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ANATYTICAL STUDY OF TUBULAR TEE-JOINTS

INTRODUCTTION

General Background

A tubular connection normally consists of a number of circular steel
tube web members welded to a larger-diameter chord member. The critical
influence on the ultimate strength of these connections is the radial flex-
ibility of the chord tube wall. Several structural arrangements have been
suggested to reduce the above influence to acceptable proportions (l)l.

For jolnts under static loads the best structural solution consists of an
overlapping and interwelding of the web branch members (2). However, for
Jjoints under alternating loads, fatigue failure can be postponed most effec-
tively by increasing locally the radial stiffness of the chord wall through
the insertion of a thicker-walled chord section and by separating simul-
taneously the branch members (3).

The above conclusions are all based on results obtained from extensive
experimental studies. Because of the complexity of the problem, experimental
research was and still is necessary. However, to optimize research efficiency
in general and to aid designers, the need to analyze the stress distribution
in these tubular joints has long been recognized. Unfortunately, no
effective methods of analysis were avallable initially., However, through

the development of general computer programs based on classical

1. Numerals in parentheses refer to corresponding items in Appendix IT--
References.



shell theory, it has become possible to analyze simplified tube systems.
This development is particularly significant in guiding researchers and
engineers because it permits an evaluation of the basic influence of certain
structural parameters by studying simplified tube-joint models. Although it
is realized that such evaluations are not fully exact because of the simpli-
fied representation of the joint, the value of such studies is significant
for the present developments in tubular joint design. Even for the most
general methods of analysis which are presently under development the prin-
cipal problem will be the accurate representation of the structural complex-
ity of these joints in an analytical computer model. Hence, experimental
research will remain a necessity.

The authors present the basic principles and theory used in developing
several cylindrical shell programs which have been used to study the influ-
ence of two important geometric joint parameters, namely, the diameter-to-
diameter ratio &/D of the web (d) and chord (D) members respectively,
and the t/D ratio of the wall thickness (t) and diameter (D) of the
chord section. The present paper discusses the accuracy of these programs

and shows the validity of their application for simple parameter studies.



Previous Studies

A number of papers have been published on the analysis of circular
cylindrical shells under localized loadings. A selected list of references
in this subject is given at the end of this report, however, only a few of
these will be mentioned below.

Roark (4) presented empirically derived formulas for stresses and
deflections produced by a concentrated loading on a cylindrical shell.

Yuan (5) (6) used Donnell's equation (7) and then Flugge's equation (8) to
study the radial deflections of thin cylindrical shells subjected to con-
centrated, equal and opposite radial forces, acting at the ends of a vertical
diameter. Hoff, Kempner, Nardo and Pohle (9) conducted a theoretical inves-
tigation of stresses in a pipeline branch connection under bending loads
applied to the attached pipe. Later, Hoff, Kempner, Pohle and Sheng (10)
(11) obtained the closed form expressions for the displacements and internal
forces in cylindrical shells under sinusoidal line loads applied along a
generator using Donnell's equation. Fourier series were than used to repre-
sent localized line loads including radial forqes, axial moments and circum-
ferential moments. Tabulated results were obtained.

Bijlaard (12) (13) (1L) made extensive theoretical studies of the
stresses produced in cylindrical pressure vessels by localized attachment
loads. He used an analysis based on developing the loads and displacements
into double Fourier series. The 8th order differential equation for radial
deflection which he used differs somewhat from Donnell's equation, which
has been used by other investigators. His equation attempts to overcome
some of the known inaccuracies of Donnell's equation for long shells. For

the case in which the loading is transferred by a rather rigid attachment



such as a pipe, Bijlaard assumed the radial load to be uniformly distributed
over a rectangular surface of the shell covered by the attachment. In order
to take account of the rigidity of the attachment he recommended that for
design purposes the values of the internal forces at the center of the load-
ing surface, obtained from the analysis, be assumed to exist at the edge of
the attachment. Extensive tables and curves for design purposes are included
in Bijlaard's papers.

Cooper (15) studied the problem of localized line loading using shallow
shell theory including the effect of shear deformation and found that his
results for stresses were in good agreement with those found by Donnell's
equation. Klein (16) presents results in diagrams and tables for stresses
and displacements in shells subjected simultaneocusly to internal pressure
and localized loadings. Morley (17) developed an improved shell equation,
which is said to retain the simplicity of Donnell's equation, but which also
has the desired property that its accuracy does not decrease for long shells.

Toprac and his colleagues (18) (19) (20) at the University of Texas have
conducted a number of analytical and experimental studies on the behavior of
large tubular connections. In his analytical studies he has used two
approaches. One of these is based on Bijlaard's approach to determine the
displacements and stresses in the vicinity of welded tubular joints. A
second more recent approach, is based on a development by Dundrova (20)
which permits the intensity of loading to be described at any point on the
curve of intersection between the web and chord member.

In a recent investigation Greste and Clough (21) have successfully used
a finite element method to study stresses in tubular joints including the

effect of the flexibility of the web members as well as the chord member.



This method has great versatility since it can treat a variety of boundary
conditions and it can be used in cases where several tubular members frame
into the joint.

The approach to be used in the present investigation is based on the

use of Donnell's equation for cylindrical shells. Detailed derivations of
this equation and the necessary formulas for its application may be found

in books by Jenkins (22), Gibson (23), or Billington (24). The treatment

by Gibson was used by Scordelis and Lo (25) to develop a general computer
program for the analysis of multiple cylindrical shell roofs. Extensions of
this work to tubular shells under general loading and displacement conditions
form the basis of the investigation reported herein.

Scope of Investigation

This investigation was concerned with the elastic analysis of tubular
members subjected to specified loadings or displacements. The analytical

model used throughout the investigation simulated a typical tee-type tubu-

lar connection, Fig. 1, which consists of a web tube interwelded and normal
to a chord tube. The chord tube is assumed to be simply supported at its
two ends, at which end diaphragms exist which are infinitely rigid in their
own plane, but perfectly flexible normal to their own plane. Loads are
applied to the chord tube by means of the web tube which is welded to it.
The internal stresses and displacements in the chord tube of even this most
elementary type of tubular joint have not as yet been solved completely by
elastic theory. The type of loading, the radial flexibility of the chord

tube and the relative diameters and thicknesses of the chord and web tubes

have a great influence on the distribution of stresses and displacements in

the chord tube.




6

In the present study, a general method of analysis is outlined by which
a tubular cylindrical shell may be analyzed for any input loading or dis-
placement pattern. Four computer programs, which have been developed, based
on this method of analysis, will be described. Programs 1, 2, and 3 provide
automatic solutions for the internal stresses and displacements in a circular
cylindrical shell under a variety of loadings. Program 1 treats localized
line loads applied along a single generator at the crown. Programs 2 and 3
extend the loadings to a number of generators around the circumference of
the cylindrical shell. Program L4 provides a solution for the case in which
either applied forces or displacements are imposed on the shell at specified
points and the unknown corresponding displacements or forces are found.

This program makes it possible to determine the load distribution to the
chord tube, at the web tube-chord tube interconnection, Fig. 1, produced by
a uniform vertical displacement of the chord tube along the line of intef—
connection. Once this load distribution is known, Program 3 can be used to
determine stresses and displacements produced.%y the loading.

In order to check the accuracy of the computer programs, they are first
used to analyze several cases which have been solved by other investigators
and comparisons of results are made. The computer programs are then used to
study typical tee connections in which a number of different assumptions are
made as to the distribution of loading imposed on the chord tube by the web
tube. The results are compared and discussed with respect to the validity
of some of the present design assumptions being used. Finally, a computer
analysis is made of a case studied experimentally by Toprac (18) and a com-

parison of the results is discussed.



METHOD OF ANALYSIS AND COMPUTER PROGRAMS

General Approach

The computer programs used in this investigation are based on the
classical thin shell theory for the analysis of a simply supported circular
cylindrical shell segment, Fig. 2. A short description of the steps which
must be followed in analyzing a single shell is given below. For a detailed
discussion the reader is referred to the book by Gibson (23).

1. Statics ~ The unknown internal forces shown in Fig. 3 are expressed in
terms of the known surface lcads. The number of unknown internal forces
exceeds the number of equations of statics available; therefore, the system
is statically indeterminate.

2. Geometry -~ The internal strains are expressed in terms of the displace-
ments u, v, and w.

3. Properties of materials - The internal stresses are expressed in terms

of the internal strains through Hooke's law and thence, by Step 2, in terms
of u, v, and w.

L, Force-displacement equations - The internal forces are expressed in

terms of the displacements u, v, and w by integrating the stresses, from
Step 3, over the thickness of the shell.

5. Compatibility equation - The preceding steps will result in a set of

partial differential equations equal in number to the number of unknown

forces and displacements. By substitution and successive elimination this
set of simuwltaneous equations can be reduced to a single equation with one
unknown. This equation will be an 8th order partial differential equation

and is called the compatibility equation. The compatibility equation used
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in the computer programs was first proposed by Donnell (7) and subsequently
derived independently by Jenkins (22). A full derivation of the equation is
also given in Appendix II of the book by Gibson (23).

6. Solution of the compatibility equation - This consists of a solution in

two parts: (l) the particular integral or a membrane solution which is
dependent on the surface loading, but independent of the boundary conditions
along the longitudinal edges; and (2) the complementary function or homo-
geneous solution containing eight constants of integration which are
dependent on the boundary conditions along the two longitudinal edges of the
circular shell,

7. Final internal forces and displacements - Once the compatibility equa-

tion is solved for the single unknown, the remaining internal forces and dis-
placements may be found by back substitution into the previously derived
equations.

The above steps for a single shell segment form the basis for the
analysis of a closed cylindrical tube which is considered to be composed of
two semicircular cylindrical shell segments joined along their two longitu~
dinal edges to form a closed tube.

Analysis of Closed Cylindrical Shell Tube

The initial problem to be solved may be defined simply as follows:
given the circular cylindrical shell shown in Fig. b4, which is subjected to
a localized line load or displacement; find the resulting internal forces
and displacements in the shell at specified points.

The closed cylindrical tube is made up of two semicircular shell ele-
ments or segments, ab and cd, interconnected at two longitudinal joints,

1 and 2, Figs. 5 and 6. At each longitudinal joint there are four degrees



of freedom, either a known external force R or a known displacement r

can exist in each of the four directions shown in Fig. 5. Any longitudinal
distribution of these quantities can be replaced by the sum of the harmonic
components of an appropriate Fourier series. For any single harmonic dis-
tribution of order n the forces will produce displacements of the same
longitudinal distribution and vice-versa. Also for a typical harmonic, a
single characteristic value may be used to describe any force or displacement
pattern along a joint. This makes it possible to treat the entire longitu-~
dinél Joint as a single nodal point and to operate with single forces and
displacements instead of functions. If the conditions of static equilibrium
and geometric compatibility are satisfied at this nodal point, they will be
automatically maintained along the entire longitudinal joint.

