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Abstract

Architectural Support and Modeling of Emerging Technologies for Datacenter Privacy

and Security Applications

by

Alvin Oliver Glova

As computing continues to be used for increasingly private and sensitive operations

impacting all aspects of our lives, the need to maintain tight control of those computations

only continues to grow. This, when coupled with the increasing trend of “outsourced”

computation where datacenters are responsible for both storing data and performing com-

putations over it on behalf of another party, naturally raises the level of importance of

security and privacy even further. As such, algorithmic approaches to privacy-preserving

and secure/trusted computations are rapidly emerging as a key aspect of workloads in

datacenters at all scales. The higher cost associated with this additional algorithmic com-

plexity will only increase the power consumption of these data centers, which are already

receiving significant scrutiny for their ever more power-intensive operation. Architectural

solutions are needed to support these emerging aspect of workloads. With the decline of

Moore’s Law, this also presents an interesting prospect for several energy-efficient “Post-

Moore” technologies such superconducting electronics and steep-slope devices which are

studied and developed as potential replacements for Silicon-based CMOS to realize low

power datacenter processors and accelerators.

In this dissertation, we study new opportunities for architectural support of these

emerging application needs in both traditional and emerging technologies. To perform

this work we need to make additional contributions advancing the modeling and eval-

uation of emerging Post-Moore technologies in the context of secure privacy-preserving

viii



computations. First, we show how using a small, co-located, trusted hardware device

can be used to improve multiparty computation-based operations based on the trade-off

of physical security and performance. Second, we show how near-data processing can

be exploited to improve certain forms of homomorphic encryption with applications in

private search. Finally, we explore how these emerging technologies can be used to im-

prove energy-efficiency of datacenter workloads by modeling accelerators and multicore

processors.
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Chapter 1

Introduction

We are living in a world where more and more data is being generated. Whether it is

personal data from smartphones and smartwatches or big data records from enterprises,

our systems are currently inundated with data. We can gain useful knowledge and in-

sights from processing this data but, more often times than not, the only way to do this

requires sharing of private data to remote servers in datacenters. These datacenters offer

significant advantages in terms of availability, efficiency, scalability and often exclusive

data resources such as models and records required for processing of client data. For

third-party datacenters, operations at these scales provide far more than cost savings

and convenience: they are continually monitored for failure, have significant and redun-

dant connectivity to the outside world, are carefully managed 24/7, and are consistently

upgraded.

However, there is a threat that malicious datacenter operators can get hold of private

information and the servers themselves can also be potentially compromised and allow

further leakage of information outside of the datacenter. This sharing then begs the

question, how do pass trust to remote machines in datacenters? Is there a way we can

operate on the data as if it is local in terms of security? Clearly there is a strong need

1



Introduction Chapter 1

to protect private information for data access, processing, and analysis on datacenters.

Because of this, in recent years, there has been a strong push for techniques for secure

outsourcing of computation across different fields like machine learning and healthcare

where many private data are involved. In a typical scenario where secure computation

is needed, a client sends some data which could be private to a remote machine where

it is processed and the results are sent back to the user. In this process, the client data

should need to be protected and should be oblivious to the remote server. For example, a

client can send a CT scan for diagnostic purposes to a hospital machine, where a series of

trained models of various patients could be used for machine learning prediction. In this

example, the client would want to avoid disclosing his personal data while still getting

some useful diagnosis. As these data and services become more advanced and readily

available, there is an increasing need to keep private data secure even when stored in

the cloud and still used for research and testing. Genetic information, for example, has

numerous special distinguishing features and it can violate personal privacy via genetic

disclosure or genetic discrimination. Due to these potential privacy issues, there is a

great need for a protocol for the secure outsourcing of private data analysis in a cloud

environment.

To enable these applications, secure computation technologies such as multiparty

computation and homomorphic encryption have been proposed and studied but have

not had widespread deployment because they present practical challenges. Multiparty

computation (MPC) is a secure computation protocol that allows for computation of a

function by a set of parties who possess private inputs that are not revealed to other

parties. The most common form of MPC is two-party computation (2PC) which is usu-

ally used for secure outsourcing of private computations of a client to an untrusted cloud

machine. Yao’s Garbled Circuit (GC) and Goldreich-Micali-Wigderson (GMW) are rep-

resentative 2PC protocols. Homomorphic encryption (HE), on the other hand, supports

2



Introduction Chapter 1

operations on encrypted data thus making it possible for data to remain confidential

while it is processed in untrusted environments [1, 2]. This property allows for the pro-

tection of private data especially in cloud services. Furthermore, the most mainstream

solution are trusted execution environments (TEE) like Intel SGX which provide a bub-

ble environment where data is protected and can be used for secure computation. All of

these have different security assumptions and thus offer different security guarantees and

corresponding implementation overheads.

As these solutions become more common, datacenter would have to be equipped with

the necessary hardware and software to support them. This puts additional burden on

datacenters which already expends a lot of resources to host emerging applications such

as machine learning. For example, datacenter power consumption has been increasing

significantly in recent years[3]. Aside from enabling the deployment of these solutions,

it is also important to ensure that the datacenter implementing these solutions will have

reasonable overheads. This presents an opportunity for architects for proposing solutions

that will make these applications practical in terms of performance and datacenter over-

heads as evidenced by many recent advancements in making secure computation practical

through implementing accelerators [4, 5, 6].

Meanwhile, as Moore’s Law and traditional device scaling ends, the push for con-

tinued systems performance scaling becomes even more challenging. While architects

have recently exploited chip specialization to compensate for limited device scaling [7],

this too has its own limitations[8], which encourages exploring device technologies beyond

traditional Silicon-based CMOS, badly needed in to address datacenter overheads. Steep-

slope devices such as negative capacitance FET and superconducting electronics (SCE)

are promising ”Post-Moore” options that promises lower energy and potentially higher

performance compared to traditional silicon-based CMOS. Superconducting devices have

been well-studied and there have been many proposed variations such as rapid single-flux-
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quantum (RSFQ) [9], energy-efficient RSFQ (ERSFQ) [10], and more recently, adiabatic

quantum-flux parametron (AQFP)[11]. While significant progress have been made in

advancing the material, device and circuit properties, there has been little progress in

understanding the architectural and system-level implications of these technologies, es-

pecially in the the context of datacenter hardware and applications, where they are badly

needed.

To help address these issues, in this dissertation, we study new opportunities and

tradeoffs and propose solutions for architectural support of emerging datacenters

workloads such as privacy-preserving computation. In addition, we leverage high-

level modeling techniques for early and rapid evaluation of Post-Moore technologies

for potential datacenter hardware accelerator and processor designs.

In particular, in the following three chapters, we present different solutions that can

help tackle the challenges of the emerging datacenter privacy and security-focused work-

loads using both architectural specialization and technology advancement using Post-

Moore devices.

• In Chapter 3, we study the trade-off of physical security and performance improve-

ment by improved locality in the context of multiparty computation in datacen-

ters. We propose an asymmetric approach to multi-party architecture with the

co-location of a small physically-hardened compute element (under the control of

one party) with a much larger and robust server-class system (under the control

of the other). We call our proposed devices “Hardware Embassies”, a new class of

devices that enable more efficient MPC by providing untrusted server co-located

tamper-proof trusted hardware.

• In Chapter 4, we study the trade-off of simplified computation but at the expense

4
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of larger data to be processed in the context of homomorphic encryption-based

search in datacenters. We propose a near-data processing (NDP) architecture us-

ing 3D-stacked DRAM to support privacy-preserving biomarker search which en-

ables reduction of data movement and acceleration of basic additive homomorphic

operation.

• Lastly, in Chapter 5, we study the benefits and drawbacks of Post-Moore technolo-

gies in the context of hardware (processors and accelerators) starting to be intro-

duced in datacenters for these applications. We use rapid, early-state statistical

and analytical models to explore the performance and power benefits of steep-slope

devices and superconducting technologies. Our work serves as early guidance of the

the limitations and potential of these Post-Moore technologies through performance

and energy efficiency design space exploration.

5



Chapter 2

Background

In this chapter, we provide background information on secure computation, in particu-

lar, on Multiparty Computation (MPC), Homomorphic Encryption (HE), and Trusted

Execution Environment (TEE). We discuss recent advancements as well as compare the

characteristics, emphasizing the the pros and cons of each. We also describe privacy-

preserving applications that make use of these techniques. Finally, we describe emerging

technologies such as steep-slope devices an superconducting electronics and their poten-

tial applications.

2.1 Secure Computation

2.1.1 Cryptographic Primitives and Protocols

Multiparty Computation (MPC)

Multiparty computation allows for computation of a certain function by a set of par-

ties who possess private inputs without having to reveal these inputs to other parties.

In this paper, we are interested in two types of MPC protocols, Yao’s Garbled Circuit

and Goldreich-Micali-Wigderson. Before providing a brief overview of the two protocols,

6



Background Chapter 2

we first discuss their underlying primitives. The most common implementation of MPC

is a two-party computation (2PC) which usually involves a client and a server. Two

adversary models are typically used for MPC: semi-honest (honest-but-curious) wherein

all parties follow the protocol but the attacker may try learn more than what is allowed,

and malicious wherein the attacker is not restricted to follow the protocol and so can

actively attempt to compromise security.

Oblivious Transfer

Oblivious transfer (OT) is a fundamental cryptographic primitive heavily used in

secure two-party computation. 1-out-of-2 oblivious transfer, is a protocol in which a

sender inputs two messages (x0, x1), each of m-bit size, and a receiver inputs a choice bit

c ∈ {0, 1}, such that the receiver obtains the message xc without knowing x1−c and the

sender does not learn any information about the choice of c requested by the receiver.

There is a variant of OT called a random oblivious transfer that reduces communication

overhead. In a random OT, the sender inputs no messages and obtains a random message

pair from the protocol itself. The receiver still inputs its selection bit to choose one of

the random messages. 1-out-of-2 OT can be generalized to 1-out-of-N OT (N ≥ 3) where

the sender inputs N messages of m bits instead of two messages. Again, in 1-out-of-N

OT, the receiver inputs a choice bit string s ∈
[
1, n

]
to obliviously obtain the message

xs. Note that regular OT still requires some public key cryptography, which is known to

be costly.

OT Extensions

[12] shows that it is possible for both parties to compute n OTs using only symmetric

cryptography after computing κ public-key base OTs, where κ ≪ n and κ is the the

security parameter. This technique is called OT extension [12] and is effective because

symmetric key operations are much faster than public key operations. Given that modern

7
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Intel processors are equipped with AES-NI extensions to enable hardware acceleration

in place, this is an obvious improvement in computation compared to calling regular

OT n times. The sender and receiver of an OT have asymmetric computations. An

OT requires the sender to compute slightly more intensive cryptographic functions of

AES256 or SHA256. A more optimized OT extension, described in [13], utilizes random

OT to reduce communication overhead. As a result, the implementation is able to achieve

computing over one million OTs per second [13].

OT Overhead

For simplicity, we list communication cost that includes both data sent and received.

With OT extension, the communication is 2m + κ bits for a 1-out-of-2 OT and κ bits

for a 1-out-of-2 random OT [14, 13]. The communication is Nm + 2κ bits for a 1-out-

of-N OT and 2κ bits for a 1-out-of-N random OT [14]. A 1-out-of-2 OT requires the

receiver to compute two pseudo random generator (PRG) and one correlation robust

function (CRF) and requires the sender to compute one PRG (AES128) and two CRF

(AES128) evaluations. A 1-out-of-N OT requires the receiver to compute four PRG and

one CRF and requires the sender to compute two PRG and N CRF evaluations [15]. CRF

here is usually instantiated with either SHA256 or AES256. Because a CRF function is

a lot more costly than a simple PRG using AES128, the sender role in OT has more

computation overhead. receives a value of his choice from among several values sent by

the sender, while learning nothing about the other values. The sender does not learn

anything from the protocol, and in particular he does not learn which of the values he

sent was received by the chooser.

Secret Sharing

In secret sharing, a value is shared between two parties such that the addition of

two secrets yields the actual value. In order to additively share a secret x, a random

value r is generated as party P1’s share, denoted as [x]1, and x− r is used as party P2’s

8
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share, denoted as [x]2. To reconstruct a secret, one party needs to send its share to the

other party so that the other party can add the two shares. Secret sharing is typically in

the binary field. Because XOR is reversible in the binary field, one can simply use the

random bit r and x⊕r as the shares of the two parties respectively, since (x⊕r)⊕r = x.

Yao’s Garbled Circuit (GC)

Yao’s garbled circuit [16] is a commonly-used two-party secure computation protocol.

A function f is represented as a Boolean circuit composed on two-input gates like AND

and XOR. P1 and P2’s inputs are represented as input wires of the circuit. The goal of

the protocol is to compute the circuit such that only the circuit output wires are revealed

and values obtained in all other wires are not. To execute the protocol, the two parties

take up the role of a garbler (P1) and evaluator (P2). In the garbling phase, P1 creates a

garbled table for each gate by first assigning two random labels to each wire in the circuit.

The size of the label is determined by the security parameter which is typically set to 128.

Each encrypted row in the table is obtained by double encryption of corresponding input

labels. This means to decrypt the output of each gate (table), the two keys corresponding

to the input labels are needed. P1 sends these gabled tables as well as her input labels

to P2 for evaluation. In order to execute the evaluation phase, P2 needs to obtain his

corresponding input labels from P1. This would require 1-out-of-2 OT described earlier

since (1) P2 cannot send his actual input to P1 and (2) P2 cannot send both input labels

(for both 1 and 0) to P1 as this would allow leakage of information. Once P2 gets his

input labels, he can start the evaluation. This involves decrypting the correct output

key for each gate sequentially using the two input labels from both parties. This is done

until the output wires are reached. The output mapping from P1 is used to translate the

output wire results to proper plaintext outputs.

Garbled Circuit Optimizations.

9
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We summarize the most important garbled circuit optimizations below:

• Free-XOR [17] : Enabled free computation of XOR gates.

• Row-Reduction [18] : Reduction of garbled table rows from 4 to 3.

• Garbling with Fixed-Key Block Cipher [19] : Encryption of garbled tables using

AES which can be efficiently executed in processors with AES hardware support

(AES-NI).

• Half-Gates [20] : Further reduction of number of rows in AND gates from 3 to 2.

• Sequential Garbled Circuit [21] : Reduction of circuit memory footprint by using

much smaller sequential circuits (executed in multiply clock cycles) instead of big-

ger combinational circuits.

Goldreich-Micali-Wigderson (GMW)

Similar to GC, the GMW protocol [22] allows two parties to securely evaluate any

function represented as a Boolean circuit with two-input gates without leaking each

party’s private inputs. GMW is also based on the secret sharing scheme in binary field.

All input values of the Boolean circuit are secret shared between the parties so that each

party can evaluate the circuit using its share of each wire. Computing an XOR gate

can be done locally without any communication. Assume two parties have a share of

x = [x]1⊕[x]2 and y = [y]1⊕[y]2. To secret share z = x⊕y, it is sufficient for P1 to compute

[z]1 = [x]1 ⊕ [y]1 and for P2 to compute [z]2 = [x]2 ⊕ [y]2, as z = [z]1 ⊕ [z]2. Meanwhile,

evaluating an AND gate requires each party to use a pre-computed multiplication triple

generated for each AND gate. GMW is divided into two phases, a setup phase and

an online phase. The setup phase computes each multiplication triple using 2 1-out-

of-2 OTs so that the evaluation of AND gates in the online phase can be performed

10
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efficiently. Note that multiplication triples can be generated before the actual function is

known but it still requires communication between both parties. As a result, both parties

need to stay online for the entire setup phase in the traditional setting. Because XOR

gates are localized, the only communication takes place at each AND gate. To reduce

communication rounds, the two parties can compute AND gates in the same circuit level

in parallel.

Because XOR gates are localized, the round complexity of GMW only depends on

the depth of AND gates in the circuit. The downside of this dependency is that the

performance of GMW can be sensitive to the network latency. Using a circuit with lower

depth and greater size can be more efficient for GMW.

LUT-based protocols represent the evaluation function as a Boolean circuit with

multi-input gates. The circuit is synthesized to a network of lookup tables (LUT) as

oppposed to just two-input gates, which makes the circuit more compact and enables

the evaluation of more intensive functions. The state-of-the-art LUT-based protocol [23]

reduces the communication by a factor of 4x compared to GC and reduces the round

complexity by a factor of 4x compared to GMW, at the cost of slightly increased com-

putation. [23] proposes two LUT-based protocols, SP-LUT and OP-LUT, which are

optimized for setup phase and online phase respectively. Both of the protocols are based

on binary secret sharing, meaning that they are fully compatible with GMW and mixed

protocol schemes can be further explored.

Homomorphic Encryption (HE)

Homomorphic encryption (HE) is a cryptographic tool that allows performing com-

putation even when the data is encrypted. With a homomorphic encryption scheme,

performing the function f on the encrypted data will result to the value as with per-

forming encryption first, evaluate the function f on the encrypted data (ciphertext) and

11
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Figure 2.1: Garbled Circuit Optimizations [20]

decrypting the ciphertext. Homomorphic encryption systems can be divided into addi-

tively homomorphic such as Pallier or multiplicatively homomorphic such as RSA. Gentry

provided the first fully homomorphic encryption scheme [24] but, in practice, partially

homomorphic and leveled homomorphic encryption schemes are used because of compu-

tational efficiency. Compared to multiparty computation, homomorphic encryption has

the advantage of being non-interactive since it does require the client to be online to per-

form the computation which reduces network overhead as well as not needing additional

servers. Currently, because of its significant computation overhead, it is usually not used

in isolation but is usually paired with MPC in hybrid protocol solutions [21].

