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ABSTRACT OF THE DISSERTATION 

 

Observations and calibration techniques of seawater carbonate chemistry in the Southern 

California Current 

 

by 

 

Wiley H. Wolfe  

 

Doctor of Philosophy in Oceanography 

University of California San Diego, 2022 

Professor Todd R. Martz, Chair 

  
 

The ocean has taken up roughly a quarter of the total anthropogenic carbon emissions 

(Gruber et al., 2019). This addition causes changes in carbonate system equilibrium, 

decreasing ocean pH, which impacts marine organisms, ecosystems, and humans reliant on 

marine resources (Doney et al., 2020). The study of the changing carbonate chemistry and its 

impact on the ocean requires the refinement of measurement techniques, observational 

programs, models and the sharing of data. Chapter 1 focuses on measurement techniques by 

assessing the stability of tris pH buffer in artificial seawater stored in bags. These bagged 
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reference materials can be used by both benchtop and autonomous instruments to aid in 

quality control of measurements of carbonate chemistry. Chapter 2 focuses on continued 

observation, with the oldest inorganic carbon time series in the Pacific. This time series in the 

Southern California Current helps confirm the rate of anthropogenic ocean acidification 

observed in other regions of the ocean. Chapter 3 focuses on models by using seasonal cycles 

determined in Chapter 2 to build a mixed layer carbon budget at the location of the time 

series. Chapter 4 focuses on the sharing of data by summarizing and publishing previously 

unavailable observations of carbonate chemistry in the Southern California Current going 

back as far as 1983.
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CHAPTER 1 

 

Technical note: Stability of tris pH buffer in artificial seawater stored in bags 

 

 

Chapter 1, in full, is a reprint of the material as it appears in European Geosciences 

Union, Ocean Science, 2021. Wolfe, W. H., Shipley, K. M., Bresnahan, P. J., Takeshita, Y., 

Wirth, T., & Martz, T. R. (2021). Technical note: Stability of tris pH buffer in artificial seawater 

stored in bags. Ocean Science, 17(3), 819-831. The dissertation author was the primary 

investigator and author of this paper. 
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CHAPTER 2 

 

Ocean Acidification in the Southern California Current: A 37 Year Time Series 

 

Abstract  

Long-term ocean time series have proven to be the most robust approach for direct 

observation of climate change processes such as Ocean Acidification. The California 

Cooperative Oceanic Fisheries Investigations (CalCOFI) program has collected quarterly 

samples for seawater inorganic carbon since the 1980’s. The longest, most consistent, sampling 

of surface waters is at CalCOFI line 90 station 90 from 1984–present, with a gap from 2002–

2008. Here we present the first analysis of this 37- year time series. Station 90.90 exhibits an 

unambiguous acidification signal in agreement with the global surface ocean (decrease in pH of -

0.0015 ± 0.0001 yr-1), as well as a distinct seasonal cycle. The long-term trend in total dissolved 

inorganic carbon (0.71 ± 0.04 µmol kg-1 yr-1) drives a corresponding rise in pCO2 (1.57 ± 0.09 

µatm yr-1). On the seasonal scale, temperature and total dissolved inorganic carbon influence 

variability in the carbonate system with similar magnitudes.  

 

Plain Language Summary 

Samples of seawater inorganic carbon have been collected offshore of Southern 

California since the 1980’s. The surface water there shows a clear trend of ocean acidification. 

Ocean acidification is a decrease in the pH of seawater, which affects seawater chemistry and 

marine organisms, especially marine calcifiers. The rate of acidification matches other locations 

in the open ocean where this rate has been measured. This result helps confirm that the rate of 
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ocean acidification is caused by increasing atmospheric carbon dioxide, as scientists have 

previously predicted.  

 

2.1 Introduction  

Atmospheric carbon dioxide (CO2) levels today are nearly 50% higher than during pre-

industrial times and are predicted to increase at similar or accelerating rates over the next 

hundred years (Friedlingstein et al., 2022). The ocean has taken up roughly a quarter of the total 

anthropogenic emissions (Gruber et al., 2019), resulting in decreased ocean pH and associated 

changes in carbonate system equilibrium due to ocean acidification (OA) (Doney et al., 2020). 

Globally, the ocean pH has decreased by ~0.1 since the beginning of the Industrial Revolution 

and is projected to drop by as much over the next 60 years (Fassbender et al., 2021). These 

trends have been modeled (Turi et al., 2016) and detected (Chavez et al., 2017) in the California 

Current System. 

The California Oceanic Fisheries Investigation (CalCOFI) program was formed in 1949 

to study the pelagic ecosystem of the Southern California Current (SCC) in response to the 

collapse of an economically important sardine fishery (Hewitt, 1988). The original sampling 

design included quarterly cruises making a grid pattern of profiles to 500 meters of physically 

and biologically important parameters such as temperature, salinity, oxygen, nutrients, and 

zooplankton biomass. Observations of carbonate chemistry were incorporated in 1983 when 

Charles David Keeling initiated time series measurements at Hawaii, Bermuda (N. Bates et al., 

2014) and the SCC. The most continuous time series in the SCC is surface waters (0–20 m) at 

CalCOFI Line 90 Station 90 (station 90.90). Observations were made between 1984–present, 

with a gap from 2002–2008. The long-term trends established by this work add a direct 
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observation of ocean acidification and climate change to the few existing time series of ocean 

carbonate chemistry (Bates et al., 2014). 

 

2.2 Methods 

2.2.1 Sampling at station 90.90 

CalCOFI station 90.90 is located at 31.4°N, 122°W, approximately 450 km from shore, 

with a water depth of approximately 4000 m. Due to its location in the western California 

Current, station 90.90 lies near the eastern edge of the North Pacific Subtropical Gyre exhibiting 

an oligotrophic open-ocean regime (Checkley & Barth, 2009) (the mean phosphate and nitrate 

concentrations were 0.3 μM and 0.1 μM respectively in sea surface samples with inorganic 

carbon measurements). All observations discussed here were collected near the sea surface (0⁠–20 

m), with an average depth of 5.2 m. Although a small subset of these measurements (2009–2015) 

have been publicly available for several years (see open research), the remaining 22 years of 

observations have not been published until this work.  

Observations used in this work cover the period 1984–2021 with a gap from 2002–2008. 

Bottle samples were collected on quarterly CalCOFI cruises at station 90.90. Mercuric chloride 

was added (as a biocide and preservative) and the samples were sealed and stored in borosilicate 

glass bottles following best practices (Dickson et al., 2007). Storage times ranged from one 

month to multiple years before analysis. 

 

2.2.2 Analytical methods  

Bottle samples were analyzed for total alkalinity (AT) and dissolved inorganic carbon 

(CT). AT was measured using a closed cell titration (Bradshaw et al., 1981) until 1992 and an 
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open cell titration (Dickson et al., 2003) after 1992. CT was measured using vacuum extraction 

and manometry (Lueker, 1998; Lueker et al., 2000) until 1992, coulometry (Johnson et al., 1987) 

from 1992–2015 and an infrared (IR) analyzer (Goyet & Snover, 1993; O'Sullivan & Millero, 

1998) after 2015. Accuracy of AT and CT is estimated to range from 2-5 μmol kg-1 and 1-3 μmol 

kg-1, respectively, over the dataset.  

 

2.2.3 Calculating additional carbonate chemistry parameters 

The partial pressure of CO2 in seawater (pCO2), pH, carbonate ion concentration 

([𝐶𝑂3
2−]), saturation states of aragonite and calcite (Ωaragonite, Ωcalcite), and Revelle Factor 

(∂ln[CO2]/∂lnCT), were calculated in MATLAB using CO2SYS (van Heuven et al., 2011) from 

AT, CT, temperature and salinity with coefficients recommended by Lueker et al. (2000). AT and 

CT were salinity normalized (indicated by nAT and nCT,) to the average salinity of the time series 

(33.3, n = 107). 

