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Abstract

Objective—This study compared level of education and tests from multiple cognitive domains as 

proxies for cognitive reserve.

Method.—Participants were educationally, ethnically, and cognitively diverse older adults 

enrolled in a longitudinal aging study. We examined independent and interactive effects of 

education, baseline cognitive scores, and MRI measures of cortical gray matter change on 

longitudinal cognitive change.

Results.—Baseline episodic memory was related to cognitive decline independent of brain and 

demographic variables and moderated (weakened) the impact of gray matter change. Education 

moderated (strengthened) the gray matter change effect. Non-memory cognitive measures did not 

incrementally explain cognitive decline nor moderate gray matter change effects.

Conclusions—Episodic memory showed strong construct validity as a measure of cognitive 

reserve. Education effects on cognitive decline were dependent upon the rate of atrophy, indicating 

that education effectively measures cognitive reserve only when atrophy rate is low. Results 

indicate that episodic memory has clinical utility as a predictor of future cognitive decline and 

better represents the neural basis of cognitive reserve than other cognitive abilities or static proxies 

like education.
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Introduction

Cognitive decline and dementia are major public health problems in older adults, but there is 

considerable heterogeneity of cognitive health outcomes in this population. Understanding 

why some lose cognitive function and become demented while others remain cognitively 

intact is critically important for promoting late life cognitive health. Cognitive reserve is a 

hypothetical construct used to explain why some individuals are able to maintain normal 

cognitive function in the face of late life brain changes (Jones et al., 2011; Stern, 2002, 

2009). It has relevance both for understanding late life cognitive decline and estimating risk 

for accelerated decline and dementia. A developing body of literature has contributed 

substantial advances in conceptualizing cognitive reserve, but measurement of cognitive 

reserve has not been well developed and this limits both scientific study and practical 

application (Jones et al., 2011; Stern et al., 2018).

Proxy variables are often used to operationalize cognitive reserve, and level of education has 

been the most commonly studied proxy variable. Studies of construct validity of education 

as a proxy for cognitive reserve have produced mixed results. Supporting evidence comes 

from studies showing that higher educational attainment is associated with delayed onset of 

clinical diagnosis of dementia, but faster rate of cognitive decline after diagnosis (Amieva et 

al., 2014; Scarmeas, Albert, Manly, & Stern, 2006; Stern, Albert, Tang, & Tsai, 1999; Ye et 

al., 2013). In contrast, studies that report no association between education and rate of 

cognitive change do not support the education as cognitive reserve hypothesis (Early et al., 

2013; Gross et al., 2015; Masel & Peek, 2009; D. Mungas et al., 2018). A recent study from 

our group that used brain atrophy rate as a direct measure of the brain changes underlying 

cognitive decline and dementia helps to bridge these seemingly disparate patterns of results 

(D. Mungas, Gavett, et al., 2018). More education was associated with slower cognitive 

decline in those who had relatively low rates of brain atrophy, but faster cognitive decline in 

individuals with more rapid brain atrophy. Thus education was protective against early 

cognitive decline but amplified cognitive decline in those with more advanced brain disease.

An alternate approach operationalizes cognitive reserve as a latent variable that captures the 

statistical residual in cognitive test performance that is not explained by measures of brain 

pathology and demographic variables that influence cognition in the absence of brain 

pathology (Reed et al., 2011, 2010; Zahodne et al., 2013). A related approach also uses 

regression models in which cognitive and clinical outcomes are regressed on purported 

reserve indicators, brain variables, and reserve indicator by brain interactions. Construct 

validity of the reserve indicator is supported if it is related to the outcome independent of 

brain effects and more strongly, if it modifies the brain effects on the outcome (Stern et al., 

2018). Both approaches evaluate how a reserve indicator relates to an outcome independent 

of brain pathology and moderates the brain effect, but the latent variable approach explicitly 

models reserve as a latent variable whereas the regression approach infers reserve from the 

independent effects of the reserve indicator.

The Reed (2010) and Zahodne (2013) studies used latent variable modeling to capture 

variance in episodic memory that was not explained by demographic and brain variables and 

then examined the construct validity of this latent variable as an indicator of reserve. Non-
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episodic memory domains and episodic memory were examined as reserve indicators in a 

study involving a different sample, different cognitive tests, and neuropathology measures of 

brain integrity (Reed et al., 2011). Latent variables capturing residual variance in six 

cognitive domain summary scores that was not explained by neuropathology and 

demographic characteristics were highly correlated and well summarized by a single second 

order factor. This suggests that non-memory cognitive domains might serve as effective 

indicators of reserve, but Reed et al. (2011) did not directly test the construct validity of non-

episodic memory domains as reserve indicators.

The purpose of this study was to evaluate the construct validity of education and different 

cognitive domains as proxy measures for cognitive reserve. Several goals guided this study. 

