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Formation of a Ce(IV) Oxo Complex via Inner Sphere Nitrate Reduc‐
tion 

Peter L. Damon†, Guang Wu†, Nikolas Kaltsoyannis,‡* Trevor W. Hayton†* 
†Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United 
States 

‡School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K. 

 

ABSTRACT:  Reaction of Ce(NO3)3(THF)4 with Li3(THF)3(NN’3) (NN’3 = N(CH2CH2NR)3, R = SitBuMe2) in Et2O, in the 
presence of 12-crown-4, results in the formation of [Li(12-crown-4)][(NN’3)Ce(O)] (1) in 36% yield. This transformation 
proceeds via formation of a Ce(III) nitrate intermediate, [Li(12-crown-4)][(NN’3)Ce(κ2-O2NO)] (2), which undergoes inner 
sphere nitrate reduction.  In addition, reaction of 1 with tBuMe2SiCl results in the formation of (NN’3)Ce(OSitBuMe2) (3), 
confirming the nucleophilic character of its oxo ligand.  Natural bond orbital and quantum theory of atoms-in-molecules 
data reveal the Ce–O interaction in 1 to be significantly covalent, and strikingly similar to analogous U–O bonding. 

The need to understand the role of the valence f- and d- 
orbitals in the bonding of the f elements, primarily for 
improved liquid-liquid extraction during nuclear fuel pro-
cessing, has resulted in renewed interest in acti-
nide-ligand multiple bonding,1-6 an area which is proving 
to be an excellent laboratory for exploring orbital partici-
pation in the 5f series.  However, while many examples 
of actinide-ligand multiple bonding are now known,7,8 
instances of lanthanide-ligand multiple bonding are 
rare.9-11 Examples include the isolation, by Leung and 
co-workers, of a CeIV oxo complex ligated by the tripodal 
Kläui ligand, (LOEt)2Ce(O)(H2O) (LOEt = 
CpCo{P(O)(OEt)2}3).

12-14  Similarly, Lappert and co-
workers reported the CeIV oxo complexes, [-M]2[Ce(-
O)(NR2)3]2 formed in low yields by reaction of Ce(NR2)3 
(R = SiMe3) with dioxygen, in the presence of MNR2 (M = 
Na, K).15  More recently, Anwander and co-workers re-
ported the preparation of the first terminal lanthanide 
imido complexes, [TptBu,Me)Ln(=NAr)(dmap)] (Ln = Y, Ar 
= 2,6-Me2C6H3; Ln = Lu, Ar = 3,5-(CF3)2C6H3).

16 This was 
followed by the synthesis of a cerium(IV) terminal imido, 
[K(DME)2][Ce=N(3,5-(CF3)2C6H3)(TriNOx)], by Schelter 
and co-workers.17  Also of note is the Ce(IV) methanedi-
ide complex, [Ce(BIPMTMS)(ODipp)2] (BIPMTMS = 
C(PPh2NSiMe3)2; Dipp = C6H3-2,6-iPr2), reported by Lid-
dle and co-workers.18,19  

This paucity of lanthanide examples has been rational-
ized by the mismatch in the energies of the metal and 
ligand frontier orbitals, which results in poor orbital over-
lap.20-22 However, recent XAS studies have demonstrat-
ed that the 4f orbitals can participate in cerium-ligand 
bonding, at least for the Ce(IV) oxidation state, suggest-
ing that some covalency within lanthanide-ligand bond-
ing is possible.23 Indeed, [CeCl6]

2- features more f orbital 
participation in its metal-ligand bonds than does [UCl6]

2-. 
If this observation is general, it suggests that Ce(IV) 
should be as adept at forming multiple bonds as U(IV).  

In an effort to test this hypothesis, we have begun to 
explore the synthesis of cerium(IV)-ligand multiple 
bonds.  Herein, we describe the synthesis and character-
ization of a rare cerium oxo complex.  

Scheme 1.  Synthetic routes to complex 1 

 

Reaction of Ce(NO3)3(THF)4 with Li3(THF)3(NN’3) (NN’3 = 
N(CH2CH2NR)3, R = SitBuMe2) in Et2O, in the presence 
of 12-crown-4, results in the formation of a red-orange 
solution after 4 d.  Crystallization of this material from 
concentrated Et2O, layered with hexanes, results in the 
deposition of [Li(12-crown-4)][(NN’3)Ce(O)] (1), which 
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ric and electronic structures of 
[K(18-crown-6)][M(O)(NR2)3] (M = Th, U; R = SiMe3),

29 
and have here applied the same approach to the ficti-
tious Ce analogue of these systems, and to complex 1.  
The bond lengths between the Ce and ligating atoms in 
the latter are well reproduced computationally, with the 
largest difference between experiment and theory being 
< 0.06 Å (for the Ce–O bond, which is slightly overesti-
mated by DFT).  The bending along Ce–O–Li (to 167.9o) 
is very close to that found experimentally.  The Raman 
data for 1 are well supported by the DFT calculations, 
which find three Raman active vibrational modes with 
significant Ce–O stretching character, at 524, 708 and 
762 cm-1, the latter two modes lying within 11 and 21 
wavenumbers, respectively, of the experimental bands.   