 

2.2.4 Seasonal cycle  

Monthly binning is a common approach used to extract the seasonal cycle (Bates et al., 

2012; Takahashi et al., 2009).  In this work the 12-month climatology was computed from 

quarterly observations using a 3-month sliding bin. Where, for example, April is represented as 

the average of all observations from March, April, and May. Due to variability in the scheduling 

of CalCOFI cruises, there are some observations in each month before binning (Figure 2.S1). 

The resulting 12-month climatology was used to seasonally detrend the observations. The 

climatology was used to calculate the relative contributions of salinity, temperature, AT, and CT to 

the seasonal cycle of pCO2. The climatology of a single parameter and the average of the 
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remaining three were used with CO2SYS to calculate individual contributions, at time t, as 

follows,  

  ∆𝑝CO2,t
temperature

= 𝑝CO2(𝐴T, 𝐶T, S, Tt) − 𝑝CO2 (2.1) 

 ∆𝑝CO2,t
salinity

= 𝑝CO2(𝐴T, 𝐶T, St, T) − 𝑝CO2 (2.2) 

 ∆𝑝CO2,t
𝐶T = 𝑝CO2(𝐴T, 𝐶Tt

, S, T) − 𝑝CO2 (2.3) 

 ∆𝑝CO2,t
𝐴T = 𝑝CO2(𝐴Tt

, 𝐶T, S, T) − 𝑝CO2 (2.4) 

The same procedure was used to calculate the contribution to the long-term trends in pCO2 

(Figure 2.S2).  

 

2.2.5 Data processing  

Model I linear regression (function fitlm in MATLAB) was performed on observations 

(Figure 2.S3, Table 2.S1) and seasonally detrended data (Table 2.1). The slope, error, r2, p-value 

and n values are reported. Power spectral density (PSD) analysis was performed using Lomb-

Scargle periodograms with the ‘plomb’ function in MATLAB (Figure 2.S3) (VanderPlas, 2018). 

Observations were also compared to empirically derived proxy estimates “ESPER_MIXED” 

(Carter et al., 2021; Morgan, 1994; van Heuven et al., 2011) and to a climatology (Landschützer 

et al., 2020) derived from data sources (Global Ocean Data Analysis Project; GLODAP, The 

Surface Ocean CO₂ Atlas; SOCAT) independent from the CalCOFI CO2 record.  

 

2.3 Results and discussion  

The time series exhibits an unambiguous ocean acidification signal in agreement with the 

global surface ocean (decrease in pH of ~0.0015 yr, Figure 2.1, Table 2.1), as well as a distinct 

seasonal cycle (Figure 1, right column). The sea surface pCO2 at station 90.90 is driven by 
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increasing total inorganic carbon (CT) at a decadal scale and a combination of CT and 

temperature at a seasonal scale. There was no significant trend in ocean temperature, salinity, AT 

or nAT at station 90.90. However, longer term near shore studies in the CCE have shown 

increasing temperatures shoreward of the California Current (Rasmussen et al., 2020).  

Natural variability at station 90.90 along with the six-year gap in data (resulting from, 

e.g., year-to-year differences in the proportion of North Pacific Gyre vs California Current water 

masses) confound the identification of long period patterns such as El Nino, or the Pacific 

Decadal Oscillation. Perhaps the most obvious anomaly is a perturbation in temperature and 

salinity during 2014–2016 (Figure 2.1). This anomaly may be a result of the 2014/15 North 

Pacific marine heatwave, the strong 2015/16 El Nino, or a combination of the two (Di Lorenzo & 

Mantua, 2016; Jacox et al., 2016; Lilly et al., 2019).  

Power spectral density (PSD) analysis of the detrended time series showed the presence 

of a strong annual signal in temperature and CT, as well as in all calculated carbonate system 

variables (Figure 2.S4). While temporal anomalies in this time series may be worthy of further 

investigation, the goal of this work is to present the 1st order OA trend, mean seasonal cycle, and 

to finally make the quality-controlled time series publicly available. Follow-on work with this 

time series may consider implementing gap-filling techniques for the 2002-2008 period (Vance 

et al., 2022) and alternative modes of trend detection such as simultaneous fitting of harmonics 

and underlying trends as well as development of a mixed layer carbon budget at station 90.90.  

For comparison to observations presented here, we estimate CT and AT with two sets of 

predictor variables using the MATLAB function ESPER_Mixed. First, we used temperature and 

salinity, second, we included all available predictor variables, temperature, salinity, phosphate, 

nitrate, silicic acid, and oxygen (in addition to latitude, longitude, depth, and year in both cases). 
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Using temperature and salinity, the comparison for CT showed measurements were 6 ± 15 μmol 

kg–1 (mean ± std) higher than ESPER with less variability (Figure 2.S5). The comparison of AT 

showed measurements were 4 ± 4 μmol kg–1 (mean ± std) lower than ESPER with similar 

variability (Figure 2.S6). Both CT and AT are significantly different than the ESPER predictions 

(p<<0.05).  

When using all available predictor variables, the comparison for CT showed 

measurements were 0.1 ± 6 μmol kg–1 (mean ± std) higher than ESPER with similar variability 

(Figure S7). The comparison of AT showed measurements were 3 ± 4 μmol kg–1 (mean ± std) 

different than ESPER with similar variability (Figure S8). Only AT was significantly different 

than the ESPER predictions (p<<0.05). It is unsurprising that the ESPER more accurately 

predicted CT and AT when using all available predictor variables. 

There was no significant trend in the AT residuals when using either set of predictor 

variables. However, there was a significant trend in the CT residuals in both sets of predictor 

variables. Indicating the ESPER predicted CT trend was 0.3 μmol kg–1 yr–1 higher than the 

observed trend. Both sets of predictor variables resulted in the same trend, albeit with a higher 

standard deviation when using fewer predictors. There appears to be a discrepancy between the 

OA trend observed and the trend built into ESPER. There appears to be a decrease in phosphate 

over the time series, which could have impacted the trend one of the ESPER predictions, but not 

both. The decrease in phosphate may signal a change in biogeochemistry of the region and is 

possibly worth further investigation.  

The main drivers of pCO2 seasonality are temperature and CT, with little contribution 

from AT or salinity (Figure 2.2). Each contributes 57%, 34%, 8%, and 1% of the pCO2 

seasonality, respectively. The effects of temperature and CT on pCO2 are out of phase, which 
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cancels out much of their impact on pCO2. In turn, CT is driven by gas exchange, net ecosystem 

metabolism (NEM) and mixing (Chapter 3). On a decadal timescale, increasing CT is the only 

significant driver of pCO2, contributing 93% (Figure 2.S2).  Although it is beyond the scope of 

this work, a mixed layer carbon budget at station 90.90 is the subject of a separate manuscript in 

progress.  

The sea surface pCO2 trend matches the atmospheric CO2 trend at Mauna Loa over the 

same timeframe, although the sea surface pCO2 has significantly greater variability, a feature 

common to all ocean time series (Figure 2.S9) (C. Keeling et al., 2005; R. Keeling & C. Keeling, 

2017). The measured seasonal cycle of sea surface pCO2 matches reasonably well with the grid 

point corresponding to station 90.90 extracted from the climatology of Landschützer et al. (2020) 

(Figure 2.S10). The monthly pCO2 minimum is similar (less than 2 μatm different) but the 

measured seasonal cycle has a larger peak-trough amplitude (42 compared to 29 μatm) and a 

phase shifted maximum pCO2 that appears to lead the climatology by 2 months (July vs. 

September). When corrected to a common reference year of 2006 (using the observed trend to 

adjust station 90.90 mean year of 2002 to Landschützer et al. mean year of 2006) the mean 

difference is +6 μatm (observed – Landschützer et al. climatology). This difference may be 

explained by the greater amplitude in the station 90.90 monthly data. However, neither of the 

seasonal cycles are corrected to a reference year and the mean measurement year is 4 years apart 

(observed, 2002; Landschützer et al., 2006). Subsequent analysis of the carbon budget including 

air-sea flux will be used to determine the significance of both the phase, amplitude, and mean 

difference between the observations and climatology at this location. An important next step 

should be assimilating the data presented in this work into empirical algorithms and climatology 

products of the CO2 system at the station 90.90 study site. 
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While we point out discrepancies between previously published estimates or 

climatologies and the observations presented in this work, the commonly used tools are not 

focused specifically on station 90.90 and remain valuable for comparisons to this time series and 

the global ocean. 