First, we built upon Mungas et al. (2018) and directly compared education and domain 

specific measures of cognition as potential proxies for cognitive reserve in a common 

sample. Second, we examined how these potential reserve indicators assessed at baseline 

relate to future cognitive decline and modify the association between longitudinal brain 

atrophy and cognitive decline. This is relevant because recent work from our group has 

shown longitudinal gray matter change is especially salient for explaining cognitive decline 

and demonstrates effects that are substantially stronger than cross-sectional brain measures 

(Fletcher et al., 2018; D. Mungas, Gavett, et al., 2018). Most previous studies examining 

moderation of brain effects have utilized cross-sectional brain measures (Reed et al., 2010; 

Steffener et al., 2014; Zahodne et al., 2013). Third, in previous latent variable studies, 

measures of episodic memory were used to operationalize reserve (McKenzie et al., 2020; 

Reed et al., 2010; Zahodne et al., 2013). In this study we also examined cognitive reserve 

effects of non-memory cognitive domains. We used a regression based approach to construct 

validation of these purported reserve indices. Specifically, we evaluated (a) the extent to 

which these different measures predicted future cognitive decline independent of rate of 

concurrent brain atrophy, and (b) whether these measures moderated the effects of brain 

atrophy on cognitive decline. These results are important for understanding how to measure 

cognitive reserve most effectively. Based on our previous work, we hypothesized that 

episodic memory would show cognitive reserve effects defined as predicting future cognitive 

decline independent of brain and demographic variables and moderating (diminishing) the 

effect of brain atrophy on cognitive decline. In contrast, we expected that education would 

moderate, but enhance, brain atrophy effects on cognitive decline as previously shown in this 

sample (D. Mungas, Gavett, et al., 2018). Finally, we hypothesized that non-episodic 

memory cognitive measures also would show cognitive reserve effects.

Method

Participants

Participants were from the UC Davis Diversity Cohort, a longitudinal study that includes 

substantial numbers of Latino, Black, and non-Latino White (White) older adults. This 

cohort is heterogenous in race/ethnicity and educational attainment and spans a spectrum of 

cognitive function from normal to dementia. Cohort composition, recruitment methods, and 

inclusion and exclusion criteria are described in Hinton et al. (2010)(more detail in 

Supplemental Materials); the clinical evaluation and diagnosis protocol is described in 
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Mungas et al (Mungas et al., 2010)(more detail in Supplemental Materials). All participants 

signed informed consent, and all human subject involvement was overseen by institutional 

review boards at University of California at Davis, the Veterans Administration Northern 

California Health Care System and San Joaquin General Hospital in Stockton, California.

Participants were 315 persons who had received at least two cognitive evaluations and at 

least two MRI brain scans. A rolling enrollment design led to variability in the number of 

evaluations completed by each individual. There were 150 Whites, 80 Latinos, 70 Blacks 

and 15 other races/ethnicities; 39 Latinos were tested in Spanish, and all others were tested 

in English. A community screening program designed to identify and recruit individuals 

with cognitive functioning representative of the community-dwelling population in a six-

county catchment area in the central Sacramento/San Joaquin valley and east San Francisco 

Bay area of Northern California identified 235 individuals (83 Whites, 75 Latinos, 64 

Blacks, 13 Other). The remaining 80 (67 Whites, 5 Latinos, 6 Blacks, 2 Other) were initially 

seen for clinical evaluation at a university memory/dementia clinic and referred for research.

Clinical diagnosis was not a variable of primary interest in this study. We were specifically 

interested in examining how quantitative, MRI measures relate to cognitive trajectories and 

how these brain effects are influenced by putative reserve indicators. However, inclusion of 

diagnoses across the impairment spectrum was by design and was intended to maximize 

heterogeneity of both brain measures and cognitive trajectories, thus enhancing ability to 

study cognitive reserve. Clinical diagnosis in this context is a manifestation of brain 

degeneration that results in cognitive decline and cognitive and functional impairment, and 

our approach was to directly study brain and cognition pathways that lead to the clinically 

relevant differences that are summarized by diagnostic labels.

Cognitive Assessment

The cognitive outcomes in this study were measures of episodic memory, semantic memory, 

executive function, and spatial ability derived from the Spanish and English 

Neuropsychological Assessment Scales (SENAS). The SENAS has undergone extensive 

development as a battery of cognitive tests relevant to cognitive aging that allow for valid 

comparisons across racial, ethnic, and linguistic groups (Mungas, Reed, Crane, Haan, & 

Gonzalez, 2004; Mungas et al., 2005a, 2005b; Mungas, Reed, Marshall, & Gonzalez, 2000; 

Mungas, Widaman, Reed, & Tomaszewski Farias, 2011) (more detail in Supplemental 

Materials). These measures have been used in many studies to characterize longitudinal 

cognitive trajectories and to identify brain, demographic, and life history variables that 

influence late life cognitive decline (Brewster et al., 2014; Carmichael et al., 2012; Early et 

al., 2013; Fletcher et al., 2018; Gavett et al., 2018; Melrose et al., 2015; Mungas et al., 2010; 

D. Mungas, Gavett, et al., 2018).

MRI Measures

MRI Volume Measurements—Brain image acquisition was performed under a standard 

protocol at the UC Davis Imaging Research Center or at the Veterans Administration 

Northern California Health System Medical Center in Martinez, CA. MRI baseline 

measurements were derived using an in-house processing pipeline described previously 
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(Fletcher et al., 2014; Lee et al., 2010) (more detail in Supplemental Materials). White 

matter hyperintensities (WMH) were computed by an in-house method combining native 

FLAIR with structural MRI as described previously (DeCarli, Fletcher, Ramey, Harvey, & 

Jagust, 2005).

