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On adhesive and buckling instabilities in the mechanics of carbon

nanotubes bundles

Xuance Zhoua, Oliver M. O’Reillya,

aDepartment of Mechanical Engineering, University of California at Berkeley, Berkeley CA 94720-1740, USA. Tel.:

+510-642-0877, Fax: +510-643-5599.

Abstract

Many recently synthesized materials feature aligned arrays or bundles of carbon nanotubes

(CNTs) whose mechanical properties are partially determined by the van der Waals interactions

between adjacent tubes. Of particular interest in this paper are instances where the resulting in-

teraction between a pair of CNTs often produces a fork-like structure. The mechanical properties

of this structure are noticeably different from those for isolated individual CNTs. In particular,

while one anticipates buckling phenomena in the forked structure, an adhesion instability may

also be present. New criteria for buckling and adhesion instabilities in fork-like structures are

presented in this paper. The criteria are illuminated with a bifurcation analyses of the response

of the fork-like structure to applied compressive and shear loadings.

Keywords: Carbon nanotubes, Adhesion, van der Waals interactions, Rod theory, Stability,

Bifurcation, Variation, Optimization, Buckling

1. Introduction

Carbon nanotubes (CNTs), due to their high Young’s modulus, low density [1], and unique

opto-electrical properties [2], show great promise for applications such as thermal switches [3],

nano-scale sensors [4], hard disks [5], and flat panel displays [6]. Concomitant research on the

mechanical properties of a single CNT include a range of modeling and simulation works ranging

from atomic [7, 8], to continuum [9, 10] and multi-scale [11]. One of the challenges in modeling

CNTs is to incorporate the effects of van der Waals interactions between the CNTs. This inter-

action contributes to the complex, intertwined structure of curved CNTs. Understanding these

interactions and how they effect the macroscopic mechanical properties and the buckling strength

of the resulting arrays is of great interest (see, e.g., [12, 13, 14, 15]).

While the majority of research focuses on the strength and buckling of a single CNT [16, 17,

18] and bundles of nanotubes [13], in this paper we examine the interplay between van der Waals

interactions among CNTs and classical buckling instabilities. Among our main results, we show

how adhesion can produce a fork-like structure featuring a pair of CNTs and how this structure

has both an improved resistance to buckling under compressive loading and an increased stiffness

to shear loading compared to a single CNT. We also demonstrate an instability of the fork-like

structure to perturbations in the adhered length (see Figure 2). Such an instability leads to fracture

and a pair of isolated CNTs.

The paper is organized as follows: In the next section, Section 2, a model for the CNT pair

shown in Figure 2 is established using rod theory, and the corresponding governing equations

Accepted for publication in ASME Journal of Applied Mechanics June 29, 2015
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Figure 1: (a) TEM image of carbon nanotubes grown by chemical vapor deposition. (b) Illustration of carbon nanotubes

adhered by van der Waals interactions and kinked carbon nanotubes.

for the forked configuration shown in Figure 3 are derived using variational principles. With

the help of developments in [19, 20, 21, 22], we then establish nonlinear stability criteria for

the forked CNT structure. In Section 3, numerical integrations of the equations governing the

static configuration of the forked structure are analyzed. Our analysis demonstrates the interplay

between base separation, adhesion, and terminal loading on the deformed shape of the fork-like

CNT structure. Furthermore, a comprehensive investigation on the stability and bifurcations

of this structure in Sections 4 and 5 leads us to appreciate the van der Waals interactions on a

deeper depth. With a view towards establish design guidelines for arrays of CNTs, we conclude

the paper with a discussion of the forked structure’s mechanical properties in Section 6.

2. A Simple Model of an Adhered CNT Pair

To establish a feasible model for the structure shown in Figure 3 and the length scales of

interest, we model each nanotube as an inextensible, flexible elastic rod which is anchored to a

substrate at one end while the other end is free to adhere to the adjacent tube. The rod theory

we use is classical and employed by Euler in his examination of the elastica [23, Ch. XIX ]. The

discussion in Love’s classic text [23] is supplemented by material on branching, adhesion and

material momentum from recent works (see [19, 22, 24, 25] and references therein). Referring

to Figure 4, the centerline of the rod is parameterized by an arc-length coordinate s ∈ [0, ℓ] and

the position of a point on the centerline is denoted by the vector-valued function r(s). The rod

is assumed to be uniform of length ℓ with a flexural rigidity EI, mass per unit length ρ, and an

adhesion energy per unit length Wad when two rods are in contact with each other.
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Figure 2: Bifurcation diagram showing the deviation of the tips of the CNT pair loaded under self-weight and a terminal

load Fℓ . The corresponding results for a pair of unadhered CNTs are also shown. (a) The height h of the tips when

Fℓ = −2NE2 and N varies from 0 to 12ρgℓ. (b) The tangential displacement d of the tips when Fℓ = 2TE1 and

T varies from 0 to ρgℓ. For the results shown, D = 1, ω = 1, and b
ℓ
= 0.1. The labels s and u indicate stability

and instability, respectively. The forces Nc and Ts are the critical normal and tangential critical loads for the forked

structure, respectively, while Ns is the critical normal buckling load for a single CNT.