 

2.4 Conclusions  

This work establishes station 90.90 as one of very few long-standing marine inorganic 

carbon time series, one of five started in the 1980’s, and the earliest in the Pacific (Bates et al., 

2014). Over 37 years, the sea surface at station 90.90 has decreased in pH by 0.0015 yr-1 and 

increased in pCO2 and CT by 1.6 μatm yr–1 and 0.7 μmol kg–1 yr–1. respectively. These trends are 

in close agreement with other open ocean trends documented in the Central North Pacific, and 

Sargasso Sea (N. Bates et al., 2014). Use of empirical proxy relationships introduces a bias in 

carbonate system estimates, underscoring the need for sustained measurements.  We also report a 

strong annual cycle in carbonate system variables, with dominant control of the seasonal cycle 

by temperature and total inorganic carbon. In contrast, the long-term secular trend in carbonate 

system variables is directly related to an increase in total inorganic carbon. 

 

2.5 Open research  

All of the inorganic carbon samples collected on CalCOFI cruises will become publicly 

available through the CalCOFI data portal, https://calcofi.org/data/oceanographic-data/dic/, after 

a subsequent publication in progress and the defense of WHW’s Ph.D. The atmospheric CO2 data 

from Mauna Loa are from Dr. Ralph Keeling, Scripps Institution of Oceanography 

(scrippsco2.ucsd.edu/data/atmospheric_co2/primary_mlo_co2_record/, DOI: 

https://calcofi.org/data/oceanographic-data/dic/
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http://doi.org/10.6075/J08W3BHW) or Dr. Pieter Tans, National Oceanic and Atmospheric 

Administration, Global Monitoring Laboratory (gml.noaa.gov/ccgg/trends/). 
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2.7 Figures and tables 

 
Figure 2.1. Quarterly observations (Left) and average seasonal cycles (Right). “n” indicates 

salinity normalization to the mean salinity (33.3). a) Temperature and salinity, b) Total alkalinity 

(AT) and nAT, c) Total inorganic carbon (CT) and nCT, d) pCO2 (μatm) and Revelle factor, e) pH 

and CO3, and f) calcite and aragonite. There is no significant trend in temperature, salinity or AT (p 

> 0.35). The ocean acidification trend (shown in panels c-f) is within the range of observations 

made at other time series sites (N. Bates et al., 2014). Regression statistics for time series are 

shown in Table 1. Descriptive statistics for seasonal cycles are shown in Table 2.S2. 
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Table 2.1. Regression statistics of sea surface hydrography and seawater carbon chemistry (from 

Figure 2.1). 

Parameter Slope  
standard 

error 
units n r2 p-value 

Hydrography             

Temperature 0.0078 0.009 °C yr–1 107 0.0070 0.3928 

Salinity -0.0005 0.0013 yr–1 107 0.0012 0.7272 

Ocean acidification indicators           

pH -0.0015 0.0001 yr–1 105 0.6769 0.0000 

CO3
2– -0.41 0.05 μmol kg–1 yr–1  105 0.4113 0.0000 

Ωcalcite -0.0099 0.0012 yr–1 105 0.4071 0.0000 

Ωaragonite -0.0063 0.0008 yr–1 105 0.3750 0.0000 

seawater carbonate chemistry           

CT 0.70 0.05 μmol kg–1 yr–1  107 0.6624 0.0000 

nCT 0.73 0.06 μmol kg–1 yr–1  107 0.5577 0.0000 

AT 0.03 0.08 μmol kg–1 yr–1  105 0.0012 0.7289 

nAT 0.06 0.04 μmol kg–1 yr–1  105 0.0231 0.1215 

pCO2 1.56 0.11 μatm yr–1  105 0.6731 0.0000 

Revelle factor 0.018 0.002 yr–1 105 0.4656 0.0000 
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Figure 2.2. Contributions to the seasonal cycle of sea surface pCO2. The relative contributions of 

salinity, temperature, AT and CT were computed using CO2SYS (van Heuven et al., 2011). 
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2.8 Supplementary figures and tables  

 
Figure 2.S1. The number of observations from each month over the time series, before (left) and 

after binning (right). 

 
Figure 2.S2. Contributions of salinity, temperature, AT, and CT to the long-term trend in sea 

surface pCO2. 
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Figure 2.S3. The time series observations at station 90.90 without seasonal detrending. 

Regression statistics shown in Table 2.S1.  
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Table 2.S1. Trend statistics from station 90.90 presented without seasonal detrending (from 

Figure 2.S1).  

Parameter Slope  standard error units n r2 p-value 

Hydrography             

Temperature -0.0041 0.0148 °C yr–1 107 0.0007 0.7824 

Salinity 0.0001 0.0013 yr–1 107 0.0001 0.9310 

Ocean acidification indicators         

pH -0.0015 0.0002 yr–1 105 0.4435 0.0000 

CO3
2– -0.4563 0.0519 μmol kg–1 yr–1  105 0.4286 0.0000 

Ωcalcite -0.011 0.0013 yr–1 105 0.4202 0.0000 

Ωaragonite -0.0071 0.0009 yr–1 105 0.3804 0.0000 

seawater carbonate chemistry         

CT 0.7846 0.0604 μmol kg–1 yr–1  107 0.6167 0.0000 

nCT 0.7781 0.0658 μmol kg–1 yr–1  107 0.5710 0.0000 

AT 0.0431 0.0775 μmol kg–1 yr–1  105 0.0030 0.5796 

nAT 0.0403 0.0396 μmol kg–1 yr–1  105 0.0100 0.3109 

pCO2 1.5654 0.1724 μatm yr–1  105 0.4445 0.0000 

Revelle factor 0.0195 0.002 yr–1 105 0.4687 0.0000 
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Table 2.S2. Descriptive statistics of the seasonal cycles shown in Figure 1, right. The peak of 

seasonal cycle and peak-trough amplitude of surface hydrography and seawater carbon chemistry 

(from Figure 2.1, right). 

Parameter peak 
standard 

error 
amplitude 

standard 

error 
units 

Hydrography       

Temperature 18.6 1.0 3.2 2.0 °C yr–1 

Salinity 33.4 0.1 0.1 0.3 yr–1 

Ocean acidification indicators    

pH 8.08 0.02 0.04 0.04 yr–1 

CO3
2– 167 4 10 15 μmol kg–1 yr–1 

Ωcalcite 4.04 0.10 0.26 0.37 yr–1 

Ωaragonite 2.61 0.07 0.18 0.25 yr–1 

seawater carbonate chemistry    

CT 2006 14 17 22 μmol kg–1 yr–1 

nCT 2002 17 11 24 μmol kg–1 yr–1 

AT 2229 7 7 16 μmol kg–1 yr–1 

nAT 2228 3 4 6 μmol kg–1 yr–1 

pCO2 399 19 42 40 μatm yr–1 

Revelle 

factor 
11.4 0.5 0.4 0.6 yr–1 
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Figure 2.S4. Power spectral density of each time series variable calculated using the MATLAB 

function ‘plomb’. Frequencies between 0.1 and 1.4 yr-1. Most parameters exhibit a strong annual 

signal. 
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Figure 2.S5. ESPER predictions using only temperature, salinity, latitude, longitude, depth, and 

year. (Left) Observed and ESPER predicted CT over time. (Right) The residual CT, Observed – 

ESPER, over time.  

 

 
Figure 2.S6. ESPER predictions using only temperature, salinity, latitude, longitude, depth, and 

year. (Left) Observed and ESPER predicted AT over time. (Right) The residual AT, Observed – 

ESPER, over time.  
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Figure 2.S7. ESPER predictions using all available predictor variables, temperature, salinity, 

phosphate, nitrate, silicic acid, oxygen, latitude, longitude, depth, and year. (Left) Observed and 

ESPER predicted CT over time. (Right) The residual CT, Observed – ESPER, over time.  