As in our previous study, we have analysed the metal–
oxygen bonding using the natural bond orbital (NBO) 
and quantum theory of atoms-in-molecules (QTAIM) 
approaches.  In all cases NBO finds the M–O interaction 
to be a  + 2 triple bond, and the compositions of the  
natural localised molecular orbitals (NLMOs) are given in 
Table 1.  It is striking how similar the data are for 
[K(18-crown-6)][U(O)(NR2)3] and 
[K(18-crown-6)][Ce(O)(NR2)3], which both feature a 
slightly more covalent interaction than in either the Th 
system or in complex 1, which are rather similar to one 
another. 

 O M 

[K(18-crown-6)] 
[Th(O)(NR2)3] 

86.86 (99.97 p) 11.75 (65.36 d, 
34.48 f) 

[K(18-crown-6)] 
[U(O)(NR2)3] 

83.72 (99.96 p) 16.67 (61.31 d, 
38.41 f) 

[K(18-crown-6)] 
[Ce(O)(NR2)3] 

83.48 (99.94 p) 15.27 (54.31 d, 
45.68 f) 

1 85.55 (99.85 p) 12.96 (56.92 d, 
42.92 f) 

Table 1:  Averaged compositions (%) of the two M–O  
bonding NLMOs of [K(18-crown-6)][M(O)(NR2)3] (M = Th, 
U, Ce; R = SiMe3) and 1. Data for 
[K(18-crown-6)][M(O)(NR2)3] (M = Th, U) taken from ref-
erence 29. 
 
The QTAIM states that there is a bond critical point 
(BCP) between every two atoms bonded to each other, 
with the BCP located at the minimum in the electron 
density along the bond path, the line of maximum elec-
tron density between the two atoms.39 The values of the 
electron and energy densities ρ and H at the BCP can 
be used in analysing the nature of the bond. Large  
values are associated with covalent bonds, and H is 
negative for interactions with sharing of electrons, with 
its magnitude indicating the covalency of the 
interaction.40 A bond is cylindrically symmetric when the 
bond ellipticity ε is 0, such as in single and triple bonds, 
with higher values otherwise. The delocalisation index 

() between two bonded atoms indicates the bond order 
between them. 

QTAIM M–O BCP and delocalization index data are col-
lected in Table 2. The ellipticity values are all very close 
to zero, as expected for cylindrically symmetric triple 
bonds. As with the  NLMO compositions, the other 
QTAIM metrics for the analogous U and Ce systems are 
very similar to one another, and indicate a significantly 
covalent M–O interaction, with  and H values amongst 
the largest (in an absolute sense) seen for f element 
bonds. Indeed, the present  and H are approximately 
double the value of the equivalent metrics of the M(IV)–C 
multiple bonds recently reported by Liddle et al.17 Pleas-
ingly, the covalency trend Ce ≈ U > Th is the same in 
both our system and the BIPMTMS compounds. 

The QTAIM data for 1 are smaller (in an absolute sense) 
than for the U and Ce K-based systems, and are more 
similar to those for the Th complex. This is most likely a 
consequence of the O atom in 1 being bonded to the 
more polarizing Li+ vs K+ for the other three systems cal-
culated.

  H  

[K(18-crown-6)] 
[Th(O)(NR2)3] 

0.175 -0.094 0.000 1.387 

[K(18-crown-6)] 
[U(O)(NR2)3] 

0.199 -0.119 0.062 1.575 

[K(18-crown-6)] 
[Ce(O)(NR2)3] 

0.196 -0.111 0.000 1.643 

1 0.168 -0.079 0.008 1.458 

Table 2:  QTAIM BCP electron () and energy (H) densities 
(au), ellipticities () and delocalisation indices ((M, O)) for 
[K(18-crown-6)][M(O)(NR2)3] (M = Th, U, Ce; R = SiMe3) 
and 1. Data for [K(18-crown-6)][M(O)(NR2)3] (M = Th, U) 
taken from reference 29. 
 
Finally, we explored the reactivity of complex 1 with elec-
trophiles.  Thus, reaction of 1 with tBuMe2SiCl in THF 
results in rapid formation of (NN’3)Ce(OSitBuMe2) (3), 
which can be isolated as a red solid in 32% yield by crys-
tallization from hexamethyldisiloxane (eq 1).  The low 
yield of 3 can be rationalized by its extremely high solu-
bility in non-polar solvents.  More importantly, this result 
demonstrates the nucleophilic nature of the oxo ligand in 
1.  Interestingly, reaction of 1 with tBuMe2SiCl in C6D6 is 
substantially slower; only reaching 50% completion after 
24 h (Figure S12).  The much slower rate in this solvent 
demonstrates that the barrier of Li+ exchange is greatly 
increased in non-polar solvents.  Complex 3 was charac-
terized by elemental analysis, NMR spectroscopy, and 
X-ray crystallography.  Its Ce-O distance (2.169(2) Å) is 
consistent with single bond character,41-45 and is signifi-
cantly longer than the Ce-O distance observed in 1, con-
firming multiple bond character in the latter.  In addition, 
the Ce-O-Si angle is 167.2(2).  Also of note, the aver-
age Ce-N(amide) distance is 0.1 Å shorter than that ob-
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