Trusted Execution Environment (TEE)

As an alternative to multiparty computation and homomorphic encryption, trusted

execution environments (TEE) built into recent processors can also be used for secure

computation. TEEs such as Intel SGX and ARM TrustZone have secure enclaves which

provides functions such as isolated execution environment for secure computation and

remote attestation of code running within enclave to ensure integrity. Although they

have lowest performance overhead compared to other secure computation methods and

currently deployed in real world products, recent attacks on SGX (Foreshadow [25]) and

TrustZone [26] has put into question their security.

12
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Homomorphic 
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Figure 2.2: Comparison of MPC, HE, and TEE

2.1.2 Privacy-Preserving Applications

Secure Neural Network Inference

Privacy-preserving neural network (NN) inference is one the most active research ap-

plications of secure computation [27, 28, 29, 30, 31]. There has been a steady increase of

interest in NN in recent years which has allowed significant advances in computer vision,

natural language processing, and other fields. However, most NN applications currently

in use have so far focused on efficiency and have put privacy in the backseat. Data trans-

mitted from the client which are used for prediction/inference in a cloud provider could

be of sensitive holding private information such as financial and medical information.

Outsourcing of prediction carries the risk of client sensitive information being leaked out.

Thus, there is a great need for privacy-preserving NN inference enabled by secure com-

putation.

Secure DNA Matching using Private Set Intersection

Personalized DNA analysis has become increasingly popular since the emergence of
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23andMe, a company that offers DNA testing for ancestry. DNA testing not only helps

customers connect with their ancestral relatives, but it also helps patients identify their

susceptibility to certain diseases. However, privacy policies of DNA services may allow

third parties to access sensitive genetic information from customers. Hence, there is a

great need for secure DNA analysis such as genome matching through private set in-

tersection (PSI). In the PSI application, two parties want to learn the intersection of

their sets without revealing any private element not in the intersection. Because PSI

needs to be applied to large sets of data, performance is critical. Since traditional secure

implementations of PSI scale poorly with large data sets, many current implementations

conform to an insecure protocol using a one-way cryptographic hash function. Moreover,

many recent works have made PSI more practical by focusing on reducing communication

cost [15, 32, 33].

Privacy-Preserving Biomarker Search using HE

Biomarker search is one of the key emerging applications in bioinformatics domain [34],

as it allows for detection of possible diseases. A specific set of biomarkers are queried

from a server that houses a database of these biomarkers. The presence or absence of a

specific biomarker or a set of biomarkers indicates a probability of genetic diseases and

thus helps medical practitioners to make informed decisions. In dealing with this type of
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application, however, data is stored in the database and the queries must be encrypted

in order to protect privacy.

The biomarkers are stored in Variant Call Format (VCF). These VCF files contain

information on biomarkers (genotype information) such as chromosome number and the

position of the genome. Furthermore, it contains information for each position such as

reference and alternate sequences.

A typical processing flow for HE-based biomarker search is shown in Figure 4.2.

The figure shows two general phases: a preprocessing phase and the query phase. In

the preprocessing phase, each entry in the VCF file is first encoded and hashed before

performing the actual homomorphic encryption using a generated key. This is to reduce

the size of the encrypted entries since the size of the unencrypted entries will affect

the size of the data after encryption. In the query phase, the client similarly needs to

preprocess the query before it is sent to the cloud service for the exact search operation.

An encrypted result of the search is sent back to client where it can be decrypted using

the secret key. In this work, we focus on the homomorphic evaluation stage of the search

which takes up the majority of the execution time, especially for large number of queries.

2.2 Emerging Post-Moore Technologies

2.2.1 Steep-Slope Device Electronics

Steep-slope devices are a class of technologies that have significantly improved power-

efficiency compared to traditional silicon-based CMOS technology. What these devices

try to overcome is the is the fundamental limit of subthreshold-switching of CMOS-based

devices (60mV/dec). In this section, we give an overview of one of the representative

emerging devices, Negative capacitance FET (NCFET).
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Figure 2.4: Negative Capacitance FET Structure [35]

Negative Capacitance FET (NCFET)

NCFET has an integrated ferroelectric layer within the transistor gate. Typically,

the already used high-k dielectric HFO2 is doped by Zr to obtain the ferroelectric layer.

As such, the device itself has not significant difference in terms of area compared to

CMOS FinFET. A typical NCFET structure is show in Figure 2.4. This effect of this

ferrorelectric layer is what is known as negative capacitance, which results in charge

redistribution which ultimately lowers the required potential to switch the transistor

compared to non-NC oxides. Thus, NCFET allows operation at a higher frequency at

the same voltage or operate at the same frequency at lower voltage compared to CMOS

FinFET [35]. One disadvantage of NCFET is that it increases the gate capacitance as

a result of the negative capacitance effect. This results in higher dynamic power at the

same gate voltage.

2.2.2 Superconducting Electronics

Superconducting electronics use materials such that at least some parts of which are in

superconducting state. Since superconducting electronics require to maintain at certain

temperature due to their unique physics characteristics, the common temperatures for

superconducting devices are the boiling point of liquid nitrogen, the boiling point of
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liquid helium, and the superfluid helium-4 temperature, which is below 2.17K. Although

this is a crucial setting for current computers, their performance and energy-efficiency

are promising for the future post-Moore research in computer architecture. For example,

8-bit AQFP adder reported a 24 kbT energy dissipation per junction [36] .

Superconducting technology is based on the Josephson Junction (JJ), a primitive

switching device. A JJ is composed of an insulating barrier that is sandwiched between

two superconducting layers. In its superconducting state, despite no voltage applied

across the junction, tunnelling current can pass through the junction. Once a certain

current limit (Ic, critical current) is flowing through the junction, it switches to its resis-

tive state.

Input Output

Clock

SFQ

2

1 3

Figure 2.5: SFQ DFF

RSFQ and AQFP are two leading candidate superconducting technologies. The clock

frequency for RSFQ can reach 50 GHz for 8-bit processors[37]. Although RSFQ can

operate at high clock frequencies, it still has a significant leakage from its bias resistors

used to supply DC currents. This drastically increases the static power dissipated between

10 and 100 times the dynamic power. An energy-efficient RSFQ (ERSFQ) was proposed

to address this. In particular, ERSFQ differs from RSFQ by adding a large bias inductor
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as well as a clocked feeding JTL to limit its supply power to perform current-limiting

Josephson junction to distribute bias power. Thus, this design decreased the energy

consumption with extra area. The power distribution for energy-efficient operation adds

about 30% to ERSFQ overhead [38].

AQFP makes use of AC bias for its clock and power supply, unlike other supercon-

ducting technologies like RSFQ which are based on DC bias, allowing it to avoid DC

power overhead and essentially consume less power [39]. The most basic logic unit in

AQFP is a buffer. Excitation fluxes are generated in the JJ loops as current I x is applied.

An SFQ (Single Flux Quantum) is then stored in either left or right loop depending on

the input current Iin. Note that, compared to RSFQ, which use JJ switching to move

SFQ, information in AQFP is encoded by the location of the SFQ, which determines

whether it represents logical ‘1’ or ‘0’. Inverter and constant cells can be generated from

this buffer cell. This set of 3 cells can then be used to build logic gates such as MAJ

(majority), NOR, and AND. As a result of having the same AC signal as a power source

and clock, a clocking scheme is needed to synchronize the outputs of all gates in the same

clock phase. Typically, individual AQFP logic gates are connected to an AC clock signal

and each one will occupy a clock phase.
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Chapter 3

Establishing Cooperative

Computation with Hardware

Embassies

While recent cryptographic techniques enable cooperative multi-party client-server com-

putations under mutual distrust, they also introduce an efficiency tradeoff. Hosting all of

the computation from the different parties involved on one set of servers requires everyone

to agree on which servers are trustworthy. On the other hand, keeping the computations

truly distributed introduces significant delays because of the inherently latency-sensitive

nature of the protocols involved. In this work, we explore the architectural impact of a

possible middle path to this problem: resource-poor but physically secure devices inter-

acting with significant (but not mutually trusted) compute and storage resources. The

idea is that a small and well-protected “Embassy” can serve as a plot of sovereign soil

in an otherwise untrusted environment. Building on techniques from multiparty compu-

tation (MPC) we show how such an architecture, even when extremely limited in size,

can leverage local network capabilities and asymmetries in cryptographic operations to
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perform more efficient interactive secure computations. Even with a client-side device

5× slower, we show that common MPC applications can still be accelerated by 3× on

average. Moreover, we explore the potential for architectural changes to further support

multi-party evaluation through the addition of dedicated evaluator hardware further im-

proving performance 1.52×.

3.1 Introduction

Through advanced cryptographic techniques, it is now possible to perform shared

computations without ever fully sharing the data. For example, a class of cryptographic

techniques referred to as multiparty computation (MPC) establishes secure computation

protocols between multiple non-colluding parties that allow for functions to be iteratively

computed on private inputs without revealing anything beyond the result to either party.

As long as we trust those parties do not share out-of-band information with one another,

these techniques allow for a mutual computation to be performed (for example a query

to a database) without either side learning what the other is doing (such as keeping the

query secret from the database and visa versa). Unfortunately, these protocols usually

require both parties to be active participants in the computation to some degree. Because

the computations are typically arranged as long and unbroken chains of cryptographic

operations, involving multiple parties typically means a lot of waiting around for the

other side to finish up their work and pass it back to you.

One way to deal with this is to host multiple parties on a trusted third-party plat-

form. Co-locating the computation minimizes the time wasted transmitting parts of the

computation back and forth between all parties. Of course, if you had a fully trusted

third party they could just do the computation for all parties involved – no need for

cryptography! However, when we “trust a server”, we are trusting not only the com-
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putational and storage resources it hosts but also the physical and legal environments

under which it operates. These aspects are hard to attest to remotely and only compound

when multiple nation-states are involved. In reality, these cryptographic approaches are

typically the most useful when the data involved is sensitive enough that we prefer to

trust no one with all of the data. So, what can we do?

That introduces the new problem of where to find computational resources to host

multiple parties that both parties will trust. The last decade has seen significant advances

in making trusting third-party remote hardware a more reasonable choice. For exam-

ple, Flickr [40] introduced a clever scheme for remote attestation built on the Trusted

Platform Module (TPM) architecture which allowed the loaded system binary to be non-

bypassably fingerprinted. More current approaches build on top of the capabilities of

trusted execution environments (TEE) such as Intel SGX [41] to create similar “bub-

bles” of trust. While these and other approaches provide significant protections, the

threat models one can address with ISA-level changes alone are constrained and the lim-

its of sharing resources with an untrusted host opens up many potential side-channel

attacks.

The question we attempt to answer in this paper is if and when it is possible to use

a small island of physical security located in an otherwise very untrusted environment,

to enable a broader set of physically secure computation. Moreover, we explore new

architectures and machine organizations that enable such an approach to operate with

higher efficiency and better performance as compared to remote computation.

Specifically, we propose an asymmetric approach to multi-party architecture with

the co-location of a small physically-hardened compute element (under the control of one

party) with a much larger and robust server-class system (under the control of the other).

The hardened device can be physically smaller with fewer compute resources. Due in part

to its small size, the small compute element can be hardened against even incredibly
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advanced attacks to a high degree. The small device can even be physically shipped

between the guest, host, and back again as needed for initialization and decommissioning.

At a high level, one can think of this idea as setting up an “Embassy” that serves as an

island of sovereign soil in a foreign land. Just like traditional embassies, this arrangement

allows for higher bandwidth and lower latency interaction facilitating joint activities even

under mutual distrust. The code that lives on the device can serve to orchestrate and even

participate in trustworthy computations in the server on behalf of the guest. Physically

shipping the device adds significant setup overhead. However, there are many privacy-

focused applications where this one-time cost is tolerable. For instance, in hospitals or

research centers, new and sensitive data are being generated constantly. The more this

device is used, the more amortized the setup cost becomes.

As a first demonstration of the concept, we identify a class of cryptographic computing

approaches that are inherently asymmetric in their needs. Building on techniques from

homomorphic encryption and multiparty computation, we show how our proposed system

can leverage the high bandwidth and low latency network fabric available locally to

perform more efficient interactive secure computations, even when the computational

abilities of these physically-smaller devices are severely limited. Specifically, we examine

two important privacy-preserving applications, secure neural network inference based on

Yao’s Garbled Circuit (GC) [16] and private DNA matching based on Goldreich-Micali-

Wigderson (GMW) [22]. In these scenarios, the Embassy (our proposed device) acts as a

trusted (non-colluding) proxy for the client to perform Multi-Party Computation (MPC)

with a co-located untrusted server. We show that the improvements in connectivity

possible from using only systems connected by local networks more than compensate for

the smaller compute resources available to this new class of device, and that with some

simple architectural changes this gap can be extended even further. We summarize our

contributions as follows:
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• We propose “Hardware Embassies”, a new class of devices that enable more efficient

MPC by providing untrusted server co-located tamper-proof trusted hardware.

• We show how important cryptographic methods can be mapped to Hardware Em-

bassies and, for the first time, quantitatively explore the ways in which we can take

advantage of the network performance and asymmetric compute requirements of

these protocols.

• We quantitatively evaluate two different important applications: secure neural net-

work inference using a hybrid protocol (GC + HE) and private set intersection

which can be used for private DNA matching using GMW protocol.

• Building on our experience with the above, we propose and evaluate a microarchi-

tecture specialized in the cryptographic operations at the heart of common MPC

computations.

• We show experimentally, through a mix of in-datacenter network experimentation,

detailed simulation, and Verilog design, that the resulting system realizes a 4.56×

improvement over more distributed computation.

We start with a discussion of MPC and its objectives in Section 4.2. We discuss

the basic overview of secure computation protocols and the motivation for our work.

In Section 3.3 we present details of our solution. We evaluate our proposed solution in

Section 3.6 and provide a discussion of related literature in Section 3.7.

3.2 Supporting MPC

Multi-Party Computation (MPC) is a class of cryptographic techniques that allow

for the evaluation of functions without any of the participating parties learning about
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the inputs used in the computation [42]. The most advanced techniques support any

computation expressible as a Boolean circuit, everything from neural network evaluations

to bioinformatics applications, without sharing the underlying data.

A common form of MPC in practice is two-party computation (2PC) [43], which can

be used as a way to securely outsource private computations to untrusted cloud machines.

Yao’s Garbled Circuit (GC) and Goldreich-Micali-Wigderson (GMW) are examples of

2PC protocols which have been used for applications such as privacy-preserving machine

learning [44], secure genomic computations [45], and secure data search [23]. Recent

algorithmic improvements to 2PC protocols, especially the transition from public-key

cryptography to symmetric cryptography, have reduced the computational overhead by

more than an order of magnitude but communication bottlenecks are much harder to

overcome. For a single inference operation in a simple MNIST-based neural network, a

strict GC approach would require a network transfer volume of 791MB [46]. While we

will discuss some algorithmic ways others have found to help mitigate this problem, it

remains a serious issue.

Also, the literature on MPC is largely dominated by work that optimistically assumes

direct high speed and low latency connection between communicating parties. The high

communication cost of GC becomes even more burdensome for the common case where

a client and a server are located in different regions and therefore are using a WAN

connection. There are different possible LAN and WAN assumptions one might make,

but typically settings of WAN have 430× longer latency and 113× smaller bandwidth

than the reported LAN configuration for AWS [28].

We propose the use of a low-resource device under the direct control of an entity

cooperating with the co-located server that takes advantage of the high-speed LAN per-

formance. This is made possible by physically co-locating this device with the cooperating

agents while taking advantage of the inherent asymmetry of client and server computa-
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Figure 3.1: (a) Speed of 2PC Improvement [47]. Due to several optimizations in two
party computation in recent years (see Section 2.1.1), the network communication has
become the key bottleneck. (b) Datacenter network trends [48]. Network bandwidth
available to server units and total switch bandwidth of datacenters is expected to
increase. It is yet to be leveraged in secure computation applications.

tional requirements for most common cryptographic techniques. For example, as shown

in Table 3.1, the evaluation phase in GC (typically performed at the client-side) has 2×

smaller compute requirements [20] than the garbling phase (typically performed on the

server). This difference in compute load between the client and server becomes more

asymmetric for the hybrid protocols we consider in this work.

Unfortunately, co-location inherently creates a trade off between performance and

security as one party now has physical access to both sides of the computation. In sit-

uations with mutual trust between all parties, this does not pose a security challenge,

however, under these assumptions it is often unnecessary to utilize a co-located device.

When the embassy device is under the physical control of an untrusted entity then that

entity could potentially break the non-collusion assumptions that MPC and other cryp-

tographic protocols rely on. It becomes necessary to ensure the embassy is secure against

physical attacks.
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While physical security is not the focus of this work, NIST provides a standard for

the security of cryptographic hardware in untrusted environments called FIPS 140. The

latest versions, 140-2 [49] and 140-3 [50], categorize hardware into four categories. For

FIPS 140-3 levels 1 and 2 have no physical security requirements, and so such devices

would be unfit for an embassy device. Levels 3 and 4 require strong enclosures with

tamper detection that causes either an automatic zeroisation or a module shutdown.

While both level 3 and 4 devices are sufficient to implement Embassy, these tamper

detection techniques introduce overhead proportional to the original chip area. Also,

there is rarely a single technique that is able to provide catch-all tamper detection [51].