 
Figure 2.S8. ESPER predictions here used all available predictor variables, temperature, salinity, 

phosphate, nitrate, silicic acid, oxygen, latitude, longitude, depth, and year. (Left) Observed and 

ESPER predicted AT over time. (Right) The residual AT, Observed – ESPER, over time.  
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Figure 2.S9. The sea surface pCO2 at station 90.90 compared to the atmospheric CO2 record at 

Mauna Loa.  

 



36 

 

 
Figure 2.S10. The measured pCO2 cycle at station 90.90 (computed from AT and CT) compared 

to Landschützer et al. (2020). The Landschützer et al. climatology is from the grid point 

containing station 90.90. It should be noted that neither seasonal cycle is corrected to a reference 

year. The measured seasonal cycle has a mean measurement year of 2002 where the 

Landschützer et al. climatology has a mean measurement year of 2006. If corrected, the 

difference between the seasonal cycles would be slightly greater than shown here.  
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CHAPTER 3  

 

Annual mixed layer carbon budget in the Southern California Current system 

 

Abstract 

In this work we utilized the seasonal cycles from California Cooperative Oceanic 

Fisheries Investigations (CalCOFI) line 90 station 90 to estimate the mixed layer net community 

production (NCP). This uses a monthly mixed layer carbon budget based upon climatological 

data described in. The model indicated a mix seasonal CO2 uptake and off gassing with a slight 

annual net source to the atmosphere of -0.24 ± 0.39 mol m-2 yr-1. As well as an autotrophic NCP 

of 0.38 ± 0.40 mol m-2 yr-1. The air-sea gas exchange matched previous studies in the region. 

However, the NCP is lower than some measurements made in the California Current and at the 

locations of other time series.  

3.1 Introduction 

The California Current System is a highly productive eastern boundary upwelling region. 

Upwelled deep water provides significant nutrients to the nearshore, the California Current 

System has shown to have significant lateral transport of organic matter and nutrients up to 800 

km offshore (Nagai et al., 2015). The study site discussed here, CalCOFI line 90, station 90, 

(denoted as station 90.90 for this chapter) is located at 31.4°N, 122°W, approximately 450 km 

from shore, with a water depth of approximately 4000 m. While offshore from upwelling 

locations, station 90.90 is within the region of lateral transport which may contribute to its net 

community production (NCP). 

There are various methods used to measure productivity in the surface ocean. There is 

discussion in the literature as to the best method to measure productivity and if some parameters 
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can even be measured (net primary productivity vs net community production) (Regaudie-de-

Gioux et al., 2014). The use of mixed layer carbon budget to estimate parameters productivity 

has been well established for ship based time series(Gruber et al., 1998; C. Keeling et al., 2004), 

moorings (Fassbender et al., 2016; Yang et al., 2021) and floats (Riser & Johnson, 2008; Yang et 

al., 2017). 

 

3.2 Methods 

3.2.1 Model and data used 

The mixed layer mass balance used in this chapter follows work by Yang et al. (2021), 

Fassbender et al. (Fassbender et al., 2016) and Emerson (2014). Where 
𝑑𝑀𝐿𝐷⋅𝐶𝑇

𝑑𝑡
 is the monthly 

change in the inventory of mixed layer inorganic carbon, and 𝐹𝑔𝑎𝑠, 𝐹𝑒𝑛𝑡 , 𝐹𝑑𝑖𝑓, 𝐹𝑏𝑖𝑜, and 𝐹𝑎𝑑𝑣 are 

the fluxes impacting the inventory due to air-sea gas exchange, entrainment, diffusion, negative 

net community production (NCP) and horizontal advection, respectively (mol m-2 month-1). A 

positive flux is representative of an addition of CT to the mixed layer. The 𝐹𝑎𝑑𝑣 term is not 

evaluated in this chapter but will be included in the final manuscript presenting this work. 

 
𝑑𝑀𝐿𝐷⋅𝐶𝑇

𝑑𝑡
= 𝐹𝑔𝑎𝑠 + 𝐹𝑒𝑛𝑡 + 𝐹𝑑𝑖𝑓 + 𝐹𝑏𝑖𝑜 + 𝐹𝑎𝑑𝑣 (3.1) 

The CT is based on the seasonal cycle described in Chapter 2, and the mixed layer depth 

(MLD) is from a climatology by Holte et al. (2017). The time step for this model is one month, 

reflective of the monthly climatology it is based upon. Figure 3.1 is a monthly climatology of the 

input variables.  

Where 𝐹𝑔𝑎𝑠 is the CO2 flux due to air-sea gas exchange (mol m-2 month-1).  

 𝐹𝑔𝑎𝑠 = 𝑘 ⋅ 𝐾0 ⋅ (𝑝𝐶𝑂2,𝑎𝑖𝑟 − 𝑝𝐶𝑂2,𝑠𝑒𝑎) (3.2) 
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Where 𝑘, the gas transfer velocity, and 𝐾0 , the CO2 solubility, are from Wanninkhof 

(2014) and Weiss (1974) respectively.The atmospheric CO2 concentration (𝑝𝐶𝑂2,𝑎𝑖𝑟), used was 

the mean value from the Mauna Loa Observatory between 1984 and 2020 of 376 μatm, with the 

average seasonal cycle included (max May = 379.2 μatm, min Sept = 372.6 μatm) (C. Keeling et 

al., 2005; R. Keeling & C. Keeling, 2017). The sea surface pCO2, ( 𝑝𝐶𝑂2,𝑤𝑎𝑡𝑒𝑟) is again from the 

seasonal cycle described in Chapter 2. 

 𝑘 = 0.251 ⋅ 𝑤𝑖𝑛𝑑2 ⋅ (
𝑆𝑐

660
)

−0.5
 (3.3) 

The 𝑘 used here is intended for a 6-hour wind product, however, monthly averaged winds 

are used here. This difference will cause an underestimation in the air-sea gas exchange and is 

reflected by using a greater uncertainty in 𝑘 later in this chapter. An alternative approach is to 

use a Rayleigh distribution of wind speeds to determine the coefficient (here, 0.251(cm h-1)(m s-

1)-2), but this too includes bias (Wanninkhof et al., 2002). The monthly 10 m height wind speed 

product used was from the National Oceanic and Atmospheric Administration, National Centers 

for Environmental Information (https://www.ncei.noaa.gov/thredds/catalog/uv/monthly_agg/ 

catalog.html?dataset=uv/monthly_agg/Aggregation_of_Monthly_Ocean_Wind_best.ncd).  

Where 𝐹𝑒𝑛𝑡 is the flux due to the mixing of waters as the MLD changes depth, 

entrainment or detainment (mol m-2 month-1).  

When the MLD is shoaling, 

 𝐹𝑒𝑛𝑡 =
𝑑𝑀𝐿𝐷

𝑑𝑡
⋅ 𝐶𝑇,𝑠𝑢𝑟𝑓𝑎𝑐𝑒 (3.4) 

When the MLD is deepening, 

 𝐹𝑒𝑛𝑡 =
𝑑𝑀𝐿𝐷

𝑑𝑡
⋅ 𝐶𝑇,𝑑𝑒𝑒𝑝 (3.5) 

Where 𝐶𝑇,𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is the CT reported in the seasonal cycle in Chapter 2, 

https://www.ncei.noaa.gov/thredds/catalog/uv/monthly_agg/%20catalog.html?dataset=uv/monthly_agg/Aggregation_of_Monthly_Ocean_Wind_best.ncd
https://www.ncei.noaa.gov/thredds/catalog/uv/monthly_agg/%20catalog.html?dataset=uv/monthly_agg/Aggregation_of_Monthly_Ocean_Wind_best.ncd
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 𝐶𝑇,𝑑𝑒𝑒𝑝 = 𝐶𝑇,𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 0.5 (
𝑑𝑀𝐿𝐷

𝑑𝑡
⋅

𝑑𝐶𝑇

𝑑𝑧
) (3.6) 

𝐶𝑇,𝑑𝑒𝑒𝑝 was calculated using the change in MLD (
𝑑𝑀𝐿𝐷

𝑑𝑡
) and a gradient in CT at the base 

of the mixed layer (
𝑑𝐶𝑇

𝑑𝑧
). The gradient used was 0.16 μmol kg-1 m-1, which was determined from 

the slope of CT measurements between 20 −60 m depth from data set described in Chapter 4.  