2.1. Background

The position vector of the material point at s = s1 on the centerline of the rod has the

representation

r (s = s1) = X (s = s1) E1 + Y (s = s1) E2, (1)

where the Cartesian coordinates X and Y can be defined in the standard manner:

X (s = s1) = X (s = 0) +

∫ s1

0

cos(θ(ξ))dξ ,

Y (s = s1) = Y (s = 0) +

∫ s1

0

sin(θ(ξ))dξ . (2)

In (2), the angle θ is defined as the angle that the unit tangent vector r′ makes with the horizontal

(E1) direction:

r′ = cos(θ(s))E1 + sin(θ(s))E2. (3)

Here, the prime denotes the partial derivative with respect to s. We adopt the standard assumption

that r is continuous (i.e., there are no breaks in the rod). As a result, θ and r′ will also be

continuous functions of s (i.e., there are no kinks in the rod).

The jump in an arbitrary function χ = χ (s, θ(s), θ′(s)) at the point s = ζ is represented using

a compact notation:
[[

χ
]]

ζ = χ
+ − χ−, (4)
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Figure 3: Illustration of a forked structure consisting of a CNT pair. The model is based on Figure 1 and features a

separation width of b at the base and an upper portion where the individual CNTs adhere to each other with the help of

weak van der Waals interactions. We encourage the reader to note the top view of the CNT pair which is denoted by “A”.

where

χ− = χ(ζ−) = lim
sրζ
χ
(

s, θ(s), θ′(s)
)

, χ+ = χ(ζ+) = lim
sցζ
χ
(

s, θ(s), θ′(s)
)

. (5)

Throughout the paper, jumps in fields will be associated with points of application of forces,

moments, and energies at discrete points along the rod.

The bending moment m and contact material force C in the rod are prescribed by well-known

constitutive relations:

m = EIθ′E3, C =
EI

2

(

θ′
)2
− n · r′ −m · θ′E3, (6)

where, assuming inner ri and outer r0 radii of the tube,

EI = E
π

2

(

r4
o − r4

i

)

(7)

is the flexural rigidity and n is the contact force in the rod. In addition to a gravitational force

−ρgE2 per unit length and terminal loads acting at the ends of the rod, we also need to allow for

the possibility of a singular force Fγ, a singular moment Mγ and a singular supply of material

momentum Bγ acting at s = γ (cf. Figure 4). The latter supply will be related to the adhesion

energy Wad. The governing equations for the rod are obtained from balances of material, linear
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Figure 4: Schematic representation of an elastica of length ℓ showing the position r of a point on the centerline. The rod

is subject to a terminal force F0 and terminal moment M0 at s = 0, a terminal force Fℓ and terminal moment Mℓ at the

end s = ℓ, and a force Fγ, material momentum supply Bγ , and moment Mγ at the point s = γ.

and angular momenta in a standard manner:1

n′ − ρgE2 = 0,

d

ds

(

EIθ′
)

+ n2 cos(θ) − n1 sin(θ) = 0,

[[C]]γ + Bγ = 0,

[[n]]γ + Fγ = 0,

[[m]]γ +Mγ = 0. (8)

In the second of these balances, the contact force n has the representation n = n1E1 + n2E2.

We are now in a position to develop a model consisting of three distinct rod sections con-

nected by boundary conditions. For the first rod section, which is shown in Figure 5(b), the

arc-length parameter s1 ∈ [0, γ) while for the second rod section, which is shown in Figure 5(d),

s2 ∈ [0, γ). The third section, which is shown in Figure 5(c), corresponds to the adhered section

of the CNT pair treated as one single rod section and the arc-length parameter for this section

s ∈ (γ, ℓ]. We assume that the two CNTs have identical moments of area I and elastic moduli E.

It can be shown that the corresponding flexural rigidity for the adhered section s ∈ [γ, ℓ] is 10EI.

The fields and variables associated with the first section of the fork structure are labelled

with a subscript 1, those for the second section are labelled with a subscript 2, and those for the

adhered section aren’t distinguished with a subscript. To describe conditions at the branching

point γ, we generalize our earlier notation for a jump condition in an obvious manner:
[[

χ
]]

γ = χ
+ − χ−1 − χ

−
2 . (9)

1The reader is referred to [19] and [25] for further details on the role played by material momentum. We note in

particular that (8)3 leads to an adhesion boundary condition.
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Figure 5: Some of the forces on the components of the model for the CNT pair. (a) Terminal loading at s = ℓ for the CNT

pair system. (b) Terminal loading at s = γ− for the first CNT. (c) Terminal loading at s = γ+ and s = ℓ for the adhered

portion of the model. (d) Terminal loading at s = γ− for the second CNT. Here, m = EIθ′, and t and n represent the

difference of the internal forces at s = γ between the two CNTs (cf. (12)).

At the junction s = γ for the three rod segments, we have the following continuity (branching)

conditions:

[[n]]γ = 0, [[m]]γ = 0, [[C]]γ + Bγ = 0. (10)

The second and third of these conditions will appear later from a variational principle and the

supply Bγ is related to the adhesion energy: Bγ = −Wad.