Once the solution for a shell subjected to a force or displacement pattern
varying as a typical harmonic of order n has been programmed for the
digital computer, the results for any longitudinal variation can be readily
obtained by a simple summation process using as many terms of the appropriate
Fourier series as is deemed necessary for accuracy. In the computer pro-
grams to be described later, up to 100 non-zero terms may be used for this
purpose. Only a typical case of a first harmonic force or displacement
variation need thus be considered in the further discussion of the problem.

A direct stiffness solution in matrix form is used in the solution.

The important steps will be briefly described.

Consider a semicircular shell element ab or c¢d taken as a free
body, Fig. 6. These elements are subjected only to boundary forces S or
boundary displacements v at their two longitudinal edges. These quanti-

ties are defined in an element coordinate system as shown. It is desired to
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determine the element stiffness matrix for each element relating the eight
edge forces to the corresponding eight edge displacements, first in the
element coordinate system shown in Fig. 6, and then by suitable transforma-
tions in the directions of the fixed coordinate system shown in Fig. 5.

Note that since no surface loads exist in this problem, only the homogeneous

solution of the compatibility equation described in the preceding section is

necessary.

The geometry of a single shell element can be defined by its span L,

radius R, thickness t, and central angle ¢k = 180°

The following matrix relationships can be written:

{s} = [BS] {a}
8x1 8x8 8x1

(1)

v} = [z {8}
8x1 8x8 8x1

(2)

The values S and v represent respectively the eight edge forces
and eight corresponding edge displacements (in each case, four at each edge)
shown in Fig. 6, which can be expressed in terms of elght arbitrary con-
stants A premultiplied by coefficient matrices BS or Bv . Formulas for
the terms of the BS and BV matrices may be found in the book by Gibson
(23). These coefficients are dependent on the geometry of the shell element
together with its modulus of elasticity and Poisson's ratio. Thus in Egs. (1)
and (2) only S, v, and A are unknowns.

From Eq. (2):
{a} = [ 17" v} (3)

Substituting into Eq. (1):
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{s} = [B1I[B 17T {v}
8x1 s v
(L)
= [x] {v}
8x8 8x1

The matrix k = BS B;l represents the element stiffness matrix in the
element coordinate system of Fig. 6. The element stiffness matrix can be
converted to the fixed coordinate system of Fig. 5, with any ordering of the
forces and displacements desired, using simple transformation matrices.

Av} = [a] {7} (5)
{8} = [v] {8} = [a]® {5} (6)

In Egs. (5) and (6) the bar above S or v denotes that these quanti-

]

ties are referred to a fixed coordinate system. The values of a and b
are respectively 8 x 8 displacement and force transformation matrices which
can be easily calculated from the directions shown in Figs. 5 and 6. DNote
also that b equals the transpose of a. Now substituting Eq. (4) and then
Eq. (5) into Eq. (6):

{s} = [v] [x] [a] (¥}

8x1 T _

[a]” [k] [a] {v} (7)

[x] {v}
8x8 8x1

it

The matrix k is the element stiffness matrix relating the‘shell ele-

ment edge forces to its edge displacements, both in a fixed coordinate system.
This process may be repeated for both shell elements ab and cd of Fig. 5,
and Eq. (7) may be rewritten in terms of submatrices for each of these ele-
ments:

For shell element ab:
§; Eéa E;b ;a
= (8)

Sy %oa B M

8x1 8x8 8x1
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For shell element cd :

S k.. k V.

d dd “de d

- _ _ (9)
Sc k.cd kcc vC
8x1 8x8 8x1

in which the 4 x L submatrices E;j represent the forces at edge i
produced by unit displacements at edge j

Static equilibrium of joints 1 and 2 in Fig. 5 requires that the
external joint forces R must be the sum of the edge forces s acting on
the two shell elements which form the joint:
R S 5

@ (10)

Geometric compatibility of the joint requires that the external joint

displacements r must be equal to the edge displacements v of the two

shell elements which form the joint:

11 ]V ] Va
SR (11)
2 b c
Substituting Eqs. (8), (9), and (11) into Eq. (10) gives:
R) |(kgg * Eag)ilkgy + k) |7y
R2 (kba * kcd)l(kbb + kcc> Ty
SRR N I
- --o-:-ou- . (12)
Koy i Koo || T2
8x8 8x1
or simply
{r} = [K] {r} (13)

8x1 8x8 8x1
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Equation (13) represents a set of eight simultaneous equations in which
all of the elements in the structure stiffness matrix K are known. The
joint forces R and the joint displacements r involve sixteen quantities,
eight of which are specified as known applied joint forces or displacements
and eight of which are corresponding unknown joint displacements or forces.
Wherever a joint force is known the corresponding joint displacement is
unknown and vice-versa. The eight unknown quantities may be found by solv-
ing the eight simultaneous equations.

After all of the joint displacements r have been found the eight arbi-
trary constants A for each shell element ab and cd can be determined

using Egs. (3) and (5).

{a} = [B 1My} = [B 17 a] {r}
e A R (14)

With the constants known the internal forces and displacements at
selected points in each shell element can be calculated using equations
similar to Egs. (1) and (2).

Types of Loading and Fourier Series Representation

The five different types of line loads which can be applied at a

generator are shown in Fig. 7, and consist of:

(a) Type 1 - Radial load P

(b) Type 2 - Tangential load T

(c) Type 3 - Transverse moment load M¢

(d) Type 4 - Londigitudinal moment load M
(e) Type 5 - Radial moment load M,

Each load is defined by:
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(a) Its total magnitude ,
(b) Its uniformly distributed length along the generator 6
(¢) The distance from the left end of the shell to the center
of the distributed locad § .
The moment loads, Mk and Mz’ are made up of statically equivalent
sets of radial and tangential loads respectively as shown in Fig. 7.
The Fourier series expression for the radial load P, Fig. Ta, is as

follows with the origin taken at midspan as indicated in Fig. k.

[00] [v e}
P(x) = z a  cos E%§-+ E bn sin E%§
n=1,3, .. n=2,k, ...
o n+3
_ P . nmg . nms 2 nnx
= . g —5 sin T sin &7 (-1) cos (15)
Sl R .
o L . 5 n
P .. nm .. nm 2 ., nmx
+ n-g g s Sin T sin S5p (~1)° sin 5
- ’ 3 LI ]

Similar expressions may be written for the tangential load, Fig. Tb.
and the transverse moment load, Fig. Tc, by replacing P by T and M¢
respectively in Eq. (15).

The Fourier series expression for the longitudinal moment Mx’ Fig. T4,

is as follows with the origin at midspan as indicated in Fig. L.

o0 [s0]
P(x) = Z a cos 2£5~+ z b sin E%£
n=1,3, . n=2,k4,
n+3
oo 16eM —_—
i) 4y
= ) ;(c rgﬁ -1) cos Egé (-1) 2 cos 255 (16)
n=1,3, ... nmd
n
. oo 16focos nms 1)cos nmé (_1)2 ., DTx
g 2\ oL L ST
n=2,4, ..
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A similar expression may be written for the radial moment load, Fig. Te,
by replacing M_ by M, in Eq. (16).

Description of Computer Programs 1,2, and 3

These computer programs have been written for the IBM TO9L digital
computer in FORTRAN language to perform analyses of cylindrical tubes
based on the theory just described.

Programs 1, 2, and 3 permit solutions for internal forces, moments,
and displacements, in a circular cylindrical shell subjected to variety of
localized line loads. Program 1 treats line loads applied along a single
x-generator at the crown. The program can treat simultaneously any combin-
ation of the five loading types shown in Fig. 7. Several loads of the same
type applied along the crown can also be treated at one time. Program 2 1is
an extension of Program 1 so that the same types of loads can be applied at
up to 20 different x-generators at the same time. This is accomplished
internally in the computer by analyzing the shell for each loaded generator
as in Program 1 and then superposing the output results for all loaded
generators, after each harmonic, at the desired x, ¢ coordinates refer-
enced to the crown of the actual shell. The location of each loaded genera-
tor is specified by its angle ¢ from the crown, Fig. 4., The loading
directions are defined by the radial and tangential directions at each
loaded generator. A maximum of 50 localized line loads, 10 of each of the
types shown in Fig. T, may be input at each loaded generator. Program 3 is
a modification of Prograﬁ o, The changes are that the input loading direc-
tions at each generator are now specified with respect to vertical and
horizontal directions and only loading types 1, 2, and 3 shown in Fig. T are

permitted. In addition; the maximum permissible number of loaded generators
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is increased to L2,

The input and output for Programs 1, 2, and 3 are simmlar in nature

and may be summarized as follows.

Input Data

lst card:

2nd card:

3rd card:

bth card:

5th card:

6th card:

Title of problem

(1) Longitudinal span

(2) Radius of shell

(3) Shell thickness

(4) Modulus of elasticity

(5) Poisson's ratio

(6) Fourier series limit, therefore, the number of the highest
term to be used to represent loading; maximum number is 100
for unsymmetrical loads with respect to midspan and 200 for
symmetrical or antisymmetrical loads if non-contributing
harmonics are skipped under (8).

(7) Indicators defining desired amount of output.

(8) Indicators defining whether or not odd or even harmonics
terms are to be skipped; utilized for symmetrical and
antisymmetrical loadings.

Total number of loaded x-generators

Fourier series numbers after which results are to be printed;

as many as desired up to the Fourier series limit

x-coordinates at which output results are desired

¢-coordinates at which output results are desired
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Next cards: TFor each loaded x-generator three or more cards are required

as follows.

(1) ¢-angle defining location of loaded generator.

(2) Number of loads of each type, shown in Fig. 7, applied on
this generator.

(3) One card for each load in sequence is required next which
defines the magnitude, distributed length &, and location
from the left support & of the load Fig. T.

Printed Output

(1) 1Input data is printed as a check

(2) The results for all internal forces, moments and displacements
shown in Fig. 3 are given at the x, ¢ coordinates specified
in the 3rd and U4th cards of the input

Description of Computer Program L4

In this program a set of specified points on the shell surface is con-
sidered. At each of these points either applied vertical or horizontal
forces or displacements are input and the corresponding unknown displace-
ments or forces are calculated and output. Each force at a specified point
is defined as a line load of given length along a loaded generator. The
corresponding displacement 1s at the specified point, which is the center of
the loaded length.