Where 𝐹𝑑𝑖𝑓 is the diffusive flux across the mixed layer (mol m-2 month-1),  

 𝐹𝑑𝑖𝑓 =  𝑘𝑧 ⋅
𝑑𝐶𝑇

𝑑𝑧
  (3.7) 

The value of 5 ×10-5 m s-1 was chosen for 𝑘𝑧 , in line with values used by Todd et al. 

(2011) in the California Current. 

Where 𝐹𝑏𝑖𝑜 is the negative NCP and is calculated as the difference between 
𝑑𝑀𝐿𝐷⋅𝐶𝑇

𝑑𝑡
 and 

sum of the remaining terms 𝐹𝑔𝑎𝑠 + 𝐹𝑒𝑛𝑡 + 𝐹𝑑𝑖𝑓. Vertical or horizontal advection, and evaporation 

or precipitation were not considered in this model.  

 

3.2.2 Uncertainty estimation  

A sensitivity analysis was employed to estimate uncertainty following the approximate 

method of numerical differentiation (Ellison & Williams, 2012; Kragten, 1994). In this analysis, 

errors for seven input terms (Table 3.1) are estimated and propagated through Equations 3.2–3.7 

using the approximation 

u(y,xi) ≈ y(x1,x2,..(xi+u(xi))..xn) - y(x1,x2,..xi..xn) (3.8) 

Propagated errors are then used to compute combined standard uncertainty for 𝐹𝑔𝑎𝑠, 𝐹𝑒𝑛𝑡, 

𝐹𝑑𝑖𝑓, 𝑀𝐿𝐷 ⋅ 𝐶𝑇 and 𝐹𝑏𝑖𝑜, respectively, using 

 𝑢(𝐹𝑔𝑎𝑠) = √(𝑢(𝐹𝑔𝑎𝑠, ∆𝑝CO2))
2

+ (𝑢(𝐹𝑔𝑎𝑠, 𝑘))
2

+ (𝑢(𝐹𝑔𝑎𝑠, 𝑤𝑖𝑛𝑑))
2
 (3.9) 
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 𝑢(𝐹𝑒𝑛𝑡) = √(𝑢(𝐹𝑒𝑛𝑡 , ∆𝑀𝐿𝐷))
2

+ (𝑢(𝐹𝑒𝑛𝑡 , 𝑑𝐶𝑇 𝑑𝑑𝑒𝑝𝑡ℎ))
2

+ (𝑢(𝐹𝑒𝑛𝑡 , 𝐶𝑇))
2
 (3.10) 

 𝑢(𝐹𝑑𝑖𝑓) = √(𝑢(𝐹𝑑𝑖𝑓, 𝑘𝑧))
2

+ (𝑢(𝐹𝑑𝑖𝑓, 𝑑𝐶𝑇 𝑑𝑑𝑒𝑝𝑡ℎ))
2
 (3.11) 

 𝑢(𝑑𝑀𝐿𝐷 ⋅ 𝐶𝑇) = √(𝑢(𝑑𝑀𝐿𝐷 ⋅ 𝐶𝑇 , ∆𝑀𝐿𝐷))
2

+ (𝑢(𝑑𝑀𝐿𝐷 ⋅ 𝐶𝑇 , 𝐶𝑇))
2
 (3.12) 

 𝑢(𝐹𝑏𝑖𝑜) = √

(𝑢(𝐹𝑏𝑖𝑜, ∆𝑝CO2))
2

+ (𝑢(𝐹𝑏𝑖𝑜, 𝑘))
2

+ (𝑢(𝐹𝑏𝑖𝑜, 𝑤𝑖𝑛𝑑))
2

+(𝑢(𝐹𝑏𝑖𝑜, ∆𝑀𝐿𝐷))
2

+ (𝑢(𝐹𝑏𝑖𝑜, 𝑑𝐶𝑇 𝑑𝑑𝑒𝑝𝑡ℎ))
2

+(𝑢(𝐹𝑏𝑖𝑜, 𝐶𝑇))
2

+ (𝑢(𝐹𝑏𝑖𝑜, 𝑘𝑧))
2

 (3.13) 

and reported in Table 3.2. This method does not take into account correlated errors. 

 The ∆𝑝CO2(air-sea) and CT uncertainties were based on the climatology from Chapter 2. 

Similarly, the 
𝑑𝐶𝑇

𝑑𝑧
  uncertainty was chosen to be 30% based upon CT measurements from station 

90.90. The 𝑘 uncertainty was chosen to be 30%, which is greater than the 20% reported in 

Wanninkhof (2014) and was used due to the monthly averaged winds. The uncertainty in the 

monthly change in mixed layer depth, ∆𝑀𝐿𝐷, was chosen to be 10%. The uncertainty in the 

wind speed was chosen to be 1 m s-1. The uncertainty in 𝑘𝑧 was chosen to be 50% (Yang et al., 

2017). 

 

3.3 Results and discussion  

3.3.1 Model results  

Figure 3.2 shows the monthly contribution of 𝐹𝑔𝑎𝑠, 𝐹𝑒𝑛𝑡, 𝐹𝑑𝑖𝑓, 𝑑𝑀𝐿𝐷 ⋅ 𝐶𝑇 and 𝐹𝑏𝑖𝑜 to the 

mixed layer inorganic carbon inventory in mol m-2 month-1. 𝐹𝑔𝑎𝑠 closely followed ∆𝑝CO2 with 

CO2 absorption in January–April and CO2 off gassing the remainder of the year. The net effect 

was -0.24 ± 0.39 mol m-2 yr-1, being a source to the atmosphere. 𝐹𝑑𝑖𝑓 was a constant 0.02 mol m-



42 

 

2 month-1, with a net effect of 0.26 ± 0.15 mol m-2 yr-1. This was the only flux with an uncertainty 

that did not encompass zero, which is realistic as a diffusive flux of inorganic carbon from the 

mixed layer to the deeper ocean is unlikely.  

The contributions of 𝐹𝑒𝑛𝑡 and 𝑑𝑀𝐿𝐷 ⋅ 𝐶𝑇 are orders of magnitude greater than the other 

terms in the budget on a monthly basis but are similar in net annual effect. 𝐹𝑒𝑛𝑡 and 𝑑𝑀𝐿𝐷 ⋅ 𝐶𝑇 

contributed 0.23 ± 0.15 and -0.13 ± 0.01 mol m-2 yr-1, respectively. On a monthly basis, 𝐹𝑒𝑛𝑡 and 

𝑑𝑀𝐿𝐷 ⋅ 𝐶𝑇 are very similar in magnitude and opposite in sign. This is used in Figure 3.3 to plot 

𝑑𝑀𝐿𝐷 ⋅ 𝐶𝑇 − 𝐹𝑒𝑛𝑡 along with the cumulative contribution of the other fluxes.  

The calculated 𝐹𝑏𝑖𝑜, has a net effect of -0.38 ± 0.4 mol m-2 yr-1, net autotrophic over the 

year. The 𝐹𝑏𝑖𝑜 term shows net autotrophy (i.e., the removal of inorganic carbon to the mixed 

layer) December–May and net heterotrophy the remainder of the year. The months of net 

heterotrophy roughly coincide with the months of CO2 off gassing.  