2.2. Governing Equations

From the governing equations for the adhered portion of the structure, we find that

n
(

ℓ−
)

= 2TE1 − 2NE2,

n(γ+) = 2TE1 − (2N + 2ρg(ℓ − γ)) E2. (11)

The branching condition (10)1 at ξ = γ shows how the contact force n(γ+) distributes upstream

into the two segments. By defining the pair of variables t, n characterizing the difference in the

contact force between the two rods at s1 = γ and s2 = γ, the contact forces in each rod can be

expressed in an illuminating manner:

n1(γ−) = (T + t)E1 − (N + ρg(ℓ − γ) + n) E2,

n2(γ−) = (T − t)E1 − (N + ρg(ℓ − γ) − n) E2. (12)

The balance law (8)1 applied to the appropriate segment can be used to determine n1 (s1) and

n2 (s2), respectively.

Recalling that the total energy of the rods consists of the sum of the strain energy, gravita-

tional potential energy and the potential energy of the terminal load, it is straightforward to show
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that the potential energy of the structure is

π =

∫ ℓ

γ

f ds +

2
∑

J=1

∫ γ

0

fJdsJ, (13)

where

f = 5EI
(

θ′
)2
+ (2ρg(ℓ − s) + 2N) sin(θ) − 2T cos(θ) −Wad,

f1 =
EI

2

(

θ′1
)2
+ (ρg(ℓ − s) + N + n) sin(θ1) − (T + t) cos(θ1),

f2 =
EI

2

(

θ′2
)2
+ (ρg(ℓ − s) + N − n) sin(θ2) − (T − t) cos(θ2). (14)

Variations of π feature variations in γ, θ1 (s1), θ2 (s2), and θ(s). These variations are denoted

by ǫµ, ǫη1 (s1), ǫη2 (s2), and ǫη(s), respectively. It is straightforward to show that the variations

satisfy a set of compatibility conditions based on continuity at s = γ:2

(

µθ′ + η
)+
=

(

µθ′1 + η1

)−
=

(

µθ′2 + η2

)−
,

(

µ2θ′′ + 2µη
)+
=

(

µ2θ′′1 + 2µη1

)−
=

(

µ2θ′′2 + 2µη2

)−
. (15)

We also note the boundary conditions on the variations,

η′ (ℓ) = 0, η1 (s1 = 0) = 0, η2 (s2 = 0) = 0, (16)

which follow from the moment free-loading at s = ℓ and the clamped boundary conditions at the

base of the CNTs, respectively.

Either by using (8) and (10) or by computing the first variation of π and invoking (16)2,3,

dπ

dǫ

∣

∣

∣

∣

∣

ǫ=0

= −µ
[[

f
]]

γ +

∫ ℓ

γ

{

∂ f

∂θ
−

d

ds

(

∂ f

∂θ′

)}

ηds + η
∂ f

∂θ′

∣

∣

∣

∣

∣

ℓ

− η
∂ f

∂θ′

∣

∣

∣

∣

∣

γ

+

2
∑

K=1

∫ γ

0

{

∂ fK

∂θK
−

d

dsK

(

∂ fK

∂θ′
K

)}

ηKds +

2
∑

K=1

ηK

∂ fK

∂θ′
K

∣

∣

∣

∣

∣

∣

∣

γ

, (17)

we are led to the boundary-value problem for the deformed shape θ and θK of the CNT pairs.

The resulting problem consists of three ordinary differential equations,

5EIθ′′ − (ρg(ℓ − s) + N) cos(θ) − T sin(θ) = 0, s ∈ (γ+, ℓ),

EIθ′′1 − (ρg(ℓ − s) + (N + n)) cos(θ1) − (T + t) sin(θ1) = 0, s1 ∈ (0, γ−),

EIθ′′2 − (ρg(ℓ − s) + (N − n)) cos(θ2) − (T − t) sin(θ2) = 0, s2 ∈ (0, γ−),

(18)

and is equivalent to the statement that the first variation of π is zero. The desired solution θ, θ1,

and θ2 to (18) needs to satisfy nine conditions. These conditions pertain to the clamped boundary

conditions at s1,2 = 0, continuity of θ and bending moment at the point of adhesion, the adhesion

2For details on how these conditions can be established, the interested reader is referred to [19] and [22].
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boundary condition, the absence of a terminal moment at s = ℓ and a pair of isoperimetric

conditions:

θ1(0) =
π

2
, θ2(0) =

π

2
,

θ1(γ−) = θ(γ+), θ2(γ−) = θ(γ+),

10EIθ′(γ+) − EIθ′1(γ−) − EIθ′2(γ−) = 0,

5EI
(

θ′(γ+)
)2
−

EI

2

(

θ′1(γ−)
)2
−

EI

2

(

θ′2(γ−)
)2
= Wad,

θ′(ℓ) = 0,
∫ γ

0

cos(θ1)ds −

∫ γ

0

cos(θ2)ds − b = 0,

∫ γ

0

sin(θ1)ds −

∫ γ

0

sin(θ2)ds = 0. (19)

The forces t and n can be interpreted as constraint forces which impose the constraints (19)8,9.