For instance, silicon light sensors have been used to detect active optical attacks [52],

but cannot detect other attacks. Due to this, most FIPS 140 level 3 or 4 devices tend

to be small, such as USB drives, security cards, and hardware security modules. While

these devices are too small to support the computation necessary for an Embassy, the

techniques used can be expanded to cover a larger device.

Using a small computing device for the Embassy gives us the following advantages: (i)

better defence against physical tampering because of a smaller attack surface; (ii) better

protection if the server gets compromised, given the Embassy has a different hardware

configuration and security guarantees (an attack on the server does not automatically

compromise the Embassy); and (iii) this setup relaxes the need for the client to be online

because it allows precomputations that can reduce ad-hoc runtime.

In this paper, we study two different applications to demonstrate the practicality of

our solution. The first application is secure NN inference using a hybrid protocol (HE +

GC) [30]. The second application is secure DNA matching using a private set intersection

with the GMW protocol [23]. While we use these two specific MPC approaches to evaluate

this approach, there is nothing application-specific about the architecture we propose.

For the two applications considered in this work, we follow the threat model of [30, 23].
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In secure neural network inference, we assume that the network model is available as

plain text in the server, similar to past work [30, 27, 29]. We assume that the crypto-

graphic protocols which we make use of in this work are correct and that the adversary

is computationally-bound, i.e. brute-force attacks are infeasible. We assume that the

Embassy is resistant to physical tampering and that any attempt to pry open the device

results in irretrievably corrupting the data in the device as per FIPS 140-3 level 3 and 4

devices.

3.3 Hardware Embassy Approach

The general protocol governing the use of an Embassy consists of three main phases.

I. Key Setup. Unique among other approaches, a client can begin with direct phys-

ical control of the device to be embedded in the co-located server. The client generates

a random symmetric encryption key which is then stored in the Embassy. This key can

be used to securely communicate back with the client from the co-located server.

II. Program Select and Compute. After the Embassy is installed in the co-

located server, the client can send a request to the device consisting of an input and a

program for the computation. This is done through a secure channel using the key that

was generated by the client. To initiate the compute operation, the Embassy sends a

request to an untrusted server in the system. For example, to perform GC, the untrusted

server sends the garbled tables of the program to the Embassy and performs OT for input

wires. Note that the garbled tables can be precomputed offline for certain programs. The

Embassy can then evaluate the garbled tables and obtain the result of the computation.

III. Result Retrieval. As results are generated, the Embassy can send them to

the client. Alternatively, the client can batch a request of computations and query the

results stored in the Embassy. Results are sent back to the client using a secure channel
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Properties Garbled Circuit GMW
XOR Gate free free
AND Gate
- Setup computation
- Setup communication [bits]
- Online computation
- Online communication [bits]

-
-

C: 2×AES; S: 4×AES
C from S: 2×κ

Client/Server: 6×AES
C to S and C from S: 2×κ

negligible
C to S and C from S: 4

wire storage [bits] κ 1

Table 3.1: Comparison between Garbled Circuit and GMW. The security level κ is
usually fixed at 128 bits. XOR gates require no communications for both protocols
and can be computed locally. For each AND gate, the garbled circuit computes more
AES on the server-side (2×) while work is evenly split in GMW. In general, GMW
requires more AES computations while GC consumes a greater memory footprint.
Both protocols have the same communication overhead.

as the data leaves the co-located server.

3.4 Embassy Design

In designing an Embassy, we consider a spectrum of specifications with the highest

performance being a server-class machine. Given the highly-advanced threat model we are

considering, it would be advantageous to use a device that has small enough dimensions to

be physically protected using the most aggressive tamper-resistant methods known [53].

At the lowest end that may be a simple USB-sized package similar to those used for edge

neural network acceleration [54, 55]. However, we are interested in using a standalone

device that does not need a host, for security and performance reasons. The closest

commercial device on the market is Intel’s compute stick which was first released in

2015 [56]. These devices have USB ports that can be used to connect to either a USB-

based NIC or a switch that incorporates USB connectivity, however more complicated

wire connectivity and better networking capabilities could be possible.

One of the main challenges in using such small devices as an Embassy is the lower
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Figure 3.2: Protocol Flow. A trust setup phase is first performed with a client machine
before being sent to the co-located server. The client machine sends inputs and receives
results from the Embassy through a secure channel. The actual secure computation
happens inside the co-located server between the Embassy and an untrusted server.

performance they provide compared to server-class machines. However, as we will show

later, with some creativity this level of device can still provide sufficient compute for

secure computation due to the fact that most of these protocols have an inherent compute

asymmetry – most of the compute-intensive actions can be carried out on a powerful but

untrusted server.

3.4.1 Co-locating with Untrusted Servers

Here we present one possible design for a co-located server that supports Embassy.

We use the concept of a disaggregated co-located server that allows different computing

devices or accelerators to be separated and individually addressed instead of relying on

host machines [57]. A sample co-located server configuration with Embassy is shown in

Figure 3.3. This design presents advantages in terms of cost, performance, and security.

An Embassy without a host machine yields significant cost savings and lower maintenance

costs. In terms of performance, it has fewer network and software layers to traverse since

it does not communicate through a host machine. Using a compute-stick class device also

29



Establishing Cooperative Computation with Hardware Embassies Chapter 3

Server

Server

Server

Server

…
.

ToR

In
tr

a-
ra

ck

ToR

EM EM EM

EM EM EM

…
.

EM EM EM

Inter-rack 
Network

Figure 3.3: Model of Embassies with Co-located Servers. Embassies are host-less
network-connected computing devices. Each one can connect to a server on other
racks through Top of Rack (ToR) switches or through other Embassies.

ensures we are not over-provisioning for workloads that work on these devices. As for

security, the potential attack surface is reduced since data does not need to pass through

host machines, thus making side-channel attacks harder.

Dedicated and physically-separated machines for clients might be less cost-efficient

than co-located servers. Nevertheless, recent attacks on virtualized environments [58, 59,

60] have made it clear that it is sometimes better to use separate machines if security is

important since they can be more easily isolated in physically secure spaces. We also draw

inspiration from the rise of baremetal servers which allow companies to have physically

separate machines in the co-located server instead of using virtualized environments.

While we have shown that there are advantages in introducing third-party hardware

such as Embassy into co-located servers, an understandable concern from server operators

is if the device itself is malicious. While this has been an ongoing trend [61], here we

discuss further potential safeguards to protect servers from malicious Embassies. One
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protection is to add a firewall using a switch exploiting software-defined networking to

provide software-controlled protection of the broader co-located servers from potentially

malicious traffic produced by errant Embassies. Another safeguard would be for the

provider to release an open-source reference design for the Embassy with auditing by

developers and the potential to perform attestation using Physical Unclonable Function

(PUF) or Zero Knowledge Proof (ZKP) so that the provider can confirm that the Embassy

can be trusted. The OpenTitan project shows a potential proof of concept in the related

space of providing an open-source silicon root-of trust [62].

3.5 Applications

While Embassy can be used for a wide range of applications, in this paper we inves-

tigate two representative applications commonly outsourced to third-party co-located

servers that highly demand privacy guarantees: neural network inference and DNA

matching. In Chapter 2, we give an overview and motivation of these two applications

and discuss related cryptographic primitives and protocols for those unfamiliar with the

work. Below we describe in more detail how we can adapt these applications to leverage

Embassy.

3.5.1 Embassies in Secure Computation

Embassy for Secure NN Inference: The protocol followed in this work is broadly

similar to the hybrid protocol used in Gazelle [30], as shown in Figure 3.4. After securely

receiving the input data from the client, Embassy encrypts the input data sent by the

client (e.g., image) using packed additively HE (PAHE). The linear layers (convolution

and fully-connected) are then processed using PAHE operations. Non-linear layers such

as ReLU and MaxPool are performed using a garbled circuit. The ReLU circuit that
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is evaluated is shown in Figure 3.5, where s x and s y are shares from the server and

c x comes from the Embassy or client, and p is the prime parameter selected in PAHE.

Conversion from PAHE to GC is done using secret sharing (adding a blinding random

number). These steps are repeated in the series of linear/non-linear layers of the neural

network until the final result (prediction) is obtained which is still in an encrypted form.

This is sent back to the Embassy where it is decrypted and sent back to the client in a

secure channel or stored for a later query by the client device.

Unlike in Gazelle, we assign the untrusted server as the garbler and the Embassy as

the evaluator. In this way, we are taking advantage of the workload asymmetry that exists

between the evaluator (less work) and garbler (more work). Note that compared to using

pure GC, this hybrid protocol results in reduced online execution time and communication

cost. This means that for cases where we are interested in similar runtimes, there is a

larger margin for the performance degradation range of the Embassy.

encrypted input

WAN High Speed LAN

encrypted result

Client
Embassy

Untrusted
Server

Conv/FC using PAHE

ReLU/MaxPool using GC/SS

Conv/FC using PAHE

encrypted result (AHE)

EM
encrypted data (AHE)

ReLU/MaxPool using GC/SS

2PC

2PC

Figure 3.4: Hybrid secure neural network inference flow using Embassy. This flow
is adapted from Gazelle [30] which combines Additive HE and Garbled Circuits to
evaluate linear and non-linear parts of the neural network, respectively
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Figure 3.5: ReLU Gadget Unit to be evaluated in the GC phase of the Hybrid Secure
Neural Network [30]
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Figure 3.6: PSI-GMW Flow using Embassy. This is adpated from [15] that uses GMW
to perform pairwise comparison for each bucket of the hash tables.

Embassy for Private Set Intersection: By improving an application using a generic

circuit protocol alone (GMW), we demonstrate that similar results can be obtained in the

most secure 2PC applications as GMW can be rapidly adapted to a different program by

constructing a new corresponding circuit. We thus adapt the PSI pairwise-comparison-

circuit using GMW[15] to Embassy. Dessouky et al. proposed a look-up table circuit

protocol [23] that outperforms GMW in PSI, but since the protocol reduces the commu-

nication overhead at the cost of increased computation, it performs poorly in the LAN
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network and is thus not considered. For comparison, we evaluate a dedicated PSI pro-

tocol using Oblivious Transfer [32], one of the fastest PSI protocols in the literature, on

the Embassy. For simplicity, we name the two protocols PSI-GMW and PSI-OT.

PSI-GMW computes the intersection between two sets by mapping elements from

both parties into hash tables and evaluates a pairwise comparison circuit between each

bucket of the hash tables, as shown in Figure 3.6. The complexity of PSI-GMW scales

linearly with the product of the entry bit width and the set size [15]. The process

begins with the client hashing its private data locally (e.g. genomic data in a VCF

file) and sending that data to the Embassy in the co-located server. We adopt the

same hashing technique in [15] that maps data to fewer bits, which reduces the one-

time communication overhead over the WAN network and the storage requirement in the

Embassy. The setup phase of GMW is dominated by AES operations in OT. To balance

the computation workload, the server and the client switch roles in 1-out-of-2 OT after

computing multiplication triples for half of the AND gates [63]. Because of the resource

constraints of the Embassy, we remove this optimization and make Embassy always

play the receiver in OT. Removing role switching also reduces computation intensity by

reducing two base-OT computations to one. We still keep the two-thread implementation

in [15]. Note that it is possible to improve performance by using more threads in the

setup phase to further take advantage of the fast High-Speed LAN.

The Embassy enables the client to stay online only during the transfer of the input

and output data. The multiplication triples can be generated as long as the size of the

circuit is known. The actual program (e.g. PSI) does not have to be known in advance.

Because the Embassy can always stay online, the Embassy can precompute a certain

number of multiplication triples (say 230) with the server when it is idle. After the

client makes a request to execute a program, it needs to query a multiplication triple for

each AND gate in the circuit and uses them directly in the online phase. As a result,
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Figure 3.7: PSI-OT Flow using Ambassador. This is adapted from [32] that uses OT
to generate masks and perform masks comparison for each bucket of the hash tables.

the ad-hoc runtime can be reduced by more than 99% for a set size of 100K. After the

set intersection is computed, the intersection results will be stored in the Embassy in a

bitmap format, which can be later queried by the remote client.

The PSI-OT flow, as shown in Figure 3.7, the same hashing process is still required.

Instead of evaluating a circuit, both parties perform a random 1-out-of-N OT for each

bucket of the hash tables. As a result, both parties obtain a randomly generated mask

for all of their own table entries. Then the server sends a randomly permuted set of all of

its masks to the Embassy. The Embassy finally computes the intersection by comparing

the masks, and the results will be stored in the same bitmap format. The complexity of

PSI-OT is independent of the entry bit width and scales linearly with the set size [32].

However, 1-out-of-N OT requires more base-OT computations, which can easily become

compute-bound in a fast network.
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Figure 3.8: Embassy GC Evaluator Architecture. All the inputs stored in the buffers
are sent directly from the Garbler except for the Evaluator input labels which are
obtained via oblivious transfer (OT) protocol.

3.5.2 The “Ambassador” Garbled Circuit Evaluator Accelera-

tor

While the algorithmic mappings described above take advantage of computational

asymmetries, if you make the hardware embassy resource-constrained enough, eventually

it begins limiting performance again. However, after examining the way these devices

are exercised by real code, we observed that much of the work is well-structured crypto-

graphic operations amenable to hardware acceleration. We propose that a cryptographic

co-processor designed to sit alongside the main Embassy CPU and perform common

MPC operations can be used to further improve performance or, more usefully, provide

even further computational asymmetry allowing even smaller and more resource-limited

devices to be useful in this context. Figure 3.8 details the high level architecture of the

36



Establishing Cooperative Computation with Hardware Embassies Chapter 3

Ambassador Garbled Circuit Evaluator module.

The main component of this module is the evaluation unit which houses 2 AES

cores designed to accept one gate per cycle. The garbled tables, garbler/evaluator input

labels, and other necessary data such as output masks are obtained from the garbler

and are stored in their respective buffer memory. Note that in order to maintain the

privacy of input, the evaluator input labels are obtained from the garbler using oblivious

transfer (OT). Each pair of input labels is processed in the evaluation unit to obtain

the output label which is then sent back to the label scratchpad memory. It will be

used in subsequent gate evaluation as the evaluator goes through the netlist gates one by

one. Each of the AES core consists of a 10-stage pipeline performing AES-128 on ECB

mode. Therefore it improves throughput but introduces potential dependency issues

when evaluating the gates whose inputs have not been processed yet. This is the same

issue as arises in FASE [64], the project we extended to evaluate the Ambassador. Note

that the main operations in Evaluation is the opposite of Garbling where the goal is to

use Garbled tables to generate and evaluate a circuit whereas the goal in Garbling is

to produce garbled tables. Because of the Half-Gates optimization [20] the amount of

work needed to be done by the garbler is 2× more than the evaluator. This explains why

our Evaluator unit only needs 2 AES cores instead of 4 to achieve the same throughput

performance.

3.6 Evaluation

With the application mapping and inherent algorithmic asymmetry described, the

most pressing question is how well a compute-restricted device might actually perform

on these MPC applications. Rather than rely on a simulation of the system, we per-

form direct system experimentation with two machines running the full application stack
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connected point-to-point. By tuning down the performance of the compute and network

from this base “1:1” system we can explore the relative impact of network and compute

asymmetry on the workload under evaluation.

3.6.1 Methodology

1) Hardware and Software Setup: To simulate the server-Embassy connection, we

use two Equinix c3.small [65] bare metal nodes connected with a 10 Gbps LAN. Both

machines have an Intel Core E-2278G 3.4 GHz (8C/16T) with 32 GB of memory and a

top frequency of 5 GHz. Both are running Ubuntu 18.04.

We emulate a slower machine for the Embassy by scaling down from the maximum

operating frequency of the client machine. We achieve this by setting the appropriate

max perf pct Intel p-state parameter that corresponds to the percentage of maximum

processor frequency. The particular machine we used for evaluation can be tuned from

800 MHz to 5 GHz (6.25× tuning range). Throughout the evaluation, we make use

of 1 GHz (5× slowdown) as our representative Embassy performance. This roughly

corresponds to the single-core benchmark performance gap between a typical server-class

processor and processor (Intel Celeron N4100) from a commercially-available compute-

stick [66].

To accurately simulate a wide sweep of network transfer parameters between Embassy

and the server over the LAN connection, we use the Linux tc tool. With this tool, we can

add artificial delays to simulate latency and throttle bandwidth. We measure the effective

network bandwidth and latency using iperf3 and ping, respectively. The default network

setting between Embassy and server has an average bandwidth of 9.42 Gbps and an

average round trip latency (RTT) of 0.6 ms. We use the available secure neural network

implementation from Gazelle [67] and the private set intersection implementations in
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Network Description
SNN-MNIST NetC 1-Conv, 2-FC, ReLU activation [46]
SNN-MNIST NetD 2-Conv, 2-FC, ReLU and MaxPool [29]
SNN-CIFAR10 7-Conv, 1-FC, ReLU and MeanPool [29]

Table 3.2: Neural Network Architectures for SNN Workloads

Intra-Datacenter WAN
Bandwidth 10 Gbps 200 Mbps
Latency 0.6 ms 40 ms

Table 3.3: Network Parameters

ABY [68] and PSI [69] frameworks. Both applications are written in C++ and were

adapted for our Embassy evaluation.