Gray Matter Volume Change—We computed longitudinal structural brain change 

between the two most widely separated MRI measurements. We used a tensor-based 

morphometry (TBM) method designed to enhance sensitivity and specificity for biological 

change by incorporating estimates of likely tissue boundaries (Fletcher, 2014; Fletcher et al., 

2013). TBM generates deformation fields by nonlinearly registering brain scans at differing 

time points and using these to generate log-Jacobian estimates of local volume change 

between the scans (Ashburner & Friston, 2000). The log-Jacobians roughly represent 

percent change and were annualized by dividing by the number of years between scans. This 

processing was done via an in-house processing pipeline that has been previously described 

(Fletcher et al., 2016) (more detail in Supplemental Materials). Gray matter volume atrophy 

was computed as average volume change over frontal, parietal, temporal, and occipital lobar 

gray matter regions of interest (ROIs). Log-Jacobians from these ROIs from both 

hemispheres were averaged to constitute a global cortical gray matter change measure.

APOE Genotyping

Apolipoprotein E (APOE) genotyping was carried out using the LightCycler ApoE mutation 

detection kit (Roche Diagnostics, Indianapolis, IN).

Data Analysis

Measures and Data Processing—SENAS measures of episodic memory, semantic 

memory, executive function, and spatial ability were longitudinal cognitive outcomes. 

Baseline values of each measure were used as independent variables to predict future change 

across all cognitive measures. Demographic variables (education, gender, race/ethnicity) and 

baseline MRI variables (volumetric measures of total brain, hippocampus, and WMH) that 

were used in a previous study of the residual reserve index (Reed et al., 2010) were included 

as independent variables in addition to gray matter volume change. Cognitive and MRI 

variables were transformed using the Blom inverse normal rank order transformation (Blom, 

1958) in order to normalize these variables and establish a common scale (mean=0, SD=1). 

Additional covariates included age at baseline evaluation, language of test administration, 

recruitment source, APOE status, loss of follow-up due to death, and loss to follow-up for 

other reasons.

Longitudinal Modeling of Cognitive Trajectories—Mixed effects, parallel process 

longitudinal analyses were performed using Mplus version 8.2 multilevel modeling (Muthén 

& Muthén, 1998). Figure 1 shows a schematic of the basic modeling approach. The 

approach to modeling longitudinal change in this study has been described in detail in 

previous publications (Fletcher et al., 2018; Gavett et al., 2018) and is presented in 

Supplemental Materials. Briefly, in the Within part of this model, each of the four cognitive 

outcomes was regressed on time (years) in study, centered at the time of the baseline MRI 

scan. The initial MRI scan occurred at the time of the initial cognitive assessment for 92% of 
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the sample, and was within a ±6 month window of the cognitive assessment. The Within 

model generated person-specific intercept and linear slope random effects for each outcome. 

These random effects then served as dependent variables in the Between part of the model. 

The Within model included a term to account for practice effects and a practice effect by 

Spanish test administration interaction that has been identified in previous studies with this 

sample (Brewster et al., 2014; Early et al., 2013; Melrose et al., 2015). We compared a series 

of models to determine whether intercepts and slopes could be summarized by second order 

factors (more detail in Supplemental Materials). The best fit was obtained with the model 

that had a global slope second order factor but individual intercept random effects.

Global cognitive slope was the primary outcome of interest and was regressed in the 

Between model on the demographic (including education) and MRI variables that were used 

to define the residual reserve index in Reed et al (Reed et al., 2010) and on the other 

covariates. The four cognitive intercepts also were regressed on these variables in analytical 

models, but results are not shown. The baseline cognitive score of interest (episodic memory, 

semantic memory, executive function, or spatial ability) and global gray matter change were 

additional independent variables used to explain global cognitive change, as were 

interactions of gray matter change with education and baseline cognition. This basic model 

was estimated separately for each cognitive measure. A secondary analysis added 

interactions of baseline MRI measures with gray matter change to the basic model for 

episodic memory to evaluate whether reserve effects of education and cognitive variables 

were independent of potential reserve effects of baseline brain variables. An additional 

secondary analysis added baseline clinical diagnosis as a main effect predictor of cognitive 

trajectories and evaluated whether reserve effects were present after accounting for 

diagnosis.

Results

Sample Characteristics

Sample characteristics are presented in Table 1, stratified by baseline clinical diagnosis to 

clarify the range of clinical expression of cognitive impairment covered in this study. 

