replacing the target posterior distribution with a

computationally feasible alternative. Another prominent stream of thought, which is well-known

as Markov chain Monte Carlo (MCMC), is based on constructing a Markov chain with the tar-

get distribution as the stationary distribution. The Metropolis-Hastings algorithm and Gibbs

sampling both fall into this category. Recently, a sub-class of MCMC methods gains popularity
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with their ability to propose long distance moves in the state space and high acceptance rates.

Being known as Hamiltonian Monte Carlo (Neal et al. (2011)), the method simulates Hamilto-

nian dynamics in an augmented parameter space and the projected trajectories are retained as

samples.

Hoff (2009b) discusses the Gibbs sampling algorithm for sampling from the matrix Bingham-

von Mises-Fisher distribution. Reparameterization was adopted to remove the built-in con-

straints of the Stiefel manifold. In most cases, we can use Gibbs sampling to sample the column

vectors iteratively, and special treatments need to be applied for the full rank case. Pourzanjani

et al. (2021) utilizes the idea of Givens representation to develop a nice algorithm in Stan. How-

ever, it takes great efforts to theoretically compute the change-of-measure term and it pays to

adjust to the topological difference between the transformed parameter space and the original

space. Moreover, Jauch et al. (2020b) developed a novel sampling scheme on the basis of the

Cayley transformation, and Nirwan and Bertschinger (2019) works on the Householder transfor-

mation. In this paper we are going to adopt the latest, and probably the best algorithm devised

by Jauch et al. (2020a), which reparametrizes the Stiefel manifold by unconstrained matrices of

the same dimension. For a matrix X ∈ Rp×k, its singular value decomposition is denoted as

X = UDV T , let

QX = X(XTX)−1/2 = UV T ,

SX = XTX = V DTUTUDV T = V DTDV T ,

S
1/2
X = V DV T .

Then X = QXS
1/2
X and SX = S

1/2
X S

1/2
X , where QX is an orthogonal matrix while S

1/2
X is a

symmetric positive definite matrix. Analogous to the polar expansion z = reiφ for complex

numbers, S
1/2
X is the counterpart for r while QX is comparable to eiφ.

The advantage of introducing QX and Sx together is that now the mapping from a real, full

rank matrix X to the components (QX , SX) of its polar decomposition is one-to-one, and the

density fX can be derived as

fX(X) = fSX |QX
(SX |QX)fQX

(QX)× J(QX , SX ;X). (4.31)

In contrast with Cayley’s transformation and Givens representation, where it is expensive to

compute the Jacobian, J(QX , SX ;X) is a standard result shown in Chikuse (2012).

J (QX , SX ;X) =
Γk
(
p
2

)
π

pk
2

|SX |−
p−k−1

2 . (4.32)
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This convenience makes this approach much more attractive than other competitors.

As indicated above, fQX
(QX) would be our target distribution fQ. Therefore, once the

conditional distribution of fSX |QX
is determined, we would have a corresponding density on

X. It is easily seen that there are various densities fX(X) that have the margin distribution

matching our desired distribution.

As a default choice, Jauch et al. (2020a) recommended fSX |QX
to be the density of the

Wishart distribution Wk(p, Ik) and it is independent of QX . With this choice, the density of the

distribution of X simplifies to

fX(X) =

(
1√
2π

)pk
etr(−XTX/2)fQ(QX). (4.33)

In particular, if we consider the problem of sampling uniformly from the Stiefel manifold,

fQ(QX) ∝ 1, then the density of X will be

fX(X) =

(
1√
2π

)pk
etr(−XTX/2). (4.34)

This density shows that all the entries of X are independent standard normal random vari-

ables. Notice that this is equivalent to the situation of sampling from the unit sphere. This

correspondence motivates the author to select the Wishart distribution as the default choice.

Inference for λ
(j)
t

Inferring λ
(j)
t considers the conditional distribution formed by the product of the likelihood,

together with 4.27. The sampling step is again handled by Stan.