In the interests of brevity, the solution to the boundary-value problem (18) and (19) will often be

denoted by an asterisk: θ∗(s), θ∗
K

(sK), and γ∗.

In the sequel, we shall find it convenient to define a dimensionless flexural rigidity D, and

adhesion energy Wad:

D =
EI

ρgℓ3
, ω =

Wad

ρgℓ
. (20)

We shall also use the weight ρgℓ of a single CNT to non-dimensionalize the terminal load and

contact force.

3. Stiffnesses of the Fork-Like Structure

Our first avenue of investigation is to examine the stiffness of the forked-structure formed by

the adhered pair of CNTs. To start we consider the length b by which the clamped bases of the

CNTs are separated and set the terminal loading at s = ℓ to zero. We expect that by increasing b

from zero, the adhered length ℓ − γ should decrease from ℓ to 0. Our numerical investigations of

(18) and (19), confirm that this is indeed the case. The results are summarized in Figure 6. For

the parameter values shown in this figure, the adhered length ℓ − γ→ 0 and b→ 0.32ℓ.

The stiffnesses of the fork-like structure to terminal loadings such as that shown in Figure

5(a) provides a measure of the structural effectiveness of the CNT structure. To this end, we

assume a terminal loading n (ℓ−) = Fℓ = 2TE1 − 2NE2 and measure the vertical deflection ∆h

and horizontal deflection ∆d of the material point located at the tip s = ℓ of the adhered portion

of the structure. The factor of 2 in the representation for Fℓ enables a ready comparison to the

case of a single CNT.

It is straightforward to use the displacements ∆d and ∆h to define a pair of stiffnesses:

k1 =
∆Fℓ · E1

∆d
, k2 =

∆Fℓ · E2

∆h
. (21)

For our numerical results, the shear stiffnesses k1 and compressive stiffness k2 are represented

by the slopes in Figures 7(a) and (b), respectively. These results were obtained by numerical

integrations of (18) and (19). We emphasize that, for a given b, the adhered length ℓ−γ will vary

8
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Figure 6: Adhesion formation for a single CNT pair in the presence of its own self weight ρgℓ and in the absence of a

terminal load: Fℓ = 0. (a) Equilibrium configurations of the CNT pair as b varies. (b) The corresponding dimensionless

detached length γ/ℓ between the two CNTs. (c) The force t = n1
(

γ−
)

· E1 = −n2
(

γ−
)

· E1 at the adhesion point s = γ.

For the results shown, D = 1, ω = 1, b
ℓ
∈ [0, 0.4], T = 0, and N = 0.

depending on the loads T and N. Despite changes to the adhered length, for a given separation

b, we observe that the stiffnesses are (surprisingly) almost constant.

Before discussing the results further, we pause to discuss the case of a single CNT. The

stiffness to a shear load of TE1 for a single CNT is shown as the dashed line in Figure 7(a). We

observe that this stiffness is lower than the corresponding stiffness for the adhered pair of CNTs.

When the stiffness to a normal load −NE2 of a single CNT is considered, we find that the CNT is

rigid for loads less than the buckling load Ns (i.e., when N > Ns), then the stiffness becomes very

small (as shown by the dashed line in Figure 7(b)). Although the fork-like structure formed by

the nanotube pair and the single CNT exhibit unequal shear and compressive stiffnesses, for the

former k1 ≫ k2. This is in contrast to the single CNT where the opposite inequality holds before

the onset of buckling. We also note that, as the separation b increases, k1 increases, whereas k2

decreases. The decrease in k2 is anticipated as this stiffness is expected to become unbounded

as b → 0: a straight unbuckled strut is effectively rigid to vertical loads (that are below its

buckling limit). We thus note that the forked-structure makes the CNT pair more compliant

to compressive loads, more resistant to buckling, and stiffer to shearing loads compared to the

isolated single CNT.

4. Stability

The equilibrium configurations of the CNTs discussed in Section 3 feature large contact

forces and a discontinuity at s = γ. While it is often relatively straightforward to determine

these configurations, the issue of stability has not been discussed previously. We now turn to

presenting stability criteria. In addition, to a buckling criterion that is similar to those in the

9
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Figure 7: The dependency of terminal load on the tip deformation for different values of the separation distance b. (a)

The terminal load 2T in the horizontal direction as a function of the tip displacement ∆d in the horizontal direction

when Fℓ = 2TE1 . The dashed line shows the corresponding stiffness calculation for a single CNT. (b) The terminal

compressive load 2N in the vertical direction as a function of the tip displacement ∆h in the vertical direction when

Fℓ = −2NE2 . The dashed line in this figure shows the corresponding stiffness calculation for a single CNT. For the

results shown, D = 1, ω = 1, and b
ℓ
= 0.05, 0.1, and 0.2.

literature for a single strut and branched tree-like structures, we also find a criterion pertaining to

the stability of the adhesion. In the sequel, we find that instability manifests in adhesive failure

and leads to equilibrium configurations where the CNTs are separated.