Detailed information about the diagnostic composition of the sample is available in 

Supplementary Materials. About 59% were women and gender did not differ across 

diagnosis groups (χ2[2]=5.449, p=0.066). Race/ethnicity differed by diagnosis 

(χ2[6]=34.859, p=0.001) with Whites more likely to have a diagnosis of MCI. Seventy Five 

percent of the sample was recruited from the community. Recruitment source differed by 

diagnosis (χ2[2]=26.475, p=0.001), with individuals with MCI more likely to be clinic 

referrals. Average age was about 75 years and this differed across groups (F[2,312]=6.317, 

p=0.002) with Dementia older than MCI who were older than Normals. Average education 

was 13.4 years and differed across diagnosis groups (F[2,312]=5.520, p=0.004), with highest 

education in MCI, lowest in Dementia, and Normals in between. APOE ε4 differed by 

diagnosis (χ2[2]=11.700, p=0.003) with highest ε4 prevalence in individuals with dementia 

(62%) and lowest in those who were cognitively normal (32%). Average follow-up time was 

7.2 years and differed by baseline diagnosis (F[2,312]=29.855, p=0.001); there were 6.8 

assessments on average in the overall sample and this differed by diagnosis 
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(F[2,312]=23.415, p=0.001). Number of assessments and follow-up time increased across 

Dementia, MCI, and Normal diagnoses, but even in the Dementia group, there was nearly 5 

years of follow-up and 5 assessments on average. MRI follow-up time significantly differed 

across groups (F[2,312]=13.799, p=0.001). Average follow-up time was longer for those 

who were cognitively normal compared with those with MCI or dementia. Loss to follow-up 

due to death or other reasons also differed across groups (χ2[4]=18.321, p=0.001). 

Cognitively normal individuals were more likely to be actively followed at the time of this 

study. Loss to follow-up due to death was highest in the Dementia group, lowest in Normals, 

and intermediate in MCI. Loss to follow-up for other reasons was similarly distributed 

across diagnosis groups.

Baseline gray matter volume and baseline cognitive test scores all differed across diagnostic 

groups (ps < 0.001), with a consistent pattern of Normal > MCI > Dementia. Gray matter 

volume change rate also differed across groups (p<0.001); gray matter volume declined 

more slowly in individuals who were cognitively normal and at similar, faster rates in those 

with MCI and dementia. Education level was correlated with all baseline cognitive scores 

but varied in degree: education with episodic memory = 0.23, semantic memory = 0.50, 

executive function = 0.41, spatial = 0.30.

Modeling of Longitudinal Cognitive Outcomes

In an unconditional parallel process model of cognitive trajectories, correlations among the 

four intercept random effects ranged from 0.476 to 0.763, while in contrast, correlations 

among slope random effects ranged from 0.952 to 0.987 (See Table 1 in Supplementary 

Materials for a complete correlation matrix of intercept and slope random effects). Episodic 

memory intercept showed substantial correlation with slopes of all four cognitive domains 

(ranging from 0.491 to 0.597). Executive function intercept was significantly but less 

correlated with slopes (ranging from 0.192 to 0.289). The best fitting unconditional model 

for intercept and slope random effects included individual intercepts and a second-order 

latent variable indicated by the four slope random effects (more detail in Supplemental 

Materials). Loadings on the global slope factor were: episodic memory - 1, semantic 

memory - 0.837, executive function - 1.118, and spatial - 0.747. The four cognitive domains 

all contributed substantially to the global cognitive slope. In subsequent analyses, individual 

domain intercepts and global cognitive slope were the cognitive outcomes.

Cognitive Domain Comparisons

Table 2 shows how different cognitive baseline scores and their interactions with gray matter 

change related to global cognitive slope independent of other variables in the model. 

Baseline episodic memory was related to global cognitive slope independent of covariates, 

demographic variables, and brain variables, and significantly modified the gray matter 

change effect. The baseline measures of the other three cognitive domains were not related 

to future cognitive change above and beyond covariates, education, and brain variables.

Episodic Memory and Education Effects on Cognitive Change

Table 3 presents more detailed results for the analysis with episodic memory as the indicator 

of cognitive reserve, and shows how global cognitive slope was influenced by covariates, 
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demographic variables, baseline brain variables, gray matter change, reserve indicators 

(education and episodic memory), and reserve indicator by gray matter change interactions. 