3.3.2 Comparison of results  

Other NCP measurements using O2/Ar made in the California Current vary largely 

(between – 5 and 28 mol m-2 yr-1) with a strong decrease in primary productivity rates moving 

further offshore (Kranz et al., 2020). Focusing on other offshore measurements from two 

separate years (P1604 Cycle 2, P1706 Cycle 2 and 3), NCP values were reported were between -

4 and 2, mol m-2 yr-1 (Kranz et al., 2020). The NCP estimated here of 0.38 ± 0.4 mol m-2 yr-1
 is 

reasonable when compared to those measurements. A separate study reports the NCP within the 

California Current to be 4.4 ± 1.5 and offshore of the current to be 3.3 ± 1.0 mol m-2 yr-1 (Munro 

et al., 2013) in which even the offshore NCP is greater than the NCP estimated here. Previous 

work has found discrepancies between monthly climatologies and more continuous observations 

used to estimate mixed layer NCP (Riser & Johnson, 2008). The annual NCP of other well 



43 

 

studied locations such as, Ocean Station Papa (2.3 mol m-2 yr-1), Hawaii Ocean Time-series (2.5 

mol m-2 yr-1) and Bermuda Atlantic Time-series (3.8 mol m-2 yr-1), all have a higher annual NCP 

than the estimate generated in this work (Emerson, 2014). 

 

3.3.3 Future work 

Future work should be focused on on understanding the discrepancy between NCP 

estimated here and measurements made in the Southern California Current. The inclusion of 

horizontal advection, 𝐹𝑎𝑑𝑣, will likely improve the NCP estimate. Horizontal advection could 

potentially be estimated using the mean surface flow at station 90.90 and a CT gradient 

calculated using ESPER (Carter et al., 2021). The gradient of CT over depth, 
𝑑𝐶𝑇

𝑑𝑧
, is an area that 

could also use further validation. The value calculated from CT samples does not account for 

seasonal variability and effects both 𝐹𝑒𝑛𝑡 and 𝐹𝑑𝑖𝑓. Inclusion of seasonal variability in 𝑘𝑧 may 

improve the model. Refinement of the MLD climatology used in this work is another avenue for 

improvement. The chosen climatology currently causes considerable variability in ∆𝑀𝐿𝐷, 

specifically in March–June, which has a large impact on 𝑑𝑀𝐿𝐷 ⋅ 𝐶𝑇 and 𝐹𝑒𝑛𝑡. The MLD could 

be estimated from temperature and salinity observations co-current with the inorganic carbon 

sample collection, using either bottle or sensor measurements. One approach to refine the carbon 

budget could be to create a similar budget at line 80 station 80 as well as a budget that includes 

the higher frequency data available from the CCE-1 mooring and compare results of the two 

types of budgets (Ohman et al., 2013).  

Further development on this model could include refinement of the air-sea gas exchange. 

This could be achieved by incorporating higher frequency wind data or using a coefficient 

chosen to calculate the gas transfer velocity specifically for monthly wind products. However, 



44 

 

the value of  𝐹𝑔𝑎𝑠  (-0.24 ± 0.39 mol m–2 yr–1) is similar to the near zero net CO2 flux estimation 

in this location of the California Current System based on SOCAT data (Sharp et al., 2022).  

 

3.4 Conclusions   

Mixed layer carbon budgets have frequently been used to estimate NCP. While the 

Southern California Current region as a whole is both highly productive and highly variable, the 

mixed layer carbon budget calculated shows only a slightly autotrophic NCP of 0.38 ± 0.40 mol 

m-2 yr-1. This is within the variability of the region but generally less than previous studies 

indicate. Additionally, the air-sea gas exchange agrees with previous studies in the region 

showing a small net source to the atmosphere, with months of both off gassing and CO2 

absorption.  
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3.6 Figures and tables  

Table 3.1. The input variables and assigned uncertainties to the mixed layer carbon budget. “*” 

denotes the annual mean of the monthly input variable. “**” denotes the mean of the absolute 

value of the ΔMLD as the annual mean must be zero. 

input value uncertainty  units  

Δ pCO2 (air-sea) 8.4* 10 μatm 

k 10.3* 30% cm hr-1 

wind 6.5* 1 m s-1 

ΔMLD 7.8** 10% m 

dCT dz-1 0.16 30% μmol kg-1 m-1 

CT 2000.8* 8 μmol kg-1 

Kz 0.00005 50%  m-2 s-1 

 

 

Table 3.2. The output variables and estimated uncertainties to the mixed layer carbon budget. A 

positive value represents an addition of carbon to the mixed layer. 

output value uncertainty  units  

Fgas -0.24 0.39 mol m-2 yr-1 

Fent 0.23 0.15 mol m-2 yr-1 

Fdif 0.26 0.15 mol m-2 yr-1 

dMLD CT  -0.13 0.01 mol m-2 yr-1 

Fbio -0.38 0.40 mol m-2 yr-1 
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Figure 3.1 The seasonal cycle of input variables. Not all variables here appear in Table 3.1. 
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Figure 3.2 The monthly flux for variables included in the mixed layer carbon budget. A positive 

value represents an addition of carbon to the mixed layer. 
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Figure 3.3. The cumulative contribution to the mixed layer carbon budget over a year. A positive 

value represents an addition of carbon to the mixed layer. 
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CHAPTER 4 

 

An overview of inorganic carbon observations in the Southern California Current made on 

CalCOFI cruises 

 

Abstract 

In this work we provide an overview of inorganic carbon observations made on 

hydrographic bottle samples collected on California Cooperative Oceanic Fisheries 

Investigations (CalCOFI) Cruises. The majority of the observations described in this chapter 

(4238 CT, 4065 AT, and 1858 pH observations), have not been previously publicly available. This 

chapter includes a summary of the spatial and temporal distribution of the observations. We 

discuss how these observations compare to existing methods used to estimate inorganic carbon 

parameters as well as a first order analysis of some of the trends present at the most sampled 

locations. The goal of this chapter is to disseminate quality controlled data, provide a summary 

overview of the observations, and bring awareness of this data set to the broader scientific 

community and relevant stakeholders. 

4.1 Introduction 

CalCOFI has collected hydrographic and biological data since the 1950’s (Hewitt, 1988) 

and began collecting seawater samples for CO2 analysis in 1983. Ocean acidification monitoring 

has continued through the present, with a six-year gap (2002–2007). In 1983, analysis of total 

dissolved inorganic carbon (CT) and total alkalinity (AT) on bottle samples was carried out by 

Dave Keeling’s laboratory at the same time that his lab began measuring samples from 

Hydrostation S in the Atlantic near the present-day Bermuda Atlantic Time-series Study 

(BATS). Five years later (1988) the official BATS and Hawaii Ocean Time-series (HOT) began 
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(Bates et al., 2014). Thus, CalCOFI station 90.90 and Hydrostation S are the earliest locations of 

CO2 time series in the Pacific and Atlantic Oceans, respectively.  

The early vision of the inorganic carbon time series was to have a sea surface record 

shoreward of the California Current, within the California Current, and offshore of the California 

Current, line and station 90 70; 90 90; and 90 120 respectively (personal communication, Guy 

Emanuele). These observations began in 1983 and continued until the 1990’s. Of those three 

early time series locations, line 90 station 90 has endured as the most consistent record and is the 

subject of Chapter 2. As time progressed, the focus shifted to more nearshore stations with 

greater depth coverage, while continuing the surface sampling at some offshore locations.  

As Chapter 4 will include measurements distributed over the Southern California Current 

(SCC), a brief explanation of the CalCOFI grid numbering pattern is prudent. The CalCOFI grid, 

Figure 4.1, is made of lines and stations, where lines run approximately normal to the coastline. 

Both line and station numbering start at non-zero values as the CalCOFI grid once included a 

much larger area. A difference of 10 in line number is equivalent to 120 nautical miles (nmi). A 

difference of 10 in station number is equivalent to 40 nmi (Weber & Moore, 2013).  

