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TSWIFT: Tower Spectrometer on Wheels 
for Investigating Frequent Timeseries 
for high‑throughput phenotyping of vegetation 
physiology
Christopher Y. S. Wong1*, Taylor Jones2, Devin P. McHugh1, Matthew E. Gilbert1, Paul Gepts1, Antonia Palkovic1, 
Thomas N. Buckley1† and Troy S. Magney1† 

Abstract 

Background  Remote sensing instruments enable high-throughput phenotyping of plant traits and stress resil-
ience across scale. Spatial (handheld devices, towers, drones, airborne, and satellites) and temporal (continuous or 
intermittent) tradeoffs can enable or constrain plant science applications. Here, we describe the technical details of 
TSWIFT (Tower Spectrometer on Wheels for Investigating Frequent Timeseries), a mobile tower-based hyperspectral 
remote sensing system for continuous monitoring of spectral reflectance across visible-near infrared regions with the 
capacity to resolve solar-induced fluorescence (SIF).

Results  We demonstrate potential applications for monitoring short-term (diurnal) and long-term (seasonal) varia-
tion of vegetation for high-throughput phenotyping applications. We deployed TSWIFT in a field experiment of 300 
common bean genotypes in two treatments: control (irrigated) and drought (terminal drought). We evaluated the 
normalized difference vegetation index (NDVI), photochemical reflectance index (PRI), and SIF, as well as the coeffi-
cient of variation (CV) across the visible-near infrared spectral range (400 to 900 nm). NDVI tracked structural varia-
tion early in the growing season, following initial plant growth and development. PRI and SIF were more dynamic, 
exhibiting variation diurnally and seasonally, enabling quantification of genotypic variation in physiological response 
to drought conditions. Beyond vegetation indices, CV of hyperspectral reflectance showed the most variability across 
genotypes, treatment, and time in the visible and red-edge spectral regions.

Conclusions  TSWIFT enables continuous and automated monitoring of hyperspectral reflectance for assessing 
variation in plant structure and function at high spatial and temporal resolutions for high-throughput phenotyping. 
Mobile, tower-based systems like this can provide short- and long-term datasets to assess genotypic and/or manage-
ment responses to the environment, and ultimately enable the spectral prediction of resource-use efficiency, stress 
resilience, productivity and yield.

Keywords  High-throughput phenotyping, Hyperspectral reflectance, NDVI, PRI, Remote sensing, SIF, Vegetation 
indices
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Background
Plant phenotyping requires tools that can quantify plant 
structure, function, and their response to environmen-
tal conditions with high precision, high throughput, and 
across scales from organs to whole plants and canopies 
[1, 2]. There is a myriad of applications for plant phe-
notyping among plant physiologists, plant breeders, 
ecologists, and land managers. Importantly, trait data 
acquired through plant phenotyping can inform species 
and genotype selection to increase resilience to stresses 
such as drought and overall adaptation to future climates, 
thereby assisting crop breeding for future global food 
demands [3, 4]. Thus, there is great interest in advancing 
high-throughput plant phenotyping tools to monitor the 
variation of vegetation across genotypes in response to 
the environment.

Despite much progress, plant phenotyping remains 
a bottleneck and lags behind our ability to character-
ize plant genomes, hampering progress in research and 
breeding [5, 6]. This is because traditional phenotyp-
ing methods are often low-throughput (i.e., labor inten-
sive and time consuming), limited in application to large 
areas, potentially subjective, and/or destructive—leading 
to severe limitations in sampling scale and frequency [7]. 
In recent years, plant phenotyping has advanced tremen-
dously, leading to high-throughput phenotyping methods 
such as RGB (red, green, blue) imaging, thermal imag-
ing, and hyperspectral remote sensing that are scalable 
and non-destructive [8]. Instruments designed for this 
purpose have been deployed on various platforms [9], 
including handheld devices, ground-based vehicles [10], 
tower-based systems [11–13], unoccupied aerial vehicles 
(UAVs) [14, 15], piloted aircraft [16, 17], and satellites [18, 
19]. While each platform provides promising applications 
for high-throughput phenotyping, each has spatial, tem-
poral (intermittent vs automated deployment), spectral 
(multi- vs hyperspectral) limitations, and require a wide 
range of necessary corrections for adequate interpreta-
tion (e.g., geometric, radiometric, atmospheric, etc.).

This paper presents TSWIFT (Tower Spectrometer on 
Wheels for Investigating Frequent Timeseries), a mobile 
tower-based hyperspectral remote sensing system suited 
for short- and long-term field deployment. A key advan-
tage of a tower-based system is the ability to collect 
data continuously and automatically in nearly any envi-
ronment, thus reducing personnel requirements while 
increasing spatial resolution and robustness to variable 
weather conditions (clear and cloudy sky conditions). 
The system described in this study acquires point meas-
urements of specific targets in about five seconds, ena-
bling data acquisition at high frequency across diurnal 
and seasonal temporal scales. It collects co-located RGB 
images and hyperspectral reflectance data in the visible 

and near-infrared (NIR) regions, and can also resolve the 
far-red solar-induced fluorescence (SIF) signal. Com-
bined, these capabilities allow for the assessment of phys-
ical attributes and physiological variation from simple 
vegetation indices or from machine learning techniques 
[20–22].

High spectral resolution enables qualitative assessment 
of vegetation function using simple vegetation indices or 
by exploiting nuances across the entire spectrum. For this 
paper, we focus on three vegetation indices sensitive to 
structural or physiological dynamics, but acknowledge 
many other vegetation indices that could be explored for 
assessing various traits and features [23–25]. For struc-
tural dynamics, we focus on the normalized difference 
vegetation index (NDVI, commonly used to infer canopy 
greenness), leaf area index (LAI), and light absorption 
[26, 27]. These structural measures are generally associ-
ated with longer term variations throughout the growing 
season, limiting applications in monitoring physiologi-
cally dynamic processes. For physiological dynamics, we 
focus on the photochemical reflectance index (PRI) and 
SIF. PRI is sensitive to variations in xanthophyll content, 
a key element of excess energy dissipation often used as 
a proxy of photosynthetic activity [28]. Temporal scale 
must be considered when interpreting PRI, because it is 
sensitive to both short-term xanthophyll cycle variation 
and long-term carotenoid/chlorophyll pigment pools 
[29, 30]. SIF is derived from the reemission of absorbed 
photons via chlorophyll under sunlight, and provides an 
estimate of photochemical activity and energy dissipation 
[22, 31, 32]. Similar to PRI, SIF requires temporal context 
in linking signal variation to physiological mechanisms 
[33, 34]. Beyond simple vegetation indices, hyperspectral 
data enables the use of full-range spectra for partial least 
squares regression (PLSR) models to estimate a suite of 
parameters associated with photosynthetic metabolism 
[35] and leaf biochemical status [36]. The combination 
of simple vegetation indices and full range hyperspec-
tral data provides a powerful tool for phenotyping plant 
structure and function with high throughput—over time 
and across many genotypes.

The objective of this paper is to present the technical 
details and ideas for similar design concepts of a mobile 
tower-based remote sensing system, TSWIFT, that gen-
erates continuous and automated point hyperspectral 
reflectance and SIF data of designated targets. The pri-
mary purpose of this system is to capture short-term 
(diurnal) and long-term (seasonal) variation of vegetation 
function, but here we focus on its application for high-
throughput phenotyping. In this study, we demonstrate 
TSWIFT’s ability to phenotype variation of phenology 
and drought resilience across diverse genotypes of com-
mon bean (Phaseolus vulgaris L.) with contrasting heat 
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and drought adaptation. To accomplish this, we show 
remotely sensed proxies of vegetation structure (e.g., 
NDVI) and function (e.g., PRI and SIF) as a proof-of-
application for a tower-based hyperspectral remote sens-
ing system.