In the program, the flexibility matrix F relating the forces and dis-
placements at the considered points is first formed and the unknowns are
then found by the following matrix operations:

r = FR (17)
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or after subdividing

where r are the applied displacements and X are the corresponding
unknown forces; R are the applied forces and A are the corresponding
unknown displacements.

A maximum of 10 loading cases may be treated at one time in the compu-
ter program. The flexibility matrix F is determined using the method of
analysis described for Programs 1, 2, and 3. Once the flexibility matrix is

formed the unknowns are found using Eq. (18).

r = Fll X + F12 R (19)
Solving for X in Eq. (19):
-1
X =F7 [r—FlgR]
After X is found:
A= F21 X + F22 R (20)

The maximum permissible number of considered points is 42 and at each
point vertical and/or horizontal input forces or displacements may be
included or if desired the restraint corresponding to either direction may
be neglected. For sets of points and input forces and displacements which
are symmetrical or antisymmetrical with respect to x = 0 and/or ¢ =0 ,
Fig. 4, advantage may be taken of symmetry in the input. Thus for a case in
which symmetry exists about both x =0 and ¢ = 0 a total of L2 points
and the corresponding input may be considered on 1/L4 of the whole shell.

The input and output for Program 4 may be summarized as follows:



19
Input Data
1st card: Title of problem
2nd card: Same as Programs 1, 2, and 3
3rd card: Fourier series numbers after which results are to be printed
bth card: (1) Number of considered points.

(2) Number of load cases.

(3) Indicator defining whether system is unsymmetrical,
symmetrical, or antisymmetrical about x =0

(4) Indicator defining whether system is unsymmetrical,
symmetrical or antisymmetrical about ¢ = 0 .

Next cards: One for each considered point

(1) ¢-angle for location of point

(2) Distributed load length &

(3) Location from left end &

(}) Indicators for both vertical and horizontal directions
indicating whether an applied displacement or applied
force exists or whether restraint is to be neglected.

Next cards: One set of cards for each load case specifying in sequence

the magnitudes of the input applied displacements or forces.

Printed OQutput

(1) Input data is printed as a check.
(2) A complete list of the values of the input and the calculated

forces and displacements at each considered point is given.
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ACCURACY OF METHOD OF ANALYSIS

General

To evaluate the accuracy of the method of analysis, as presented in
this paper, several different load conditions are considered and the results
compared with other available solutions. First, the case of a horizontal
tube under three concentrated load conditions, applied separately at the
crown;ywas analyged using Program 1. The significant results for particular
locations are compared with those presented by Kempner (11). The second
case study deals with a horizontal tube under a radially directed and uni-
formly distributed pad-load as solved previously by Bijlaard (12). The com-
parative results in that case are analyzed by using Program 2.

Tube Under Concentrated Loads

Three basic loads, namely a radially directed load P ,» & longitudinal-
moment load Mx , and a transverse-moment load M¢ are considered in this
first comparative study. These loads are applied separately at the mid-span
point of the crown, as shown in Fig. 8. The shells are simply supported at
both ends. The span-to-diameter ratio (L/D) in all cases is 0.5, and the
wall thickness-to-diameter ratio (t/D) is 0.005. All loads are distributed
over a finite length ¢ along the crown generator. The entire stress dis~
tribution in each case has been determined using Program 1. In each case the
internal shell forces at a particular location are compared with those eval-
uated by Kempner (11). The results of both the Kempner and Program 1

solutions are presented in Table I.
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TABLE I: COMPARATIVE STUDY OF DISPLACEMENTS

AND STRESS RESULTANTS FOR THREE LOAD CASES (FIG. 8)

LOAD CASE A B C
b 8 8
LOADING P=1x10 MX = -1 x 10 M¢ =1 x 10
LOCATION x=0,¢=0 x=1.25, ¢ =0 x=0, ¢ =0.0125 rad
METHOD | KEMPNER PROGRAM 1 | KEMPNER PROGRAM 1 | KEMPNER PROGRAM 1
2
- 111x10% | .1110x10% | .20hx10° | .2039x103 | —.260x10% | _.268x103
M 288 1OLL 2876 4 6 T 66 T T 1
o . X .20776x10 .675x%10 .6619x10 -1.00x10 -.990x10
MX .205}(10)1L .2031+x10h .66Tx10T .653Mx107 —.3OOxlO7 —.29TlxlO7
—N¢ .198><:L0LL .l981x10h A1kx107 | L1134x107 —.399x106 -.2358x106
L b 6 6 6 6
—NX .151x10 .1509x10 .279x10 .2789x10 -.46hx10 -.3129x10
The number of Fourier series terms used in each computer solution was
100 for load cases A , B and C . In each case the non-contributory terms

of the Fourier series were skipped. The results due to the radial load P
are in excellent agreement. This is particularly significant for the tubular
Joint problem under consideration. Also the different results for the two
other load cases prove to be in very close agreement, except for the N¢ and

Nx stress resultants for load case C .

Tube Under a Radial Uniformly Distributed Pad-Load

The second case study considers a loading which has been used in earlier
pressure vessel studies as well as in initial studies of tube-to-tube connec-
tions. The load arrangement is shown in Fig. 9. The distributed load is
directed radially and assumed to be acting uniformly along eleven generators

each with a load length of 2c The internal stress resultants were

o
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evaluated for two different tubes and are compared at one location with
results obtained by Bijlaard (12). The results of both methods, as presented
in Table II, are generally in excellent agreement. The radial displacement
w and the Nx forces as analysed by Program 2 show smaller values than the
Bijlaard solution indicates, particularly for the longer shell. This phen-
omenon is typical for long shell solutions using Donnell equations but is
not very critical for the study of tube-to-tube connections. Because of the
significance of the radial stresses in such connections the accurate agree-
ment of the contributing shell forces M¢ and N¢ is far more important.

TABLE II: COMPARATIVE STUDY OF DISPLACEMENTS

AND STRESS RESULTANTS AT CENTER OF LOAD (FIG. 9)

SHELL L/a = 3 L/a = 20

METHOD BIJLAARD PROGRAM 2 BIJLAARD PROGRAM 2

F%ggﬁgR m=b1, n=061 n=100 | n=120 m=41, n=61 n=161 | n=201
-w / %é 3645 3429 3429 12930 g5hh 9542
M¢ / P 0.0863 0.0878 | 0.0879 0.1030 0.1032 | 0.1029
MX / P 0.0559 0.0560 | 0.0562 0.0634 0.0631 | 0.0622
Xy g- 6.4512 6.4312 | 6.4315 6.1336 6.4356 | 6.4090
v,/ E- 7.120 6.849 | 6.8k9 8.70L 7.968 | 7.966

Tt should be noted that increasing the number of Fourier series terms does
not improve the results in any significant fashion. Because of symmetry only
odd numbered series terms were used in the Program solution.

In general it can be concluded from the comparative studies that the

method of analysis presented gives reliable results which are generally in
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excellent agreement with results obtained through other solutions.

EFFECT OF THE LOAD TRANSFER IN A T-TYPE TUBE CONNECTION

To analyze the stress distribution in a horizontal tube due to an axially
loaded vertical web member (see Fig. 1) engineers and researchers have made
several assumptions regarding the load transfer between these two members.
It is the purpose of this section to evaluate the accuracy of three assump-
tions by analyzing and comparing the internal tube forces, using the methods
of analysis presented in this paper.

Considering the early availability of the Bijlaard solution the load
transfer between the web member and the chord tube has been studied by
others, assuming a uniformly distributed, radially directed pad-load. This
assumption grossly neglects the actual geometric Joint arrangement in which
the load transfer takes place along the line of intersection between the two
circular tubes. For joints with very small 4/D ratios (less than 0.2) the
discrepancies between the pad-load assumption and reality will be relatively
small. However, for T-joints with larger d/D ratios the difference between
the assumed pad-load and the actual loading will be substantial. Conse-
quently, an unacceptable error in the predicted stress distribution will
result. To improve the agreement a second assumption can be made in which
the load transfer is represented by a uniformly distributed ring load along
the circumference of the web tube. While such an arrangement reflects the
spatial aspect of the load transfer, it still fails to recognize the basic
stiffness characteristics of the horizontal chord tube.

Observing the chord wall geometry, it becomes obvious that the magnitude

of a vertical concentrated force necessary to deflect the tube wall vertically



2k

over a unit distance will be quite different for a point located at the crown
than for a point located further down along the wall of the tube. Considering
furthermore on a relative basis, the almost-infinite longitudinal rigidity
of the web member versus the low radial flexibility of the chord tube, one
can assume readily that the displacement along the intersection between the
two tubes will be virtually uniform. Consequently, the load distribution
along the common intersection will not be uniform, but will show a concen-
trated force flow towards points of maximum stiffness. Hence, the load
transfer will be small at the crown but will reach maximum values at the
deepest point of the line of intersection between the two tubes. To reflect
these considerations a third assumption for the load distribution between the
members may be made based on a uniform displacement condition. A1l these
load assumptions will be studied in this section.

| Because the joint geometry, as reflected in the d/D ratio, affects the
applicability of the load assumptions, two different joint arrangements with
d/D ratios of 0.3 and 0.6 are selected for these studies. For both cases
the L/d and the t/D ratios have been chosen the same, namely 5 and 0.03
respectively. Fig. 10 shows the three basic load assumptions, with, however,
the pad-load directed vertically for reasons of comparison.

The load input for each of the load assumftions has been based on a total
load of P = 1000 1b. for the d = 0.3 D joint and P = 2000 1b. for the con-
nection with a d = 0.6 D web member. A reference chord tube diameter D = 1.0
ft. has been assumed for all cases. In the case of the joint with a d = 0.3 D
the vertically directed pad-load has been represented by uniform loads along
eleven generators evenly spaced in plan. Each line load, with a length 4 ,

carries a total load of 100 1b. except for the two outer generators which
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carry a load of 50 1b. each. For the joint with the larger diameter web
member (d = 0.6 D) , twenty-three generators, evenly spaced in plan, were
used to represent the pad-load. The total load on each of these generators
is 2000/22 = 90.9090 1b. except for the two exterior ones which carry only
half of this load. Fig. 11 shows the two load arrangements for the computer

input.

The uniform ring load--assumption 2--has been distributed in plan over

a number of generators with a total length equivalent to the circumference

md of the web tube. TFor the smaller diameter web member (d = 0.3 D) , a
total of 20 generator sections, radially spaced in plan with equal ihtervals,
were used. For the larger diameter web member (d = 0.6 D) the number of
generator sections was increased to 4L, The resulting load arrangement is
shown in Fig. 12.