The reference for this analysis was an English speaking, non-Latino White woman recruited 

from the community who was 70 years of age with 12 years of education, was continuously 

followed, and APOE ε4 negative. As in previous studies with this cohort (Fletcher et al., 

2018; D. Mungas, Gavett, et al., 2018), gray matter change was strongly associated with 

cognitive decline, β=0.060, SE=0.011, p=0.001. An individual whose gray matter declined 1 

SD slower than average would be expected to decline cognitively at a rate of only −0.02 SD/

year, and in comparison, a person with average gray matter change in this sample would 

decline cognitively at a rate of −0.08 SD/year, and an individual whose gray matter declined 

1 SD faster than average would decline at a rate of −0.14 SD/year. Better baseline episodic 

memory was incrementally associated with slower global cognitive decline, but education 

had no main effect on rate of decline. Interactions of both our putative measures for reserve 

– education and baseline episodic memory – with gray matter change were significant, but 

with opposite signs. Thus higher baseline episodic memory resulted in a diminished effect of 

gray matter change on cognitive decline, but in contrast, more education was associated with 

an enhanced effect of gray matter change on cognitive decline.

These results are presented graphically in Figures 2 and 3. Figure 2 shows the interaction of 

gray matter change and episodic memory on expected trajectories for one specific cognitive 

outcome, executive function. Executive function was selected as the exemplar for these 

figures because it had the highest loading on the global cognitive change factor. Effects of 

episodic memory and gray matter change on executive function change were calculated as 

the effects of these variables on global cognitive change multiplied by the loading of 

executive function on global cognitive change in the primary, multivariable model (1.039). 

The three panels show model predicted executive function trajectories for two levels of 

baseline episodic memory (+1 SD and −1 SD) and different amounts of gray matter change. 

To enhance clinical relevance of these figures, gray matter change values were chosen that 

represented average gray matter change in clinical diagnosis groups. The left panel 

represents gray matter change that is average for those who were Normal at baseline, the 

center corresponds to average gray matter change for individuals with a MCI diagnosis, and 

the right to average change for those with Dementia. There are several salient findings. First, 

baseline executive function differed substantially in relation to episodic memory, and in 

contrast, different gray matter change rates were not as strongly related to baseline executive 

function. Second, the difference in rate of cognitive decline across individuals with different 

levels of gray matter change was minimal for those with above average episodic memory at 

baseline, but was more substantial when baseline episodic memory was below average. 

Stated differently, brain atrophy had a stronger negative relation to cognitive change for 

individuals with low baseline episodic memory, and of particular importance, better baseline 

episodic memory protected against effects of more advanced atrophy.

Figure 3 shows the moderation effects for education. The two hypothetical education levels 

are roughly 2 SD apart, similar to the values for episodic memory depicted in Figure 2. The 

education effect on baseline executive function was smaller than that for baseline episodic 

memory. More education was associated with a more positive executive function slope in the 
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hypothetically normal individual, but a more negative slope in the hypothetical dementia 

case.

A secondary analysis included interaction effects on global cognitive slope of baseline brain 

variables with gray matter change. None of the baseline brain by gray matter change 

interactions were significant, the episodic memory main effect and the episodic memory by 

gray matter change interaction continued to be significant. This suggests that the episodic 

memory modification of the gray matter change effect on cognitive decline cannot be 

explained by measured baseline brain variables that could influence baseline episodic 

memory. Results for education as a reserve proxy did not change.

We added diagnosis as a main effect in the model in an additional secondary analysis. The 

episodic memory by gray matter change interaction effect was significant (β=−0.027, 

SE=0.010, p=0.005) and was essentially the same as this effect in the primary analyses 

(Table 3). This suggests that episodic memory performance has cognitive reserve properties 

that go beyond what can be explained by associations with diagnosis.

Discussion

This study examined the construct validity of educational attainment and cross-sectional 

measures of different cognitive domains as proxies for cognitive reserve in a sample of 

diverse older adults. A cognitive reserve effect was inferred if a measure explained 

longitudinal cognitive change beyond the effects of baseline brain variables and longitudinal 

gray matter change and more importantly, moderated the gray matter change effect on 

cognitive change (Stern et al., 2018). Baseline episodic memory satisfied both of these 

criteria. Education failed to satisfy these criteria, as education was not related to cognitive 

change independent of gray matter change, demographic variables, and baseline cognition, 

and gray matter change effects on cognitive decline were stronger and more negative in 

those with more education. Baseline measures of semantic memory, executive function, and 

spatial ability also failed to show significant reserve-like effects.

Baseline episodic memory was associated with longitudinal cognitive change in all four 

domains, so it would be expected that baseline episodic memory would be associated with 

global cognitive change. However, this effect was independent of all other effects, including 

brain volume change, and in addition, it moderated the brain change effect on cognitive 

decline. In contrast, none of the other cognitive domain intercepts were incrementally 

associated with cognitive decline nor did they moderate the brain change effect. Baseline 

executive function also was associated with cognitive change in all four domains in an 

unconditional model, and had the strongest loading on the second order global cognitive 

change factor, but did not meet criteria for construct validity as an indicator of cognitive 

reserve. The overall pattern of results suggests that episodic memory has unique cognitive 

reserve properties.