Materials and methods
TSWIFT system design
TSWIFT is a tower-based spectrometer and RGB cam-
era system using scanning point measurements of user-
specified targets (i.e., vegetation, ground, sky, etc.) for 
monitoring hyperspectral reflectance in the visible and 
NIR regions and capability to resolve far-red SIF, cou-
pled with RGB imagery (Fig. 1). This instrument extends 
the original design of PhotoSpec [37], but with modifi-
cations suited more for high-throughput phenotyping 
applications. The weather protected RGB camera (AXIS 
Q8685-E PTZ Network Camera, Axis Communications 
AB, Lund, Sweden) enables 360° pan, a ground-to-sky 
view from −45° to 90°, and 30 × optical zoom for sam-
ple targeting and spot RGB imagery (Fig.  1d). Mounted 
on top of the RGB camera is an enclosed co-located 
2D scanning 2-inch aperture telescope unit (Thorlabs 
Inc., NJ, USA) designed to collect radiance/irradiance 

from any specified target (Fig.  1d, e). The telescope has 
a field of view (FOV) of 0.7° to enable spot targeting of 
individual plants. Colocation of the RGB camera and tel-
escope was completed by projecting a laser pointer out 
of the telescope and aligning it with the center point of 
the RGB camera at a distance of ~ 20  m. The telescope 
enclosure also consists of an opal diffuser (~ 12% trans-
mission efficiency) on an Arduino powered motor that 
enables the diffuser to swivel in front of the telescope 
during hemispherical irradiance (i.e. incoming radiation) 
measurements, and away from the telescope during tar-
get radiance measurements to maintain FOV of 0.7°.

Connected to the telescope is a fiber optic cable with a 
stainless-steel jacket that extends to the base of the tower 
and into the temperature-controlled enclosure (Fig.  1f ). 
Here the fiber connects to a quad-furcated fiber bundle 
enabling the connection of up to four spectrometers. For 
this setup, we connected two thermally stabilized spec-
trometers (Ocean Insights, FL, USA): the QE Pro for 
measuring SIF (729 to 784  nm, full width at half maxi-
mum [FWHM] = 0.3  nm); and the FLAME for hyper-
spectral reflectance (338 to 1022 nm, FWHM = 1.2 nm). 
Both spectrometers are housed in a small thermally 
controlled enclosure (described below) maintained at 
25  °C (Fig.  1f ). The spectrometers and the RGB camera 
are connected and controlled by a field laptop (Latitude 
5400, Dell, TX, USA) located inside the temperature-
controlled enclosure. The field laptop is connected to a 
mobile internet hotspot (MiFi 8800L, Verizon, NY, USA) 
for data acquisition, remote access to view and control 
TSWIFT, and optional data upload.

The temperature-controlled enclosure prevents over-
heating of the laptop and ensures stable temperature 
control of the spectrometers. The enclosure is a NEMA 
3R Radio Cabinet Enclosure (Aluma Tower Company 
INC., FL, USA) located on a portable tower trailer (TM 
12, Aluma Tower Company INC., FL, USA). This ena-
bles the tower to be quickly moved to different locations 
for short- or long-term monitoring. The portable tower 
can extend to 15.24  m (50 ft) and is secured guy wires, 
as was done for the experiment described here (Fig. 1c). 
The enclosure was powered by a 1000 W 24 V solar array 
for remote locations. Alternative configurations could 
include a permanent tower, or a fixed AC or generator to 
provide electrical power.

TSWIFT Data collection
TSWIFT allows for user specified targets ranging from a 
pan of 0 to 360° and tilt from -45 to 90°. Target duration 
for measurements can also be specified, where the longer 
the duration, the more repeat measurements will occur. 
Therefore, the number of targets versus measurement 
duration will depend on the research objectives, and will 

Fig. 1  Images of a section of the field site (a), an example RGB target 
image (b), the full tower and TSWIFT system (c), the RGB camera and 
2D scanning telescope enclosure (d), interior of the 2D scanning 
telescope enclosure (e), and interior of the temperature-controlled 
enclosure (f)
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influence the quantity and frequency of repeat meas-
urements (e.g., more targets or longer duration leads to 
less frequent repeat measurement cycles; less targets or 
shorter duration leads to more frequent repeat measure-
ment cycles).

At each user specified target location, multiple spec-
tral measurements will occur over the user specified 
duration, after which the target changes. During each 
measurement, spectral retrieval was optimized for both 
spectrometers using automatic integration time optimi-
zation. Each measurement (both target and sky) inte-
gration time is automatically adjusted to achieve signal 
strength of approximately 80% to saturation to maximize 
signal to noise ratio.

TSWIFT data processing
The full data processing workflow is shown in Fig. 2. All 
target scans were saved as daily NetCDF (.nc) files con-
taining target names, datetime stamps, integration time, 
camera position (pan and tilt), and the full the hyper-
spectral data from each spectrometer. In the following 
sections, we discuss the processing procedure from raw 
data through to reflectance data and SIF retrieval.

Initial data filtering and raw spectra
Initial data filtering is done to exclude poor quality data 
based on saturation and integration time. Saturation 
was screened by removing any measurement where the 
hyperspectral data reaches a digital number (DN) of 
65,535 and 200,000 for the FLAME and QE Pro spec-
trometers, respectively, which are the maximum satu-
ration limits of the spectrometers. Depending on light 
intensity, a range of integration times (0.05 to 60  s) is 
chosen to maximize signal:noise ratio. Data with inte-
gration times outside of this range was excluded due to 
a low signal resulting from either an overly short integra-
tion time or a long integration time, which typically was 
a result of low irradiance/reflected radiance. To account 
for varying integration time per measurement from the 
automatic optimization, all raw DN were divided by their 
respective integration times.

Diffuser transmission efficiency
All “sky” measurements used a diffuser to capture hemi-
spherical irradiance (i.e. incoming radiation), which is 
used later to calculate vegetation reflectance. For comput-
ing reflectance, diffuser transmissivity must be known. We 
estimated diffuser transmission efficiency in the field at 
13  h by pointing the camera straight up at 90°, acquiring 
repeat measurements with scan times of ~ 1 s for 30 min, 
and periodically (every ~ 5 min) removing or replacing the 

diffuser in the telescope FOV. For the FLAME, the diffuser 
transmission efficiency was estimated for each wavelength 
as the ratio of measured irradiance with and without the 
diffuser. For the QE Pro, an average diffuser efficiency from 
the spectra was used for all wavebands (11.8%). We applied 
a wavelength and spectrometer specific diffuser efficiency 
to correct all “sky” irradiation measurements which used 
the diffuser.

Radiometric calibration
The QE Pro and FLAME spectrometers require radio-
metric calibrations to convert units from digital numbers 
(DN) to radiance (mW cm−2 sr−1  nm−1). We performed 
radiometric calibrations in the field by taking “sky” meas-
urements with the camera pointing straight up at the sky 
(90°) with concurrent measurements from a radiometri-
cally calibrated field spectrometer (350 to 2500 nm) (HR-
1024i, Spectra Vista Corporation, Poughkeepsie, New 
York, USA) [36, 37]. The field spectrometer with a 4° FOV, 
was pointed at a calibrated Spectralon diffuse reflectance 
standard (Labsphere Inc., NH, USA), which is highly Lam-
bertian, and 99% reflective over a wavelength range from 
250 to 2500 nm. The QE Pro, FLAME and HR-1024i spec-
trometers took repeat measurements of their respective 
sky or reflectance standard every minute for 1 h from 12 to 
13 h under clear sunny conditions. Ideally, field calibration 
measurements should take place as frequently as possible 
(beginning and end of deployment at a minimum) to check 
for drift in the spectrometers.

Calibration coefficients were determined for each spec-
trometer (QE Pro and FLAME) by relating raw DN with 
the HR-1024i radiance through fitting a line through the 
calibration data with an intercept of zero. For the FLAME 
(FWHM = 1.2  nm), the calibration coefficient for each 
respective wavelength was then applied to all radiance 
and irradiance measurements taken over the course of 
the experiment to radiometrically calibrate all raw DNs to 
radiance units. For the QE Pro (FWHM = 0.3 nm), which 
was much finer spectral resolution compared to the HR-
1024i, we used a mean calibration coefficient across all 
wavelengths.