To develop the third load assumption the same 20 and 44 points respect-
ively representing the centers of the circumferential segments, as shown in
Fig. 12, were ﬁsed. The primary condition imposed was the requirement of
identical vertical displacements for each point in each case. TFrom this

condition the loads necessary to meet this requirement were cbtained using

Program 4. These were scaled to the desired total load for input in the

second phase of the program in order to evaluate the internal stress distri-
bution in the chord tube. With the same segmental lengths of 0.04714D and
0.0L4286D, as before, the segmental unit loads for the 0.3 D and 0.6 D web
members are 50.0000 1b. and 45.4545 1b. respectively. The load concentra-
tion factors for each segment as analyzed from the primary condition of a
uniform ring displacement are presented in Table IITI. It is of interest to
note that the load at the lowest point of the intersection shows a concen-

tration factor of about 2.5. Additional studies have indicated that the same
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general value is practically independent of the d/D and t/D ratios and it
thus appears applicable for practically any tubular T-type joint.

Using the three previously defined load assumptions the internal stress
resultants were analysed using Program 3. The results for Case T
(P =1000 1b. , D=1.0 ft. , 4/D=0.3 , L/d = 5 » t/D = 0.03) are presented
in Figures 13 and 1k. Similarly, the results for Case II (P = 2000 1b. s
D=1.0ft. ,d/D=0.6,L/da=5,t/D=0.03) are presented in Figures 15
and 16. Comparing the results for the three load assumptions it becomes
immediately obvious that the pad-load is indeed basically in error with real-
ity. While maximum stresses are expected to occur in the immediate vicinity
of the intersection between the two tubular members the analysis shows invar-
iably extreme stresses at the center of the branch pipe. The results of the
ring-load assumption seem to reflect the basic behavior of the joint arrange-
ment under study better, as illustrated by the obvious stress concentrations
near the lower point of the line of intersection between the two tubes.
However, the third load assumption, which is based on an assumed uniform
ring displacement, does produce significantly higher stresses which are un-
doubtedly a better representation of the state of stress in an actual joint.
It is realized that in the present method of analysis, the presence of the
vertical web member has been omitted-~although its behavior in transmitting
load has been considered in evaluating the load distribution under assumption
3. However, while the results reflect the stress distribution only in an
isolated cylindrical shell, it is believed that the results—-particularly
under assumption 3--describe the basic phenomenon of a tubular joint accu-
rately enough to merit the use of this method to study the influence of the
principal parameters of tube-to-tube connections, namely d/D and t/D

ratios. Also the discrepancy in the assumption of an axially infinite
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rigidity of the web member versus the radial flexibility of the chord in
evaluating the load transfer is recognized. For the most commonly used joint
arrangements-~d/D between 0.3 and 0.lU——the resulting error will be relatively
small. For joints with larger 4/D ratios the error will of course incresse.
The above two discrepancies will invariably result in higher calculated peak
stresses by this method than actually occur in a T-type joint.

In comparing the results it is of interest to note that in Case I, with
d = 0.3 D, the maximum values for M¢ . MX . N¢ , and NX are of the same
order of magnitude for load assumptions 1 (pad load) and 3 (uniform dis-
placement). The locations of these maximum values as noted before do not
coincide. For Case II with 4 = 0.6 D » the relative stress similarities no

longer exist.

*
TABLE ITI: SEGMENTAL LOAD CONCENTRATION FACTORS --LOAD ASSUMPTION 3

Case I (4 = 0.3 D) Case II (d = 0.60 D)
sogmers | COHTEHOn seguens | Cngenererion

1 2.372 1 2.677
2 1.996 > o 1,88
3 1.22k 3 2.036
L 0.537 L 1.489
5 0.091 5 1.056
6 -0.066 6 0.745
7 0.558
8 0.h11
9 0.324
10 0.32k4
11 0.219
12 0.20h

* .
For numerical identification of segments see Fig. 12.
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COMPARISON OF ANALYSIS VERSUS EXPERIMENTAL RESULTS

To test the applicability of the analysis, experimental results of a
study by Toprac (18) were used to verify those predicted by the present
method of analysis. The case study concerns a T-joint having a 12.5 in.
0.D. horizontal chord member with a wall thickness of 0.250 in. In the cen-
ter of the 48 in. long chord tube a vertical branch member with a 2.672 in.
0.D. and a 0,203 in. wall thickness has been welded to the chord. The load
consisted of an axial load applied to the branch tube producing a 1 ksi
stress in this member.

The analysis 1s carried out by assuming a uniform vertical ring dis-
placement along the line of intersection between branch and chord member.
This condition is introduced at 40 points uniformly spaced in plan along the
intersection. The loads necessary to meet this requirement are obtained in
the first phase of the analysis. In order that the total lcad is identical
in magnitude to the experimental value, the analytically determined loads
were proportionally adjusted. These adjusted forces were introducéd as
uniformly distributed loads along 40 generators, the centers of which are
spaced radially in plan at 9o intervals. Fach generator had a length of

(ﬂdihO in. where dm,= mean dismeter = (4 /2 . The internal

. + 4
inner outer
shell moments and forces (M¢ s Mx , and N¢ s Nx respectively) were evalu-
ated by means of the computer and then the surface stresses G¢ and Gx
were calculated. The stress results which are shown in Figures 17 and 18 are
plotted versus ¢ for x =0 and versus x for ¢ =0 . On the same graph

the experimental stress values according to Toprac are also presented. It is

satisfactory to note that the important G¢ stresses along the section
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x =0 (see Fig. l?)yagree fairly closely with the experimental values. The
agreement would undoubtedly improve if the outer diameter d instead of the
mean diameter dm of the branch tube would have been considered in the
analysis. Also the normal build-up of the welds would further increase the
effective diameter of the branch tube along the line of intersection between
the branch and chord section. Such a large d value would result in a
general shift towards the right (larger ¢) of the maximum values of 0¢
and o along the section x = 0 in both Figs. 17 and 18. Consequently
the steep portions of these curves in that vicinity would also tend to move
to the right and agree even better with the experimental values. The G¢
and 0o values along the crown (¢ = 0) have smaller maximum values and
do not agree as well with the experimental results. The significant discre-
pancies in the OX stresses along the crown cannot be explained. However,
in general, one can conclude that the comparison between analysis and experi-
ment can be considered satisfactory, and that the method of analysis can be

used to predict with reascnable accuracy the stress distribution in T-type

Joints built from circular tubes.

CONCLUSIONS

A solution for the determination of the state of stress in the chord-
tube wall of a T-type tubular connection has been presented. The import-
ance of correctly evaluating the basic load transfer from the branch tube to
the chord member has been clearly illustrated. While the analytical model
used in the procedure presented does not completely take account of the con-
tinuity created through the T-joint weld, it does include the predominant
influence resulting from the differential stiffness of the radially flexible

chord~tube wall and the axially rigid branch tube.
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The method used can also be extended to investigate the structural
integrity of tubular joints having branch-to-chord member arrangements other

than the simple T-type joint treated in this paper.
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APPENDIX II - NOTATION

The following symbols are used in this paper:

a = radius of the web tube

a s bn = coefficients in Fourier series expansion

[a] = displacement transformation matrix

{a} = matrix of arbitrary constants for shell

[b] = force transformation matrix

{BS}, {BV} = coefficient matrices

d = diameter of the web tube

D = diameter of the chord tube

E = modulus of elasticity

[F] = flexibility matrix

(k], [k] = shell element stiffness matrix referred to an element system
or fixed coordinate system respectively

[, . ] = submatrix of element stiffness, represents the forces at edge

+J i produced by unit displacements at edge

[K] = structure stiffness matrix

L = span of the shell or chord tube

MX = external longitudinal moment load or internal longitudinal
bending moment

Mz . = external radial moment load

M¢ = external transverse moment load or internal transverse bending
moment

Nx = internal longitudinal membrane force

N¢ = internal transverse membrane force

P = external radial load

{r} = external joint displacements

R = radius of the shell or chord tube

[R] = external forces



{s}, {s}

{v}, {v}

{x}
S
{r}
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shell element edge forces referred to an element or a fixed
coordinate system respectively

wall thickness of the shell or chord tube

external tangential load

fixed cartesian coordinates

displacements in x, y, and z directions respectively

shell element edge displacements referred to an element or
a fixed coordinate system respectively

unknown forces
distributed load length along the generator
unknown displacements

distance from the left end of the shell to the center of the
distributed load

angle from the crown to a specified point
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UNIVERSITY OF CALIFORNIA Department of Civil Engineering
A, C. Scordelis and J. G. Bouwkamp

Notes on IBM TO94 Program 3 for Tubular Joint Analysis

1. IDENTIFICATION

CIR - 3: Solution of circular cylindrical shells with live loads applied
along generators--Program 3--Nov. 1964 (vertical, horizontal and M(phi)
loads only).

2. REFERENCES
a. "Analytical Study of Tubular Tee-Joints" by A. C. Scordelis and
J. G. Bouwkamp.
b. "The Design of Cylindrical Shell Proofs" by J. E. Gibson, 2nd Ed.
D. Van Nostrand Co., Inc., Princeton, N.J., 1961.

3. FORM OF INPUT

a. See attached FORTRAN IT listing of program for detailed description
of input.
b. Additional explanation of iaput is as follows:

(1) First Card Any T2 characters may be used for title.
(2) Second Card

Col. 51 - 54 Fourier series limit--the number of the highest
harmonic term of the series to be used to repre-
sent the longitudinal distribution of loading;
maximum number is 100 for unsymmetrical loads
with respect to midspan and 200 for symmetrical or
antisymmetrical loads if non-contributing harmonics
are skipped in cols. 68 or 70.

" Col. 55 - 58 Numpin--total number of times results are to be
printed, one for each Fourier series number speci-
fied in fourth card. If Numpin is set at 0, results
will be printed only after Fourier series limit has
been reached.

Col. 59 - 62 and Col. 63 - 66 Number of cross-sections and num-
ber of angle sections refer to the total number of
x and ¢ coordinates respectively at which output
results are to be calculated.

Col. 68 for loadings antisymmetric about midspan, the odd
Fourier terms can be skipped.
Col. 70 for loadings symmetric about midspan, the even

Fourier terms can be skipped.

(3) Next Card The disturbance limit should begiven a value of 1.0 E-16,



L,

(L) Next Card TIf Numpin is set to zero on second card, skip this

card and printout of results will be given only
after Fourier series limit has been reached.