2) Parameter Selection: We consider two network settings: WAN and High-Speed

LAN representing the baseline operation and the Embassy operation, respectively. We

set the bandwidth/latency configuration for WAN as 200 Mbps/40 ms [70, 71] and High-

Speed LAN as 10 Gbps/0.6 ms, which is typical in datacenters. Note that we refrain from

selecting extreme network speeds to achieve overly optimistic results although modern

datacenters have far more improved network infrastructure reaching bandwidths of 100

Gbps and 400 Gbps [72]. For both applications, we fix the security parameter κ to

128 bits. For secure neural network inference, we evaluate the performance overhead

of two groups of neural networks designed for MNIST and CIFAR10, respectively. The

network architectures are described in Table 3.2. For PSI, we use a 32-bit entry size and

fix the number of entries to 100 thousand elements for both client and server, which is

a moderate size in DNA matching applications [73]. We include all one-time transfer,

offline phase, and online phase costs in our timing measurements. Timing results were

averaged over 10 execution iterations.
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Figure 3.9: Communication volume versus total application runtime. The color-coding
indicates the change in input size for each application.

3.6.2 Baseline Embassy Results

Application Communication Cost: Figure 3.9 shows communication volume in MB

as a function of the runtime for different applications with various input parameters. We

can see that all applications show larger communication costs as the input size increases

but they show different characteristics indicated by the slopes of their trend lines. PSI-OT

shows little communication and scales well to large input sizes compared to PSI-GMW

and SNN. The slope of PSI-OT is also steeper than PSI-GMW indicating that it is less

sensitive to communication network improvement. PSI-GMW and SNN have comparable

communication that is at least two orders of magnitude more than PSI-OT, while SNN

has the highest runtime. PSI-GMW and SNN scale poorly in communication and runtime

as input size increases and are thus ideal for Embassy.

Network Bandwidth Limit: Applications can be characterized by their communication-

to-computation ratio which is determined by their underlying algorithm and protocol.

This property can determine how much performance improvement the application can
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Figure 3.10: Bandwidth limit analysis. Runtime is normalized to the smallest runtime
of all applications. Latency is fixed at 0.6 ms (High Speed LAN). The red marker in
each line indicates saturation in runtime, where the change in runtime starts to fall
below 2% as bandwidth improves.
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achieve by improving network bandwidth, i.e., the larger this ratio the larger the poten-

tial speedup. Figure 3.10 shows the normalized runtime of the applications for various

bandwidth configurations at a High Speed LAN latency of 0.6 ms. PSI-GMW is more

sensitive to changes in bandwidth compared to SNN applications below 2 Gbps. Since

SNN applications have slightly greater communication-to-computation ratios, they satu-

rate at higher bandwidths (indicated by the red markers in the figure) compared to PSI

applications. A key observation is that most applications do not utilize the full band-

width improvement and become compute-bound before reaching the High-Speed LAN

bandwidth. There is no further speedup for SNN-CIFAR10 and SNN-MNIST NetD af-

ter 4000 Mbps. The runtime of PSI-GMW stops decreasing as early as 2000 Mbps. As we

will show later in the multithreaded experiments, the reason for relatively low saturation

is due to the unoptimized use of threads in the applications. PSI-OT is more dominanted

by public-key cryptography computations in base OT and thus shows the least benefit

from bandwidth improvement. Note that bandwidth can also be better utilized when we

have contention with multiple Embassies in the system.

Network Latency Sweep: Figure 3.11 shows the normalized runtime of the applica-

tions for various latency configurations at a High Speed LAN bandwidth of 10 Gbps.

Compared to PSI, SNN applications are more sensitive to changes in latency, which are

characterized by their greater slopes. This is intuitive because despite Garbled Circuit

being a constant-round protocol, a large number of ReLU layers in SNN stacks up com-

munication rounds, while data transfers in PSI can be efficiently batched. The runtimes

of all 5 applications scale linearly with latency and show improvement throughout the

entire latency range.

Embassy Performance: We illustrate application speedup using Embassy in Fig-

ure 3.12 as a function of the performance of the Embassy scaled relative to the server.

As discussed in Section 3.6.1, we use core frequency as our performance scaling metric.
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Figure 3.12: Speedup as a function of Embassy slowdown. The runtime speedup
for each application is obtained by improving the network bandwidth and latency
from a WAN setting (baseline) to the Embassy with High-Speed LAN. The slowdown
represents the Embassy performance slowdown relative to a server-class machine. The
dotted line shows the slowdown margin for Embassy where the speedup from network
improvement is exhausted (speedup = 1).
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A speedup of 1 (no speedup) indicates that the Embassy and the server have similar

performance and that the speedup is gained from the network improvement from using

an intra-system network. This speedup is gradually reduced as the Embassy is slowed

down because any benefits from the network are lost from the slower computation. The

dotted line represents the slowdown margin as this is the point where the speedup from

network improvement is exhausted (speedup = 1) from continued Embassy performance

slowdown. Note that since in our setup we can only test for a slowdown of 6.25×, we are

unable to check the actual slowdown margin for some of the applications.

The slowdown margin of SNN applications is generally higher compared to PSI appli-

cations owing to the larger asymmetry in computations (more of the compute-intensive

portions of the protocol happen in the untrusted server). For example, for an Em-

bassy that has a slowdown of 5× we can get a speedup of as much as 2.33× in SNN-

MNIST NetD as opposed to 1.97× in PSI-GMW. Shallower networks for MNIST have

greater speedup at the same slowdown rate. Within SNN applications, the gap between

slowdown margins of the different network architectures comes from the communication

composition of the workload. Since SNN-MNIST NetC uses a significantly shallower neu-

ral network compared to SNN-MNIST NetD and SNN-CIFAR10, communication takes a

larger chunk of the overall runtime hence we can get a greater speedup. Note that for PSI-

OT there is no speedup at 5× because it has the least communication-to-computation

ratio among all applications, meaning that Embassy can barely have any improvement

in terms of runtime performance for relatively more compute-bound applications.

Multithreading to Improve Bandwidth Utilization: The previous results show

the default unoptimized configuration for the applications with limited thread usage.

Since our setup largely alleviates the communication overhead, most applications become

compute-bound, as shown in the bandwidth limit evaluation. In Figure 3.13, we illustrate

that thread-level parallelism that takes advantage of the available to compute resources
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Figure 3.13: Speedup as a function of Embassy slowdown for PSI-GMW with mul-
tithreading. The runtime speedup is obtained by improving the network bandwidth
and latency from a WAN setting (baseline) to the Embassy setting that uses the High
Speed LAN network.

can improve the bandwidth utilization for those applications and in turn the performance

of Embassy, which is not possible in the traditional WAN setting [32] with its limited

bandwidth. The underlying GMW protocol can be parallelized evenly by dividing the

multiplication triple generation in the setup phase to each individual thread [32]. At 5×

device slowdown, the speedup grows by 1.96× by increasing from 2 threads to only 4

threads. As the number of threads increases from 2 to 8, the speedup increases by 3.42×

from 1.97 to 6.73. Note that reducing the significant overhead of server-side homomorphic

encryption in SNN algorithms can achieve a similar effect in the Embassy setting.

Energy Evaluation: One of the key advantages of using Embassy is the energy savings

from performing secure multi-party computation locally within a co-located server, be-

cause that keeps communication within the co-located server instead of across a WAN.

Figure 3.14 shows the estimated energy savings from using Embassy (client-Embassy-

server) instead of baseline direct WAN (client-server) computation. Energy consumption

is computed as a sum of the total network transfer energy and total computation energy.

The network transfer energy gap is conservatively assumed to be 5× [74]. The computa-
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Figure 3.14: Energy savings estimation comparing Embassy to direct WAN computa-
tion. TDP is assumed to be 95W for a server and 6W for Embassy. For conventional
computation, both client’s and server’s TDP are the same. The average number of
hops is assumed to be 16 end-to-end for WAN while local co-located server hops are
assumed to be 5 as for a typical fat tree. Energy consumption is computed as a sum
of the network transfer energy and computation energy.

tion energy is computed from a client and server TDP of 95W. Typical energy savings is

around 15×. This is mostly due to the use of lower-energy local data movement compared

to WANs. Note that Embassy still needs WAN transfers for the client communication

but the High-Speed LAN communication still dominates the transfers. For the PSI-OT

application, it is less affected by Embassy but 8× savings is still beneficial compared to

the WAN setting.

As shown, the power reduction from adding Embassies far outweighs the power in-

crease of the Embassies themselves, because those are more efficient than general-purpose

untrusted servers. This is intuitive since the power consumption is 8× per virtual machine

(VM) in modern datacenters which span from tens of Watts to hundreds of Watts [75].

Therefore, the additional 6W for an Embassy is comfortably outweighed by less expensive

data movement and computation reduction on general-purpose servers.
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3.6.3 Ambassador Evaluator Results

An Embassy implemented only as a compute stick-class processor is likely to see a

significant performance slowdown as compared to the co-located servers it is connect-

ing to. However, much of the cryptographic calculation that is performed in the MPC

setting is amenable to hardware acceleration and so we propose to include such hard-

ware accelerators as part of the Embassy in order to boost both performance and energy

efficiency. Here, we investigate the performance improvement available for Embassy if

we use dedicated hardware-accelerated implementation of the GC evaluator module to

improve GC operations. Our Verilog implementation of the Ambassador evaluator is

based on the garbler accelerator provided as part of FASE [64]. We show a comparison

of the GC evaluation performance of the Ambassador Evaluator accelerator compared

to a system without such an accelerator. Since we are interested in using Embassy for

SNN workloads, we focus our evaluation on workloads with non-linear SNN operations

like ReLU.

Table 3.4 shows the Ambassador Evaluator’s estimated evaluation time and speedup

compared to the CPU implementation. We implemented the ReLU circuit shown in Fig.

3.5 in Verilog and obtained the optimized gate count (shown in Table 3.4) from synthesis

using Synopsys Design Compiler using the TinyGarble Circuit Synthesis Library [76].

From this gate count, we make use of the similarity in architecture between our evaluator

accelerator and the garbler accelerator provided by FASE [64] in order to estimate the

expected performance of our evaluator accelerator. We conservatively estimate a range

for a processing rate of 2-5.5 cycles/gate based on the simulation results of various circuits

reported with the FASE garbler accelerator. We use this cycles/gate to estimate the range

of evaluation time and the speedup compared to the software Gazelle implementation of

the evaluator. At the FPGA’s 100MHz clock frequency, we calculate a performance
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improvement ranging from 1.57x to 4.31x. Note that even though we demonstrate the

advantage of the Ambassador Evaluator accelerator as implemented on FPGA in this

study, an ASIC implementation could certainly be used and would result in further

improved performance and energy efficiency.

#XOR #Non-XOR #Total Eval Time Speedup
ReLU
Unit

564 189 753
1506 - 4141 (cc)
15.06 - 41.41 (us)

1.57x -4.31x

Table 3.4: Ambassador Evaluator Performance compared to Gazelle Evaluate function
on CPU[30] for the ReLU unit in Fig. 3.5.

Resource Overhead: Our Ambassador Evaluator resource estimation exploits the

FPGA infrastructure provided by the FASE Garbler implementation [64]. The FASE

Garbler was implemented on a Xilinx Virtex UltraScale VCU108 FPGA while our Eval-

uator is implemented on a Xilinx Zynq ZCU104 FPGA with lesser system resources.

Table 3.5 shows the estimated resource utilization with a clock frequency of 100MHz.

As expected, our Ambassador Evaluator accelerator consumes fewer resources than the

FASE garbler as it only needs two AES cores compared to the garbler’s four.

Total %Util
LUT 42472 18.43

Registers 11886 2.58
BRAM 37.5 12.02

Table 3.5: Resource Utilization

Overall SNN Workload Speedup: In order to estimate the overall improvement

of introducing a dedicated evaluator accelerator into the Embassy, we profile the SNN

applications for the percentage of execution time spent on non-linear layers versus the

total runtime. Figure 3.15 shows the percentage of runtime spent on non-linear layers.

It shows that the amount of time spent on the total runtime increases when the network
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becomes deeper and when the network increases in the number of non-linear layers such

as ReLU and MaxPool.
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Figure 3.15: Percentage of Non-Linear Layers in SNN Workloads

We use this profiled non-linear execution time and the improvement we obtained from

the individual ReLU unit running on the Ambassador Evaluator accelerator to calculate

the overall speedup for running the whole network which we observed to range from

1.19× to 1.52× in a larger network like CIFAR10. The speedup available is dependent

on the type of network and this setup favors deeper networks with more and wider non-

linear layers like CIFAR10 as compared to MNIST networks. Note that although it is

tempting to think of further speeding up the operation by adding support to Embassy

for homomorphic encryption in the linear layers, in the design of Hybrid SNNs, the HE

evaluation is done in the server and not in the client/Embassy, thus server support, rather

than Embassy support, would be required.

On the Expected Effect of Gate Batch Size. Pipelined garbling and evaluation of

the circuit can help improve the performance as well as alleviate limitations on memory

capacity since gates that garbled can sent to evaluator directly without waiting for all
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other gates to be finished. This streaming garbling/evaluation is especially beneficial

to Embassy since we are assuming it is equipped with limited memory. An interest-

ing experiment to to find the batch size that can give improvement without significant

degradation of as a results of being interactive. Note that being in a datacenter setting

allows us to stream the garbling/evaluation more efficiently without significant latency

disadvantage.

3.7 Related Work

In considering the viability of our approach in a co-located server setting, we look

for inspiration from two trends in co-located server infrastructure design. The first is

disaggregated datacenter networks [77], which increase the efficiency and lower the total

cost of ownership (TCO) of datacenters using network-attached host-less accelerators.

For example, Facebook recently rolled out their F16 [78] datacenter fabric design. The

second trend is the adoption of bare metal cloud services [79], where providers allocate

dedicated servers for customers. Unlike typical virtual machine-based cloud providers

like AWS and Google, doing away with layers of virtualization and dedicating the use

of hardware resources results in performance improvements. Further, because clients do

not have to share the same physical machines (single tenant), there are fewer potential

security risks from recent cross-VM side-channel attacks [58, 59, 60, 25]. Embassies are

host-less network-connected computing devices that are exclusively used by clients to

perform MPC with co-located untrusted servers.

3.7.1 Trusted Hardware

Trusted hardware such as Intel SGX has been used to support privacy-preserving

machine learning [80, 81, 82, 83]. SGX creates enclaves for isolated execution environ-
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ments and supports remote attestation. However, SGX is fundamentally limited because

the trusted execution environment and an untrusted CPU share the same computing

resources resulting in a switching overhead. Furthermore, it has limited memory re-

sources (90MB), leading to paging overheads for larger applications [41]. These make

these solutions not feasible for evaluating much larger networks, not to mention recent

side-channel attacks in SGX [25]. To meet demands for larger workloads, Intel recently

released a PCIe interface-based SGX Card with three SGX-equipped CPUs [84]. This

hardware with its discrete processors would incur significantly more power than our spe-

cialized solution and is a band-aid solution with the same fundamental performance and

security flaws of SGX.

Trusted hardware has also been used to support secure multiparty computation. Bah-

mani et al. [85] make use of code running in the SGX as a trusted third-party and

parties which are represented as SGX enclaves perform function evaluation during the

online phase. Sartakov et al. [86] extend this by adding support for fast inter-enclave

communication. For both works, because of SGX limitations, evaluated applications are

very simple such as summations, unlike the applications we consider. Demmler et al. [87]

used a trusted secure card in a mobile phone to speed up the generation of multiplica-

tion triples in the offline phase of GMW. Our trusted Embassy is a much more capable

device that participates in the online phase of the computation. Embassy also physically

decouples the computation and does not share any resources with the host. This re-

duces the number of avenues for side-channel attacks, but does require physical security

mechanisms for the Embassy device. Additionally the Embassy device can be flexible

in the amount of compute resources it has, allowing the device to be designed to fit the

workload.

Bugiel et al. [88] proposed a Twin Clouds model which represents the closest work to

our protocol but has many significant differences. First, they make a strong assumption
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of non-collusion between the two cloud machines. This is not the case for our work since

the Embassy is considered a trusted proxy of the client. Second, Twin Clouds’ high band-

width channel is not aimed to improve the network overhead of secure communication

but instead, it is used for quick bulk file transfers. Third, they don’t describe potential

hardware implementation and evaluations.

Eguro et al. [89] proposed FPGA-based secure computation hardware aimed at em-

ulating homomorphic encryption. Our solution, on the other hand, involves no host for

the trusted device and can be used to make MPC more efficient.

More recently, Telekine [90] was proposed to mitigate side-channel attacks when

clients use cloud-deployed GPUs with TEEs. HETEE [91] was designed to manage

all compute units in a server rack by using the PCIe switch fabric to securely allocate

accelerators. Unlike Telekine and HETEE, Embassy only considers the security of one

single type of portable device.

3.7.2 Secure Computation Cost Characterization

Kerschbaum et al. [92] proposed an automated mixed-protocol selection technique

to reduce overall runtime. The secure computation protocols (e.g., homomorphic en-

cryption, garbled circuits, secret sharing) are assigned to primitive operations of the

function based on heuristics obtained from a performance model which takes into ac-

count factors such as crytographic primitive runtime and network parameters. Pattuk

et al. [93] perform similar protocol selection optimization but also takes into account

network transmission cost and in general focuses on monetary (dollar) cost reduction on

running programs using the secure protocols. von Maltitz et al. [94] study the perfor-

mance characteristics FRESCO, an MPC framework based on the secret-sharing-based

BGW protocol. Unlike other MPC characterization work, they also focus on effect of
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various network parameters on hardware resources such CPU cycles and memory con-

sumption. Note that, unlike these previous work, our characterization work here is used

to evaluate the compute and network transfer cost of two widely-used applications with

fixed protocols already in place.