Hyperspectral reflectance (FLAME spectrometer)
Spectral reflectance for each target was determined by 
dividing target radiance by sky irradiance (measured clos-
est in time to the target radiance; within 35 s), corrected for 
the diffuser transmission efficiency (Fig. 2). We used aver-
age reflectance of a 10 nm window centered at 680 (RRed) 
and 800  nm (RNIR), and 531 (R531) and 570  nm (R570) for 
NDVI and PRI, respectively.

(1)NDVI =
(RNIR − RRed)

(RNIR + RRed)
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Fig. 2  TSWIFT data processing workflow. See “TSWIFT data processing” section for details. For the Reflectance box, radiance represents the 
incoming sky irradiance and reflected target vegetation radiance. Reflectance is the target vegetation radiance divided by sky irradiance. Vertical 
lines represent the reflectance bands used for vegetation index calculations for NDVI (red;   Eq. 1) and PRI (blue;   Eq. 2). For the SIF retrieval box, 
radiance represents the incoming sky irradiance and reflected target vegetation radiance. Apparent reflectance is the target vegetation radiance 
divided by sky irradiance. Vertical red lines represent the wavebands used to calculate SIF using the Fraunhofer Line Depth (FLD) method (Eq. 3)
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Solar induced fluorescence retrieval (QE Pro spectrometer)
Following radiometric calibration of the QE Pro, an 
electronic dark correction, responsivity correction, and 
atmospheric correction was applied, see Marrs et al. [38] 
for details. For the electronic dark correction, the fiber 
optic was disconnected from the QE Pro and replaced 
with a black cap with the QE Pro located in a dark enclo-
sure. Here the electronic dark responsivity was obtained, 
which was applied for all measurement scans on a per 
waveband basis, with the assumption of a stable dark cor-
rection as the QE Pro, spectrometer enclosure, and out-
door enclosure were all temperature controlled. For the 
atmospheric correction, we used meteorological data 
from the nearest Automated Surface Observing Systems 
(ASOS; https://​www.​weath​er.​gov/​asos/​asost​ech), located 
about 500  m West of TSWIFT in Davis, CA (station 
code: EDU). This atmospheric correction accounts for 
temperature, air pressure, humidity, and path length to 
each target.

Given the technical specifications of this setup, many 
different SIF retrievals could be performed. However, 
here the SIF retrieval was performed using the Fraun-
hofer Line Depth (FLD) method [39] using an in-filling 
in the atmospheric O2-A absorption feature. This utilized 
a combination of spectral radiance (L) and irradiance (E) 
at 757.5 and 760.5 nm, following the protocol outlined in 
Marrs et al. [38]:

Study site and design
The experimental design consisted of a diverse multi-par-
ent breeding population of 300 common bean genotypes 
(P. vulgaris) [40]. All genotypes were grown in the field at 
the Plant Sciences Field Facility of the University of Cali-
fornia, Davis (38.534oN, 121.775oW) from June to Octo-
ber 2021 in designated irrigated and terminal drought 
treatments with three replicate plots each per genotype. 
Each plot was 3.05 m long (N-S) and 1.52 m wide (E-W) 
with two planted rows spaced 66  cm apart, and sepa-
rated from adjacent plots by lanes 1.22  m long (in the 
N-S direction) or 1.52 m wide (in the E-W direction) (see 
Fig. 1a for example of plot arrangement). Both treatments 
were watered using aboveground drip irrigation dur-
ing initial growth, then switched to belowground 50 cm 
depth irrigation after stand establishment. We applied 

(2)PRI =
(R531 − R570)

(R531 + R570)

(3)SIF =
(E757.5 × L760.5)− (L757.5 × E760.5)

(E757.5 − E760.5)

terminal drought by stopping irrigation to the drought 
treatments on July 26. To initiate senescence, irrigation 
for the control plots was terminated on September 1.

TSWIFT was set up approximately in the middle of 
the field. With a tower height of 15.24  m, we limited 
the viewing radius of the system to 72.6 m (250 ft). This 
enabled the measurements of 720 plot targets (360 per 
treatment) with 175 genotypes represented in both treat-
ments. The system had a 5 s measuring time per target. 
A sky irradiance measurement occurred every 15 targets 
(within 35  s). Each complete scan cycle took approxi-
mately 3 h resulting in about three revisit intervals for a 
single day.

Meteorological data
Hourly meteorological data was downloaded from the 
California Irrigation Management Information System 
(CIMIS, California Department of Water Resources). 
CIMIS station ID 6 was located in Davis, CA about 
250 m North-West from TSWIFT. Daily mid-day means 
of solar radiation, air temperature, and vapor pres-
sure deficit (VPD) were determined using an afternoon 
period from 11 to 16 h. Daily total precipitation was also 
obtained from the CIMIS station. Daily mean particulate 
matter (PM2.5) data was downloaded from the US Envi-
ronmental Protection Agency (EPA) Air Quality System 
Data Mart. The nearest monitoring station was located in 
Davis, CA about 150 m North-East from TSWIFT.

Data analysis
Data was processed in R   [41]. To evaluate diurnal vari-
ation, we focused on data from July 25 (approximately 
stage R5: Pre-flowering) to August 5 (stages R7-R8: 
pod formation-beginning pod fill) [42]. This period was 
selected to correspond with considerable canopy cover, 
flowering, and early pod fill, and maximize sample size 
prior to the effects of drought treatment. To evaluate sea-
sonal variation, we used daily   mid-day   means from 11 
to 16 h. This solar noon window   was chosen to maxi-
mize   sensor signal-to-noise ratios and   limit the viewing 
geometry phase angles (see “Evaluating sun/sensor angu-
lar effects”   section). To evaluate genotypic differences 
for the vegetation indices, we calculated the relative per-
cent difference between drought and control treatments 
for NDVI,   PRI, and SIF for each genotype constrained 
with daily mid-day means from 11 to 16  h (relative % 
difference = 100 [Drought   −   Control]/|Control|). To 
explore the extent of variability across the full range of 
the FLAME hyperspectral dataset, we calculated coef-
ficients of variation (CV; ratio of standard deviation to 
mean) for all daily mid-day data across treatments and 
genotype. For genotypic CV, we limited dates to August 

https://www.weather.gov/asos/asostech
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1 to August 5 and control treatment only, to highlight 
genotypic variation prior to flowering. For treatment 
CV, we limited dates to August 25 to August 30, about 
1  month after drought treatment. For growing season 
CV from June 25 to October 1, we only evaluated control 
treatments to minimize genotypic variation of drought 
resilience.

Evaluating sun/sensor angular effects
To evaluate the effects of solar and viewing sensor geom-
etries on the tower-based hyperspectral reflectance 
data, vegetation indices, and SIF, we utilized soil target 
data prior to vegetation growth (June 1 to 15). Here, we 
assumed soil to be a flat homogenous surface and that 
any variation observed is due to solar and viewing sen-
sor geometry. We calculated the phase angle, which is 
the angle at a given point between the sun and sensor 
[43, 44]. Phase angle considers the relative azimuth angle 
(RAA) between the viewing azimuth angle (VAA) from 
the sensor and solar azimuth angle (SAA) relative to 
north in a clockwise direction. In addition, phase angle 
also incorporates solar zenith angle (SZA) and viewing 
zenith angle (VZA).

Results
Performance of TSWIFT at the diurnal scale
TSWIFT provides continuous monitoring at the diurnal 
scale (Fig. 3). Here, we use NDVI, PRI, and SIF to evalu-
ate the diurnal patterns observed. NDVI shows a rela-
tively stable pattern throughout the day with the largest 
variation in the early morning and late evening (Fig. 3d). 
In contrast, PRI shows a “U” shaped pattern with lowest 
values towards midday (Fig. 3e). SIF on the other hand, 
shows a bell-shaped curve with highest values towards 
midday (Fig. 3f ).