FORM OF QUTPUT

a.
b.

Input data is printed as a check.

Final internal forces and displacements are printed for each point
(x,9) designated in input. See references 2a and 2b for detailed
description of following output gquantities.

1) M
2) M

Transverse moment per unit length

¢

Longitudinal moment per unit length

Normal shear on transverse section per unit length

w
Mo x
L1}

L) N¢ = Transverse membrane force per unit length
5) Nx = Longitudinal membrane force per unit length
6) U = Longitudinal displacement
7) W = Radial displacement
8) Q¢ = Normal shear on longitudinal section
9) Qé = Q¢ + 8Mx¢/3x = Modified normal shear per unit length
10) Nx¢ = Membrane shear per unit length
11) V = Transverse displacement
12) 8 = Rotation about longitudinal axis
13) M = Torsional moment per unit length



# DECKS
i LIST
LABEL
* FORTRAN
CCIR=3 (OLD 2A)

UNIVERSITY OF CALIFORNIA DEPT. OF CIVIL ENGINEERING

SOLUTION OF CIRCULAR CYLINDRICAL SHELLS WITH LINE LOADS APPLIED ALONG
GENERATORS --— PROGRAM 3 ~—-—- NOVes 1964
VERT. HORI1Zs AND M(PHI) LINE LOADS ONLY

PROGRAMMED BYoee KeSs LO
FACULTY INVESTIGATORSee AeCo SCORDELIS AND JeGe BOUWKAMP

INPUT DATA
FIRST CARD - TITLE OF THE PROBLEM

SECOND CARD - COLe 1 TO 10 = SPAN (F10.0)
COLe 11 TO 20 - RADIUS OF SHELL (F10.0)
COLes 21 TO 30 - SHELL THICKNESS (F1060)
COLes 31 TO 40 - MODULUS OF ELASTICITY (F10.0)
COLe 41 TO 50 - POISSON RATIO (F10.0)
COLe, 51 TO 54 —~ FOURIER SERIES LIMIT (14)
COLe. 55 TO 58 - NUMPIN
NUMBER OF PRINT OF RESULTSs MAXe 100 (I4)
COLe 59 TO 62 — NUMBER OF CROSS-SECTIONSs MAXe 35 (14)
COLe 63 TO 66 - NUMBER OF ANGLE SECTIONSs MAXe 35 (14)

NnNOoNnNnOoNAanNnNnOa NN NANNONNND

COL, 68 - BLANK TO INCLUDE ODD FOURIER SERIES
1 TO SKIP ODD FOURIER SERIES
COLe. 70 - BLANK TO INCLUDE EVEN FOURIER SERIES

1 TO SKIP EVEN FOURIER SERIES

NEXT CARD - COLe 1 TO 10 = DISTURBANCE LIMIT (E10e3)
IF EXPF(-ALPHA®PHIK) IS LESS THAN THIS LIMIT
DISTURBANCE FROM OTHER JOINT IS NEGLECTED
COLe 13 TO 14 — NUMBER OF GENERATORS ALONG WHICH LINE LOADS
ARE APPLIEDs MAX. 42 (12)
NEXT CARD - EXISTS ONLY IF *NUMPIN' IS NOT ZERO
FOURIER SERIES NUMBERS (1814)
RESULTS WILL BE PRINTED AFTER THESE SERIES NUMBERS
USE NEXT CARDS IF NEEDED
NEXT CARD - X~COORDINATES AT WHICH RESULTS ARE DESIRED (9FB8.0)
USE NEXT CARDS IF NEEDED
NEXT CARD - PHI ANGLES (IN DEGREES) AT WHICH RESULTS ARE DESIRED

(9F8.0)9 USE NEXT CARDS IF NEEDED

NEXT CARDS - LOADING DETAILS
FOR EACH LOADED GENERATOR» 3 OR MORE CARDS ARE REQUIRED
1 - COLoe 1 TO 10 - PHI ANGLE (IN DEGREES) OF GENERATOR ALONG
WHICH LOADS ARE APPLIED (F10.0)

\ﬂﬁﬂﬁﬁﬁﬁﬁﬁﬁﬁﬂﬂﬁﬂﬁﬂﬁﬁnﬁﬁﬁﬁ(
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aNaXs!

2 - COLse 1 TO 3 = NUMBER OF VERT. LOADSs» MAX. 10 (I3)
COLe & TO 6 = NUMBER OF HORIZe. LOADSs MAXe 10 (I3)
COLe 7 TO 9 = NUMBER OF MOMENTS M(PHI)s MAX. 10 (I3)

3 - COLe 1 TO 10 - MAGNITUDE (TOTAL FORCE OR MOMENT) (F10.0)

COLe 11 TO 20 - DISTRIBUTED WIDTH (F1060)
COLe 21 TO 30 = LOCATION FROM LEFT END (F10.0)

ONE SUCH A CARD (NO»3) FOR EACH LOADs INPUT ALL VERTe LOADS FIRST AND

THEN HORIZo LOADSs AND MOMENTS M(PHI) IN THAT ORDERe
CARDS AS ABOVE ARE REPEATED FOR EACH LOADED GENERATOR

ALL ABOVE DATA CARDS ARE REPEATED FOR NEXT PROBLEM TO BE SOLVED

TWO BLANK CARDS ARE ADDED AT END OF THE DATA DECK

DIMENSION AND COMMON STATEMENT

DIMENSION A1(35535)5A2(35535)93A3(35+35)9A4(35s35)9A5(35935)
A6(35935)9A7(35+35)5A8(35935)5A9(35935)95A10(35935)9A11(35935)5
A12(35635) sA13(35935) s XINT(35) 9 YANG(35)sM1(T)eM2(T)eTITLE(12)>s
NPIN(102)sYINT(42s35)9IND(42s35)sV0L(42510)9sHL(42910)5T3(42510)5
DEL1(42910)sDFL2(42910)sDELB3(42510)9sXI[1(42510)9X12(42910)5
XI13(42+10)sLL12(42)sLL2(42)sLL3(42)9sGANG(42)

DT(3)sSERIES(35)sSINKX(35)9COSKX(35)
SK(8s8) sB(149s4)sADELL(B8s8)sADEL2(8s8)sP(8)sD(B)sZX(8)92Y(8)>
C1(8)sC2(8)sB1(13+8)sB2(1398)9CE(8935)9AB(13435)
COMMON AlsA29A39ALsASsA69ATsABsA9sA109A11sA125A13 s XINT s YANGIML sM2

0NV W

FORMAT STATEMENT

11 FORMAT (12A6)

12 FORMAT (5F1000941445212)

13 FORMAT (1814)

14 FORMAT (9FB8.0)

15 FORMAT (2H1 )

16 FORMAT (15HOSPAN LENGTH = F8.3/19HORADIUS OF SHELL = F7e3/22HOTHIC
1KNESS OF SHELL = F9.6)

17 FORMAT (25HOMODULUS OF ELASTICITY = E14¢6/17HOPOISSON RATIO = F6e&
1/24HOFOURIER SERIES LIMIT = 1I3)

18 FORMAT (39HOPRINT RESULTS AFTER FOURIER SERIES NO.)

19 FORMAT (46HOPRINT RESULTS AT CROSS-SECTIONS OF X EQUAL TO)

20 FORMAT (50HOPRINT RESULTS AT PHI (IN DEGREES) ANGLES EQUAL TO )

21 FORMAT (10F12.4)

22 FORMAT (//41HOCALCULATIONS SKIP ALL ODD FOURIER SERIES)

23 FORMAT (//42HOCALCULATIONS SKIP ALL EVEN FOURIER SERIES)

24 FORMAT (513)

25 FORMAT (3F10.0)

26 FORMAT (3E15.6)

27 FORMAT (//54HOINPUT LOADS AT GENERATOR OF PHI ANGLE (IN DEGREES) =

1 Fl1l266)
28 FORMAT (14HOVERTICAL LOAD)
29 FORMAT (59H MAGNITUDE WIDTH LOCATION (FROM LEFT

1ENDY)



30 FORMAT (16HOHORIZONTAL LOAD)

31 FORMAT (14HOMOMENT M(PHI))

50 FORMAT (1E10e3514)

51 FORMAT (21HODISTURBANCE LIMIT = E1063//)

52 FORMAT (67HIDISTURBANCE FROM OTHER JOINT 1S NEGLECTED AFTER FOURIE
1R SERIES NO. I4)

53 FORMAT (22HOAT FOURIER SERIES NOe I4/24HO EXPF(=ALPHAL1®*PHIK) =

1 E15,6/24H0 EXPF(~ALPHA3#PHIK) = E1566)
C
C READs, PRINT AND MODIFY INPUT DATA
C

101 READ 11s (TITLE(I}aI=1s12)
READ 129 SPANsRsTHsEsFNUsMAXSER 9 NUMPIN s NUMX 9o NUMY s NODD 9 NEVEN
IF (SPAN) 999,999,102
102 PRINT 15
PRINT 119 (TITLE(I)sI=1912)
PRINT 169 SPANsReTH
PRINT 17¢ EoFNUsMAXSER
READ 50s DT(1)sNGEN
PRINT 519 DT(1)
IF (NUMPIN) 10451049103
103 READ 13s (NPIN(I}eI=1sNUMPIN)
PRINT 18
PRINT 13s (NPIN(I)eI=1oNUMPIN)
104 J=NUMPIN+1
NPIN(J)=MAXSER
READ l4s (XINT(I)eI=1sNUMX)
READ 14s (YANG(I)eI=1oNUMY)
PRINT 19
PRINT 21¢ (XINT(I)oeI=1sNUMX)
PRINT 20
PRINT 21s (YANG(I)oI=1oNUMY)
IF (NODD) 10651065105
105 PRINT 22
106 IF (NEVEN) 10801085107
107 PRINT 23
108 PI=3,141592654
PIL=PI/SPAN
PRINT 15
DO 125 J=1sNGEN
READ 25s GANGI(J)
PRINT 27s GANG(J)
READ 24y L1lelL25L3
LL1(U)Y=L1
LL2(J4)=L2
LL3(J)=L3
IF (L1) 11351139111
111 READ 259 (VL{JsI)sDEL1I(JsI)oXI1lJeI)sI=1sL1)
PRINT 28
PRINT 29
PRINT 265 (VL(JsI)oDELLI(JoI) o XTI (JoI)eI=1sL1)
DO 112 I=1elL1
VL (JeI)=be#VLI{JoI)/7(PIXDEL1{(Js1))
DELI(J21)=065%#DELI(JsIVEPIL
112 XI1(JeId)=XI1(JeI)®PIL