4.1. Computation of the Second Variation

To establish the criteria for stability, we compute the second variation J of the potential

energy function π in Eqn. (14) by considering variations to the solution
{

θ∗(s), θ∗
K

(sK) , γ∗
}

of the

boundary-value problem (18) and (19). After some rearranging, the following expression for J

10



is found:

J =
d2π

dǫ2

∣

∣

∣

∣

∣

∣

ǫ=0

=

∫ ℓ

γ∗

{

Mη2 + Rη′η′
}

ds +

2
∑

K=1

∫ γ∗

0

{

MKη
2
K + RKη

′
Kη
′
K

}

dsK

+µ2
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K=1

∂ fK

∂θK
ηK

















−

−

(

∂ f

∂θ
η

)+
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2
∑

K=1
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K
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−

−

(

∂ f

∂θ′
η′

)+
















. (22)

In writing (22), we used the standard abbreviations

M = −2ρg(ℓ − s) sin(θ∗) − 2L sin(θ∗), R = 10D,

M1 = −ρg(ℓ − s) sin(θ∗1) − (L + n) sin(θ∗1) + P cos(θ∗1), R1 = D,

M2 = −ρg(ℓ − s) sin(θ∗2) − (L − n) sin(θ∗2) − P cos(θ∗2), R2 = D.

By careful use of the compatibility conditions (15), (22) can be decomposed into two terms:

J = J0 + Jγ. (23)

Here, the components of J0 have a classical form and Jγ is entirely associated with varying the

branching point s = γ:

J0 =

2
∑

K=1

∫ γ∗

0

{

MKη
2
K + RKη

′
Kη
′
K

}

dsK +

∫ ℓ

γ∗

{

Mη2 + Rη′η′
}

ds,

Jγ = −µ2e − 2η
(

γ∗+
)

µ

[[

∂ f

∂θ

]]

γ∗
, (24)

where

e =

2
∑

K=1

{

2
∂ fK

∂θK

− (

(

θ∗
′
)+
−

(

θ∗
′

K

)−
)

+
∂ fK

∂θ
′

K

− (

(

θ∗
′′
)+
−

(

θ∗
′′

K

)−
)

}

+

[[

d f

ds

]]

γ∗

. (25)

It is unclear if J0 is necessarily positive and so we next follow a method attributed to Legendre

and add the following term to J:

0 =

∫ ℓ

γ∗

d

ds
(η2w)ds +

2
∑

K=1

∫ γ∗

0

d

ds
(η2

KwK)dsK − [η2w]ℓγ∗ −

2
∑

K=1

[η2
KwK]

γ∗

0
. (26)

In order to dramatically simplify J, we require the functions w(s), w1 (s1) and w2 (s2) featuring

in (26) to satisfy a set of Riccati equations,

w′ + M −
w2

R
= 0, s ∈ (γ∗, ℓ),

w
′

1 + M1 −
w2

1

R1

= 0, s1 ∈ [0, γ∗),

w
′

2 + M2 −
w2

2

R2

= 0, s2 ∈ [0, γ∗), (27)
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subject to the boundary conditions that ensure that J ≥ 0.

The addition of (26) allows J to be decomposed into the following additive sum

J = J1 + J2 + J3 (28)

where

J1 = µ2

















−e −

2
∑

K=1

〈〈

θ∗
′

, θ∗
′

K

〉〉2
wK

(

γ∗−
)

















− 2η
(

γ∗+
)

µ

















[[

∂ f

∂θ

]]

γ∗
+

2
∑

K=1

〈〈

θ∗
′

, θ∗
′

K

〉〉

wK

(

γ∗−
)

















+η
(

γ∗+
)

η
(

γ∗+
)

[[w]]γ∗ ,

J2 =

∫ ℓ

γ∗
R

{

η′ +
w

R
η

}2

ds +

2
∑

K=1

∫ γ∗

0

RK

{

η′K +
wK

RK

ηK

}2

dsK ,

J3 = η2
1(0)w1(0) + η2

2(0)w2(0) − η2(ℓ)w(ℓ). (29)

In writing J1 we use the abbreviated notation

〈〈

θ∗
′

, θ∗
′

K

〉〉

= θ∗
′ (

γ∗+
)

− θ∗
′

K

(

γ∗−
)

. (30)

Referring to (16)2,3, because of the clamped boundary conditions at s1 = 0 and s2 = 0, J3 reduces

to a single term. To ensure that J3 = 0 for all possible perturbations, we shall choose w(ℓ) = 0

in the sequel. We now seek additional necessary conditions for J = J1 + J2 to be positive for a

given configuration of the CNT pair. When these conditions are not satisfied we can conclude

that the configuration is unstable. There will be two sets of necessary conditions. The first set

will be used to determine buckling instabilities of the forked structure and the second set will be

used to indicate instabilities associated with the adhesion of the CNTs.

4.2. Structural Stability: Buckling

We examine buckling in the structure by considering perturbations to the equilibrium con-

figuration which do not perturb the adhesion point to first order. The stability criterion for this

case is the easiest to obtain because µ = 0 and, consequently, the positiveness of J is guaran-

teed provided solutions to the Riccati equations (27) can be found with w(ℓ) = 0 which render

[[w]]γ∗ ≥ 0. We thus start by integrating the Riccati equation for w(s) backwards in s until we

reach the branch point. Then the value w (γ∗+) is used to specify w1 (γ∗−) and w2 (γ∗−) and the

corresponding Riccati equations are integrated backwards in s1 and s2 until s1 and s2 are both

zero. A successful integration should yield finite values of w(s) for s ∈ (γ∗, ℓ] and wK (sK) for

sK ∈ (0, γ∗).