Inference for σ2
t

Without prior knowledge, we will put a non-informative uniform prior on [0,∞).

p(σ2
t |Ut, λ

(j)
t , St) ∝ (σ2

t )−
ntp
2 etr

(
1

2σ2
t

(UtΩtU
T
t − I)St

) r∏
j=1

(
σ2
t

λ
(j)
t + σ2

t

)nt
2

(4.35)

This is again a complicated univariate distribution, and we resort to Stan programs.

4.3.3 Summary of Markov Chain Monte Carlo Algorithm

Initialization

The initial values of the parameters are assigned by the empirical values provided by the data.

In particular, at time point t, Ut takes the first r empirical eigenvectors and {λ(1)
t , λ

(2)
t , ..., λ

(r)
t }
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take the leading r empirical eigenvalues, whereas σ2
t is initialized as the median of the p− r tail

eigenvalues. The initial values of the across-group hyper-parameters are assigned by running the

corresponding Gibbs sampling steps once with the initialized group-specific parameters.

Sampling Algorithm

Algorithm 5: MCMC Algorithm for Dynamic Covariance Estimation

Result: Samples of Ut’s, Λt’s, σ
2
t ’s, Σt’s.

Initialization: initialize Ut’s, Λt’s, σ
2
t ’s using empirical values;

for i in 1 : (Burn-in + Iterations) do
Update the across-group parameters:

1. Sample A,B with 4.24;

2. Update β
(j)
0 , β

(j)
1 , π(j), τ2(j)

S , τ2(j)

L for j ∈ {1, 2, · · · , r}

Update the group-specific parameters:

3. Update Ut with 4.28, 4.29 and 4.30;

4. Update {λ(1)
t , λ

(2)
t , · · · , λ(r)

t } ;

5. Update σ2
t with 4.35;

Save the samples for every 5 iterations;

end

4.4 Simulation Results

For the simulation results, we aim to show that our method is able to recover the correct parame-

ters when the data are indeed generated from the specified model, which includes the parameters

governing the dynamic process on the Stiefel manifold, the eigenvectors, as well as the eigen-

values. In the following simulation study, we consider a three-factor dynamic model in the 100

dimensional space, namely p = 100, r = 3. We assume that there are T = 30 time points for the

temporal evolution process and nt = 20 observations at each time point. The true distribution

that governs the first-order Markov dynamics on the Stiefel manifold is a generalized Bingham

distribution with A = B = diag({50, 20, 10}). The eigenvalues are generated from stationary

distributions of three first-order auto-regressive processes, j = 1, 2, 3.

λ
(j)
t = c(j) + ϕ(j)λ

(j)
t−1 + ε

(j)
t , ε

(j)
t ∼ N(0, (σ(j))2),
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c ϕ σ2

First Eigenvalue 100 0.7 10

Second Eigenvalue 50 0.7 5

Third Eigenvalue 10 0.7 2

Table 4.1: Parameters for the first-order autoregressive processes

The parameters for the auto-regressive processes are displayed in table 4.1. The MCMC algo-

rithm was conducted for 2000 iterations, with the first half as burn-in samples. In addition, the

Stan functions have a smaller burn-in period with 50 burn-in samples.

4.4.1 Smoothness between Eigenvectors over Time

Under this setup, the eigenvalues are well-separated, which means the directions of the eigenvec-

tors are well identified. To see how aligned the estimated samples are across time, we consider

the metric

x
(j)
t = |〈v(j)

t , v
(j)
t+1〉| (4.36)

for j = 1, 2, 3 across t. x
(j)
t will be close to 1 if v

(j)
t and v

(j)
t+1 are aligned, and close to 0 if they

are almost orthogonal to each other, which is common in the high-dimensional space.
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Figure 4.3: First Eigenvector
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Figure 4.4: Second Eigenvector
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Figure 4.5: Third Eigenvector