113 IF (L2) 11691165114

114 READ 259 (HL(JsI)eDEL2{JsI)eXI2(JeI)eI=19L2)
PRINT 30
PRINT 29
PRINT 265 (HL(JsI)sDEL2(JsI)eXI2(JoT)sl=19L2)
DO 115 I=1sL2
HL(Js I )=4e#HL (Jo 1)/ (PI#DEL2(Js 1))
DEL2(Js1)=05%#DEL2(Je I} *PIL
115 XI2(Jel)=XI2(Jel)#PIL
116 IF (L3) 12591255117
117 READ 255 (T3(JeI)sDEL3(Jsl)sXI3(Jel)sI=19L3)
PRINT 31
PRINT 29
PRINT 269 (T3(JsI1)eDEL3(JsI)eXI3(Jsl)el=1pL3)
DO 118 I=1.L3
T3(JeI)=4e#T3(JsI)/(PI#DEL3(Js1))
DEL3(JsI)=0e5#DEL3(Js I)*¥PIL
118 XI3(Jel)=XI3(JsI}%PIL
125 CONTINUE
DO 110 J=1sNGEN
DO 110 I=1sNUMY
YNG=YANG(I)~-GANG(J)
IF (YNG) 30593015301
301 X=YNG-180.
IF (X) 30253029303
302 YINT(JsI)=PI%*(0e5-=-YNG/180¢)
IND(Js ) =1
GO 70 110
303 YINT(JsI)=PI*#(0e5=-X/180s)
IND(Js 1) =0
GO 70 110
305 X=YNG+180e
IF (X) 30753065306
306 GO TO 303
307 X==X=90.
YINT(JsI)=PI*{X/1800)
IND(Js 1) =1
110 CONTINUE
DO 308 I=1sNGEN
308 GANG(I)=PI#(GANG(I)/180.)

OUTPUT IS CLEARED

[aNANA)

DO 131 I=1sNUMY
DO 131 J=1sNUMX
Al(15J)=0,
A2(15J)=0e
A3(IsJ)=06
A4(1sJ)=06
A5(1sJ)=00
A6{I5J)=0s
A7(15J)=06
AB(IsJ)=0e
A9(1sJ)=0s
A10(15J)=00




[a¥a XAl

131

132

133
134

135

137
138

139

160

162

165

All{I+sJ)=0e
Al2(1sJ)=0e
Al3(1sJ)=0e
DO 132 I=1s7
M2(I)=]#6
M1(I)=M2(1)-5
I=1

IF (M2(I)-NUMX) 13451359135
I=I+1

GO 10 133

M2 () =NUMX
MM= |

COEFFICIENTS PI%X/L ARE COMPUTED

DO 136 I=1eNUMX
SERIES(I)=PIL®#XINT(I)

CYCLE FOR EACH HARMONIC IS INITIATED

LDT = 0

LL=1

LPIN=NPIN(1)

DO 700 NN=1sMAXSER
FQ=(=1o) #3%* (NN+1)

IF (FQ) 13751375138

IF (NEVEN) 13991395650

IF (NODD) 13991395650

SPAN AND K ARE GENERALIZED

FN=NN
FK=FN®PIL

STIFFNESS MATRIX IS COMPUTED BY SUBROUTINE STIMAT

CALL STIMAT (FKoeFQsReTHeEsFNUsSKsBoADEL19ADEL29LDTeDT)
AL1=B(14,1)

AL3=B{1452)

BE1=8(1453)

BE3=B(14+4)

CALL INVERT (SKs8e89ZXsZY)

CALCULATE SINKX AND COSKX MATRICES

IF (FQ) 16051609165
N=NN/2

DO 162 I=1sNUMX
X=FN#SERIES(1I)
SINKX(13=COSF (X)
COSKX{ I)=SINF (X)

GO T0 170
N=(NN+3)/2

DO 167 1=1sNUMX
X=FN®#SERTES(1)



SINKX{I)Y=SINF(X)
167 COSKX(I)=COSF(X)
170 X=(-=1e)*%N
C
C CALCULATE INPUT LOADS FOR FACH LOADED GENERATOR
C
DO 200 J=1sNGEN
L1=t110J)
L2=LL2(J)
L3=LL3(J)
TS=SINF{GANG(J))
TC=COSF(GANG(J))
DO 140 I=1,.8
140 P(I)=0.
IF (L1) 14351435141
141 DO 142 I=1lsell
SD=SINF{FN#DEL1(Js 1))
SX=SINF(FN#XI1(JsI))
T4=(VL(JsT)/FN)#SD#SX
P(1)=P(1)+T4%#TS
142 P(2)=P(2)+T4%*TC
143 IF (L2) 14691465144
144 DO 145 I=1,eL2
SD=SINF(FN#DEL2(Js 1))
SX=SINF(FN#EXT2(Js1)}
Ta=(HL(JsI)/FN)#SD#SX
P(2)=P(2)-T4®*TS
145 P(1}=P(1)3+T4*TC
146 IF (L3) 15591559147
147 DO 148 I=1oL3
SD=SINF(FN#DEL3(JsI))
SX=SINFIFN®#XI3(Js1})
148 P(3)=P(3)+(T3(Js1)/FN)®SD¥*SX
155 CONTINUE
DO 156 I=1,3
156 P(I1)=P(I)%#X

C UNKNOWN JOINT DISPLACEMENTS ARE COMPUTED

DO 171 1=198
D(11=0.
DO 171 K=143
171 D(I)=D(I)+SK(IsK)#P(K)

CALCULATE ARBITRARY CONSTANTS FOR SHELLS

D NON

DO 185 I=198

Cl(1)=0.

C2(11=0.

DO 185 K=1s8

Cl(I)=Cl{IV+ADEL1I(1sK)#D(K)
185 C2(1)=C2(I1)+ADEL2(I5sK)#D(K)

TO FIND MAX. INTERNAL FORCES AT DIFFERENT PHI ANGLES

Y OY O



190

191

350

351

352

192

193

194

195

DO 190 1=1513
B1(I,1)1=Cl(1)#B(Io1)=Cl(2)%#B(152)
B1(1e2)=Cl(1)#B(I192)+CL(2)1%#B(Is1)
B1(163)=C1(31%#B(193)=Cl(4)%#B(1s4}
B1(1e4)=Cl(3)%#B(I1e4)4C1(4)%B(153)
B1(1s5)=C1(5)#B(1s1)=C1l(6)#B(1:2)
B1(1l1e6)=Cl(5)#B(152)4C1(6)#B(151)
Bl(1,7)=Cl(7)#B{(1,3)=C1l(8)#¥B(154)
B1(1s8)1=CLl(7)#¥B(1s4)+Cl(B)#B{(1+3)
B2(1s1)=C2(1)#B(1o1)=C2(2)%B{1s2)
B2(12)=C2(1)¥B(12)4C2(21%#B(1s1)
B2(1,3)=C2(3)¥B(163)=C2(4)%B(1s4)
B2(1o4)=C2(3V%¥B(1o4)4+C2(431#B(143)
B2(1,5)1=C2(5)#B(1o1)~C2(6)%B(152)
B2(1s6)=C2(5)%¥B(I1s2)+C2(6)¥B(Is1)
B2(1s7)=C2(T7)#B(1s3)=C2(B)%¥B(1s4)
B2(1s8)=C2(7)%#B(1o4)4C2(8)*B{1+3)
DO 191 1=8,13

DO 191 K=5.8

B1(1sK)=~B1(1sK)

B2(1,K)==B2(I,K)

DO 192 I=1sNUMY

PHI=YINT(JsI)

CC=COSF(BE1#PHI)

C3=COSF(BE3#PHI)

S1=SINF(BE1#PHI)

S3=SINF(BE3*PHI)

IF (LDT-1) 3514351350

PHJ= PHI-1.570796327
E1=EXPF(AL1#PHJ)

E2=EXPF({AL3%PHJ)
PHJ==PHI=1,570796327
E3=FEXPF(AL1#PHJ)

E4=EXPF(AL3%#PHJ)

GO TO 352

E1=EXPF(ALL1#PHI)

F2=EXPF(AL3%#PHI)
E3=EXPF{-AL1*PHI)
E4=EXPF(—-AL3%PHI)

CE(l1,1)= CC#E1

CE(2¢1)==S1%E1

CE(3,1)= C3¥E2

CE(4o1)=—53%E2

CE(5,1)= CCH*E?3

CE(6,1)= S1%®E3

CE(T7.,1)= C3%E4

CE(By,I)= S3#E4L

DO 197 1J=1sNUMY

IF (IND(JsIJ)) 19591955193

DO 194 I=1,13

AB(1,1J)=0e

DO 194 K=148
AB(1s1J)1=ABlIsIJ)+BLITsKI*¥CE(KSsIJ)
GO TO 197

DO 196 I=1s13



AB(I,1J)=0e

DO 196 K=1.8
196 AB(IsIJ)=AB(Is1J)+B2(1sKI¥CE(KoIJ)
197 CONTINUE

C INTERNAL FORCES ARE COMPUTED AND ADDED

DO 200 I=1sNUMY

DO 200 K=1sNUMX
Al(IsK)I=AL(IsK}+AB(L1oI)#COSKX(K)
A2(ToK)=AZ2(TsK)+AB(291)*¥COSKX(K)
A3(TeKI=A3(IsK)+AB(35 ) *SINKX(K)

A4 (ToK)I=AL(ToK}+AR(4 ) #COSKX(K)
AS(I4K)=A5(1eK)+AB (51 )#COSKX(K)
AG(IsK)=A6(1sK)+AB(6p 1) #SINKX(K)
AT(ToK)I=AT(IsK)+AB(T791)*¥COSKX(K)
AB(14K)=AB(IsK)4+AB(8o1)*¥COSKX(K)

A9 (I sK)I=A9(IsK})+AB(991)*COSKX{K)
AlO{TsK)=A10(TsK)+AB(10s1)*¥SINKX(K)
Al1(IosK)=A11(1K)4+AB(11sI)%2COSKX(K)
Al2(1osK)=A12(IsK)+AB(12+1)#COSKX(XK)
A13(T1eK)=A13{ToK)I+AB({13 ] ) #SINKX(K)

200 CONTINUE

PRINT CHECK AND PRINT INTERNAL FORCES AND DISPLACEMENTS

O NN

650 IF (NN-LPIN) 65296514652
651 CALL PINFOR (LPINsNUMY sMM)

LL=LL+]