In summary,

Condition B1: If a solution
{

θ∗(s), θ∗
K

(sK) , γ∗
}

to the boundary-value problem (18) and (19)

minimizes π then the respective solutions w(s), w1 (s1), and w2 (s2) to (27) with w(ℓ) = 0 and

[[w]]γ∗ ≥ 0, cannot become unbounded.

4.3. Weak van der Waals Stability: Debonding

To examine instabilities induced by changes in γ, we now consider the effects of non-zero µ.

The resulting instability criterion subsumes the earlier buckling result. With µ , 0, we now need
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to consider the term J1 in (28). For this term’s contribution to be positive for any µ and η+, we

require

[[w]]γ∗ ≥ 0,

−e −

2
∑

K=1

〈〈

θ∗
′

, θ∗
′

K

〉〉2
wK

(

γ∗−
)

≥ 0,

Γ ≥ 0. (31)

In the last of these conditions, we have defined the following function Γ for conciseness:

Γ =

















−e −

2
∑

K=1

〈〈

θ∗
′

, θ∗
′

K

〉〉2
wK

(

γ∗−
)

















[[w]]γ∗ −

















[[

∂ f

∂θ

]]

γ∗
+

2
∑

K=1

〈〈

θ∗
′

, θ∗
′

K

〉〉

wK

(

γ∗−
)

















2

. (32)

We note that (31)3 subsumes (31)2.

Hence, in summary,

Condition AB1: If a solution
{

θ∗(s), θ∗
K

(sK) , γ∗
}

to the boundary-value problem (18) and (19)

minimizes π then the respective solutions w(s), w1 (s1), and w2 (s2) to (27) with w(ℓ) = 0 and

[[w]]γ∗ ≥ 0, cannot become unbounded. In addition, Γ ≥ 0.

While we say a solution
{

θ∗(s), θ∗
K

(sK) , γ∗
}

that satisfies AB1 is stable, and otherwise it is

said to be unstable, strictly speaking we have only established a necessary condition for stability.

A sufficient condition for nonlinear stability for the forked-structure remains to be found.

4.4. Implementation of the Stability Criteria

The primary difficulties in implementing the stability criteria B1 and AB1 are the conditions

[[w]]γ∗ ≥ 0 and the boundedness of solutions to the Riccati equations. To help with this, we

exploit the known relationship between unbounded solutions of a Riccati equation to conjugate

points for a Jacobi equation [26]. It should be emphasized that the process we discuss here needs

to be repeated for each solution
{

θ∗(s), θ∗
K

(sK) , γ∗
}

. For convenience, and where no confusion

may arise, we henceforth drop the ∗ ornamenting γ, θ, and θK .

First, we invoke a set of Jacobi transformations that define the three functions u(s) and

uK (sK),

w = −R
u′

u
, wK = −RK

u′
K

uK

, (33)

and transform the Riccati equations to a set of Jacobi differential equations:

Ru′′ − Mu = 0, u(ℓ) = 0, u′(ℓ) = 1, s ∈ (γ, ℓ),

RKu′′K − MKuK = 0, sK ∈ [0, γ). (34)

We then numerically integrate (34)2 using the initial conditions

uK(0) = 0, u′K(0) = 1, (35)

With the help of (33), the resulting solutions uK (sK) correspond to solutions wK (sK) to the Ric-

cati equations that become unbounded at sK = 0 (see Figure 8). We denote the latter solutions as

wKcri
. In particular the values of these solutions at the adhesion point are of particular importance:

w−Kcri
= wKcri

(

γ−
)

. (36)
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-0.2

0.40.4

Figure 8: Three representative solutions to (a) the Riccati differential equation (27)2 and (b) the corresponding solutions

to the Jacobi differential equation (34)2,K=1 . For the solutions shown, i denotes a bounded solution w1 (s1) to the Riccati

equation whose counterpart u1 (s1) has no conjugate points in s ∈ [0, γ), ii denotes the bounded solution w1cri
(s1) to the

Riccati equation whose counterpart u1cri
(s1) has a conjugate points at s1 = 0, and iii denotes an unbounded solution

w1 (s1) to the Riccati equation whose counterpart u1 (s1) has a conjugate point at s1c ∈ (0, γ).

Our strategy is to integrate (27)1 to determine w(s) and then select the two initial conditions w−
K

such that the pair belongs to a set F :

F =
{

(

w1

(

γ−
)

,w2

(

γ−
))

∣

∣

∣wK

(

γ−
)

> w−Kcri
, w

(

γ+
)

≥ w1

(

γ−
)

+ w2

(

γ−
)

}

. (37)

The conditions featuring in the definition of F are summarized graphically in Figure 9.