The results are displayed in Figure 4.3, 4.4 and 4.5. Computing x
(j)
t for all the empirical

estimates and posterior samples. The empirical values are denoted by blue lines, while the true

values are in red. For the Bayesian samples, we compute the median of all the remaining samples

and show them in green, together with a grey ribbon characterizing the uncertainty using the

95% posterior interval. The first two eigenvectors are easily detectable since they correspond to

larger eigenvalues. The magnitudes of A11, A22, B11, B22 also indicate dynamic processes where
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the sequential eigenvectors are more closely aligned. For the third eigenvector, its direction is

slightly more difficult to identify, and the eigenvectors are not as closely aligned. Nevertheless, we

can observe that connecting them via a dynamic process can effectively boost the performance,

as the median of the estimates are more closer to the truth than the raw principal component

estimates.

To sum up, in all cases, the median estimates matches the truth much better in contrast to

the noisier empirical estimates, and the 95% posterior intervals recover the smoothness between

the nearby eigenvectors well. This demonstrates the effectiveness of our shrinkage approach in

utilizing the information across time points.

Notice that the method works more effectively when the eigenvalues are spaced out, and less

so when the eigenvalues are similar. In that case, the eigenvectors are not clearly identifiable,

hence the autoregressive model on the eigenvectors will produce results with high uncertainties.

4.4.2 Estimation of A and B

Next we want to check if the parameters for the generalized Bingham distribution are reasonably

recovered. This is not always achieved, especially when the diagonal values of A and B are not

spaced apart. However, we generally care more about how the smoothness of the eigenvectors

are recovered rather than the parameters themselves.

In figure 4.6, the density plots for the Bayesian samples of the diagonal elements of A and B

are shown. The thick vertical lines represent the true values of the respective diagonal elements,

which are close to the modes of the samples. Hence, under the situation where eigenvalues are

well spaced, our method achieves satisfying results for recovering the smoothness parameters.
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Figure 4.6: Estimated Samples for A and B
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4.4.3 Estimation of Eigenvalues

The eigenvalues are estimated using shrinkage Bayesian first-order auto-regressive models. In-

tuitively, our estimates would be more smooth than the noisy empirical estimates, since the

variances of the noises possess shrinkage priors. The comparisons are demonstrated as below,

with the lines and ribbons carrying the same meanings as before. Again we can clearly observe

from Figure 4.7, 4.8 and 4.9 that the shrunk results provide smoother estimates which match

better with the true eigenvalues, regardless of the magnitudes. Hence our method successfully

utilizes information across time points to obtain more accurate results.
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Figure 4.7: First Eigenvalue
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Figure 4.8: Second Eigenvalue
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Figure 4.9: Third Eigenvalue

4.4.4 Comparison with Alternative Approaches

Our method automatically infers the smoothness of the eigenvectors. This contrasts with more

naive window smoothing techniques by selecting a window that covers ti, and utilizing all the

data in the window to compute the eigenvectors at time ti. The problem then becomes choosing

the optimal window size, which we will characterize using radius. For radius equals to d, the

window for ti would be time points {ti − d, ti − d+ 1, ..., ti, ..., ti + d− 1, ti + d}.
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In the following, we compare the naive approach with different window sizes, the Bayesian

estimates, and the pooled estimate using only observations at ti. The quantity being examined

is the dispersion of the first eigenvector, as defined later in equation 4.5. It is a metric measuring

how the eigenvector differs from the direction represented by the vector with all equal elements.

The dispersion can be extreme in high dimensions, thus we analyze the logarithm of it instead.