LPIN=NPIN(LL)
652 IF (LDT-1) 70096535700
653 LDT=2

PRINT 523NN

PRINT 535 NNeDT(2)sDT(3)
700 CONTINUE

GO 70O 101
999 CALL EXIT

END

#* LIST
#* LABFEL
* FORTRAN
CPIN~2=
SUBROUTINE PINFOR (NPsNYsMN)
DIMENSION A1(35935)5A2(35935)9A3(35535)9A4(35935)5A5(35635)5
1 A6(35935)9A7(35935)9AB8(35535)5A9(35935)5A10(35535)5A11(35935)5,
2 Al2(35935)9A13(35935)sXINT(35)sYANG(35)eMI(T7)eM2(7)
COMMON AlsA2sA35A43A590A69ATsABsA9sA100AL1sAL2sAL3oXINTesYANGIML M2
100 FORMAT (60H1INTERNAL FORCES AND DISPLACEMENTS AFTER FOURIER SERIES
1 NOo 14//7)
101 FORMAT (16HO M(PHI) )
102 FORMAT (16HO M(X) )
103 FORMAT (16HO Q(X) }




104 FORMAT (16HO N(PHI) )
105 FORMAT (16HO N({X) )
106 FORMAT (16HO U )
107 FORMAT (16HO W )
108 FORMAT (16HO Q(PHIY )
109 FORMAT (16HO Qe (PHI)
110 FORMAT (16HO N{X=PHI))
111 FORMAT (16HO \ )
112 FORMAT (16HO THETA )
113 FORMAT (16HO M{X=-PHI))
C
NUMY=NY
MM=MN
C
C PRINT INTERNAL FORCES AND DISPLACEMENTS BY SUBROUTINE FORPIN
<
PRINT 100s NP
PRINT 101
CALL FORPIN (AloXINToYANG oML sM29oNUMY sMM)
PRINT 102
CALL FORPIN (A2sXINToYANGsM1 M2 s NUMY ¢MM)
PRINT 103
CALL FORPIN (A3sXINTsYANGsM1 M2 s NUMY oMM)
PRINT 104
CALL FORPIN (A4sXINToYANG oML oM e NUMY s MM)
PRINT 105
CALL FORPIN (AS5sXINToYANG M1 oM2 9NUMY s MM)
- PRINT 106
CALL FORPIN (A6sXINTsYANG M1 sM2 s NUMY 9 MM)
PRINT 107
CALL FORPIN (AT7sXINToYANGsM1 oM29NUMY s MM)
PRINT 108
CALL FORPIN (A8sXINTsYANGoM1 osM29NUMY gMM)
PRINT 109
CALL FORPIN (A9sXINToYANGsM1 M2 NUMY s MM)
PRINT 110
CALL FORPIN (A10sXINTsYANGsM19oM2 s NUMY o MM)
PRINT 111
CALL FORPIN (A11oXINTsYANGsM1sM2oNUMY oMM}
PRINT 112
CALL FORPIN (A12sXINToYANGoM1 M2 s NUMY oMM}
PRINT 113
CALL FORPIN (A13sXINTsYANGoM19M2 sNUMY ¢MM)
CONTINUE
RETURN
END
#* LIST
#* LABEL
#* FORTRAN
CFOR-2~

SUBROUTINE FORPIN (Ae¢XsYoM1oM2oNUMY osMM)
DIMENSION A(35935)9X(35)5Y(35)sM1(T)eM2(7)



10
11

20
30

#*
#*
*

CSTIM

17

FORMAT (10HO (PHI)2Xs6(TH X =F1le4}))
FORMAT (F10.432X36E1808)
NY=NUMY
DO 30 M=1,MM
N1=M1 (M)
N2=M2 (M)
PRINT 10s (X(I)sI=N1eN2)
DO 20 K=1sNY
PRINT 11s (Y(K)o(A(KsI)sI=N1sN2))
CONTINUE
RETURN
END

LIST
LABEL
FORTRAN
AT
SUBROUTINE STIMAT (VKsSLsVRsVAsVEsFNUeSMALLKSBMATsADEL1sADELZS
1 LDTDT)
DIMENSION SMALLK(8s8)sB(1354)sRBAR(13)sBMAT(14094)9BQ(858)>
1 BDEL(B8s8)sCE(438)sADEL1(858)sADEL2(B9B)sX(835B8)sY(8Bs8)9Z(8s8)s
2 ZX(8)sZY(8)sDT(3)

R =VR

A = VA

E = VE

FK = VK

FMU = FNU
EA = E*A
FKK = FK#*FK
RR = R#R
FKR = FK#R

FKR2 = FKR##2
PHIK=16570796327
XDT=DT(1)

CALCULATE B MATRIX

G = le—=FMUR¥2

FI = A®#3/12.

PD = (3.%#G)¥%0o125%(R/A)*#¥0625% (R¥FK)#%0e5
GAMMA = R¥FK#*(A/R)#%065/(36%G)¥%0625

FM1 = ((1e+GAMMA)##2410)%#¥%065
FN1 = ((FM1=16~GAMMA)/2¢)%%0e5
FM1 = ((FM141e+GAMMA) /2 )%%0,5
FM2 = ((1e=GAMMA)*#2+1,)#%0e5
FN2 = ((FM2+1e=GAMMA)/2¢)¥#045
FM2 = ((FM2-1o+GAMMA) /26 )#*#065
ALPHAl = PD*FM1

ALPHA3 = PD®FM2

BETA1 = PD#FNI1

BETA3 = PD#*FN2

BETA2 = PD¥*PD

BETA4 = BETAZ2

10



20

21

22

23

ALPHA2 = BETA2%(1,+GAMMA)
ALPHA4 = BETA2#(GAMMA=1,)
DO 20 1=3,7
DO 20 J=1s4
BllosJ) = 1o
B(lsl) = ALPHA2-FMU#%FKR?2
B(ls2) = BETA2
B(1s3) = ALPHA4-FMU#FKR?2
Bile&4) = BETA4
B(291) = 1e-FMU¥ALPHA2/FKR?2
B(2s2) = ~FMU%BETA2/FKR?2
B(2s3) = 1le—FMU%ALPHAL/FKR?2
B(2s4) = —FMU#BETA4/FKR2
B(353) = -1,
Bl4sl) = O,
B(4s3) = 0.
Blbdsg) = -1,
B(591) = ~1e
B(5s2) = 1e4+GAMMA
B(5+4) = 1.-GAMMA
B(6s1) = =1e
B(692) = 1e+GAMMA®R(1,4+FMU)
B(6o4) = 1e~GAMMAR(1,+FMU)
B(752) = 0o
B(7+4) = 0o
B(8s1) = FMI1-FN1
B(8s2) = FM1+FN1
B(8s3) = ~FM2-FN2
B(Bs&4) = FM2-FN2
GAMMA1 = GAMMA#(1,-FMU)
B(9s1) = FM1#(1le-GAMMAl)~FN1
B(9s2) = FN1%(1e~-GAMMAl)+FM1
B(9s3) = ~FM2¥%¥(]1.+GAMMA1)-FN2
B(9s4) = ~FN2%(1.+GAMMALl )4+FM2
B(10s1)= =~FN1
B(10s2)= FM1
B(10s3)= FN2
Bl1l0e&)= ~-FM2

. GAMMA2 = GAMMA#*(1,+FMU)
B(llsl)= FM1I+FN1#(1.-GAMMA2)
Bl1lls2)= FN1-FM1#(1o,-GAMMA2)
B(1le3)= —-FM2+FN2%#(1,+GAMMA2)
B(lls&)= —~FN2-FM2#(1,+GAMMA2)
DO 22 I=194
B(12,I) = 0.
B(13,1) = ALPHA1
B(13,2) = BETA1
B(13,3) = ALPHA3
B(13s4) = BETA3
EIG = E*FI/G
RBAR(1) = 2,*EIG/RR
RBARI(2) = =2,#FEIG#FKK
RBAR(3) = RBAR(2)#FK/GAMMA
RBAR(4) = RBAR(3)#2,%#FKR/GAMMA

RBAR(5)

~RBAR(4)/GAMMA

11



24

25

27

28

60

61

29

30

RBAR(6) = 4o*FI#FKR*FKK/(GH*A*GAMMA*#3)
RBAR(7) = 2,

RBAR(8) = =-RBAR(3)/GAMMA®#0,5

RBAR(9) = RBAR(8)
RBAR(10)=(RBAR(8)#2,%#FKR/GAMMA ) # 5L
RBAR(11)= =RBAR(6)/GAMMA%%(0,5
RBAR(12)= 1,

RBAR(13)=(=2. #ERFI#FK/({1e+FMU)*R) ) #SL
RBAR(3)=RBAR(3)#SL

RBAR(6)=RBAR(6)*5|

DO 24 I=1,13

DO 24 J=1+4

BlIsJ) = B 14J)*RBAR( )

RE1251) = (B(11s1)-2.,%ALPHAL) /R
B(12s2) = (R{11s2)-2.%RETAI)/R

BU1253) = (R{1153)-2,%#ALPHA3) /R
Bll2s4) = (Bills&)—2,#BFTA3) /R

DO 25 1 = 1,13

DO 25 J = 1lse4

BMAT(IsJ) = B(1lsJ)

BMAT(1441) = ALPHA1

BMAT(14,2) = ALPHAR

BMAT(1453) = BETA1

BMAT(1454) = BETA3

SET UP RQ AND BDEL MATRICES

Cl = COSF(BETAl1#PHIK)
C3 = COSF(BETA3#PHIK)
S1 = SINF(BETA1#*PHIK)
$3 = SINF(BETA3#PHIK)
IF (LDT) 28,528,227

El=1,

E2=1,

E3=Oo

E4=0,

GO T0 29

EFl = EXPF(ALPHAl1#PHIK)
E2 = EXPF(ALPHA3#PHIK)
E3 = EXPF(=ALPHA1#PHIK)
E4 = EXPF(=ALPHA3#PHIK)

IF (E3-XDT) 61561560
IF (E4-XDT) 61614529
LDT=1

DT(2)=E3

DT(3)=E4

DO 30 I=1+4

DO 30 J=1,8

CE(IsJ) = 0,
CE(ls1) = C1%*E]
CE(ls2) =-31%E1
CE(251) = CE(152)
CE(2s2) =-CE(1,1)
CE(3e3) = C3%E2
CE(394) =—-S3%#E

12



21

33

35

CE(493) = CE(304)
CE(4o4) =—CE(3,3)
CE(1ls5) = C1¥%E3
CE(1s6) = S1®E3
CE(265) = CE(1s6)
CE(236) =—CE(1:5)
CE(3:7) = C3%E4
CE(3,8) = S3%E4
CE(457) = CE(3,8)