If a solution w(s) to (27)1 can be found and then a pair of solutions to (27)2,3 found that

satisfy (37), we will have satisfied the necessary condition B1 for stability. To satisfy the stronger

condition AB1, we need to be able to select the pair of initial conditions w−
K

so that Γ > 0. This

selection process can be formulated as an optimization problem:

max
(w−

1
,w−

2 )∈F
Γ. (38)

If we find the resulting maximum value of Γ to be positive, then the condition AB1 is satisfied.

We solve the optimization problem using the interior-point algorithm [27] implemented using

the Matlab function fmincon. This algorithm sometimes provides the maximum value of Γ even

in cases where the associated values of
(

w−
1
,w−

2

)

< F . We refer to such instances as unfeasible

in the results presented below.

4.5. Application of the Stability Criteria B1 and AB1

We now turn to investigating the stability of the equilibrium configurations of a terminally

loaded pair of CNTs which are also assumed to have a negligible self weight. To start, we first

14



w−
1

w−
2

w1cri

w2cri

w−
1
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w−
2
≤ w2cri

w−
2
≤ w2cri

w−
1
+ w−

2
> w+

F

Figure 9: Graphical illustration of the set F defined by (37) for the pair of initial conditions w−
1

and w−
2

.

investigate instability as the normal load varies: Fℓ = −2NE2. In Figure 10, we observe as the

normal load N increases that the maximum Γ decreases and eventually reaches zero. Beyond

this critical load, the equilibrium configuration does not satisfy AB1 and is hence considered

unstable.

The shaded region labelled I in Figure 11 indicates areas of the w−
1
− w−

2
parameter space

where the maximum value of Γ found by the optimization algorithm failed to satisfy [[w]]γ ≥ 0

and/or wK (γ−) < w−
Kcri

. That is, where
(

w−
1
,w−

2

)

< F for the maximum value of Γ. Solutions in

this parameter region are said to be unfeasible.

The situation under a shearing load Fℓ = 2TE1 and self weight is far less stable than under

the previous loading. As illustrated by the results shown in Figure 11, we find that the critical

tangential load T needed to cause the instability (Γ < 0) is far less than the corresponding critical

normal load N. In contrast to Figure 10, we find that the region will not immediately become

infeasible when Γ < 0 which suggests that the weak van der Waals interaction becomes unstable

before the onset of a buckling instability.

We next consider combined tangential and normal loading:

Fℓ = Fℓ (cos(φ)E1 − sin(φ)E2) (39)

where the angle φ ranges from − π
2

to π
2

and the magnitude Fℓ is fixed. As expected, we find that

instability occurs when the load is predominantly in the E2 direction and the structure is stable

when the terminal loading is vertical (cf. Figure 12).

It is of interest to see if the instability of the CNT structure can be tuned. With E, I, and Wad

associated with the intrinsic physical properties of the CNT, the separation width b is the only

parameter that it is possible to control. Defining Ncri to be the maximum normal load for the

15
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Figure 10: Stability analysis of the fork-like structure loaded under its self weight and a normal load 2N: Fℓ = −2NE2 .

(a) The behavior of w+ and w−
Kcrit

as a function of the dimensionless load N/ρgℓ. (b) Maximum Γ found from the

optimization problem (38). For the results shown, D = 1, ω = 1, and b
ℓ
= 0.1. The shaded region labelled I indicates

areas of the parameter space where
(

w−
1
,w−

2

)

< F , and the labels s and u indicate stability and instability, respectively.

CNT pair to stay stable, and Tcri to be the maximum tangential load, we find that as b increases,

Ncri decreases, whereas Tcri increases. These results are summarized in Figure 13. What is also

evident from this figure is the increased strength of the adhered CNT structure compared to a pair

of isolated CNTs carrying the same combined load. The curves shown in Figure 13 also indicate

the tradeoff between increased tangential strength as b/ℓ increases with a decreasing compressive

load bearing capability.

5. Bifurcation

To examine the usefulness of the stability criteria it is prudent to perform a bifurcation anal-

ysis and explore the possibility of stable solutions in the same parameter space as the solutions

which have lost stability. To this end, we reexamine the situation where Fℓ = −2NE2 and nu-

merically explore if stable solutions are present after the structure has become unstable. These

results are shown in Figures 2(a) and 14(a). As N increases from 0, a critical value Nc is reached

where the forked configuration is no longer stable. Beyond the critical load it is possible that

the forked structure unzips to form two separated rods. Indeed, if we examine the corresponding

bifurcation diagram for a pair of separated rods each carrying a terminal load of −NE2, then we

find that the straight configuration is stable for N < Ns. As N is increased beyond this value,

the straight configuration is no longer stable and two buckled configurations are produced (cf.
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Figure 11: Stability analysis of the fork-like structure loaded under its self weight and a tangential load Fℓ = 2TE1. (a)

The behavior of w+ and w−
Kcrit

as a function of the dimensionless load T/ρgℓ. (b) Maximum Γ found from the optimization

problem (38). For the results shown, D = 1, ω = 1, and b
ℓ
= 0.1. The shaded region labelled I indicates areas of the

parameter space where
(

w−
1
,w−

2

)

< F , and the labels s and u indicate stability and instability, respectively.