3.7.3 Privacy-Preserving NN Inference

CryptoNets [27] is the first work on privacy-preserving neural network inference we

are aware of. It is used as a leveled homomorphic encryption scheme for evaluating all

layer which resulted in significant performance overhead and lower accuracy from using

square activation functions. DeepSecure [46] used an all garbled circuit approach which

improved the computation efficiency of CryptoNets but in turn had worse communication

overhead. For example, to perform an MNIST-based inference operation, DeepSecure

needs to transfer 791MB per single inference compared to CryptoNets’s 595MB for a

batch size of 8129. To address this problem, Gazelle [30] proposed a hybrid protocol

composed of HE and MPC for NN inference. In this scheme, HE is used for linear

operations (e.g., matrix-vector multiplication in convolutional layers) while MPC is used

for non-linear operations (ReLU and max pooling functions). This improved the overall

compute and communication overheads since HE performs better than GC when the

computation has small multiplicative depth (linear function Boolean circuit) and GC

is better suited for non-linear functions which can be represented as simple linear-size

circuits. However, it still suffers from significant communication overhead because of

non-linear layers making it difficult to scale to much larger networks. Our work uses

this hybrid protocol for neural network inference but improves on the communication

overhead using the Embassy protocol.

XONN [31] proposed the use binarized neural network (BNN) with garbled circuits to
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speedup linear layers. BNNs use XNOR for multiplication which is considered free when

using GC (FreeXOR). This allowed them to make evaluate much larger networks such

as VGG. However, as they still use GC for the non-linear layers, there is still significant

communication overhead. Furthermore, despite being more efficient computationally,

BNNs show significantly lower accuracy. Chameleon [95] proposed the use of a trusted

third party to generate multiplication triples during the offline phase. They adopt a

seed expansion technique for multiplication triples to save communication at the expense

of more computation in random number generation. However, our solution allows the

efficient use of the original beaver triple generation with less communication overhead.

There have been proposals to combine GC with other secure computation primitives,

such as secret sharing using two untrusted servers, which can be housed by the same cloud

and connected in a high bandwidth and low latency channel[45, 96, 97]. These solutions,

however, make a strong assumption that two untrusted servers are non-colluding.

HEAX [98] proposed the first hardware accelerator implementation for CKKS HE on

FPGAs. Cheetah [99] significantly accelerates HE in Gazelle for deeper neural networks

by optimizing HE parameters tuning and operator scheduling, while proposing a custom

hardware accelerator for server-side HE. The results of HEAX and Cheetah are orthogonal

to the contribution of this paper since our solution tackles the communication bottleneck

in MPC.

DELPHI [100] improved upon Gazelle by moving expensive cryptographic operations

over LHE cipher-texts to the offline phase and proposed to use quadratic polynomials

to approximate ReLU, which reduces communication cost. However, DELPHI had to

settle with a hybrid approach because of severe accuracy degradation from quadratic

approximations.
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3.7.4 Tamper-Resistant Hardware

With the rise of mobile and IoT devices, there is greater risk for more sophisticated

physical tampering and side-channel attacks. To address this, Google released a tamper-

resistant security module [101] used starting from Pixel 2 phones while ARM released

Cortex-M35P processor [102] for embedded IoT applications. These solutions can protect

against physical penetration and most side-channel attacks (power, timing, electromag-

netic).

Two examples of tamper-resistant USB device available in the market are IronKey

and Kanguru. IronKey is a FIPS 140-2 Level 3-certified device which zeroizes data or

makes the device unusable by applying a wear level current on the device memory after

a configurable number of break-in attempts. Kanguru, on the other hand, has a casing

that is protected with an epoxy compound, which when removed, destroys the flash chip

making the device unusable.

Recently, Immler et al. [53] presented tamper-resistant secure physical enclosure for

PCBs. This work allowed for a more practical battery-less physical tampering solution

and also proposed the use of PUFs for determining the structural integrity of the device.

This tamper resistance mechanism is particularly useful for Embassy.

3.7.5 Hardware Support for MPC

There have been a few works related to hardware support for secure multi-party

computation. Songhori et al. proposed TinyGarble [21] to convert big combinational

circuits to smaller sequential circuits which is run on multiple clock cycles. The compact

circuit results in smaller memory footprint which can fit in the processor cache. As a

result, cache misses are minimized during garbling while accessing wire tokens improving

garbling performance. This smaller footprint makes it more useful for embedded devices
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which have limited compute and memory resources.

Implementation and acceleration of the garbling operation have been shown in various

hardware platforms [103, 104, 105]. Since they only tackle the issue of GC computation

(garbling), overall performance of the protocol is not significantly improved since the

bottleneck of the protocol is communication (network transfer) especially with larger ap-

plications. This is in contrast to our work which focuses on the communication overhead

of secure computation.

3.8 Conclusion

In this paper we explore supporting collections of small but physically secure de-

vices embedded closely with more traditional compute and storage resources. The use

of co-located trusted hardware helps resolve the inefficiency of conventional two-party

secure computation protocols with surprisingly little compute. We evaluate the ability

of such devices to participate in trustworthy computations physically among co-located

servers on behalf of a remote client. This general approach could be useful in many

different scenarios, but we evaluate one of the most integrated ways one might think

to apply such trusted elements: as an active party in a multiparty computation. We

show how this Hardware Embassy can leverage a local high bandwidth and low latency

network connection to enable more efficient and robust interactive secure computations.

We further show that two important privacy-preserving applications, secure neural net-

work inference, and private DNA matching based on Yao’s Garbled Circuit (GC) and

Goldreich-Micali-Wigderson (GMW), are both amenable to this heterogeneous architec-

ture even without any application specialization. Our experiments indicate that even

when the Embassy is 5× slower than external compute resources available, the total

system performance is higher due to this increased connectivity. This advantage can be
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further pressed with addition of specialized hardware, bringing the total performance

improvement up to over 4.5×.
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Chapter 4

Near-Data Acceleration of

Privacy-Preserving Biomarker

Search with 3D-Stacked Memory

Homomorphic encryption is a promising technology for enabling various privacy-preserving

applications such as secure biomarker search. However, current implementations are not

practical due to large performance overheads. A homomorphic encryption scheme has

recently been proposed that allows bitwise comparison without the computationally-

intensive multiplication and bootstrapping operations. Even so, this scheme still suffers

from memory-bound performance bottleneck due to large ciphertext expansion. In this

work, we propose HEGA, a near-data processing architecture that leverages this scheme

with 3D-stacked memory to accelerate privacy-preserving biomarker search. We observe

that homomorphic encryption-based search, like other emerging applications, can greatly

benefit from the large throughput, capacity, and energy savings of 3D-stacked memory-

based near-data processing architectures. Our near-data acceleration solution can speed

up biomarker search by 6.3× with 5.7× energy savings compared to an 8-core Intel Xeon
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processor.

4.1 Introduction

Technological advances in genomic data sequencing has fueled the increased avail-

ability of genetic data information and rise of genetic analysis services. Although the

abundance of digitized personal genomic information enables advances in bioinformatics

and medical domains, it also brings security and privacy concerns. For the analysis of

genetic data, there is a growing drive to use privacy-preserving computation techniques

to process sensitive genetic information securely [106, 34, 107, 108].

One of the emerging bioinformatics applications is biomarker search. Biomarker

search applications are used in medical centers to check for genetic diseases and involve

searching a biomarker within a reference database. A match within a reference database

indicates high probability of having a certain disease. This type of application was re-

cently explored in the recent iDASH (Integrating Data for Analysis, Anonymization and

Sharing) National Center secure genome analysis workshop challenge [109, 110, 111].

Homomorphic encryption (HE) supports operations on encrypted data thus making

it possible for data to remain confidential while it is processed in untrusted environments

[1, 2]. This property allows for the protection of private data especially in cloud services.

HE can be used for secure outsourcing of biomarker search as shown in Figure 4.1. An

encrypted biomarker query is sent to a server where it is matched with a database that

is also encrypted. The encrypted result (match or no match) is sent back to user where

it is decrypted. None of the query, the database entries, and the result is revealed to

the server during the entire processing. However, homomorphic encryption has large

computational and storage overheads due to large ciphertext explosion [2], thus limiting

its practical usage.
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Figure 4.1: Privacy-preserving Biomarker Search Overview

State-of-the-art HE-based privacy-preserving search solutions typically require com-

putationally expensive homomorphic multiplication and bootstrapping operations [112].

For example, homomorphic multiplication typically runs 10-100× slower compared to

homomorphic addition, depending on parameters [113]. Bian et al. recently proposed

an additive homomorphic encryption scheme for exact match search that removes the

computational overhead of multiplication and bootstrapping operations [114].

However, a realistic implementation of this scheme still suffers from the large cipher-

text explosion of HE which results in heavy data movement during search operation of

moving data from memory to the processing unit to perform the comparison. For ex-

ample, ciphertext expansion for a 32-bit integer for medium security results in 44,000×

explosion in size [114]. Therefore, the performance of this scheme is still limited and also

not scalable, especially for growing data sizes that require stronger encryption schemes

and even larger resulting ciphertexts.

In this paper, we build on top of this additive HE-based search scheme to pro-

pose HEGA, a near-data processing (NDP) architecture to accelerate privacy-preserving

biomarker search. We adopt a 3D-stacked DRAM to reduce data movement and accel-

erate basic additive homomorphic operation for this application. 1

1Note that although the specific application we explored here is biomarker search, this architecture can also be used
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Our contributions in this work are the following:

• We analyze the performance bottleneck of a practical implementation of this ho-

momorphic encryption search scheme

• We propose a 3D-stacked memory-based near-data processing architecture to ac-

celerate search operation based on this homomorphic encryption search scheme

• Using this architecture, we propose the first hardware accelerator for privacy-

preserving biomarker search and compare to CPU-based implementation

4.2 Background

4.2.1 Privacy-Preserving Biomarker Search

Biomarker search is one of the key emerging applications in bioinformatics domain [34],

as it allows for detection of possible diseases. A specific set of biomarkers are queried

from a server that houses a database of these biomarkers. The presence or absence of a

specific biomarker or a set of biomarkers indicates a probability of genetic diseases and

thus helps medical practitioners to make informed decisions. In dealing with this type of

application, however, data is stored in the database and the queries must be encrypted

in order to protect privacy.

The biomarkers are stored in Variant Call Format (VCF). These VCF files contain

information on biomarkers (genotype information) such as chromosome number and the

position of the genome. Furthermore, it contains information for each position such as

reference and alternate sequences.

A typical processing flow for HE-based biomarker search is shown in Figure 4.2.

The figure shows two general phases: a preprocessing phase and the query phase. In

in other privacy-preserving exact search applications.
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the preprocessing phase, each entry in the VCF file is first encoded and hashed before

performing the actual homomorphic encryption using a generated key. This is to reduce

the size of the encrypted entries since the size of the unencrypted entries will affect

the size of the data after encryption. In the query phase, the client similarly needs to

preprocess the query before it is sent to the cloud service for the exact search operation.

An encrypted result of the search is sent back to client where it can be decrypted using

the secret key. In this work, we focus on the homomorphic evaluation stage of the search

which takes up the majority of the execution time, especially for large number of queries.

For this work, we assume a size of 32 bits for the post-hashed unencrypted database

entries and queries. Note that this size is realizable as demonstrated by Cetin et al.

using a cuckoo-based hashing scheme that enables size reduction of the entries to 29

bits [109].

Preprocessing Phase

Query Phase

Cloud ServiceClient Client

VCF File 
Encoding

Hashing
Key 

Generation
Encryption

Query 
Hashing

Encryption

Client

DecryptionEvaluation

Figure 4.2: HE-based Privacy-Preserving Biomarker Search Flow

4.2.2 Additive Homomorphic Encryption Scheme for Search

Cryptographic solutions such as homomorphic encryption allow for computations on

encrypted data. This makes homomorphic encryption a very promising solution for

privacy-preserving applications. Fully homomorphic encryption has received wide at-

tention as it allows computations on arbitrarily deep circuits using an operation called
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bootstrapping [115]. Bootstrapping is a method to refresh a ciphertext by decrypting and

re-encrypting to reduce noise, which is a result of performing many HE computations on

encrypted data. However, bootstrapping is a computationally expensive operation and

thus most recent work on homomorphic encryption also focus on partial (eg. additive)

homomorphic encryption schemes.

Although there have been many studies which contributed to the rapid progress of

HE, performance bottlenecks continue to hinder its practical realization. Two of the

biggest contributors are data size explosion and slow primitive operations. Encryption

results in ciphertext explosion which translates to computation, storage, and commu-

nication overheads. Primitive operations such as polynomial multiplication have slow

execution times (often millisecond range) and often requires complex specialized hard-

ware [116]. For privacy-preserving search, these problems become even more prominent

since aside from the large computational and storage requirements initially demanded

by HE. Furthermore, larger HE parameters are needed to support more entries while

maintaining the same security level, which exacerbates the data size explosion problem

even more.

Ducas et al. proposed the FHEW scheme that can perform NAND operation with

only additive homomorphism which greatly reduces the computational requirements[117].

However, it still needs bootstrapping after each homomorphic gate operation which dom-

inates the runtime. More recently, Bian et al. [114] proposed SCAM by modifying the

plaintext space of FHEW and introducing an encryption constant to implement a two-

stage complex homomorphic Boolean gate which can be used for multi-bit word match-

ing. It is also based on additive homomorphism but does not require bootstrapping or

multiplication operations which makes it efficient for use in hardware implementations.

Equation 4.1 shows a bitwise exact search operation using XNOR-AND gates. SCAM

scheme achieves exact search in homomorphic encryption domain using only additive ho-
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momorphism in homomorphic XOR-OR gate as shown in Equation 4.2, where cxi
and cyi

are ciphertexts for each bit [114]. In this scheme, each 1-bit plaintext expands to a (n+1)

(lg q)-bit ciphertext where q and n are encryption parameters that determined according

to the security level. To perform a homomorphic w-bit word matching, w · (n + 1) (lg

q)-bit integers are added and if the final result decrypts to zero, it means the two words

being compared are the same. A non-zero result means the two words do not provide a

match.

f (x, y) =
w∏
i=1

xi ⊕ yi (4.1)

̂HomXOR-OR(x, y) =
w∑
i=0

(cxi
− cyi) (4.2)

Implementing SCAM for the privacy-preserving search within a database requires per-

forming this search operation in the homomorphic domain through all encrypted database

entries and returning the encrypted results of match or no match, with respect to en-

crypted query bitstream. The client can later decrypt the matching results that evaluate

to zero for match and non-zero for no match in the database search. We also adopt the

secure two-round communication protocol of SCAM in this work.

This scheme was proposed with an ASIC design [114] in which all encrypted database

entries are stored on-chip to provide large bandwidth. However, due to the data explosion

of more than 44k× larger data size after encryption, such design results in unacceptable

chip area, making it impractical and also not scalable. For example, even for a database

of 100K 32-bit entries using their provided encryption paramaters, their ASIC design

would already need more than 21 billion transistors, even without including the large

on-chip memory (SRAM) required.

We discuss 3D-stacked memories next and in Section 4.3, we discuss why a 3D-stacked
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memory NDP-based solution is suited for use with this HE scheme and privacy-preserving

biomarker search.

4.2.3 3D-Stacked Memories

Hybrid Memory Cube (HMC) is a type of 3D-stacked memory technology which can

be used for near-data accelerator architectures. HMC consists of 4/8 DRAM dies on top

of a logic base die, resulting 4/8 GB capacity per device[118]. Each DRAM die is divided

into 32 partitions, with each partition consisting of multiple banks. Partitions across dies

vertically form a vault. Each vault has an independent vault memory controller within

the logic die that manages all memory operations for that vault. The logic base die also

includes a crossbar switch that connects the vault memory controllers to the I/O ports.

HMC uses SerDes I/O links of up to a total of 320 GB/s peak bandwidth. HMC can

also be chained together to increase total memory capacity, which can provide a scalable

expansion for applications such as privacy-preserving biomarker search which has large

memory requirement.

4.3 Motivation

In this section, we discuss our motivation for using a near-data processing approach

to accelerate the additive homomorphic encryption scheme and its application in privacy-

preserving biomarker search. Performing search using the SCAM scheme is very challeng-

ing even though the computing is transformed from complex multiplication into a series

of simpler homomorphic additions on the encrypted data, as described in Section 4.2.2.

For example, by searching a 10k-entry database that is encrypted with SCAM using en-

cryption parameters in [114], we end up with a slowdown of 60k× on CPU compared to

unencrypted operation, which becomes worse for larger databases (75k× for a 20k-entry
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database), shown in Figure 4.3.