Results of this study provide evidence that episodic memory is an effective measure of 

cognitive reserve. This replicates and extends results from an earlier study with this cohort 

(Reed et al., 2010) and other studies involving different cohorts that utilized different 
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episodic memory measures (McKenzie et al., 2020; Zahodne et al., 2013), and expands on 

these earlier studies by showing episodic memory effects in relation to longitudinal brain 

atrophy. Education, in contrast, was not related to cognitive decline independent of brain 

atrophy, and the education by brain atrophy interaction went in the opposite direction of the 

episodic memory-brain atrophy interaction. The obtained results suggest that education 

provides no prognostic information about cognitive decline in the absence of information 

about brain status; brain status measures or proxies like clinical diagnosis are required for 

fully understanding the impact of education on future cognitive decline. Clinically, a high 

level of education is a positive prognostic indicator in the context of minimal brain atrophy, 

which corresponds to roughly the upper 50% of the distribution of brain atrophy rate in 

cognitively normal individuals (D. Mungas, Gavett, et al., 2018). But higher educational 

attainment indicates poorer prognosis when brain atrophy is more rapid (lower 50% of mild 

cognitive impairment distribution and most of dementia distribution (D. Mungas, Gavett, et 

al., 2018)). An alternate way of considering these results is that episodic memory has the 

same effect on future cognitive decline across the entire range of baseline cognitive function, 

whereas education is associated with slower decline in those with relatively normal 

cognition but faster decline in those with significant cognitive impairment. While both have 

value as reserve indicators, higher episodic memory unambigously signals a higher level of 

reserve, but education level may signal higher or lower reserve depending on the current 

degree of brain degeneration and cognitive impairment.

This study showed that episodic memory was superior to other cognitive domains as an 

indicator of cognitive reserve. There are important caveats to concluding that episodic 

memory is the only or best indicator of reserve. This study examined a limited number of 

non-episodic memory measures, and different measures might be effective reserve 

indicators. This is a question that should be addressed with additional measures in different 

and larger samples.

A hypothesis to explain results of this study is that episodic memory represents the neural 

basis of cognitive reserve better than other cognitive abilities. Episodic memory is more 

strongly associated with brain measures in previous studies involving this cohort (Mungas, 

Reed, Farias, & Decarli, 2009; Reed et al., 2010) and other cohorts (Dowling et al., 2011) 

and is less associated with life exposure variables like education (Early et al., 2013). In this 

study, education was weakly associated with baseline episodic memory (explaining 5.3% of 

the variance) but more strongly associated with executive function (16.8% of variance) and 

semantic memory (25% of variance). The overall pattern that emerges is that episodic 

memory is more strongly associated with brain variables, independent of demographics 

including education, than are other cognitive domains, and is less associated with education 

and other demographic variables including race/ethnicity. Thus, biological variables appear 

to have a stronger relative impact on episodic memory than on other cognitive domains. 

Brain function mechanisms that promote resilience to disease related changes in brain 

structure are commonly regarded as the neural basis of cognitive reserve (Barulli & Stern, 

2013; Park & Reuter-Lorenz, 2009; Stern, 2006). Future research could examine how 

measures of episodic memory and other cognitive domains are differentially related to 

functional imaging markers of cognitive reserve.
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Collectively, results of this study raise important questions about what cognitive reserve 

means and how it is best measured. Figure 4 presents a conceptual model of the episodic 

memory effect found in this study. The observed episodic memory score theoretically can be 

decomposed as in Reed et al. (2010) into uncorrelated components that represent variance 

explained by brain effects included in the model (Measured Brain), brain effects not 

included in the model (Unmeasured Brain), Demographic effects, Measurement Error, and 

Cognitive Reserve (everything else). The episodic memory effect is adjusted in the model 

for Measured Brain and Demographics, and Measurement Error by definition should not be 

systematically related to external variables like cognitive decline, so the independent 

episodic memory effect on cognitive decline is a result of Cognitive Reserve and 

Unmeasured Brain components. Unmeasured Brain variables may well account for 

additional episodic memory variance that influences cognitive decline. With better 

understanding of the brain mechanisms underlying episodic memory, Unmeasured Brain 

will diminsh as it becomes Measured Brain, and the Cognitive Reserve component will be 

more purely represented in the episodic memory effect on cognitive decline. The ultimate 

goal is to replace the Cognitive Reserve component entirely by know brain mechanisms.

The Cognitive Reserve and Unmeasured Brain components cannot be separated in the 

current study. Ultimately, labeling the episodic memory effect on cognitive decline as 

cognitive reserve is not entirely accurate because this does not account for unmeasured brain 

effects. Practically, however, these results show that measured episodic memory adds value 

for predicting cognitive decline above and beyond major brain effects, including longitudinal 

brain atrophy. Thus episodic memory behaves as a cognitive reserve indicator should 

behave, and, pragmatically, provides unique information about future cognitive trajectories.

An important strength of this study is that the measures of the four cognitive domains were 

developed to have matched psychometric characteristics, specifically, similar levels of 

reliability across the ability continuum relevant to diverse older adults (Mungas et al., 2004). 