Performance of TSWIFT at the seasonal scale
Continuous monitoring at the seasonal scale enables 
long-term assessment of vegetation structure and func-
tion over the growing season (Fig.  4). For NDVI, there 
is an increase at the start of the growing season, which 
stabilizes and remains mostly constant through August, 
eventually showing a minor decline later in the sea-
son (Fig.  4e). PRI also showed seasonal variation with 
an increase early in the growing season and a decrease 
later in the season in late August (Fig. 4g). However, PRI 
is more variable, especially throughout August. Similar 

(4)RAA = VAA − SAA

(5)
Phase angle = cos−1

[

cos(SZA)× cos(VZA)+
sin(SZA)× sin(VZA)× cos(RAA)

]

to PRI, SIF shows a seasonal pattern with an increase 
early in the growing season, but a more gradual decline 
later in the season in September (Fig.  4i). SIF was also 
highly dynamic in August, consistent with more variable 
sky conditions during this time. To highlight variation 
across genotypes, we show a timeseries of the standard 
deviation (SD) of NDVI, PRI and SIF across treatments 
(Fig.  4f, h, j). At the beginning of the season, before 
drought treatment was applied, the SD between treat-
ments were similar in all vegetation indices. After the 
onset of terminal drought, the SD diverge between con-
trol and drought treatments – exhibiting generally higher 
SD in the drought treatments in NDVI and PRI as the 
season progresses. SIF SD were similar between treat-
ments throughout the growing season.

High‑throughput phenotyping of drought resilience 
across genotypes
Continuous and automated high-throughput phenotyp-
ing can highlight genotypic variation of drought resil-
ience across genotypes. Here, we determined the relative 
percent difference between control and drought treat-
ments for NDVI, PRI, and SIF to show divergent treat-
ment responses over time across genotypes (Fig.  5). 
Relative percent difference for NDVI, PRI and SIF all 

show a large range of variation across genotypes. NDVI 
showed large genotypic variation in early September 
(Fig.  5a). PRI exhibited variation throughout the entire 
growing season with the largest relative percent differ-
ences, generally negative, occurring in August and Sep-
tember (Fig. 5b). In contrast, SIF had the largest variation 
of relative percent difference throughout August, which 
was negative, but became positive in September (Fig. 5c). 
Although the relative percent difference in both PRI and 
SIF between genotypes spiked immediately after the 
onset of terminal drought, this was likely driven, at least 
in part, by a brief decline in incident irradiation at that 
time (Fig. 4a).

Discussion
Proximal remote sensing systems like the TSWIFT are 
valuable for ecophysiological applications by provid-
ing continuous and automated monitoring of vegetation 
spectra. From spectra, vegetation structure and func-
tion can be inferred to assess the short- and long-term 
dynamics of vegetation across environmental condi-
tions. In addition to vegetation monitoring, a point scan-
ning system enables applied use for high-throughput 
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phenotyping across genotypes for select traits such as 
drought resilience. Here we highlight the potential of the 
mobile tower-based TSWIFT system, which can evaluate 
genotypic/management variations of vegetation response 
to short- and long-term environmental dynamics, with 
applications for high-throughput phenotyping.

Diurnal applications
At the diurnal scale, dynamic physiological mecha-
nisms regulate light energy balance, carbon fixation, 
and water loss driven by environmental variation such 
as incoming radiation, temperature, and VPD. TSWIFT 
demonstrated that physiologically sensitive vegetation 
indices like PRI (Fig.  3b) and SIF (Fig.  3c) can track 
diurnal variation. Diurnal shifts in PRI reflect pigment 
conversion in the xanthophyll cycle between violax-
anthin, antheraxanthin and zeaxanthin [28]. Xantho-
phyll cycle conversion is linked to non-photochemical 
quenching (NPQ) and heat excess energy dissipation 
to regulate light energy balance when photochemistry 
saturates or becomes limited [45]. PRI has been uti-
lized as a proxy of photosynthetic activity and light-use 
efficiency (LUE) [46, 47]. Thus, the observed decrease 
in diurnal PRI represents decreasing LUE near solar 
noon (Fig. 3b). SIF represents another dynamic aspect 
in regulating light energy balance via the emission of 
chlorophyll fluorescence [31]. Diurnally, SIF increases 
near mid-day (Fig.  3c), which is primarily a response 
of SIF to absorbed photosynthetically active radiation 

(APAR), and has been shown in many previous stud-
ies [33, 48]. In contrast to the physiological vegetation 
indices, the structure-based NDVI, showed minimal 
diurnal variation throughout most of the day (Fig. 3a). 
Being structurally sensitive and often considered a 
proxy of APAR and LAI [26], NDVI is less dynamic 
especially under clear sunny conditions. While we only 
show three vegetation indices here for demonstration 
purposes, we highlight the potential of the TSWIFT 
to assess highly dynamic processes, to aid in real-time 
management and decision making, or to inform breed-
ing applications targeting the genotypic optimization of 
physiology at certain times of the day.

Seasonal applications
At the seasonal scale, plants undergo structural and phys-
iological changes to maximize growth and productiv-
ity. Here, over the course of the growing season, NDVI 
initially increased as the plants emerged from seed and 
underwent a green up period (Fig.  4e), which is associ-
ated with increasing biomass and LAI [49, 50]. Towards 
the end of the growing season, NDVI slowly declined as 
senescence occurred. In contrast, PRI and SIF showed 
a more gradual increase and decrease throughout the 
season, suggesting periods of peak photosynthetic activ-
ity in August, but also a strong response to incoming 
light (Fig. 4g, i). At this temporal scale, PRI is likely rep-
resenting changes in a combination of the xanthophyll 

Fig. 3  Diurnal variation of hourly solar radiation (a), air temperature (b), and vapor pressure deficit (VPD; c) where colored points represent different 
days. Diurnal variation of vegetation NDVI (d), PRI (e), and SIF (f) of all acquired targets where colored points represent point density (bin size is 200). 
Red line represents LOESS fitting to highlight overall diurnal pattern. Dates used are from July 25 to August 5, which serves as a baseline prior to 
drought treatment response
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cycle composition and carotenoid/chlorophyll pigment 
pool ratio [51]. Both of these physiological mechanisms 
are associated with LUE and NPQ [45], suggesting that 
the increasing PRI is indicative of increasing photosyn-
thetic activity and LUE as leaves develop their photo-
synthetic capacity [52]. SIF on the other hand represents 
the re-emission of photons from photosystem II, and is 
expected to increase with light, photochemical activity 
and total chlorophyl content [31]. During leaf develop-
ment, an increase in chlorophyll content enhances light 
absorption and therefore total emission of chlorophyll 
fluorescence [53, 54]. At these longer time scales over the 
growing season, SIF is generally closely associated with 
gross primary productivity [22, 33]. SIF was higher in the 
drought treatment in September (Fig.  4i), presumably 

representing increased chlorophyll fluorescence due to 
constraints on photochemical quenching associated with 
closing stomata, or a shift to a ‘photoinhibitory’ phase 
when NPQ is saturated [55]. However, understanding the 
mechanisms leading to higher SIF in drought vs. control 
towards the end of the season were beyond the scope of 
this study, and should not be interpreted as such.

We note that the NDVI, PRI, and SIF signal may be 
confounded during smokey air conditions, with sharp 
increases/declines during periods of lower incoming 
radiation and high PM2.5, which occurred multiple times 
in August (Fig. 4c, i). Comparing the vegetation indices, 
PRI and SIF were more dynamic and decreased prior 
to changes in NDVI (Fig.  4), suggesting that the physi-
ological changes occur prior to any detectable changes in 

Fig. 4  Daily mid-day mean (11 h to 16 h) of solar radiation (a), daily mid-day mean, minimum and maximum air temperature (b), particulate matter 
2.5 concentrations (c), precipitation (d), and the daily mid-day (11 h to 16 h) means and standard deviations (SD) of NDVI (e, f), PRI (g, h), and SIF (i, j) 
per treatment. Thin lines represent each plot target and thick line represents overall treatment means
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canopy greenness. Therefore, a combination of vegetation 
indices like NDVI, PRI, and SIF may provide complemen-
tary information on canopy structure and photosynthetic 
activity over the growing season representing different 
aspects of plant growth and development [56, 57].