Next, we observe that the application is memory-bound and the challenge lies in

performing operations on large data sizes after encryption. Using the same parameters,

encrypting the data grows 44k× larger for medium security (80-bit) and 55k× for high

security (128-bit) [114]. As a result, a database with 100k entries becomes 16.5GB, which

cannot fit on an on-chip cache. At the same time, computation is composed of simple

addition operations, making it a memory bandwidth-bound application on all of the

available hardware platforms. Using an x86 simulator, we obtain the cycle stack of this

application as shown in Figure 4.4. It shows that 72% of the cycles are DRAM-bound

stall cycles, which mainly causes the large slowdown of the application.
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Figure 4.3: Slowdown of database search from homomorphic encryption (SCAM)
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Figure 4.4: Cycle breakdown of SCAM running on CPU+HMC

To further understand this application, we build a roofline model. A roofline model

is widely used for high performance computing [119]. The y-axis is the performance (in

INT32 ADD), thus the peak computation rate forms the flat part of the roofline. The

x-axis is the operational intensity, also called operation/byte ratio, which is a measure

of operations per DRAM byte accessed. Applications with higher operational intensity
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would more likely to be compute-bound, i.e., fall to the flat part of the roofline. Appli-

cations with lower operational intensity is likely to be memory-bound (the slanted part

of the roofline) and cannot achieve the peak performance of the hardware. We model

a SCAM-based database query application where we assume the query data (173KB) is

stored on-chip while the database (16.5GB) is off-chip. For each operation (INT32 ADD),

we need to fetch 4 bytes of data from off-chip memory, making the operation/byte ratio

of this application to be 0.25. We draw the roofline model for various hardware in Fig-

ure 4.5, and project the effective performance (indicated by markers) according to the

0.25 operation/byte ratio.
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Figure 4.5: A roofline model analysis for SCAM on various platforms (FPGA perfor-
mance estimation with adder in [120])

We observe that this application is memory-bound for all CPU, GPU, and FPGA

platforms, since the small operation/byte ratio falls in the slanted part of these rooflines.

We conclude that existing hardware solutions are not suitable or efficient for such ap-

plication. Specifically, if compared to the CPU-DDR4 with FPGA, although the peak

performance is improved from 0.4 TOPs to 221 TOPs, the effective performance only

improves 1.5× because the memory bandwidth is not significantly improved (68 GB/s

vs. 102 GB/s). On the contrary, the effective performance improves 4.7× with the same

CPU but changing from DDR4 (68 GB/s) to HMC (320 GB/s). The simple operations
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required coupled with the associated large data movement overhead makes it an ideal

application to accelerate using 3D-stacked memory where a logic die can be used to imple-

ment simple operations. Such architecture can provide massive intra-memory bandwidth

and hence solve the memory-bound performance bottleneck. Furthermore, since only

simple operations are performed on the logic die using this scheme, it is more suited

for 3D-stacked memory integration considering its thermal limitations [121] as compared

to typical HE schemes that need complex hardware to speedup the computationally-

intensive FFT operation needed in large-integer multiplication.

4.4 HEGA Architecture

4.4.1 HEGA Overview

We base the design of our near-memory architecture on Micron's Hybrid Memory

Cube [118]. Figure 4.6 illustrates the high-level architecture of our design. The DRAM

layers are composed of multiple independent vertical slices called vaults. Each of the

vaults can be accessed in parallel, and thus have independent accelerators and memory

controllers associated with them. The accelerators can operate on data residing in their

local vault and have direct high-bandwidth access to the DRAM layers via the TSVs.

The vault controllers handle requests from accelerators co-located within the vault logic,

as well as read and write requests that come from the processor.

4.4.2 Architectural Details

Vault logic within the logic die consists of vault memory controller along with the vault

processing unit (PU). Each vault PU includes the following components for implementing

homomorphic addition, as shown in Figure 4.7. Entry buffer stores the units of a fetched
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Figure 4.7: HEGA Vault PU Architecture (for lg q = 42)

69



Near-Data Acceleration of Privacy-Preserving Biomarker Search with 3D-Stacked Memory
Chapter 4

entry from the database. Query buffer stores units of the biomarker query to be searched

within the database. Entry and query buffers are 256B in size to match the HMC

row buffer size [121]. The adder tree is made of up of adders needed to perform the

homomorphic matching as described in Section 4.2.2.

To perform a search operation, a block is first requested to the vault controller and

is stored in the entry buffer of the vault PU. Note that the data bus (transfer size) in

an HMC vault is 32B and the internal vault bandwidth is defined as 32B/4tCK/vault

(10GB/s for tCK = 0.8ns). Once the entry buffers are loaded, the arithmetic units are

used to perform (lg q)-bit additions with the partial query data stored in the query buffer.

These results are then accumulated and stored in a result buffer. This process continues

until all the entry blocks have been processed. The query ciphertext is sent to all vaults

to improve efficiency by parallel search. Finally, the search result of size (lg q) bits per

entry saved in a result buffer is sent to the user.

E0-BLK1

E0-BLK0

E1-BLK1

E1-BLK0 E31-BLK0

E31-BLK1

E0-BLK31 E1-BLK31 E31-BLK31

. . . . . 

Vault 0 Vault 1 Vault 31

. . .

. . 
. . .

. . 
. . .

Figure 4.8: HEGA Data Mapping

Next, we discuss mapping of database entries to the 3D-stacked DRAM. To map

database entries to the HMC, we use the mapping shown in Figure 4.8. This mapping

scheme leverages the vault-level parallelism of the HMC. Each encrypted entry bit com-

posed of (n + 1) (lg q)-bit integers is stored in a vault for the w vaults (w = 32). The

vault PUs perform the corresponding additions for the entry and query units. Finally,

the results from all the vault PUs are accumulated as shown in Figure 4.9. For each
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entry, w · (n+ 1) additions of lg(q)-bit entry and query data are computed.
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Figure 4.9: SCAM Search Operation

Following the data mapping decribed above, Figure 4.10 shows a sample address

mapping from logical binary array address to the HMC physical address using the HE

parameters defined in [114].
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Figure 4.10: HEGA HMC Address Mapping
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4.5 Evaluation

4.5.1 Methodology

We use Sniper x86 simulator with custom HMC memory model for our baseline

CPU+HMC performance evaluation. The power estimates of the x86 cores were ob-

tained from McPAT integrated in Sniper. We used an in-house simulator to perform

HEGA performance evaluation. The logic components of our design were synthesized

with Design Compiler using NanGate 15nm library. To estimate DRAM energy, we as-

sume a DRAM read energy of 3.76 pJ/bit and a logic layer transfer energy of 6.78 pJ/bit

from [122, 123]. Table 4.1 lists the simulation parameters used.

We analyze the following schemes in our experiments:

• SCAM: This baseline scheme performs the SCAM scheme on CPU + HMC

• HEGA: Our proposed near-data acceleration architecture which performs SCAM

scheme within the logic die of the HMC

Note that to ensure fair comparison, we evaluate SCAM on a CPU + HMC platform

and compare to our proposed NDP + HMC platform. We use 32-bit post-hashed un-

encrypted database entries and queries (w = 32) and use parameters n = 1052 and (lg

q) = 42 as in the instantiation in Table III of [114]. We use a workload consisting of

single query on a database of 1k to 16k entries. Note that this small sample range has the

advantage of being able to accurately represent the performance of much larger datasets

because of the regular workload and at the same time having a feasible simulation speed.

Furthermore, this number of entries is big enough to ensure that the size of the encrypted

dataset cannot fit into the cache.
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Table 4.1: Simulation Parameters

Processor x86, 8-issue width , out-of-order, 64-entry instruction

queue, 2.1GHz, 22nm, 8 cores

Cache L1D/L1I: 32KB, L2: 256KB, shared L3: 20MB, LRU

HMC 4 links, full-lane, 8GB, 32 Vaults, tCK = 0.8ns,

tRCD-tCL-tRP = 17-17-17, tCCDS=4, tCCDL=6

HEGA-Logic (NDP) 32 Vault PUs, 1GHz, 15nm node

4.5.2 Experimental Results

Performance Comparison

Figure 4.11 shows HEGA can already provide up to 6× speedup compared to an 8-core

Intel Xeon CPU. This shows the limitation of the CPU in utilizing the large bandwidth

available in HMC because of its complex cache hierarchy while in HEGA, the NDP units

can more efficiently use the internal vault bandwidth. Furthermore, even for the small

database sizes explored, we observe that CPU performance becomes worse as the size of

the database increases, consistent with our observation from Section 4.3.

Furthermore, HEGA performs a single word search in 0.61µs at 1 GHz. For multi-

word comparison, HEGA leverages vault-level parallelism and pipelining. Although

SCAM leverages the parallel structure for fast multi-word search, the ASIC implemen-

tation is not realizable for realistic database sizes, as discussed in Section 4.2.2.

Energy Comparison

The normalized energy results are shown in Figure 4.12. Compared to the CPU-based

scheme, HEGA can reduce the energy by as much as 5.6×. Lower energy for HEGA is

achieved due to the proximity of data and computation of NDP compared to the CPU,

which further allows excluding energy contributions of power-hungry HMC links and

crossbar.
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Figure 4.13: Area Breakdown of HEGA

Area Overhead

We obtain the area overhead of HEGA in the logic die from synthesis results. Since

the vault PUs only include a few simple components such as the buffers and an arithmetic

unit, the total area across 32 vaults was calculated to be 0.29 mm2 (15nm node), which

represents just 0.4% area of the HMC logic die [123]. Figure 4.13 shows the area break-

down of main vault PU components implemented in the logic die, namely 256B query

and entry buffers, 42-bit adders and accumulator. This evaluation shows that buffers

result majority (57%) of area overhead.

4.6 Related Work

4.6.1 Accelerators on 3D-Stacked Memory

Multiple work have proposed near-data architectures using 3D-stacked DRAM to

accelerate data intensive operations [124, 125]. Alves et al. proposed HIVE [126], an

HMC-based architecture which allows performing common vector operations directly

inside the HMC. Kim et al. proposed GRIM-Filter [127], a near-data processing archi-

tecture within the logic layer of a 3D-stacked memory to accelerate read mapping phase

of DNA sequencing application.

Even though these work also propose accelerator architectures on 3D-stacked memo-
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ries, none of these have focused on accelerating homomorphic encryption and its appli-

cations such as privacy-preserving biomarker search.

4.6.2 Hardware Acceleration of Privacy-Preserving Search

Few works have presented hardware acceleration schemes for homomorphic encryption-

based privacy-preserving search. Bian et al. proposed SCAM and an ASIC implemen-

tation [114] but has large overheads. Khedr et al. introduce a GPU-based approach to

homomorphic word searching in their work SHIELD [112]. Martins et al. accelerate ho-

momorphic word searching using Intel Xeon Phi [128]. These two implementations still

require computationally-expensive homomorphic multiplication. CAMSure [129] allows

secure approximate search but biomarker search requires exact search.

Different from prior work on hardware-based secure search, HEGA leverages NDP in

3D-stacked memory to handle the large data explosion and the massive data movement

due to the streaming search operation. Furthermore, HEGA’s use of HMC allows for

a scalable solution considering the increasing data expansion rates required for larger

databases while maintaining security.

4.7 Conclusion

In this work, we propose HEGA, a near-data processing architecture that uses 3D-

stacked DRAM to accelerate homomorphic encryption-based biomarker search. We ob-

serve that emerging applications like homomorphic encryption-based privacy-preserving

search can greatly benefit from the throughput, capacity, and energy savings of 3D-

stacked DRAM-based NDP architectures. Our NDP-based solution can speed up search

by 6.3× with 5.7× energy savings compared to an 8-core Intel Xeon processor. This

work represents a step towards achieving practical homomorphic encryption applications
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through near-data processing.
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Chapter 5

Architectural Modeling of

Post-Moore Technologies

With the ever-present push for performance scaling continuing well after traditional de-

vice scaling ends, the question remains how emerging devices change architectural trade-

offs as well as what is each device’s long-term impact potential. Many of these emerging

devices are still being studied in device-level and the actual potential benefits or disadvan-

tages of these technologies are still typically not clear because of the lack of system-level

studies. In this work, we show how high-level modeling and analysis can be used to

explore the system-level potential benefits and limitations of emerging technologies.

We divide this chapter as follows. First, we discuss modeling and quantifying the

advantage of Post-Moore technologies in domain-specific accelerators. Specifically, we

present a case study analyzing the how an accelerator based on NTT (Number Theoretic

Transform), a common module used in many Post-Quantum Cryptography schemes,

can be rapidly modeled and evaluated using Post-Moore technologies. Next, we discuss

another Post-Moore option, superconducting electronics technology, could be modeled as

a multicore processor. Additionally, we propose and evaluate technology heterogenuity
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represented by a hybrid configuration for this emerging technology.

5.1 Post-Moore Technologies in Domain-Specific Ac-

celerator Designs

Specializing chips using hardware accelerators has become the prime means to allevi-

ate the gap between the growing computational demands and the stagnating transistor

budgets caused by the slowdown of CMOS scaling. Specialized hardware accelerators

have filled the performance improvement despite slowing CMOS scaling. However, there

is still a limit on performance gains coming from chip specialization (”accelerator wall”),

making it harder to satisfy more increasingly demanding workloads. An increasing num-

ber of emerging technologies have been proposed to replace CMOS technology, however,

there has been surprisingly no straight forward way of evaluating these technologies for

accelerator applications.

In this work, we show a rapid evaluation method for Post-Moore-based accelerators.

This work enables rapid exploration of the system-level impact of emerging technologies

making it easy even for technologists to decide on which promising technology use for cer-

tain applications. To demonstrate our framework, we present an analysis of Polynomial

NTT Accelerator which can be used in Kyber, a type of Post-Quantum Cryptography

KEM, and many other LWE-based cryptographic modules used in datacenter privacy-

preserving applications.

5.1.1 Introduction

Recent work have shown that improvements in architecture will not be enough to

sustain continuous improvement in performance [8], which implies that parallel improve-
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ments in technology would still be ultimately be required. And as Denard Scaling and

Moore’s Law have been shown to have its limits, it is important to understand emerging

technologies and how they can be used to replace silicon in future processors and accel-

erators. However, most emerging technologies are usually studied in low level (device

and circuit level) analysis. Doing this, it is often difficult to know the real impact of

these technologies for particular applications which can only be evaluated at the system

level. In particular, there is no rapid and systematic way of evaluating whether a new

technology can be a good candidate for a new accelerator architecture for a particular

application. On the other hand, there have been large number of tools and techniques for

evaluating accelerators but they lack support for emerging technologies. In this work, we

bridge this gap by proposing a framework for rapid evaluation and modeling of system

level architecture of Post-Moore-based accelerators.

5.1.2 General Flow for Rapid Evaluation of Post-Moore Accel-

erators

Our proposed flow is shown in Figure 5.1 which is based from the Aladdin [130, 131]

framework. Aladdin provides specific hard-coded values for a particular commercial Si

CMOS library (40nm) and does not support other technologies out of the box. We

extend Aladdin by allowing easy integration with other technology libraries. When the

generating the tech file is a new technology is challenging, we propose estimation of

required the functional unit parameters needed in the Aladdin simulation from smaller

components as we will describe in the next section.
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Figure 5.1: Proposed General Flow for Rapid Design Space Exploration for Post–
Moore Technology-based Accelerators which is based from Aladdin [130]

5.1.3 Statistical Estimation of Post-Moore Library Parameters

Standard cell libraries are typically derived from Verilog device models and template

library in a process called characterization. However, for emerging technologies, it might

be difficult to perform characterization. Therefore, we propose a statistical estimation

method to estimate the parameters of the PM library.

When trained for a RTL of a small functional units, we propose to estimate pa-

rameters such as area, delay, and power consumption of large functional units using

linear programming-based optimization. First we decompose the RTL into a set of logic-

complete gates such as AND/OR/INV. The predicted parameter (PP) would then be

equal to

PP =

p∑
i=1

ni × ki (5.1)

where ni and ki are refers to the numbers of gates and the coefficients of the gates

for a set of p logic-complete gate set. The values for these coefficients are then obtained

by solving the minimization problem of the form

min
r∑

i=1

|AP− PP|2 (5.2)

where AP refers to the actual value of the parameter and r is the number of subunits

used for training. The coefficient ki are constrained to be positive. Note that in many
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emerging technologies, it would be suitable to design small subset of functional units

which can then be used to estimate larger units so this r can be small. A similar approach

has been used in [132] to estimate the parameters of from VHDL RTL descriptions but

our approach also extends to power, has a different objective function, and uses this in the

context of estimating parameters from emerging technologies with are more challenging

to characterize and get library files for.

We test this technique for a set of both CMOS and Post-Moore technology libraries.

For this work, we focus on NCFET as a representative technology but other Post-Moore

devices/libraries should be applicable. For training, we used small subset of ADD, MULT

and BITWISE gates with bitwidths up to 4. From this, we estimate the set of functional

units required for the Aladdin-based simulation, as well as other larger cryptographic

units and compare with actual synthesis results. We obtain the actual parameters values

from synthesis with Synopsis Design Compiler using NanGate 15nm and ASAP 7nm-

based NCFET tech libraries [133]. The required functional units in Aladdin are shown

in Table 5.1.3. For each parameter and technology set, we use Gurobi [134] to solve

the coefficients and use those coefficients for estimation. Figure 5.2 and Figure 5.3 show

the results of the estimation of area and power, respectively. For area estimation in

Figure 5.2, they fall generally under 25% and this estimation has worse results with

smaller functional units and smaller technology nodes as expected because of the larger

effect of over/under estimation on the smaller area magnitudes. For power estimation in

Figure 5.3, the estimation is typically under 30% except for some large functional units.