This minimizes the extent to which cross-domain differences in results are due to different 

basic psychometric properties. Additional strengths are the availability of comprehensive 

MRI measures of brain injury and brain degeneration, and a diverse sample with 

considerable longitudinal follow-up of both cognitive and brain measures. Limitations are 

that other cognitive measures that might be relevant to cognitive decline were not included, 

notably measures of cognitive speed and single word reading tests of life course acquisition 

of semantic knowledge. Despite attempts to recruit a sample that is representative of the 

communities from which it was drawn, this was not a population based sample and unknown 

selection factors might bias results. Alzheimer’s disease was the predominant etiologic 

diagnosis for those with dementia in this sample, and results could be influenced by the type 

and degree of pathology in a specific sample. Replication in different samples and in 

population based samples is important.

Conclusions

Results of this study have direct clinical relevance. They suggest that assessment of episodic 

memory in an older adult will be important not only to characterize that person’s clinical 

status, but also to predict their future cognitive trajectory and characterize their resilience to 
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progressive brain disease. Measures from other cognitive domains are helpful for 

characterizing cognitive status and identifying clinically relevant patterns of cognitive 

impairment but will be less useful for measuring resilience to brain pathology. Education has 

limited prognostic value in the absence of information about brain or clinical status. With 

respect to cognitive reserve, more education is a positive indicator only when brain atrophy 

is minimal. Episodic memory, in contrast, is a positive indicator of reserve regardless of the 

degree of atrophy. Another advantage of episodic memory is that it can change over time and 

so can track dynamic changes in cognitive reserve. This is important because understanding 

the implications of depleting reserve and its underlying neural basis are areas that have very 

limited research thus far. Future research is needed to better delineate brain mechanisms 

underlying episodic memory and other cognitive domains and to explain cross-domain 

differences in associations with brain degeneration and cognitive decline, with a goal of both 

predicting and understanding mechanisms of cognitive decline.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Longitudinal analytic model. [The four cognitive domain scores are regressed on time in 

study in the Within level of the multilevel model and person-specific intercept and slope 

random effects from the Within model serve as primary outcomes in the Between level of 

the model. A global slope factor effectively summarizes covariance of the four slope random 

effects but individual intercepts provide optimal fit. The global slope random effect is 

regressed on the reserve proxy of interest (education or one of the four baseline cognitive 

domain scores), brain change, the interaction of the reserve proxy with brain change, and 

covariates. Intercept random effects are also regressed on covariates and the reserve proxy 

but effects on global slope are of primary interests and effects on intercepts are not reported. 

All effects in the Between and Within models are simultaneously estimated.]
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Figure 2. 
Model predicted trajectories of executive function decline by rate of gray matter change and 

baseline episodic memory. [Expected executive function trajectories are presented for three 

atrophy rates corresponding to average rates for Normal, MCI, and Dementia baseline 

diagnosis groups and two levels of episodic memory (+1.0 SD and −1.0 SD). Executive 

function slope is calculated as global cognitive slope X 1.039 (executive function slope 

loading in primary, multivariable analysis). The interaction of baseline episodic memory 

with gray matter atrophy is significant (p=0.003).]
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Figure 3. 
Model predicted trajectories of executive function decline by rate of gray matter change and 

education level. [Expected executive function trajectories are presented for three atrophy 

rates corresponding to average rates for Normal, MCI, and Dementia baseline diagnosis 

groups and two levels of education (8 and 16 years). Executive function slope is calculated 

as global cognitive slope X 1.039 (executive function slope loading in primary, multivariable 

analysis). The interaction of education with gray matter atrophy is significant (p=0.027).]
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Figure 4. 
Conceptual model of cognitive reserve effects of episodic memory on cognitive decline. 

[Rectangles represent observed variables and ovals represent latent/hypothetical variables. 

Observed episodic memory reflects latent variance components due to demographics, 

measured brain, unmeasured brain, measurement error, and cognitive reserve. Observed 

cognitive decline is adjusted in the regression model for demographic and measured brain 

effects, so the regression effect estimate of observed episodic memory on cognitive decline 

represents the combined effects of unmeasured brain and cognitive reserve variance 

components.]
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Table 1.

Sample characteristics. [Results are stratified by baseline clinical diagnosis: Normal Cognition (N = 187), 

Mild Cognitive Impairment (MCI) (N = 107), Dementia (N = 21)]

Dementia MCI Normal Total

Gender - Female 11 (52.4%) 55 (51.4%) 121 (64.7%) 187 (59.4%)

Age (baseline) - Mean (SD) 80.1 (±4.2) 75.4 (±7.1) 74.5 (±7.0) 75.2 (±7.0)

Education - Mean (SD) 11.9 (±5.3) 14.5 (±3.9) 12.9 (±4.6) 13.4 (±4.5)

Recruitment Source - Clinic 8 (38.1%) 44 (41.1%) 28 (15.0%) 80 (25.4%)

Recruitment Source - Community 13 (61.9%) 63 (58.9%) 159 (85.0%) 235 (74.6%)