High‑throughput phenotyping
The high spatial (30 to 60  cm) and temporal resolution 
(sub-hourly to daily to seasonal) provided by the tower 
system presented here enables generation of a continu-
ous dataset for high-throughput phenotyping. As an 
example, we visualize the standard deviation (SD, Fig. 4) 
and relative percent difference between treatments 
across genotypes in NDVI, PRI, and SIF (Fig. 5). For SD 
of NDVI and PRI, drought was generally higher than con-
trol treatments, indicative of greater genotypic variation 
in drought response (Fig. 4a, b). In contrast, SIF SD was 
largely similar between treatments (Fig.  4j), suggesting 
similar treatment variation of SIF signal across all geno-
types. For relative percent difference, NDVI generally had 
the largest differences by late August (Fig. 5a) with large 
genotypic variation due to differences in the senescence 
stage of the different genotypes included in the field trial 
[58]. PRI showed genotypic variation across most of the 
season with the most pronounced differences occurring 
in late August (Fig. 5b). This may highlight differences in 

both the xanthophyll cycle representing short-term vari-
ation in response to drought and long-term variation in 
pigment pools associated with growth stage [59–62]. 
Interestingly, SIF showed the greatest differences and 
genotypic variation throughout August during the ini-
tial drought period (Fig.  5c). Here, the relative values 
between treatments showed drought having lower SIF 
than the control. Then when the control treatments begin 
to senesce in September, control SIF was lower than the 
drought SIF (Fig.  5c). This was unexpected as stressed 
plants tend to exhibit a lower SIF signal relative to 
unstressed plants [33, 63, 64]. We suspect that multiple 
factors in canopy structure (e.g., wilting) and leaf physiol-
ogy (e.g., stress response and senescence) may influence 
the drought response of SIF [65]. The high variation of 
SIF, NDVI, and PRI across genotypes and time are likely 
associated with genotype-specific drought response and 
resilience [63, 66]. With a hyperspectral system, a num-
ber of plant traits can be inferred, allowing for diagnosis 
of different physiological mechanisms among genotypes 
and their variability in environmental responses.

Hyperspectral applications
The examples shown in this paper focused on struc-
tural (NDVI) and physiological (PRI and SIF) vegetation 

Fig. 5  Visualization of genotypic variation (n = 75) of the relative percent difference between drought to control treatment per genotype for 
daily noontime mean data (11 h to 16 h) for NDVI (a), PRI (b) and SIF (c). Note different color scale range for each panel. Relative % difference = 100 
[Drought−Control]/|Control| where red represents lower values for drought relative to control and blue represents higher values for drought 
relative to control treatments
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indices. However, with the FLAME spectrometer, 
TSWIFT acquires visible and NIR hyperspectral reflec-
tance at a ~ 2  nm spectral resolution (400 to 900  nm). 
This enables more powerful statistical techniques such 
as partial least squares regression, principal components 
analysis, independent component analysis, singular-value 
decomposition, and other machine learning techniques 
for model development using the full hyperspectral range 
to predict an array of plant traits [21, 67–70]. These 
approaches have shown potential for estimating struc-
tural (e.g., leaf mass per area), biochemical (e.g., nitro-
gen, carbon, and phosphorus content), and physiological 
traits (e.g., photosynthetic parameters, and pigment com-
position) [35, 69, 71–75]. They may also have mechanistic 
biophysical ties to specific spectral regions that are reflect 
leaf surface properties and internal structure, which ulti-
mately influence physiological function [76]. To explore 
the relatively variable spectral regions of our hyperspec-
tral data due to treatment and genotypic contrasts, we 
determined the coefficient of variation (CV) and found 
that the visible region (500 to 700 nm) and red edge (680 
to 730  nm) are sources of high variability across geno-
types, between well-watered and terminal drought treat-
ments, and across the entire growing season (Fig. 6). This 
is notable as the visible region is sensitive to chlorophyll 
and carotenoid pigments and the red edge is often used 
to assess chlorophyll content, while the NIR has weaker 
absorption features mainly influenced by leaf structure 
and water absorption features [20, 77]. While these statis-
tical approaches show great promise for estimating plant 
traits, much work is needed to evaluate their application 
and robustness over different spatial and temporal scales 
and across years with respective validation data, which is 
beyond the scope of this paper.

Limitations and considerations
This instrument was designed for high stability and to 
maximize signal to noise ratio for detecting subtle varia-
tion of hyperspectral data related to canopy structure and 
function. However, a major consideration is the influence 
of solar and sensor viewing angle [78]. Depending on the 
viewing geometry, bidirectional reflectance distribution 
function (BRDF) corrections may be needed. To explore 
this, we determined a phase angle, which considers both 
solar and sensor viewing angles [43, 79], from soil targets 
prior to seed germination and sprouting to assume com-
parable reflectance targets (Fig. 7). The variation of indi-
vidual wavebands and vegetation indices across phase 
angles was relatively stable until a phase angle of 80°, 
which was associated with late day (after ~ 17  h) meas-
urements (Fig. 7). This suggests that phase angle may be 
useful as a data quality flag for data omission or estab-
lishing the need for angular corrections past phase angle 

thresholds (i.e., > 80°). Interestingly, morning measure-
ments (before ~ 11  h) also displayed a higher scattering 
relative to the solar noon window (11 to 16  h). Ideally, 
a pure Lambertian surface would be used in the field 
to better understand the BRDF impact on phase angle, 
but this is not practical in many field locations, where a 
mostly dry, homogenous soil cover could be used. Our 
results suggest that BRDF corrections are required for 
diurnal tracking but much less so for seasonal tracking, 
which is traditionally screened to daily solar noon means. 
In addition to sun and sensor geometry, our system may 
be limited at low sun angles based on the internal diffuser 
setup (within the telescope enclosure), which may lead to 
partial illumination of the diffuser and ultimately decou-
pling in the sky vs target measurement. An alternative 
diffuser setup to avoid this is an externally fixed diffuser 
located outside of the telescope enclosure, however this 
may lead to diffuser cleanliness issues and bird perching.

Another consideration is the influence of canopy struc-
ture. PRI and SIF are highly dynamic and sensitive to 
sun/shade effects within a canopy [48, 80–82]. Account-
ing for light interception of the spectral target may help 
account for some of the structural effects by normalizing 

Fig. 6  The coefficient of variation (CV) across the FLAME 
hyperspectral data from noontime means across control treatment 
genotypes (a), between treatments (b), and over the growing season 
of control plots (c). Blue lines represent each individual genotype, and 
red line represents overall mean. Note different y-axis range



Page 12 of 15Wong et al. Plant Methods           (2023) 19:29 

PRI or SIF (e.g., relative SIF) with reflected light [32]. In 
addition, using NDVI may be a good data quality screen 
for sufficient greenness and LAI as some plots did not 
properly germinate resulting in a delay in development 
and full canopy closure, potentially resulting in negative 
diurnal SIF values from soil contributions (Fig. 3f ). This 
structural effect was mostly minimal in our experiment 
as most of our bean canopy was fully closed after matu-
rity, but future exploration is needed and will be more 
necessary in other plant systems.

Conclusions
This paper provides technical details of the mobile 
tower-based remote sensing system TSWIFT and high-
lights potential applications for collecting continuous 
and automated hyperspectral and SIF data for assessing 
spatiotemporal variation and for use in high-throughput 
phenotyping across a broad array of genotypic and phe-
notypic variation. Compared to other remote sensing 
tools from handheld instrumentation and drones which 
require operational personnel, or airborne and satellites 
with limited spatial (in the meters) and temporal (daily 
coverage) scales, our tower-based system enables auto-
mated, and high spatial (30 to 60 cm) and temporal (sub 
daily) resolutions. The high temporal resolution enables 

real time monitoring of short-term diurnal and long-
term seasonal variation of vegetation. The high spatial 
resolution enables spot target monitoring (e.g., individ-
ual plants and/or plots) of vegetation for applications in 
high-throughput phenotyping or scaling with larger eco-
system scale tower (e.g., eddy covariance) and satellite 
footprints. The hyperspectral resolution enables a suite of 
vegetation indices to be calculated (e.g., NDVI and PRI), 
SIF retrievals, and enables plant trait prediction using full 
range (visible and NIR) hyperspectral data. Automated 
systems like this will provide optical insights for assess-
ing structural and physiological variation of vegetation 
or plant breeding populations that underlines plant func-
tional dynamics in response to local environmental con-
ditions and genotypic resilience.