Note that the power estimation we used for comparison comes from Design Compiler

which assumes a fixed switching activity. Therefore, more accurate power estimation can

be done by testing different activity factors.
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Unit Description
ADD Adder
MULT Multiplier
BIT Bitwise-Operation
SHIFTER Shifter
REG Register
FP SP ADD Single Precision Floating Point Adder
FP SP MULT Single Precision Floating Point Multiplier
FP DP ADD Double Precision Floating Point Adder
FP DP MULT Double Precision Floating Point Multiplier
FP TRIG Single Precision Floating Trig Function

Table 5.1: Aladdin Functional Units
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Figure 5.2: Comparison of predicted and actual (synthesis) results for selected func-
tional units
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Figure 5.3: Comparison of predicted and actual (synthesis) results for selected func-
tional units

5.1.4 Post-Quantum Cryptographic Accelerator

While using Post-Moore technologies for can be used for various hardware accelera-

tors, in this work, as a proof of concept, we focus on the use of Post-Moore technologies

for the NTT-based polynomial operation which is used in many Post-Quantum Cryp-

tography schemes like Kyber. Kyber is a KEM (Key Encapsulation Mechanism) that is

designed to be used in cryptographic applications. It is a low-complexity, high-security,

and fast cryptographic protocol that is designed to be used in the context of secure

communication. KEMs allows for encapsulation of symmetric key by using asymmetric

cryptography. The required inputs and outputs of the encapsulation and decapsula-

tion operations are shown in Figure 5.4. Kyber has recently been selected by NIST for

standardization after three rounds of selection process [135]. Kyber is based on LWE-

based encryption, specifically, Module-LWE (MLWE). To have better support for current

hardware, a variant of Kyber was also proposed called Kyber-90s, which uses AES-256 in

counter mode and SHA2 to replace SHAKE. Table 5.2 shows the parameter set for the

Kyber, similar to various parameters for AES and SHA, i.e., Kyber512 was targeted to
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Figure 5.4: Encapsulation and Decapsulation Process in Post-Quantum Cryptography KEMs

NIST
Level

Quantum
Hardness
(bits)

Parameters Size (bytes)

n k q (η1, η2) (d1, d2)
Secret

Key (sk)
Public

Key (pk)
Ciphertext

(ct)
Kyber512 1 (AES128) 102 256 2 3, 329 (3, 2) (10, 3) 1632 800 768
Kyber768 3 (AES192) 161 256 3 3, 329 (2, 2) (10, 4) 2400 1184 1088
Kyber1024 5 (AES256) 241 256 4 3, 329 (2, 2) (11, 5) 3168 1568 1568

Table 5.2: Comparison of KYBER Parameter Sets [137, 136]

have similar security as AES128, Kyber768 with AES192, and Kyber1024 with AES256.

The authors of Kyber recommend the use of Kyber768 parameters as it gives more than

128 bits of security against all known classical and quantum attacks [136]. In this work

we focus on Kyber768 which we will refer to as just Kyber from hereon.

Profiling

Table 5.3 shows the profiling results Kyber using a clean reference implementa-

tion [138]. The profiling is obtained from running hotspot mode in perf . Here, it clearly

shows that hashing operation Keccak dominates the runtime along with NTT/Inverse

NTT and the reduction operations which are used for in polynomial multiplication. Kec-

cak is also used by another Module-LWR based post-quantum cryptography KEM such

as SABER [139], as shown in the profiling results in Table 5.4 and however, it uses Karat-

suba method for polynomial multiplication. Thus, polynomial multiplication and Keccak

are prime targets for hardware acceleration. For Kyber NTT-based polynomial multipli-
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Unit %
Keccak 33.1
Montgomery Reduction 16.36
Inv NTT 8.68
Barrett Reduction 8.51
Base Mult 7.72
NTT 5.1
Gen Matrix 3.73
Others 16.8

Table 5.3: Kyber Encapsulation Function Profiling Results

Unit %
Karatsuba 46.52
Keccak 30.20
Poly Mul Acc 10.22
BS2POLVECq 3.76
Shake128 2.26
Others 7.04

Table 5.4: SABER Profiling Result

cation, it uses the Cooley-Tuckey algorithm for forward NTT and the Gentleman-Sande

algorithm for inverse NTT.

5.1.5 Methodology

As profiling of some Post-Quantum cryptography shows, they are heavily dependent

on polynomial multiplication and hashing functions. This is consistent with results from

earlier related work which focuses on general module-based synthesis of accelerators for

a wide variety of R-LWE Post-Quantum Cryptography [140]. Note that our work is

different in that we target different emerging technologies and for this demonstration,

we focus on acceleration of polynomial multiplication. Specifically, we focus on enabling

fast polynomial multiplication using Polynomial NTT which involves NTT, Barrett Re-

duction, and Montgomery Reduction which make up significant portions of the software
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runtime of Kyber. We use the Kyber code from provided from PQClean [138] and ex-

tracted the Polynomial NTT function. We annotate critical loops of the code which can

be unrolled and accelerated. We synthesize various functional units using 15nm and 7nm

Baseline FET and NCFET technologies. We then modify Aladdin to make use of these

power/area/delay values to estimate parameters of the cache-based accelerator. We use a

cache-based accelerator architecture as shown in Figure 5.5. The accelerator is connected

to the system bus and and it has it’s own cache-based memory. Aladdin provides several

knobs for design-space exploration of accelerators. In this work, as a proof-of-concept,

we focus on the number of lanes of the accelerator which represents the unrolling factor

of loops in the program. The larger the number of lanes, the more hardware resources

needed but the faster the accelerator will run. We compare Baseline FET and NCFET

for both 15nm and 7nm nodes. For 15nm, Baseline FET has VDD of 0.8V while NCFET

has VDD of 0.4V while in 7nm, Baseline FET has VDD of 0.7V while NCFET has VDD

of 0.5V. As explained in the earlier section, due to the lower VDD, NCFET can achieve

lower power consumption but with no significant impact on performance. In the following

comparisons, we report the only the parameters of the functional unit and not include

memory. Estimating the memory parameters based on Post-Moore technologies is an

interesting future work we are considering. To measure the performance improvement

of using an accelerator, we use the reported gem5 statistics and compare the number of

cycles to complete the operation with and without using the accelerator.

5.1.6 Analysis of NCFET-based Polynomial NTT Accelerator

Figure 5.6 shows the decreasing number of cycles required of the Polynomial NTT

Accelerator for increasing number of lanes (loop unrolling factor) as expected. For this

design, the number of cycles saturates at around 4 lanes. With this information, we focus
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Figure 5.5: Architecture of a Polynomial NTT Cache-based Accelerator

on the comparing a single lane and 4 lanes of the accelerator. Figure 5.7 and Figure 5.8

show the difference of power consumption of the Baseline FET and NCFET for 7nm and

15nm technology, respectively. For 15nm, NCFET provides around 6.3× power reduction

compared to Baseline FET. However, this reduced to around 1.7× power reduction for

7nm technology. One reason for this the gap of the VDDs used is much larger in the

15nm case. As we will show later, the delay in 7nm for NCFET is already worse with

the current VDDs used compared to Baseline FET, and lowering the VDD even more,

will result of course result in more power reduction but at worse performance. For both

of these results, the number of lanes does not significantly impact the difference between

Baseline FET and NCFET power. Using this 7nm NCFET-based accelerator and a host

processor running with a clock of 2000MHz, we can achieve a performance speedup of

around 1.27× compared to a system without the accelerator. With an accelerator with 4

lanes, the operation runs in 342703 cycles while without an accelerator, it runs in 436744

cycles.
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Figure 5.8: Comparison of Power between Baseline FET 7nm and NCFET 7nm with
1 and 4 accelerator lanes (loop unrolling factor)

5.1.7 Analysis of NCFET for Cryptographic Modules

We also compare NCFET libraries with corresponding Baseline FET libraries for

other cryptographic modules. Specifically, we look at AES256, SHA256, KECCAK and

517x517 3-stage Karatsuba Large Integer Multiplier which are typically used in LWE-

based Post-Quantum Cryptography. The results of the synthesis are shown in Table 5.1.7.

For area, since the NCFET libraries are based from the Basline FET, there is no sig-

nificant difference. For both 15nm and 7nm technologies, NCFET, despite having lower

VDD compared to Baseline FET, has similar delay (performance) but offers significant

power reduction. Power consumption is largely dominated by internal power. The total

power gap in the 7nm node is around 1.8× while in the 15nm node, the power gap is

around 4.5×. This implies that the power savings advantage of this technology is reduced

as we go to smaller technology nodes.

5.2 Modeling a Hybrid Superconducting Processor

Superconducting electronics offer the promising prospect of high performance (tens

of GHz) at low switching energy (attojoule level). However, this new type of computing
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Crypto Module Technology VDD Area Switching Internal Leakage Total Power Delay

7nm

AES256
Baseline FET 7nm 0.7 2477.71061 1.02E-02 0.671 1.71E+03 0.683 2.33312
NCFET 7nm 0.5 2476.44215 5.97E-03 0.371 8.94E+02 0.378 2.80518

SHA256
Baseline FET 7nm 0.7 1377.50381 8.34E-03 0.408 9.84E+02 0.418 3.10853
NCFET 7nm 0.5 1419.46505 4.92E-03 0.226 5.32E+02 0.231 3.96485

KECCAK
Baseline FET 7nm 0.7 2743.5769 5.64E-02 0.731 1.82E+03 0.789 1.98314
NCFET 7nm 0.5 2756.08654 3.47E-02 0.405 9.42E+02 0.441 2.36584

Karatsuba Multiplier
Baseline FET 7nm 0.7 5783.15698 0.354 1.672 3.87E+03 2.03 3.98448
NCFET 7nm 0.5 5808.55534 0.213 0.927 2.03E+03 1.142 3.98726

15nm

AES256
Baseline FET 15nm 0.8 8754.41349 5.12E-02 2.883 1.60E+06 4.532 0.50852
NCFET 15nm 0.4 8747.97458 1.34E-02 0.732 2.57E+05 1.002 0.48184

SHA256
Baseline FET 15nm 0.8 4999.69226 4.35E-02 1.749 8.45E+05 2.638 0.62211
NCFET 15nm 0.4 5001.51088 1.13E-02 0.445 1.26E+05 0.582 0.61939

KECCAK
Baseline FET 15nm 0.8 10093.658 0.313 3.384 1.95E+06 5.648 0.38193
NCFET 15nm 0.4 9991.96254 7.70E-02 0.841 3.16E+05 1.233 0.40805

Karatsuba Multiplier
Baseline FET 15nm 0.8 21642.2643 2.183 9.911 4.40E+06 16.498 3.32799
NCFET 15nm 0.4 21537.718 0.531 2.373 7.01E+05 3.605 3.20221

Table 5.5: Comparison of Synthesis Results for Cryptographic Modules. Area is in
um2. Swiching, Internal and Total power are in mW. Leakage power is in nW. Critical
Delay is in ns.

presents a qualitatively different set of trade-offs for computer architects to explore. The

traditional relationship between technology area and energy efficiency (smaller CMOS

gates use less energy per switch) is inverted (larger superconducting technologies can use

less energy). Specifically, in this paper, we examine analytically the energy-efficiency of

two leading superconducting technologies (ERSFQ and AQFP) using both technologies

in the context of a hypothetical multi-core machine, and explore the potential for hy-

brid design (combining both technologies) to further improve efficiency over the use of

either technology on its own. Considering that die area needed to implement any super-

conducting electronics device is large compared to CMOS, we use area as a first order

constraint and devise an area-equivalent model to compare different core configurations.

We show that a hybrid design has significant potential to improve energy efficiency over

technology-homogeneous designs in the case that there is sufficiently large space for a

number of AQFP cores. As chip area budget approaches wafer-scale, and with Amdahl

fraction (parallelizable portion of the program) f=0.9, energy-efficiency improvements of

2x could be expected from hybrid approaches.
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5.2.1 Introduction

As Moore’s Law and traditional device scaling ends, the push for continued systems

performance scaling becomes even more challenging. While architects have recently ex-

ploited chip specialization to compensate for limited device scaling [7], this too has its

own limitations[8], which encourages exploring device technologies beyond traditional

CMOS. Superconducting electronics (SCE) is a promising “Post-Moore” option because

it allows ultra-fast switching at low energy compared to CMOS. Superconducting de-

vices have been well-studied and there have been many proposed variations such as rapid

single-flux-quantum (RSFQ) [9], energy-efficient RSFQ (ERSFQ) [10], and more recently,

adiabatic quantum-flux parametron (AQFP)[11]. While significant progress have been

made in advancing SCE material, device and circuit properties, there has been little

progress in understanding the architectural and system-level implications of such tech-

nology.

Some large-scale RSFQ integrated circuits are rapidly developed, which includes

singe-precision floating-point units [141], single-chip FFT processor [142], reconfigurable

data paths, 8-bit microprocessors with memory [37, 38], 4-bit sliced ALU for 32-bit RSFQ

processors.[143] Some of the processors are designed with AQFP, such as the Monolithic

AQFP microprocessor. [144]

The current fabrication process[145] for basic logic three dimensional AQFP is the

AIST 10 kA cm−2 Nb double gate process, which means that two active layers are sepa-

rated by ground plane. The reasonable excitation margins for 3-D XOR gate is measured

around±16%. The fabricated chip was used for designing AQFP-based RISC-V ALU[39].

A review of an 8-Nb-layer MIT-LL fabrication process [146] for two very large scale

integration SFQ digital circuit was conducted. Tolpygo et al. indicated the result for

fabricating SFQ4ee (”ee” means tuned to energy-efficiency) has yielded the largest JJ
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counts on a single chip by their time. The statistical measurement observed that topog-

raphy created by pattern wires caused less than 1% increase of the mean conductance of

the junctions under a room temperature environment.

In this work, we use analytical models to explore the performance and power bene-

fits of homogeneous SCE multicore designs as well as a hybrid heterogeneous multicore

design. We identify area as a first order constraint, rather than power, and devise an

area-equivalent model to compare different core configurations. We show that the hybrid

design is more energy efficient than the non-hybrid designs when there are a sufficiently

large number of AQFP cores. Our work serves as early guidance for design space ex-

ploration of the limitations and potential for multicore systems to be built from these

superconducting technologies.

5.2.2 Superconducting Logic Families

Superconducting electronics use materials such that at least some parts of which are in

superconducting state. Since superconducting electronics require to maintain at certain

temperature due to their unique physics characteristics, the common temperatures for

superconducting devices are the boiling point of liquid nitrogen, the boiling point of

liquid helium, and the superfluid helium-4 temperature, which is below 2.17K. Although

this is a crucial setting for current computers, their performance and energy-efficiency

are promising for the future post-Moore research in computer architecture. For example,

8-bit AQFP adder reported a 24 kbT energy dissipation per junction [36] .

Superconducting technology is based on the Josephson Junction (JJ), a primitive

switching device. A JJ is composed of an insulating barrier that is sandwiched between

two superconducting layers. In its superconducting state, despite no voltage applied

across the junction, tunnelling current can pass through the junction. Once a certain
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current limit (Ic, critical current) is flowing through the junction, it switches to its resis-

tive state.

RSFQ and AQFP are two leading candidate superconducting technologies. The clock

frequency for RSFQ can reach 50 GHz for 8-bit processors[37]. Although RSFQ can

operate at high clock frequencies, it still has a significant leakage from its bias resistors

used to supply DC currents. This drastically increases the static power dissipated between

10 and 100 times the dynamic power. An energy-efficient RSFQ (ERSFQ) was proposed

to address this by removing leakage at the expense of larger area by using larger bias

inductors with different power distribution instead of resistors [38].

AQFP makes use of AC bias for its clock and power supply, unlike other supercon-

ducting technologies like RSFQ which are based on DC bias, allowing it to avoid DC

power overhead and essentially consume less power [39]. An SFQ (Single Flux Quan-

tum) is then stored in either left or right loop depending on the input current Iin. Note

that, compared to RSFQ, which use JJ switching to move SFQ, information in AQFP is

encoded by the location of the SFQ, which determines whether it represents logical ‘1’

or ‘0’. Inverter and constant cells can be generated from this buffer cell. This set of 3

cells can then be used to build logic gates such as MAJ (majority), NOR, and AND. As

a result of having the same AC signal as a power source and clock, a clocking scheme is

needed to synchronize the outputs of all gates in the same clock phase. Typically, indi-

vidual AQFP logic gates are connected to an AC clock signal and each one will occupy

a clock phase.

Table 5.6: Energy-Delay Comparison of Superconducting Technologies
Technology Energy (aJ) Delay (ps) EDP (aJ ps)
ERSFQ[147] 1400 8300 1.164E7
AQFP [148] 7.74E-4 200 0.155
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Figure 5.9: AQFP vs. CMOS in Energy-Delay Performance. AQFP has significant
advantage in energy efficiency but at the cost of large area. Raw data obtained from
Chen et al. [39]

5.2.3 Related Work

Hill and Marty[149] proposed an early-stage performance modeling technique for mul-

ticore processors. They complemented the Amdahl’s Law software model by proposing

a simple multicore hardware resources model on symmetric, asymmetric, and dynamic

multicore designs. However, this model is limited to considering differences in perfor-

mance between different purpose processors on chip since this model assumes all cores

are equivalent. Woo and Lee [150] extended Hill and Marty’s models to include power

as the main consideration. Using the same P (high-performance) and c (energy efficient)

core models, they proposed new variables such as idle power ratio and power gap ratio

to fully model power efficiency and energy efficiency of heterogeneous multicore systems.

Ayala et al. [144] built a prototype 4-bit AQFP processor, which demonstrated the

state-of-the-art AQFP architecture design. Their work integrated both adiabatic data
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processing and memory on a single chip, which consists of switching energy of 1.4 zJ

when driven by a 4-phase 5GHz AC clock at 4.2K.

Esmaeilzadeh et al.[151] formalized the notion of ”Dark Silicon” which indicates that

the continuous increase in the number of cores on a chip will run into performance limits

because of energy usage and heat capacity, limiting the number of transistors that can be

activated simultaneously. They proposed a framework for estimating the limited speedup

projections and the amount of dark silicon based from device, core and multicore scaling

models.