From figure 4.10, it is clear that pooling all the data fails to capture the high dispersions

in the starting period. For different radiuses, the estimates stablize as the radius increases since

more and more data are utilized for estimation for that time point, with pooling as the extreme

case. However, it is uncertain which integer radius, or fractional radius should be adopted

in practice when no prior knowledge is provided. The Bayesian approach, on the other hand,

provides an automatic implicit determination of optimal radius by sharing the information across

all time points. From the plot we can clearly see that our method matches the truth pretty well,

showing the possibility of a data-driven approach to automatically detect the smoothness without

human intervention.
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Figure 4.10: Comparisons for Recovery of Dispersion

4.5 Results on S&P500 Returns Data
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4.5.1 Estimated Dynamic Betas over Time

In order to obtain the estimated betas from the factor loadings on the first eigenvector, we

normalize the loadings to have a unit mean. The following figures show the estimated betas for

selected companies. We choose four companies from different industries, Cisco Systems Inc. for

technology, Bank of America Corp for finance, Nike Inc. for sports, and Air Products & Chemicals

for chemicals. Firstly, it is clear that the Bayesian median estimates are much smoother than the

empirical counterparts, and the Bayesian 95% posterior interval, indicated by the gray ribbon,

provides quantification for model uncertainties. Moreover, the dynamics of betas admit clear

and reasonable interpretations. For Cisco Systems in Figure 4.11, beta was more volatile during

the technology bubble between 2000 and 2002, and it stabilizes afterwards until 2018. This

happens since it belongs to the technology industry, which was impacted significantly during the

tech-bubble. On the other hand, Bank of America achieved high betas in 2009 and 2012. Figure

4.12 shows the peak in 2009, which was definitely impacted by the 2008 global financial crisis,

and the peak in 2012 was influenced by the European crisis. In contrast, Nike Inc. belongs to

the sports industry, which is less affected by the crises. The same applies to Air Products &

Chemicals, which falls in the categories of industrial gases and chemicals. Figure 4.13 and 4.14

confirm the intuition, and the corresponding betas were quite stable around 1 from 1997 to 2021.
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Figure 4.11: Cisco Systems Inc.
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Figure 4.12: Bank of America Corp

0

1

2

3

4

19
96

−
01

19
97

−
01

19
98

−
01

19
99

−
01

20
00

−
01

20
01

−
01

20
02

−
01

20
03

−
01

20
04

−
01

20
05

−
01

20
06

−
01

20
07

−
01

20
08

−
01

20
09

−
01

20
10

−
01

20
11

−
01

20
12

−
01

20
13

−
01

20
14

−
01

20
15

−
01

20
16

−
01

20
17

−
01

20
18

−
01

20
19

−
01

20
20

−
01

20
21

−
01

20
22

−
01

Date

B
et

a

Bayes Median Empirical

Estimated Beta Sequence for NKE

Figure 4.13: Nike Inc.
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Figure 4.14: Air Products & Chemicals

4.5.2 Volatility Measures

The first dominant latent factor is well-known as the market factor. Since market volatility indi-

cates how fluctuating the market moves as a whole, the variance of the well-diversified portfolio

serves as a proxy. Therefore, the estimated eigenvalues serve as a good representation of the

market volatility. Notice that for our model, the estimated first eigenvalues are λ
(1)
t + σ2

t . In

figure 4.15, we construct a comparison between the Bayesian results and the empirical estimates.

The shaded ribbon represents the Bayesian 95% posterior interval, and it covers the empirical
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estimates well. The Bayesian median, represented by the red line, is comparable to or lower

than the empirical volatilities, especially in high volatility periods. The results demonstrate the

ability of our two-component Gaussian mixture model for explaining the mechanism of volatility

change.

Figure 4.15: Estimated Volatility Time Series

4.5.3 Dispersion

In Figure 4.16, we can see clearly our autoregressive model smooths out the high variabilities

in the first eigenvectors and encourages homogeneity. The empirical values contain more noises

and are more deviating from the neighbors, whereas our Bayesian results pull the dispersions

together. Based on the above simulation results, we believe that our model provides more

accurate estimates compared with the empirical values.