Acknowledgements
We would like to thank Cecilia Langlois, Kayli Vest, Marshall Pierce, Logan 
Brissette, Israel Herrera, and Luis Loza for field support. It is worth noting we 
have a second system that goes by: BEYONCE (Breathing Ecosystem Y’all: Opti-
cal Near-Surface Camera Equipment).

Author contributions
CYSW, MEG, PG, AP, TNB, and TSM designed the field experimental. MEG, PG, 
TNB, and TSM secured the funding. CYSW, TJ, DPM, and TSM designed and 
constructed TSWIFT. CYSW performed data analysis and drafted the manu-
script. All authors read and approved the final manuscript.

Fig. 7  Exploring sun-sensor phase angle effects on soil targets from June 1 to June 15 for bands used for NDVI (a, b, c), PRI (d, e, f), and SIF (g, h, i) 
calculations. Color represents hour of day and red line represents LOESS fitting to highlight overall pattern



Page 13 of 15Wong et al. Plant Methods           (2023) 19:29 	

Funding
CYSW, MEG, PG, TNB, and TSM received support from USDA-NIFA (Award 
#2020-67013-30931 and Hatch Projects: CA-D_PLS-2705-H [TSM]; 1016439 
[TNB]; 1016402 [MEG]; and 1024350 [PG]) for the bean field experiment. TSM 
also received support from NASA (award 80NSSC21K1711). TNB also received 
support from the NSF (Award #1951244). Development of TSWIFT was sup-
ported by USDA-NIFA Grant Program project #2020-70410-32911 awarded to 
TSM and by NASA’s Orbiting Carbon Observatory (OCO-2/3) project (Award 
#1637874), as well as the National Institute of Standards and Technology 
(Award #70NANB20H027) for TJ.

Availability of data and materials
The datasets used during the current study are available from the correspond-
ing author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent of publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Plant Sciences, University of California, Davis, Davis, CA 95616, 
USA. 2 Department of Earth & Environment, Boston University, Boston, MA 
02215, USA. 

Received: 27 May 2022   Accepted: 24 February 2023

References
	1.	 Fiorani F, Schurr U. Future scenarios for plant phenotyping. Annu Rev 

Plant Biol. 2013;64(1):267–91.
	2.	 Watt M, Fiorani F, Usadel B, Rascher U, Muller O, Schurr U. Phenotyp-

ing: new windows into the plant for breeders. Annu Rev Plant Biol. 
2020;71(1):689–712.

	3.	 Tilman D, Balzer C, Hill J, Befort BL. Global food demand and 
the sustainable intensification of agriculture. Proc Natl Acad Sci. 
2011;108(50):20260–4.

	4.	 Tuberosa R. Phenotyping for drought tolerance of crops in the genomics 
era. Front Physiol. 2012;3:347.

	5.	 Finkel E. With ‘phenomics’, plant scientists hope to shift breeding into 
overdrive. Science. 2009;325(5939):380–1.

	6.	 Houle D, Govindaraju DR, Omholt S. Phenomics: the next challenge. Nat 
Rev Genet. 2010;11(12):855–66.

	7.	 Furbank RT, Tester M. Phenomics – technologies to relieve the phenotyp-
ing bottleneck. Trends Plant Sci. 2011;16(12):635–44.

	8.	 Yang W, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD, et al. Crop 
phenomics and high-throughput phenotyping: past decades, current 
challenges, and future perspectives. Mol Plant. 2020;13(2):187–214.

	9.	 Chawade A, van Ham J, Blomquist H, Bagge O, Alexandersson E, Ortiz R. 
High-throughput field-phenotyping tools for plant breeding and preci-
sion agriculture. Agronomy. 2019;9(5):258.

	10.	 Deery D, Jimenez-Berni J, Jones H, Sirault X, Furbank R. Proximal remote 
sensing buggies and potential applications for field-based phenotyping. 
Agronomy. 2014;4(3):349–79.

	11.	 Raesch AR, Muller O, Pieruschka R, Rascher U. Field observations with 
laser-induced fluorescence transient (LIFT) method in barley and sugar 
beet. Agriculture. 2010;4(2):159–69.

	12.	 Naito H, Ogawa S, Valencia MO, Mohri H, Urano Y, Hosoi F, et al. Estimating 
rice yield related traits and quantitative trait loci analysis under different 
nitrogen treatments using a simple tower-based field phenotyping 
system with modified single-lens reflex cameras. ISPRS J Photogramm 
Remote Sens. 2017;125:50–62.

	13.	 Woodgate W, van Gorsel E, Hughes D, Suarez L, Jimenez-Berni J, Held 
A. THEMS: an automated thermal and hyperspectral proximal sensing 
system for canopy reflectance, radiance and temperature. Plant Methods. 
2020;16(1):105.

	14.	 Xie C, Yang C. A review on plant high-throughput phenotyping traits 
using UAV-based sensors. Comput Electron Agric. 2020;178: 105731.

	15.	 Guo W, Carroll ME, Singh A, Swetnam TL, Merchant N, Sarkar S, et al. UAS-
Based Plant Phenotyping for Research and Breeding Applications. Plant 
Phenomics. 2021 [cited 2021 Oct 11];2021. https://​spj.​scien​cemag.​org/​
journ​als/​plant​pheno​mics/​2021/​98401​92/

	16.	 Gonzalez-Dugo V, Hernandez P, Solis I, Zarco-Tejada PJ. Using high-
resolution hyperspectral and thermal airborne imagery to assess physi-
ological condition in the context of wheat phenotyping. Remote Sens. 
2015;7(10):13586–605.

	17.	 Deery DM, Rebetzke GJ, Jimenez-Berni JA, James RA, Condon AG, 
Bovill WD, et al. Methodology for high-throughput field phenotyping 
of canopy temperature using airborne thermography. Front Plant Sci. 
2016;7:1808.

	18.	 Seelan SK, Laguette S, Casady GM, Seielstad GA. Remote sensing 
applications for precision agriculture: A learning community approach. 
Remote Sens Environ. 2003;88(1):157–69.

	19.	 Zhang C, Marzougui A, Sankaran S. High-resolution satellite imagery 
applications in crop phenotyping: an overview. Comput Electron Agric. 
2020;1(175): 105584.

	20.	 Ustin SL, Gitelson AA, Jacquemoud S, Schaepman M, Asner GP, 
Gamon JA, et al. Retrieval of foliar information about plant pigment 
systems from high resolution spectroscopy. Remote Sens Environ. 
2009;113:S67-77.

	21.	 Silva-Perez V, Molero G, Serbin SP, Condon AG, Reynolds MP, Furbank 
RT, et al. Hyperspectral reflectance as a tool to measure biochemical 
and physiological traits in wheat. J Exp Bot. 2018;69(3):483–96.

	22.	 Porcar-Castell A, Malenovský Z, Magney T, Van Wittenberghe S, Fernán-
dez-Marín B, Maignan F, et al. Chlorophyll a fluorescence illuminates a 
path connecting plant molecular biology to Earth-system science. Nat 
Plants. 2021;9:1–12.

	23.	 Bannari A, Morin D, Bonn F, Huete AR. A review of vegetation indices. 
Remote Sens Rev. 1995;13(1–2):95–120.

	24.	 Xue J, Su B. Significant remote sensing vegetation indices: a review of 
developments and applications. J Sens. 2017;2017:1353691.