Figures 2(a) and 14(a)). The buckled configurations remain stable.3

It is interesting to examine the energetics of the aforementioned configurations. For this, we

recall the expression for the total energy π of the fork structure (cf. (13)) and also consider the

sum of the gravitational potential energy πg, strain energy πs and adhesion energy πa of the rod.

The sum of the latter three energies is equal to π minus the potential energy of the terminal load

Fℓ:

πs + πg + πa = π − πF , (40)

where

πF =

∫ ℓ

γ

pds +

2
∑

J=1

∫ γ

0

pJdsJ ,

p = 2N sin(θ) − 2T cos(θ),

p1 = (N + n) sin(θ1) − (T + t) cos(θ1),

p2 = (N − n) sin(θ2) − (T − t) cos(θ2). (41)

Referring to Figure 14, we observe that as the load N increases on the fork structure, its potential

energy increase is entirely due to the load. When the stability criterion is violated as N increases

3For the individual unadhered CNTs, stability can be unambiguously established using the sufficient condition LS 1

discussed in [22, p.220].
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Figure 12: Stability analysis for various loading configurations of the fork-like structure loaded under its self weight

and a terminal load Fℓ = Fℓ (cos(φ)E1 − sin(φ)E2). (a) The behavior of w+ and w−
Kcrit

as a function of the angle φ. (b)

Maximum value Γ of (38). For the results shown, D = 1, ω = 1, b
ℓ
= 0.1,

Fℓ
ρgℓ
= 2, and φ = arctan

(

− N
T

)

ranges from − π
2

to π
2

. The shaded region labelled I indicates areas of the parameter space where
(

w−
1
,w−

2

)

< F , and the labels s and u

indicate stability and instability, respectively.

past Nc, a more energetically favorable configuration is available. This configuration features

two buckled and unadhered rods. We also note, by comparing π and π− πF in Figures 14 (a) and

(b), how the fork structure is able to absorb the energy of Fℓ without buckling for a far larger

extent that the individual rods.

The corresponding situation where the load Fℓ is purely horizontal is summarized graphically

in Figures 2(b) and 15. We observe from these figures that the unadhered rods do not buckle and

that the contribution to the total energy π from the strain and gravitational energies increases as

the load T is increased. It is also interesting to note from Figure 15(b) that the total energy π

decreases as T is increased. For the fork structure, on the other hand, as the load Fℓ = 2TE1 is

increased, a critical load Tc is reached beyond which the stability criterion AB1 is violated. For

loads beyond this value, the only neighboring stable configurations that we found correspond to

a pair of unadhered rods. However, the total energy associated with the pair of rods is larger

than that for the counterpart unstable fork structure, so any transition to the static stable state

must be accompanied by a source of energy. This is clearly in contrast to the normal load case

mentioned earlier. It is possible that a stable dynamic solution to the boundary value problem that

is isoenergetic with the unstable fork structure at the critical load exists. However, our analysis

is not capable of detecting such a solution.
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Figure 13: Critical load analysis with a varying separation width b. (a) The corresponding critical normal dimensionless

load
Nc
ρgℓ

as b
ℓ

varies from 0 to 0.32. (b) The corresponding critical tangential dimensionless load
Tc
ρgℓ

as b
ℓ

varies from 0

to 0.16. For the results shown, D = 1 and ω = 1. The force Ns is the critical normal buckling load for a single CNT.

6. Closing Remarks

We have established stability criteria for a pair of CNT struts which have the possibility of

adhering through weak van der Waals interactions. The criteria are used to explore buckling and

adhesion instabilities in these structures. In particular, from the results shown in Figures 14 and

15, we anticipate that instability is accompanied by a loss of adhesion and the fork-like structure

unzips to form two stable yet unattached CNTs. If we were to consider a single CNT strut and

load it beyond its buckling load, then the tip displacement will continuously change. In contrast

with the adhered pair of CNT struts, the loss of stability is accompanied by a dramatic change in

the tip displacement.

The short-range interaction forces in arrays of CNTs has also been found to play a role in

other applications such as Gecko locomotion [28, 29, 20] and the mechanics of single cells [30].

In particular, it would be of interest to extend our present work to the branched hierarchical

structure [31, 32] of the spatula and setae that feature in lizard locomotion. One could then

use the resulting analysis to examine the role stability and instability plays in the attachment

and detachment of spatula that branch from a single seta during locomotion. Such an extension

would also serve to elucidate the benefits of the hierarchical structure that plays a predominant

role in dry adhesion locomotion.
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Figure 14: Bifurcation diagram showing the dimensionless potential energies of the CNT pair under a normal load 2N:

Fℓ = −2NE2. (a) The dimensionless potential energy
π−πF

ρgℓ2
composed of the strain energy, gravitational energy, and

(where applicable) adhesion energy as N varies from 0 to 12ρgℓ. (b) The dimensionless potential energy π

ρgℓ2
composed

of the strain energy, gravitational energy and terminal potential as N varies from 0 to 12ρgℓ. For the results shown,

D = 1, ω = 1, and b
ℓ
= 0.1. The labels s and u indicate stability and instability, respectively. The force Ns is the critical

normal buckling load for a single CNT and the force Nc is the critical load for the forked structure.
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