We conclude that the dispersion is changing over time, regardless of the sampling variabili-

ties. In particular, it was high during the technology bubble around 2001-2002, and it gradually

faded away until 2009, when it slightly increased and then keep decreasing. The dispersion

started to climb up last year due to the COVID19 crisis. Beta dispersion will increase when the

betas for different companies differ much from each other. A good example was the technology

bubble, where the technological companies were heavily affected, while other sectors were less

influenced. In 2008, the whole market was shocked, and most companies suffered the crisis. In
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that case, the companies were affected more evenly and the betas were moving together. Hence

we only observe slight increase in the beta dispersion. It is worth noting that the dispersion

started to climb up last year, indicating that COVID-19 crisis struck companies differently. It

remains an interesting problem to investigate the beta influence of COVID-19 among different

companies.

Figure 4.16: Dispersion Time Series

4.5.4 Relationship between Dispersion and Volatility

The volatility measures how volatile the market fluctuates and the dispersion characterizes how

different the stocks respond to the market risk. In Figure 4.17, we overlay the estimated time

series of dispersion and volatility to discover their relationship. In 2001, the dispersion increased

significantly, whereas the volatility stabilized at a low level. However, during 2008-2010, the

volatility climbed up to the highest level, when the dispersion went up slightly after the peak in

volatility. In comparison, the dispersion dropped while the volatility went up again in 2020 at the

same time. From the above three situations, they can move in the same direction, opposite direc-

tions, or one is move while the other is stiff. Therefore, the relationship between the dispersion

and volatility is complicated, and might depend on some underlying market mechanism.
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Figure 4.17: Bayes Time Series Plot for Volatility and Dispersion

Now we consider the problem from another perspective. Figure 4.18 was constructed by

considering the 90% posterior ellipsis for the logarithmic values of volatility and dispersion at

each year. The evolution of the circle with respect to time is of great interest. From 1997-2001,

the circle moves towards the direction in which both volatility and dispersion increase. After

that, the market was in a regime with low dispersion and volatility from 2004 to 2007, until

things changed tremendously in 2008. In 2008 and 2009, the circles became flat ovals, indicating

large uncertainties in volatilities. Interestingly, from 2010 to 2019, the market went back to a

similar low-volatility low-dispersion regime. The biggest uncertainty was shown in the year 2020,

when volatility and dispersion moved in the opposite directions. It is worth mentioning that the

year 2021 returns to a similar level as 1997. In total, there is no obvious relationship found

between the volatility and dispersion. However, the transition in Figure 4.18 does shed light on

some patterns on the market conditions over time.
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Figure 4.18: Posterior Ellipses for Volatility and Dispersion

4.6 Discussions

In this paper, we were motivated by the relationship between dispersion and volatility in the

financial market, and we propose a Bayesian autoregressive model for dynamic covariance esti-

mation that separately models the eigenvalues and eigenvectors. The model considers dynamics

of the eigenvectors on the Stiefel manifold, which generalizes the notion of vector rotation to the

dynamics of axes, and opens the door to various time series models in the lens of orthogonal

matrices. One possible future work is to conduct the one-step forward prediction on the factor

loadings. The model can also be applied on incomplete data and provide interpolative results.

For illiquid assets such as bonds, whose data is not available for all time points, it is beneficial

to get reliable interpolative results for the time points without data. Meanwhile, the model can

be easily extended by replacing the distribution on the Stiefel manifold to Matrix Langevin dis-

tributions or Watson distributions. We can also switch to other methods for modeling stochastic

volatility, such as Gaussian processes or deep neural networks.
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Finally, we can also consider exploring the second and third factors and their loadings,

even though there might be more uncertainties. It is encouraged to try data with different

granularities to further explore the relationships between important financial concepts under

different timeframes. Furthermore, the model can be applied to other datasets such as climate

data and biological data, and is expected to discover deeper insights in those fields.
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