	25.	 Xiao J, Chevallier F, Gomez C, Guanter L, Hicke JA, Huete AR, et al. 
Remote sensing of the terrestrial carbon cycle: a review of advances 
over 50 years. Remote Sens Environ. 2019;233: 111383.

	26.	 Myneni RB, Williams DL. On the relationship between FAPAR and NDVI. 
Remote Sens Environ. 1994;49(3):200–11.

	27.	 Carlson TN, Ripley DA. On the relation between NDVI, fractional 
vegetation cover, and leaf area index. Remote Sens Environ. 
1997;62(3):241–52.

	28.	 Gamon JA, Peñuelas J, Field CB. A narrow waveband spectral index that 
tracks diurnal changes in photosynthetic efficiency. Remote Sens Environ. 
1992;41(1):35–44.

	29.	 Hmimina G, Merlier E, Dufrêne E, Soudani K. Deconvolution of pigment 
and physiologically related photochemical reflectance index variability 
at the canopy scale over an entire growing season. Plant Cell Environ. 
2015;38:1578–90.

	30.	 Wong CYS, Gamon JA. Three causes of variation in the photo-
chemical reflectance index (PRI) in evergreen conifers. New Phytol. 
2015;206(1):187–95.

	31.	 Porcar-Castell A, Tyystjärvi E, Atherton J, van der Tol C, Flexas J, Pfündel 
EE, et al. Linking chlorophyll a fluorescence to photosynthesis for 
remote sensing applications: mechanisms and challenges. J Exp Bot. 
2014;65(15):4065–95.

	32.	 Magney TS, Bowling DR, Logan BA, Grossmann K, Stutz J, Blanken PD, 
et al. Mechanistic evidence for tracking the seasonality of photosynthesis 
with solar-induced fluorescence. Proc Natl Acad Sci. 2019;1:201900278.

	33.	 Magney TS, Barnes ML, Yang X. On the covariation of chlorophyll 
fluorescence and photosynthesis across scales. Geophys Res Lett. 
2020;47(23):e2020GL091098.

	34.	 Pierrat Z, Magney T, Parazoo NC, Grossmann K, Bowling DR, Seibt U, et al. 
Diurnal and seasonal dynamics of solar-induced chlorophyll fluorescence, 
vegetation indices, and gross primary productivity in the boreal forest. J 
Geophys Res Biogeosc. 2022;127(2):11.

https://spj.sciencemag.org/journals/plantphenomics/2021/9840192/
https://spj.sciencemag.org/journals/plantphenomics/2021/9840192/


Page 14 of 15Wong et al. Plant Methods           (2023) 19:29 

	35.	 Serbin SP, Dillaway DN, Kruger EL, Townsend PA. Leaf optical proper-
ties reflect variation in photosynthetic metabolism and its sensitivity to 
temperature. J Exp Bot. 2012;63(1):489–502.

	36.	 Serbin SP, Singh A, McNeil BE, Kingdon CC, Townsend PA. Spectroscopic 
determination of leaf morphological and biochemical traits for northern 
temperate and boreal tree species. Ecol Appl. 2014;24(7):1651–69.

	37.	 Grossmann K, Frankenberg C, Magney TS, Hurlock SC, Seibt U, Stutz J. 
PhotoSpec: a new instrument to measure spatially distributed red and 
far-red solar-induced chlorophyll fluorescence. Remote Sens Environ. 
2018;1(216):311–27.

	38.	 Marrs JK, Jones TS, Allen DW, Hutyra LR. Instrumentation sensitivities for 
tower-based solar-induced fluorescence measurements. Remote Sens 
Environ. 2021;15(259): 112413.

	39.	 Plascyk JA, Gabriel FC. The Fraunhofer Line Discriminator MKII-An Air-
borne Instrument for Precise and Standardized Ecological Luminescence 
Measurement. IEEE Trans Instrum Meas. 1975.

	40.	 Berny J, Palkovic A, Gilbert ME, Gepts P. Population development to 
investigate drought adaptation within the Mesoamerican gene pool of 
common bean. Annu Rep Bean Improv Coop. 2014;57:81–2.

	41.	 R Development Core Team. R: A Language and Environment for Statistical 
Computing. 2022; http://​www.r-​proje​ct.​org/

	42.	 Fernández F, Gepts P, López Genes M. Etapas de desarrollo de la planta de 
fríjol común (Phaseolus vulgaris L.). Cali, Columbia: Centro Internacional 
de Agricultura Tropical (CIAT); 1986. 33 p.

	43.	 Doughty R, Köhler P, Frankenberg C, Magney TS, Xiao X, Qin Y, et al. 
TROPOMI reveals dry-season increase of solar-induced chlorophyll fluo-
rescence in the Amazon forest. Proc Natl Acad Sci. 2019;116(44):22393–8.

	44.	 Joiner J, Yoshida Y, Köehler P, Campbell P, Frankenberg C, van der Tol C, 
et al. Systematic orbital geometry-dependent variations in satellite solar-
induced fluorescence (SIF) Retrievals. Remote Sens. 2020;12(15):2346.

	45.	 Demmig-Adams B, Adams WW. The role of xanthophyll cycle carotenoids 
in the protection of photosynthesis. Trends Plant Sci. 1996;1(1):21–6.

	46.	 Peñuelas J, Filella I, Gamon JA. Assessment of photosynthetic radiation-
use efficiency with spectral reflectance. New Phytol. 1995;131(3):291–6.

	47.	 Gamon JA, Serrano L, Surfus JS. The photochemical reflectance index: an 
optical indicator of photosynthetic radiation use efficiency across species, 
functional types, and nutrient levels. Oecologia. 1997;112(4):492–501.

	48.	 Chang CY, Wen J, Han J, Kira O, LeVonne J, Melkonian J, et al. Unpacking 
the drivers of diurnal dynamics of sun-induced chlorophyll fluorescence 
(SIF): Canopy structure, plant physiology, instrument configuration and 
retrieval methods. Remote Sens Environ. 2021;265: 112672.

	49.	 Granados-Ramírez R, Reyna-Trujillo T, Gómez-Rodríguez G, Soria-Ruiz J. 
Analysis of NOAA-AVHRR-NDVI images for crops monitoring. Int J Remote 
Sens. 2004;25(9):1615–27.

	50.	 Prudente VHR, Mercante E, Johann JA, de Souza CHW, Cattani CEV, 
Mendes IS, et al. Use of terrestrial remote sensing to estimate soybeans 
and beans biophysical parameters. Geocarto Int. 2021;36(7):773–90.

	51.	 Gitelson AA, Gamon JA, Solovchenko A. Multiple drivers of seasonal 
change in PRI: implications for photosynthesis 2. Stand level Remote Sens 
Environ. 2017;1(190):198–206.

	52.	 Garbulsky MF, Peñuelas J, Gamon JA, Inoue Y, Filella I. The photochemi-
cal reflectance index (PRI) and the remote sensing of leaf, canopy and 
ecosystem radiation use efficiencies: a review and meta-analysis. Remote 
Sens Environ. 2011;115(2):281–97.

	53.	 Maxwell K, Johnson GN. Chlorophyll fluorescence: a practical guide. J Exp 
Bot. 2000;51(345):659–68.

	54.	 Baker NR. Chlorophyll fluorescence: a probe of photosynthesis in vivo. 
Annu Rev Plant Biol. 2008;59:89–113.

	55.	 Martini D, Sakowska K, Wohlfahrt G, Pacheco-Labrador J, van der Tol 
C, Porcar-Castell A, et al. Heatwave breaks down the linearity between 
sun-induced fluorescence and gross primary production. New Phytol. 
2022;233(6):2415–28.

	56.	 Gamon JA. Reviews and syntheses: optical sampling of the flux tower 
footprint. Biogeosciences. 2015;12(14):4509–23.

	57.	 Wang X, Chen JM, Ju W. Photochemical reflectance index (PRI) can be 
used to improve the relationship between gross primary productivity 
(GPP) and sun-induced chlorophyll fluorescence (SIF). Remote Sens 
Environ. 2020;1(246): 111888.