Ishida et al. [147] proposed a design for a Neural processing unit (NPU) using RSFQ

and ERSFQ technologies and showed that the simple control flow in DNN applications is

a good fit for their gate-level pipelining nature. They proposed a simulation framework

which starts from gate-level until NPU architecture level. They validate their model by

comparisng it with a fabricated MAC unit measured in 4K temperature.

Tannu et al. [152] used open-source design tools to analyze as well as analytic models

to estimate performance, power and area of RQL-based SHA256 accelerator.

Takeuchi et al. [11, 153] proposed analytical models to estimate the energy efficiency

of adiabatic superconducting logic and compared with other superconducting logic fam-

ilies.

Yamae et al. [154] pointed out their previous model for evaluating the energy dis-

sipation of basic AQFP logic was not applicable to complex design. They proposed a

new method for evaluating the heat dissipation for complex AQFP design, which is done

by subtracting the energy dissipation for peripheral buffer from the entire circuit. They

performed transient analysis using Josephson circuit simulator (JSIM) on a majority gate

(MAJ).

Chen et al. presented AQFP’s potential as a future technology for building an ex-

tremely energy efficient computing systems due to the low energy dissipation. Their
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benchmark synthesis on AQFP 10kA processor for RISC-V 32-bit ALU can reach 0.043076487

fJ in EPC and 0.008615297 fJ · ns in EDP.

Cai et al. [155] found that AQFP is compatible with stochastic computing(SC)

technique due to the two properties of AQFP: difficulty to avoid RAW hazards and

true random number generation(RNG) with a single AQFP buffer. They proposed a

stochastic-computing deep learning framework with AQFP and redesigned the neural

network components in SC-based DNN to suit for AQFP. Their results showed AQFP

based-DNN performed 6.9 × 104 times higher energy efficient compared to CMOS with

96% accuracy on the MNIST dataset.

Nagaoka et al. [156] introduced the difficulty of gate-level pipelining on complex

AQFP design due to timing design. Their work showed the maximum potential of SFQ

logic by demonstrating high-throughput multiplier with based on a bit-parallel, gate-

level-pipelined structure. Their results showed SFQ-based multiplier can be at upt 48

GHz with 5.6 mW Power. Nagaoka et al. [156] tested the SFQ-based multiplier to per-

form 8× 8-bit signed multiplication every clock cycle on a gate-level-pipelined structure.

Their result demonstrated up to 48GHZ with 5.6 mW power consumption.

Naoki et al. [153] proposed analytical models to estimate the energy efficiency of

adiabatic superconducting logic and compared with other superconducting logic families.

5.2.4 Technology and Core Models

In this work, we adapt Woo-Lee’s power-aware multicore model [150] to capture the

difference in power contributions between ERSFQ and AQFP-based multicore processors.

We start by describing the architecturally symmetric model where all cores are similar,

then proceed with an asymmetric design composed of heterogenous technologies.
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Symmetric Multicore Models

Amdahl’s Law states that, for a program with fraction f parallelizable (f ∈ [0, 1]),

and N as the number of processing units, the maximum speedup is given by:

Perf =
1

(1− f) + f
N

(5.3)

By introducing a variable k, representing the idle state to active state core power ratio

(k ∈ [0, 1]), and assigning the active state power as 1, the total power of a symmetric core

can be modeled. During the serial portion of the program (1− f) where only one core is

active and others are idle, the power consumption is 1 + (N − 1)k while in the parallel

portion, where all N cores are active, power consumption is N . Thus, the average power

consumption can be written as:

Power =
1 + (N − 1)k(1− f)

(1− f) + f
N

(5.4)

Power efficiency (Perf /Power) can be computed from these two previous equations

and is equal to the inverse of energy since Perf is the inverse of execution time. Similarly,

we can compute energy efficiency (Perf /Energy) from Perf and Power since Energy =

Power ∗ (1/Perf ). This represents the inverse of energy-delay-product (EDP).

To properly compare models of cores from different technologies, additional parame-

ters are needed. If we assume that sc (sc ∈ [0, 1]) represents the performance ratio of

a core that is more energy-efficient compared to a high-performance core, then Perf can

be rewritten as:

Perf =
sc

(1− f) + f
N

(5.5)

Additional parameters are also needed to obtain power and energy efficiency. If we
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assume wc is the power consumption ratio of the energy-efficient core and high-

performance core (wc ∈ [0, 1]) and kc is the idle state to active state core power

ratio (kc ∈ [0, 1]) of the energy efficient core, Power , Perf /Power , Perf /Energy from

previous equations can be derived as the following equations. The derivation of these

equations is explained in detail in the Woo-Lee paper [150].

Power =
wc + (N − 1)wckc(1− f)

(1− f) + f
N

Perf

Power
=

sc
wc + (N − 1)wckc(1− f)

Perf

Energy
=

sc

(1− f) + f
N

× sc
wc+
(N − 1)wckc(1− f)

Asymmetric Multicore Model

To model a technology-heterogenous multicore, we assume a single high-performance

core that operates on the serial portion and a group of (N−1) energy-efficient cores oper-

ating on the parallel portion. This assumes that the high performance core is idle during

the parallel portion of the program. Taking this into account, the previous equations can

be extended as follows [150]:

Perf =
1

(1− f) + f
(N−1)sc

Power =
(1− f)1 + (N − 1)wckc +

f
sc

k
N−1

+ wc

(1− f) + f
(N−1)sc

Perf

Power
=

1

(1− f) + {1 + (N − 1)wckc}+ f
sc
{ k
(N−1)+wc

}
Perf

Energy
=

1

(1− f) f
(N−1)sc

× 1

(1− f){1 + (N − 1)wckc} f
sc
{ k
(N−1)

+ wc}

Asymmetric Multicore Model: Parallel Mode Active High Performance Cores
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In the previous model, the lone high-performance core is assumed to be only active

during the sequential portion and idle during the parallel portion. We turn our attention

to a model of parallel program which can operated upon even by different types of cores.

In this type of workload, we assumed that each thread has about equal work which can be

handled by either a high-performance core or an energy-efficient core. This means that

high-performance cores will be still be used instead of being idle, but will be underutilized

compared to their sequential state mode. The number of high performance cores could

be more than 1 and represented by np and the number of high-efficiency core is nc. These

cores are active during parallel portion of the program. Like earlier, we can derive a set

of equations describing performance, power, power efficiency and energy efficiency for

this type of model.

Perf =
1

(1− f) + f
(np+scnc)

Power =
(1− f)(1 + (nckcwc) + (np − 1)kp) +

f(npkp+wcnc)

(scnc+np)

(1− f) + f
(np+scnc)

Perf

Power
=

1

(1− f)(1 + (nckcwc) + (np − 1)kp) +
f(npkp+wcnc)

(scnc+np)

Perf

Energy
=

1

(1− f) + f
(np+scnc)

× 1

(1− f)(1 + (nckcwc) + np − 1)kp) +
f(npkp+wcnc)

(scnc+np)

A summary of the parameters used in the models is listed in table 5.7.

ERSFQ and AQFP Multicores

Although the asymmetric power models were originally developed considering mi-

croarchitectural heterogeneity where a big and powerful core can handle the serial part

of the computaion and smaller cores handle the parallel portion, in this work we consider
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Table 5.7: Parameters used in Model Equations
Parameter Description
f program parallelizable portion
N number of cores
np number of high-performance (P ) cores
nc number of energy efficient (c) cores
sc normalized c to P performance ratio
wc normalized c to P power ratio
k normalized idle power of P
kc normalized idle power of c

technology heterogeneity where cores are built from different underlying device technolo-

gies. This type of technology heterogeneity was only considered for cases where emerging

Post-Moore devices such as TFET[157] and NCFET[35] were coupled with CMOS. There

has also been some progress on integrating these different technologies in a monolithic

fashion or chiplet-based designs.

We consider ERSFQ and AQFP as our superconducting logic families for this type of

integration because the fast operation of ERSFQ complements the ultra-low energy op-

eration of AQFP. Together, they present an interesting tradeoff since the smaller ERSFQ

core has better performance but the larger AQFP core has better energy efficiency. This

is different from the case in CMOS where faster cores typically use larger area. Thus,

we explore a system composed of a multicore chip where we use ERSFQ cores as high

performance cores (but higher energy) for serial processing and pair it with AQFP cores

that require less power (with lower performance) for parallel processing, considering su-

perconducting technology area constraints.

A key parameter in the heterogeneous model is the power ratio (wc) which is the

normalized ratio of the active power of the efficiency core to the active power of the

performance core. In order to get the power ratio between AQFP and ERSFQ, we first

calculate the switching energy for each gate. The energy of an AQFP buffer operating at
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Figure 5.10: Different multicore configurations compared: (a) symmetric ERFSQ, (b)
symmetric AQFP, and (c) Hybrid ERSFQ/AQFP

5 GHz is 0.774 zJ based on an 8-metal layer 100 µAµm2 SFQ5ee process. Assuming each

gate consumes 9.97 zJ[144] and buffer overhead of 2.5[144], AQFP gate switching energy

energy is estimated to be around 12 zJ. Operating at 5 GHz, the estimated power is 0.06

nW. For ERSFQ, each use a switching energy of 1.4 aJ and delay of 20 ps (50GHz), we

arrive at power of 140 nW. Thus, we assume the power ratio between ERSQ and AQFP

is around 2333×.

Table 5.8: Relative Ratio of Performance and Energy of ERSFQ and AQFP

Technology
Functional Unit

Performance Power
ERSFQ 50 GHz 140 nW
AQFP 5∼20 GHz 0.06 nW
Gap 2.5∼10x 2333x

Area-Equivalent Model

In order to compare different configurations fairly, previous work [150] based on

CMOS used power-equivalent models by normalizing to a chip power budget instead

of simply comparing designs with the same core count. This is done since in CMOS,

power is the main design constraint in this technology which primarily determines the
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effective single chip core count. However, this is not necessarily applicable in supercon-

ducting technology because of the significantly lower power consumption, even consider-

ing cooling power. Instead, in superconducting technology, area will be the main limiting

constraint even before power constraints. This is because of large clock distribution net-

works as well as inherently larger devices and the much lower level of integration of these

technologies compared to the well-developed CMOS technology, resulting in significantly

larger chip areas. If we consider power as the only limiting factor, it results in hundreds

of thousands of cores, each one of which is significantly larger than typical CMOS cores.

Therefore, in this work, we use area as the main constraint for scaling the number of

cores. In order to construct an area-equivalent model, we introduce a new parameter ac

which is the area ratio of the performance (ERSFQ) core to the efficiency (AQFP) core

as ac = c area
P area

.

We can set the area budget as the number of the larger core (AQFP) nc = area budget

and calculate the equivalent number of the smaller cores (ERSFQ) using np =
area budget

ac
.

These core numbers can then be plugged in the the previous equations presented.

5.2.5 Evaluation and Discussion

Methodology

We used analytical models derived above to explore the performance and power ben-

efits of SCE multicores composed of a single technology as well as evaluate a proposed

hybrid design composed of multiple heterogeneous technologies. We use area as a first or-

der constraint instead of power and devise an area-equivalent model to compare different

core configurations.

We place a chip area budget parameter which determines the total number of cores

for both types. The maximum chip area constraint we consider is 4.66E10 µm2 from
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Cerebras WSE-2, the largest chip in CMOS to date [158]. For ERFSQ, we use a core

area of 5.94E6 µm2 from a recent RSFQ 8-bit processor[37]. For AQFP core, we use an

area of 1.6E8 µm2 representing area from the estimated size of a state-of-the-art 4-bit

AQFP processor [144] scaled to 8 bits. Thus, we can see that the ERSFQ core is at

least two orders of magnitude smaller compared to the AQFP core (27x). In comparison,

typical CMOS core area such as Intel Skylake 14nm is 1.19E7 µm2[159]. The area budget

is swept until 350 AQFP core area units which is a value close to the maximum number

of the AQFP cores given the maximum chip area constraint.

In this work, we did not consider the overheads of interfacing between RSFQ and

AQFP, but recent work [160, 161] have demonstrated circuits which make this feasible

and only incur small area and power overheads. Since this paper focuses mainly on the

potential of combining AQFP and ERSFQ cores, the power consumption of the uncore

components were also not considered and the assumed number of uncore components will

scale with the design.

We use energy-normalized performance (perf/joule) as the metric to compare the

symmetric and hybrid core configurations. If energy is not a concern, symmetric configu-

rations of high performance cores (ERFSQ) will obviously yield maximum performance.

Results and Discussion

Fig. 5.11 shows the normalized perf/joule for various configurations as a function of

chip area budget for various f (parallelizable program portion) values. We also include

hybrid values for power ratios (wc) of 3x and 1/3x. This represents potential error ranges

for overall chip power ratio estimation from device power ratio shown in Section 5.2.4. At

lower chip area (core count budget), both symmetric configurations offer better perf/joule

compared to the hybrid configuration. However, with a larger chip area budget, the

hybrid configuration can have better perf/joule since more cores of the larger but more
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Figure 5.11: Perf/Joule as a function of chip area for various program parallelizability
(0.5, 0.9, 0.975, 0.99). Chip area budget refers to number of AQFP cores.
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energy-efficient AFQP can be included. In particular, we observe that this hybrid design

results in better energy efficiency, if there is sufficiently large number of AQFP cores

(e.g., at f = 0.9, more than 70 AQFP cores). As more AQFP cores are included in the

hybrid design, this energy is further improved and reaches around 2x as shown in the

f = 0.9 case in Fig. 5.11b). At low f , a symmetric AQFP is always better than symmetric

ERSFQ. At high f , symmetric ERSFQ is better when the area budget is constrained.

As more area is made available, eventually enough AQFP cores to meaningfully exploit

parallelism can be included, making it more overall energy-efficient. Improvements to

AQFP density would significantly alter this tradeoff, and is would be a natural point

for future technologist to strive to reduce if they want to enable energy efficient hybrid

designs. While these technologies are still under development, our results show that

there is a surprising and fundamental set of trade-offs between these technology choices,

distinct from traditional big/little CMOS core design considerations, and that hybrid

configurations have the potential to provide the advantages of both but only as area

becomes a less constrained resource.
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Chapter 6

Summary of Contributions and

Future Work

6.1 Summary of Contributions

In Chapter 3, we proposed an asymmetric approach to multi-party architecture with

the co-location of a small physically-hardened compute element (under the control of

one party) with a much larger and robust server-class system (under the control of the

other). We call our proposed devices “Hardware Embassies”, a new class of devices that

enable more efficient MPC by providing untrusted server co-located tamper-proof trusted

hardware.

In Chapter 4, we proposed a near-data processing (NDP) architecture to accelerate

privacy-preserving biomarker search. We adopt a 3D-stacked DRAM to reduce data

movement and accelerate basic additive homomorphic operation for this application.

Lastly, in Chapter 5, we used presented a method for rapid evaluation of Post-Moore

technology-based accelerators as well as analytical models to explore the performance

and power benefits of homogeneous SCE multicore designs as well as a hybrid heteroge-
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neous multicore design. This serves as early guidance for design space exploration of the

limitations and potential for multicore systems to be built from these superconducting

and other Post-Moore technologies.

6.2 Future Work

Through this series of work, we showed that some interesting sets of architecture and

technologies can be used to improve some emerging datacenter cryptographic applica-

tions. A few more interesting direction for future work are as follows:

Stronger Security Assumptions

In this work, we used an honest-but-curious (semi-honest) assumption which based on

traditional Garbled Circuits which might not be ideal in actual applications. A stronger

assumption on the security of the system is more practical. Active adversary security

is a key challenge for many security applications and protocols. As an example, a Dual

Execution protocol [162] can be used to strengthen the security assumption as show in

Figure 6.1. In this protocol, two independent runs of semi-honest Garbled Circuits are

performed where in one run one party acts at the garbler and on the next run acts as

evaluator (and the opposite for the other party). The outputs are then compared outputs

at the end of the execution. The only caveat is that is a single bit (comparison result) is

leaked which might be tolerable for many applications. In this protocol, more communi-

cation overhead is expected (essentially running the whole Garbled Circuit twice) which

increases motivation for using Embassies.

Multiparty Computation (N>2)

Garbled Circuit is a type of MPC with only two parties (2PC). Other MPC proto-

cols such as BGW, SPDZ, and BMR are needed when the number of parties is greater

than two. However, they have practical limitations. First, as in Garbled Circuit, they
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BobAlice

First round executionGenerator Evaluator

Second round executionEvaluator Generator

Swap roles

Secure validation protocol

Compare results

By comparing results, malicious 
behavior can be identified

Figure 6.1: Dual Execution Flow [162]

generally require that all participating parties to be online during the protocol execu-

tion which is harder to enforce as the number of parties involved increases. Second, the

number of rounds of communication in the protocol grows with the complexity of the

computation and the total bandwidth also scales quadratically as the number of parties.

Thus, Embassy can help address these two challenges, as depicted in Figure 6.2, since

it can essentially create local proxies for the parties to execute the protocol within a

datacenter.

Heterogenous Integration with other Accelerators

The inherent limitations in trusted hardware like small system resources make it

difficult to scale for larger programs. Other hardware resources are available in modern

datacenters such as accelerators (FPGA, GPU, ASICs) can be used for supporting secure

computation. We envision a heterogenous secure datacenter architecture where parts of

the secure computation can be offloaded to accelerators. A trusted hardware similar to

Embassy can be used to orchestrate various trusted accelerators (widened secure base)
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as shown in Figure 6.3.
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