 

4.2 Methods 

4.2.1 Analytical methods and sample collection 

Bottle samples were analyzed for total alkalinity (AT) and dissolved inorganic carbon 

(CT). AT was measured using a closed cell titration (Bradshaw et al., 1981) until 1992 and an 

open cell titration (Dickson et al., 2003) after 1992. CT was measured using vacuum extraction 

and manometry (Lueker, 1998; Lueker et al., 2000) until 1992, coulometry (Johnson et al., 1987) 

from 1992–2015 and an infrared (IR) analyzer (Goyet & Snover, 1993; O'Sullivan & Millero, 
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1998) after 2015. Accuracy of AT and CT is estimated to range from 2–5 μmol kg-1 and 1–3 μmol 

kg-1, respectively, over the dataset. In more recent years, after 2014, spectrophotometric pH 

(Dickson et al., 2007) was measured, allowing an evaluation of internal consistency among the 

measured CO2 system parameters. An unpurified m-cresol purple as the indicator dye was used 

in these pH measurements. Due to this, a pH-dependent correction factor was applied. This 

general procedure has been documented previously (Liu et al., 2011; Takeshita et al., 2021) and 

is specific to the system used for pH measurements between 2014–2021 (Wolfe et al., 2021). 

Bottle samples were collected during quarterly CalCOFI cruises. Mercuric chloride was 

added (as a biocide and preservative) and the samples were sealed and stored in borosilicate 

glass bottles following best practices (Dickson et al., 2007). Storage times ranged from one 

month to multiple years before analysis. Some of the early samples may have been collected 

using different bottle types, but this does not appear to have a notable impact on the data quality.  

 

4.2.2 Calculating additional carbonate chemistry parameters 

The same methods described in Chapter 2 are also used in Chapter 4. The partial pressure 

of CO2 in seawater (pCO2), pH, carbonate ion concentration ([𝐶𝑂3
2−]), saturation states of 

aragonite and calcite (Ωaragonite, Ωcalcite), and Revelle Factor (∂ln[CO2]/∂lnCT), were calculated in 

MATLAB using CO2SYS (van Heuven et al., 2011) from AT, CT, temperature and salinity with 

coefficients recommended by Lueker et al. (2000). AT and CT were salinity normalized (indicated 

by nAT and nCT,) to the average salinity of the time series (33.7, n = 4082). 
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4.3 Results and discussion 

4.3.1 Spatial and temporal distribution of observations 

This section will discuss the distribution of observations contained in this data set. For 

clarity, in this section a single “observation” refers to a unique location, depth and time where a 

sample was collected and analyzed for either CT, AT or pH. Other programs have measured 

inorganic carbon in the SCC, such as NOAA’s West Coast Ocean Acidification Cruises, but are 

not included in this discussion.  

There are 70 locations (unique pairs of line and station numbers) within the CalCOFI grid 

that have inorganic carbon observations. Measurement of multiple inorganic carbon parameters 

count as a single observation. Figure 4.2 shows the number of observations at each location per 

year. Half of these locations were only measured in a single year. Figure 4.3 shows the number 

of observations per year from the remaining 35 locations sampled in more than a single year.  

In 1984, 2013 and 2016 many observations were collected from locations that were not 

sampled in any other year. A map showing these unique locations and years is shown in Figure 

4.4. In 1984 surface observations were made along stations 90 and 100 extending far further 

south than any other year (green “x”, Figure 4.4). In November 2013 there was a tight grouping 

of observations centered around line 80 station 55, off of Point Conception (magenta “*”, Figure 

4.4). This tight grouping has a total of 68 observations from 7 profiles from sea surface to 515 m 

depth. This grouping may be of interest for future studies specific to the Point Conception region 

or for processes where spatial resolution is more important than having observations over time. 

Finally, there were 7 locations observed only in 2016, without an obvious overall pattern 

(Orange “+”, Figure 4.4).  
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Aside from the notable exceptions described prior, there are four distinct time periods 

with respect to the number and distribution of observations made. First, between 1983⁠–2001 a 

total of 531 observations were made. Observations were usually made at 10 m depth and along 

line 90 at stations 70, 90 and 120. Second, between 2002⁠–2007 in which no observations were 

made. Third, between 2008⁠–2017 a total of 3162 observations were made. Some notable features 

of this time period include the initiation of observations from subsurface profiles, a greater focus 

on the near shore, and a significantly higher rate of sampling (approximately 120 observations 

per cruise). Profiles occasionally went as deep as 3500 m but were generally restricted to 515 m 

and shallower. Figures 4.5 - 4.7 summarize observation depth over time. Fourth, between 2008⁠–

2021 a total of 699 observations were made. This time period is similar to the prior time period, 

with fewer sub surface observations and a lower rate of sampling (approximately 50 observations 

per cruise) due to limited funding support for bottle analysis. With dedicated funding for analysis 

and quality control of these samples, it may be possible to increase the sampling frequency to the 

previous level. As of 2022, sampling continues at a rate of approximately 50 observations per 

cruise. 

 

4.3.2 Assessment of measurement quality and CO2 system internal consistency 

All measurements made prior to 2008 were made in duplicate, quality controlled, and the 

means were archived. Accordingly, statistics of duplicates reported here reflect sampling since 

2008. The difference between duplicate CT  measurements was 1.9 ± 2.8 μmol kg-1 (mean ± std, 

n = 364) (Figure 4.8). After 2014 there is an increase in the difference between duplicate CT  

measurements which is consistent with the transition to IR CT  measurements being less precise 

than coulometric CT measurements. The difference between duplicate AT  measurements was 1.8 
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± 2.8 μmol kg-1 (mean ± std, n = 361) (Figure 4.9). There is not a change in the difference 

between duplicates AT  measurements over time. This indicates that changing the lab group 

which performed the open cell titration did not noticeably affect the precision of the AT  

measurements. The difference between duplicate pH  measurements was 0.0026 ± 0.0036 (mean 

± std, n = 152) (Figure 4.10). This precision is slightly lower than that which should be 

achievable using spectrophotometric pH measurement (Dickson et al., 2007). 

In more recent years (after 2014), the addition of pH as a measured parameter results in 

an over-constrained carbonate system, which allows comparison between spectrophotometric pH 

and pH calculated from CT and AT. Figure 4.11 shows this comparison. The difference between 

spectrophotometric pH and pH calculated from CT and AT was 0.008 ± 0.003 (mean ± std, n = 

1435). This mean difference is within the range of what Fong and Dickson (2019) report for GO-

SHIP cruises, although the standard deviation is somewhat higher in the CalCOFI data. We 

suspect that the main source of the higher std is the CT measurement which is based on the lower 

precision IR method for CalCOFI compared to the coulometric CT method used in GO-SHIP. A 

non-zero slope is observed in the difference between spectrophotometric pH and pH calculated 

from CT and AT (Figure 4.11). The trend (-0.008 ± 0.02, mean ± std) is lower than that reported 

across the GO-SHIP cruises (Fong & Dickson, 2019). One factor that may contribute to these 

differences is the use of purified indicator dye on GO-SHIP cruises and unpurified dye on 

CalCOFI cruises for pH measurements (Liu et al., 2011).  

 

4.3.3 Comparison to empirical estimates of CO2 from other hydrographic variables 

Observations were compared to Empirical Seawater Property Estimation Routines 

“ESPER_Mixed”, where mixed refers to the use of both locally interpolated regressions and 
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neural networks (Carter et al., 2021; Morgan, 1994; van Heuven et al., 2011). All available 

predictor variables were used, specifically, temperature, salinity, phosphate, nitrate, silicic acid, 

latitude, longitude, depth, and year. Results of the comparisons to ESPER_Mixed are presented 

in Figure 4.12 and Figure 4.13. The difference between CT observations and CT predicted using 

ESPER was 1.8 ± 7.6 μmol kg-1 (mean ± std, n = 3457). The difference between AT observations 

and AT predicted using ESPER was 0.7 ± 9.9 μmol kg-1 (mean ± std, n = 3377). For both CT and 

AT the mean difference is within what Carter et al. reports for the California Current, (CT 0.5 ± 

4.4 μmol kg-1 and AT -0.8 ± 5.0 μmol kg-1, using salinity temperature and oxygen as predictor 

variables) (2021). However, the difference between pH observations and pH predicted using 

ESPER was 0.015 ± 0.028 (mean ± std, n = 1384), was greater than what Carter et al. reports for 

the California Current (pH -0.006 ± 0.0012) (2021). The std of the difference between pH 

observations and pH predicted using ESPER is similar to the std of the difference between pH 

observations and pH calculated from CT and AT, 0.028 and 0.020 respectively (Figure 4.11, 

Figure 4.14). In contrast, the means of the comparisons are opposite in sign, 0.015 and -0.008 

respectively. Indicating that there was a greater disagreement between pH predicted using 

ESPER and pH calculated from CT and AT than to the direct pH measurements.   