	58.	 Acosta-Gallegos JA, White JW. Phenological plasticity as an adaptation by 
common bean to rainfed environments. Crop Sci. 1995;35(1):11.

	59.	 Hmimina G, DufrÊNe E, Soudani K. Relationship between photochemical 
reflectance index and leaf ecophysiological and biochemical param-
eters under two different water statuses: towards a rapid and efficient 
correction method using real-time measurements. Plant Cell Environ. 
2013;37(2):473–87.

	60.	 Zhang C, Filella I, Liu D, Ogaya R, Llusià J, Asensio D, et al. Photochemical 
reflectance index (PRI) for detecting responses of diurnal and seasonal 
photosynthetic activity to experimental drought and warming in a Medi-
terranean shrubland. Remote Sens. 2017;9(11):1189.

	61.	 Yudina L, Sukhova E, Gromova E, Nerush V, Vodeneev V, Sukhov V. A light-
induced decrease in the photochemical reflectance index (PRI) can be 
used to estimate the energy-dependent component of non-photochem-
ical quenching under heat stress and soil drought in pea, wheat, and 
pumpkin. Photosynth Res. 2020;146(1):175–87.

	62.	 Zarco-Tejada PJ, González-Dugo V, Williams LE, Suárez L, Berni JAJ, 
Goldhamer D, et al. A PRI-based water stress index combining struc-
tural and chlorophyll effects: Assessment using diurnal narrow-band 
airborne imagery and the CWSI thermal index. Remote Sens Environ. 
2013;1(138):38–50.

	63.	 Helm LT, Shi H, Lerdau MT, Yang X. Solar-induced chlorophyll fluores-
cence and short-term photosynthetic response to drought. Ecol Appl. 
2020;30(5): e02101.

	64.	 Marrs JK, Reblin JS, Logan BA, Allen DW, Reinmann AB, Bombard DM, 
et al. Solar-Induced Fluorescence Does Not Track Photosynthetic Carbon 
Assimilation Following Induced Stomatal Closure. Geophys Res Lett. 
2020;47(15):e2020GL087956.

	65.	 Xu S, Atherton J, Riikonen A, Zhang C, Oivukkamäki J, MacArthur A, et al. 
Structural and photosynthetic dynamics mediate the response of SIF to 
water stress in a potato crop. Remote Sens Environ. 2021;15(263): 112555.

	66.	 Dias MC, Brüggemann W. Limitations of photosynthesis in Phaseolus 
vulgaris under drought stress: gas exchange, chlorophyll fluorescence 
and Calvin cycle enzymes. Photosynthetica. 2010;48(1):96–102.

	67.	 Yao X, Huang Y, Shang G, Zhou C, Cheng T, Tian Y, et al. Evaluation of Six 
Algorithms to Monitor Wheat Leaf Nitrogen Concentration. Remote Sens. 
2015;7(11):14939–66.

	68.	 Magney TS, Frankenberg C, Köhler P, North G, Davis TS, Dold C, et al. 
Disentangling changes in the spectral shape of chlorophyll fluorescence: 
implications for remote sensing of photosynthesis. J Geophys Res Bio-
geosciences. 2019;124(6):1491–507.

	69.	 Cheng R, Magney TS, Dutta D, Bowling DR, Logan BA, Burns SP, et al. 
Decomposing reflectance spectra to track gross primary production in a 
subalpine evergreen forest. Biogeosciences. 2020;17(18):4523–44.

	70.	 Burnett AC, Anderson J, Davidson KJ, Ely KS, Lamour J, Li Q, et al. A best-
practice guide to predicting plant traits from leaf-level hyperspectral data 
using partial least squares regression. J Exp Bot. 2021. https://​doi.​org/​10.​
1093/​jxb/​erab2​95.

	71.	 Serbin SP, Wu J, Ely KS, Kruger EL, Townsend PA, Meng R, et al. From the 
Arctic to the tropics: multibiome prediction of leaf mass per area using 
leaf reflectance. New Phytol. 2019;224(4):1557–68.

	72.	 Wu J, Rogers A, Albert LP, Ely K, Prohaska N, Wolfe BT, et al. Leaf reflec-
tance spectroscopy captures variation in carboxylation capacity across 
species, canopy environment and leaf age in lowland moist tropical 
forests. New Phytol. 2019;224(2):663–74.

	73.	 Ely KS, Burnett AC, Lieberman-Cribbin W, Serbin SP, Rogers A. Spectros-
copy can predict key leaf traits associated with source–sink balance and 
carbon–nitrogen status. J Exp Bot. 2019;70(6):1789–99.

	74.	 Meacham-Hensold K, Montes CM, Wu J, Guan K, Fu P, Ainsworth EA, et al. 
High-throughput field phenotyping using hyperspectral reflectance and 
partial least squares regression (PLSR) reveals genetic modifications to 
photosynthetic capacity. Remote Sens Environ. 2019;15(231): 111176.

	75.	 Meacham-Hensold K, Fu P, Wu J, Serbin S, Montes CM, Ainsworth E, et al. 
Plot-level rapid screening for photosynthetic parameters using proximal 
hyperspectral imaging. J Exp Bot. 2020;71(7):2312–28.

	76.	 Gates DM, Keegan HJ, Schleter JC, Weidner VR. Spectral properties of 
plants. Appl Opt. 1965;4(1):11.

	77.	 Peñuelas J, Filella I. Visible and near-infrared reflectance techniques for 
diagnosing plant physiological status. Trends Plant Sci. 1998;3(4):151–6.

	78.	 Roujean JL, Leroy M, Deschamps PY. A bidirectional reflectance model of 
the Earth’s surface for the correction of remote sensing data. J Geophys 
Res Atmospheres. 1992;97(D18):20455–68.

http://www.r-project.org/
https://doi.org/10.1093/jxb/erab295
https://doi.org/10.1093/jxb/erab295


Page 15 of 15Wong et al. Plant Methods           (2023) 19:29 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	79.	 Köhler P, Frankenberg C, Magney TS, Guanter L, Joiner J, Landgraf J. Global 
retrievals of solar-induced chlorophyll fluorescence with TROPOMI: 
first results and intersensor comparison to OCO-2. Geophys Res Lett. 
2018;45(19):10456.

	80.	 Barton CVM, North PRJ. Remote sensing of canopy light use efficiency 
using the photochemical reflectance index - model and sensitivity analy-
sis. Remote Sens Environ. 2001;78(3):264–73.

	81.	 Hilker T, Coops NC, Hall FG, Black TA, Wulder MA, Nesic Z, et al. Separat-
ing physiologically and directionally induced changes in PRI using BRDF 
models. Remote Sens Environ. 2008;112(6):2777–88.

	82.	 Hilker T, Lyapustin A, Hall FG, Wang Y, Coops NC, Drolet G, et al. An assess-
ment of photosynthetic light use efficiency from space: modeling the 
atmospheric and directional impacts on PRI reflectance. Remote Sens 
Environ. 2009;113(11):2463–75.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	TSWIFT: Tower Spectrometer on Wheels for Investigating Frequent Timeseries for high-throughput phenotyping of vegetation physiology
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Materials and methods
	TSWIFT system design
	TSWIFT Data collection
	TSWIFT data processing
	Initial data filtering and raw spectra
	Diffuser transmission efficiency
	Radiometric calibration
	Hyperspectral reflectance (FLAME spectrometer)
	Solar induced fluorescence retrieval (QE Pro spectrometer)

	Study site and design
	Meteorological data
	Data analysis
	Evaluating sunsensor angular effects

	Results
	Performance of TSWIFT at the diurnal scale
	Performance of TSWIFT at the seasonal scale
	High-throughput phenotyping of drought resilience across genotypes

	Discussion
	Diurnal applications
	Seasonal applications
	High-throughput phenotyping
	Hyperspectral applications
	Limitations and considerations

	Conclusions
	Acknowledgements
	References