Race/Ethnicity - Black 3 (14.3%) 21 (19.6%) 46 (24.6%) 70 (22.2%)

Race/Ethnicity - Latino 6 (28.6%) 10 (9.3%) 64 (34.2%) 80 (25.4%)

Race/Ethnicity - Other 0 (0.0%) 4 (3.7%) 11 (5.9%) 15 (4.8%)

Race/Ethnicity - White 12 (57.1%) 72 (67.3%) 66 (35.3%) 150 (47.6%)

APOE ε4 - E4 Positive 13 (61.9%) 50 (46.7%) 59 (31.6%) 122 (38.7%)

Cognition Follow-up Time - Mean (SD) 4.8 (±2.3) 5.7 (±3.1) 8.4 (±3.4) 7.2 (±3.5)

Number of Cognitive Assessments - Mean (SD) 4.9 (±2.2) 5.7 (±2.6) 7.7 (±2.9) 6.8 (±3.0)

MRI Follow-up Time - Mean (SD) 3.5 (±2.0) 3.6 (±2.4) 5.1 (±2.7) 4.5 (±2.7)

Follow-up Status - Active Follow-up 5 (23.8%) 36 (33.6%) 97 (51.9%) 138 (43.8%)

Follow-up Status - Deceased 12 (57.1%) 46 (43.0%) 46 (24.6%) 104 (33.0%)

Follow-up Status - Lost to Follow-up 4 (19.0%) 25 (23.4%) 44 (23.5%) 73 (23.2%)

Global Gray Change (standardized*) - Mean (SD) −0.2 (±0.8) −0.3 (±0.9) 0.2 (±0.7) 0.0 (±0.8)

Global Gray Change (percent**) - Mean (SD) −0.9 (±0.6) −0.9 (±0.7) −0.6 (±0.5) −0.7 (±0.6)

Episodic Memory (baseline*) - Mean (SD) −0.9 (±0.5) −0.3 (±0.6) 0.5 (±0.8) 0.1 (±0.8)

Semantic Memory (baseline*) - Mean (SD) −0.5 (±0.9) 0.0 (±0.7) 0.1 (±0.9) 0.0 (±0.8)

Executive Function (baseline*) - Mean (SD) −0.5 (±0.9) 0.0 (±0.7) 0.4 (±0.9) 0.2 (±0.8)

Spatial (baseline*) - Mean (SD) −0.4 (±1.1) 0.1 (±0.9) 0.2 (±1.0) 0.1 (±1.0)

Note.

* =
Blom transformed to have M=0 and SD=1 in this sample,

** =
log jacobian X 100
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Table 2.

Comparison of effects of baseline cognitive measures from different cognitive domains on global cognitive 

slope.

Cognitive Domain Cognition Main Effect Cognition by Gray Matter Change Interaction

Episodic Memory 0.016 (0.007)+ −0.028 (0.010)++

Semantic Memory 0.012 (0.008) 0.000 (0.012)

Executive Function 0.007 (0.008) −0.011 (0.012)

Spatial Ability −0.003 (0.006) −0.009 (0.010)

Note: Tabled values are unstandardized regression weights (βs) with standard errors in parentheses. Results show estimates of cognitive variable 
main effects and interactions with gray matter change, and are from models that included all demographic and brain variables and covariates. 
Estimates indicate the effects of 1 SD differences in dependent and independent variables. (+ p<0.05, ++ p <0.01)
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Table 3.

Effects of covariates, brain variables, education, and baseline episodic memory on global cognitive slope.

IndependentVariable β SE p

Intercept (reference) −0.080 0.016 0.000

Male * −0.004 0.010 0.720

Age (baseline - centered at 70) 0.000 0.001 0.961

Black * 0.068 0.013 0.000

Latino * 0.028 0.015 0.070

Other non-White Race/Ethnicity * −0.001 0.022 0.961

Spanish * 0.003 0.018 0.885

Clinic Recruitment * −0.063 0.016 0.000

APOE e4 positive * −0.040 0.011 0.000

Lost to Follow-up * −0.012 0.012 0.348

Deceased * −0.038 0.013 0.003

Brain Volume (baseline) 0.000 0.006 0.972

Hippocampus Volume (baseline) 0.018 0.006 0.006

White Matter Hyperintensity Volume (baseline) −0.008 0.005 0.111

Cortical Gray Matter (change) 0.060 0.011 0.000

Education (centered at 12 years) 0.000 0.001 0.978

Education by Gray Matter Change 0.004 0.002 0.027

Episodic Memory (baseline) 0.016 0.007 0.021

Episodic Memory by Gray Matter Change −0.028 0.010 0.003

Note: Tabled values are unstandardized regression weights (βs) with associated standard errors (SEs) and p-levels. The Intercept estimate represents 
the mean for the reference individual for group indicator variables and average values for continuous variables. Estimates for non-reference group 
indicator variables represent average difference from the reference value for that variable. Estimates for continuous values indicate the effect of a 1 
SD difference in that variable. (* = dichotomous indicator variable)
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