The roughly tenfold greater number of observations within the CalCOFI dataset 

compared to the training data used for ESPER (only ~300 total measurements in the CalCOFI 

region) provide an excellent validation of the ESPER algorithm. While the agreement between 

CT, AT, and pH measured vs predicted by ESPER is encouraging, several systematic features 

appear in every figure, suggesting perhaps some room for improvement in algorithms. In 

summary, it is our hope that publication of this chapter (with publicly archived data) may aid the 

ongoing refinement of predictive tools such as ESPER.  
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4.3.4 Primary sampling locations  

Among the 70 unique locations with observations (Figure 4.4), nine “primary” locations 

make up over half of the total number of observations in this dataset. Figure 4.15 shows a map of 

the primary locations, and Figure 4.16 shows the number of observations per year at each 

location, with fairly consistent observations since 2008 (Figure 4.17). The nine locations are 

composed of five nearshore locations (line station, 80 55, 81.8 46.9, 86.7 35, 90 30, and 93.3 30) 

and four offshore locations (line station, 80 80, 90 53, 90 60, and 90 90). The offshore locations 

are present along lines 80 and 90. The two locations along line 80, coincide with the California 

Current Ecosystem interdisciplinary biogeochemical moorings CCE-1 (line station, 80 80) and 

CCE-2 (line station, 80 55) since 2008 and 2010 respectively (Ohman et al., 2013). One of the 

nearshore locations (line station, 81.8 46.9) is unique due to its position within the Santa Barbara 

Basin, an anoxic basin.  

Figure 4.18 presents the surface CT trends at the primary locations. The nearshore 

locations off of Point Conception and in Santa Barbara Basin (line station, 80 55, 81.8 46.9) were 

the most variable. Only the two locations furthest from shore, 90 90 and 80 80, have a trend that 

is larger than the standard error of the slope. After 14 years of observations none of the near 

shore locations have a trend that is greater than the standard error of the slope. While not 

significant, there is a negative slope at three of these locations, opposite the ocean acidification 

trend. All of these challenges highlight the difficulty of discerning anthropogenic CO2 trends 

from natural variability, especially in the nearshore.  

Below the surface, CT exhibits marked shoaling along line 90 between 50 and 250 m 

depth (Figure 4.19). As the distance from shore (and station number) decreases the CT at a given 

depth increases. This eastward shoaling reflects the transport of high CT deep water upward with 



57 

 

coastal upwelling caused by westward wind driven Ekman transport and the shallowing of the 

bottom topography (Talley et al., 2011).  

 

4.3.5 Future work  

The inorganic carbon data set presented in this Chapter will serve both scientists and 

stakeholders (Gallo et al., 2019). This data set contains substantial insight into carbonate 

chemistry of the Southern California Current, and specifically the primary sampling locations. 

This chapter does not aim to exhaust the information contained within, but to summarize the data 

set as an aid to future research. As mentioned above, one obvious use is the assimilation into 

empirical models to estimate inorganic carbon chemistry (Alin et al., 2012; Carter et al., 2021). 

To make this data set broadly available, it will be shared via the CalCOFI website 

(https://calcofi.org/data/ oceanographic-data/dic/), the California Current Ecosystem Long Term 

Ecological Research data portal (https://oceaninformatics.ucsd.edu/datazoo/catalogs/ 

ccelter/datasets) and the Environmental Data Initiative (https://environmentaldatainitiative.org/). 

Publication of this chapter in a journal such as Earth System Science Data will make the data set 

easily accessible to a broad audience. Further collaboration with other inorganic carbon 

observation programs in the California Current, such as the California Current Acidification 

Network (McLaughlin et al., 2015) and the NOAA West Coast Ocean Acidification Cruises 

could increase the value of this data set. Both in contribution to combined data sets, possibly the 

Coastal Ocean Data Analysis Product in North America (CODAP-NA) (Jiang et al., 2021) or the 

Global Interior Ocean Biogeochemical Data Product (GLODAP) (Lauvset et al., 2021) and 

potentially coordination of sampling efforts could be possible. 

 

https://calcofi.org/data/
https://oceaninformatics.ucsd.edu/datazoo/catalogs/%20ccelter/
https://oceaninformatics.ucsd.edu/datazoo/catalogs/%20ccelter/
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4.4 Conclusions  

Time series provide important insight into climate change along with ocean 

biogeochemical processes. Processes such as anthropogenic ocean acidification are difficult to 

differentiate from background variability without multi-decadal inorganic carbon observations. 

The value of inorganic carbon time series is increased when collocated with other observation 

programs to create a more detailed description of a region of the ocean. The final step of an 

observation program should be to make the data easily accessible and shared broadly.  
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4.6 Figures 

  

 

Figure 4.1. CalCOFI sampling patterns. The 75-station pattern is typical for summer and fall 

cruises. The 113-station sampling pattern is typical for winter and spring cruises. Maps from the 

CalCOFI website, https://calcofi.org/sampling-info/station-positions/.  

https://calcofi.org/sampling-info/station-positions/
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Figure 4.2. The number of inorganic carbon observations at each location per year. 
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Figure 4.3. The number of inorganic carbon observations at each location per year. Limited to 

locations with measurements in at least two years. 
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Figure 4.4. Locations with inorganic carbon observations from multiple years are shown with 

grey filled circles. Locations with observations from the single year of 1984, green “x”; 2013, 

magenta “*”; 2016, orange “+”. Locations with observations from a single year other than 1984, 

2013 or 2016 are shown with unfiled blue circles.  
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Figure 4.5. The depth of inorganic carbon observations throughout time.  

 

 

Figure 4.6. The depth of inorganic carbon observations after 2008 as the vast majority 

observations from 2008 are near the sea surface. Observations deeper than 600 m are also 

excluded (n = 17, most at ~ 3500 m). 
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Figure 4.7. The number of inorganic carbon observations per year in each depth range.  

 

 

 

Figure 4.8. The difference between duplicate CT measurements collected after 2008. 
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Figure 4.9. The difference between duplicate AT measurements collected after 2008.  

 

 
Figure 4.10. The difference between duplicate pH measurements collected after 2008.  
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Figure 4.11. The difference between spectrophotometric pH and pH calculated from CT and AT 

was 0.008 ± 0.02 (mean ± std, n = 1435). The slope in the difference between spectrophotometric 

pH and pH calculated from CT and AT vs spectrophotometric pH in the data present here is -0.008 

± 0.003 yr-1 (mean ± std). All observations presented here were made after 2014 and were 

measured with IR CT, open cell AT, and spectrophotometric pH.  
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Figure 4.12. The difference between measured CT and that predicted using ESPER_Mixed 

plotted against measured CT.  

 

Figure 4.13. The difference between measured AT and that predicted using ESPER_Mixed 

plotted against measured AT.  
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Figure 4.14. The difference between measured pH and that predicted using ESPER_Mixed 

plotted against measured pH. Both measured and ESPER pH are show at in situ temperature.   

 

 
Figure 4.15. A map of the locations with more than 152 observations. Shown in Figure 4.16 and 

Figure 4.17.  
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Figure 4.16. The number of inorganic carbon observations at each location per year. Limited to 

locations with more than 152 total observations. 

 

 
Figure 4.17. The number of inorganic carbon observations at each location per year. Limited to 

locations with more than 152 total observations, between 2008 and present.  
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Figure 4.18. The sea surface CT at the 9 most sampled stations. The top 5 subplots are from 

nearshore locations. The bottom 4 subplots are from offshore locations.  
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Figure 4.19. The sea surface CT at the 9 most sampled stations. The top 5 subplots are from 

nearshore locations. The bottom 4 subplots are from offshore locations.  
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