CE(498) ==CE(3,7)

CALL MPYBCE
CALL MPYBCE
CALL MPYBCE

{BslsCE9BQRs &)
{BossCEsBQs 2)
(BeboCEsBDELS 1)

CALL MPYBCE (BeT7sCESsBDELS3)
DO 32 I=1ls4

DO 32 J=5+8

CE(IsJ) = =CE(IsJ)

CALL MPYBCE
CALL MPYBCE
CALL MPYBCE
CALL MPYBCE
DO 33 I=1.4
DO 33 J=1ly4
BQ(I+&4oJ) =
BA(1+4sJ+4)
BDEL(I+&4sJ)

(Bo9sCEsBQs3)
{Bs10+CE»BQs 1)
(Bp1lloCEsBDEL2)
(Bs12sCEoBDEL o4}

BQUIsJ+s )% (=10 )#¥]
= BQ(IeJ) (=10 )]
= BDEL(IoJ+a)¥(=1o)%%(1¢1)

BDEL(I44sJ+4) = BDEL(TsJ)#(—1o)%#(I41)

INVERT BDEL

CALL INVERT

CALCULATE ADEL1sADEL2s AND SMALLK MATRICES

DO 35 I=1+8
DO 35 J=1,8
Z(19J)=0e

DO 35 K=1s8

MATRIX

(BDEL$89s8s2XsZY)

Z(1sJ)=Z(1sJ)4+BQUIsK)#BDEL(KoJ)

DO 40 I=158
ADEL1(Is1l) =
ADEL1(1s2) =
ADEL1(I93)
ADEL1(1s4)
ADEL1(Is5)
ADEL1(1+6)
ADELLI(I7)
ADEL1(1+8)
ADEL2(Is1)
ADEL2(142)
ADEL2(1+3)
ADEL2(1o4)
ADEL2(1+5)
ADEL2(106)
ADEL2(Is7)

[T TR N L IO T O T I 1O

-BDEL(I92)
~BDEL(193)
BDEL(I94)
BDEL(Is1)
BDEL(1+56)
BDEL(Is7)
BDEL(1s8)
BDEL(1+5)
-BDEL(I96)
-BDEL(Is7)
BDEL(1+8)
BDEL(I95)
BDEL(I52)
BDEL(193)
BDEL(Is4)

13



#*
#*
#

40

50

1k

ADEL2(1+8) = BDEL(Is1)
X(1e1l) ==Z(162)

X{1s2) ==2(1:3)

X{1:3) = Z(1e4)

X(Io&) = Z(1s1)

X(Ie5) = Z(1s6)

X(tIs6) = Z(1e7)

X(Ie7) = 2(168)

X(1e8) = Z(1:5)

Y{I9l) ==-2(166)

Y{1s2) ==2(167)

Y{ls3) = Z(1+8)

Y{lo&) = Z(165)

Y(165) = Z(1s2)

Y{(Is6) = Z(153)

Y(Is7) = Z(1+4)

Y(Is8) = 2(1el)

DO 50 I=1,8

SMALLK(1e1) ==X(2p1)4Y (651}
SMALLK(2o1) X(3e1)=Y(T7e1)

SMALLK(3,1)
SMALLK (4,51)
SMALLK(551)
SMALLK(651)
SMALLK(7s1)
SMALLK(851)
RETURN

END

-X(491)Y4Y(Bo 1)
X(1o1)=Y(551)
-X(6s1)4Y(2s1])
X(ToI)=Y(31)
X(BoIy=Y(b4sol)
-X{51)14Y{1s 1)

LI L O N | N [ I T IO T 1]

LIST
LABEL
FORTRAN

CMPYBCE

C
C
C

o VAT B B

SUBROUTINE MPYBCE (BpleCEsBQDsJ)
TO MULTIPLY B BY CE MATRIX AND STORE IN BQ@ OR BDEL

DIMENSION B(1394)9CE(498)9sBQD(8+8)
DO 1 K=1,8

BQD(JsK)
DO 1 L=1s
BQAD(JoK)
RETURN
END

O.

heon

BAD(JosKI+B(IsL ) #CE(LK)

LIST '
FORTRAN ' INVT Q0
LABEL INVT 00.
GENERAL MATRIX INVERSION SUBROUTINE INVT 00
INVT 00:

SUBROUTINE INVERT(AsNNsNsMoC) INVT 00!



NN

NN

N NN

70

80
90

100

103
105

108
110
112

114

115

125

DIMENSION A(1)eM(1)sCI(1)

IF (NN=1) 80570580
All)=1e/A(1)

GO TO 300

DO 90 I=1sNN
M(T)==I

DO 140 I=1»NN

LOCATE LARGEST ELEMENT

D=0.0

DO 112 L=1eNN

IF (M(L)) 10051009112
J=L

DO 110 K=1»sNN

IF (M(K)) 10351035108

IF (ABSFI(D)-ABSF(A(J))) 10551055108

LD=L
KD=K
D=A(J)
J=J+N
CONTINUE
CONTINUE

INTERCHANGE ROWS

TEMP==M(LD)
M(LD)=M(KD)
M{KD)=TEMP
L=LD

K=KD

DO 114 J=1sNN
CtJy=A(L)
AtL)Y=A(K)
A(KY=C(J)
L=L+N

K=K+N

DIVIDE COLUNM BY LARGEST ELEMENT

NR={KD=1)%#N+1
NH=NR+N-1

DO 115 K=NRoNH
A(K)Y=A(K)/D

REDUCE REMAINING ROWS AND COLUMNS

L=1

DO 135 J=1sNN

IF (J-KD) 13051255130
L=L+N

GO 70 135
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INVT
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INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
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006
007
oos8
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
036
04&(
041
04:
04:
Ot
04¢
04¢
04"
O a4t
04
0514
05!
05.
05:
05:
05
05
05
05
05
06



,_.
w
(@]

134
135

140

150

160

200

300

DO 134 K=NRsNH
ALL)Y=A(L)-C(J)*A(K)
L=L+1

CONTINUE

REDUCE ROW

C(KDY==1e0
J=KD

DO 140 K=1sANN
A(J)==C(K)/D
J=J+N

INTERCHANGE COLUMNS

DO 200 I=1sNN
L=0

L=L+1
IF(M(L)I=T) 15051605150
K=s(L=-1)#N+1
JE(I=-1)%N+1
MiL)y=M(I)
Miry=1

DO 200 L=1sNN
TEMP=A(K)
A(K)Y=A())
A{JYy=TEMP
J=J+1

K=K+1

RETURN

END
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UNIVERSITY OF CALIFORNIA Department of Civil Engineering
A. C. Scordelis and J. G. Bouwkamp

Notes on IBM 7094 Program 4 for Tubular Joint Analysis

1. IDENTIFICATION

CIR - 4: Solution of circular cylindrical shells with live loads applied
along generators--Program 4--Oct. 196l (relation between forces and dis-
placements at surface of circular tube).

2. REFERENCES

a. "Analytical Study of Tubular Tee-Joints," by A. C. Scordelis and
J. G. Bouwkamp

3. FORM OF INPUT

a. See attached FORTRAN II listing of program for detailed description of
input.
b. Additional explanation of input is as follows:

(1) First Card Any T2 characters may be used for title.
(2) Second Card

Col. 51 - 54 Fourier series limit-- the number of the highest
harmonic term of the series to be used to repre-
sent the longitudinal distribution of loading;
maximum number is 100 for unsymmetrical loads with
respect to midspan and 200 for symmetrical or anti-
symmetrical loads if non-contributing harmonics are
skipped in cols. 60 or 62.

Col. 55 - 58 Numpin--total number of times results are to be
printed, one for each Fourier series number speci-
fied in fourth card. If Numpin is set at O
results will be printed only after Fourier series
1imit has been reached.

Col. 60 for loadings antisymmetric about midspan, the odd
Fourier series terms can be skipped.
Col. 62 for loadings symmetric about midspan, the even

Fourier series terms can be skipped.
(3) Next Card The disturbance limit should be given & value of 1.0 E-16.
(4) Next Card If Numpin is set to zero on second card, skip this

card and printout of results will be given only after
Fourier series limit has been reached.



(5) Next Card Note that for a case with symmetry or antisymmetry
about both x = 0 and ¢ = 0 , & total of 42 points may
be considered on 1/L4 of the whole circular tube.

(6) Next Card Note that either or both vertical and horizontal
displacement restraints can be assumed to exist.

(7) Next Card Input action is either total force magnitude or
total displacement at point depending on tag speci-
fication on preceding card.

4, FORM OF QUTPUT

a. Input data is printed as a check.

b. Final total forces and corresponding displacements at each specified
point. One set of answers is printed sequentially after each Fourier
series number specified for printout.




# DECKS

# LIST
LABEL

# FORTRAN

CCIR=4 (OLD 3)

UNIVERSITY OF CALIFOR

PROGRAMMED BYso KoSo,
FACULTY INVESTIGATORS

INPUT DATA

SECOND CARD =~ COL,
COLe
COL,
COL,
COL,
COL.
COL,

AN OOANANNOAOANNNNANOANANNANN

COL.

COLo,

NEXT CARD = COL.

NEXT CARD - COL. 1
COL. 4
COL.

COLe

COL.
COL
COL,
COL.

-nﬂﬁﬁﬁﬂﬁﬁﬂﬂﬂﬂﬁﬂﬁﬁﬂﬁﬂﬂﬁ(\ﬂﬂﬁﬂt!.

COL,

NIA

Lo

FIRST CARD - TITLE OF

1
11
21
31
41
51
55

Ao

Coe

DEPTs OF CIVIL ENGINEERING

SOLUTION OF CIRCULAR CYLINDRICAL SHELLS WITH LINE LOADS APPLIED ALONG
GENERATORS —=~ PROGRAM & =—=— 0OCT.1964
RELATION BETWEEN FORCES AND DISPLACEMENTS AT SURFACE OF CIRCULAR TUBE

SCORDELIS AND JoGo BOUWKAMP

THE PROBLEM

T0
TO
70
T0
70
70
TO

10
20
30
40
50
54
58

60

62

1 70 10 =

T0
T0

3
6
8

10

NEXT CARD -~ EXISTS ONLY IF
FOURIER SERIES NUMBERS (1814}
RESULTS WILL BE PRINTED AFTER THESE SERIES NUMBERS
USE NEXT CARDS

- SPAN (F1000)

~ RADIUS OF SHELL (F10.0)

~ SHELL THICKNESS (F10.0)

- MODULUS OF ELASTICITY (F10.0)

— POISSON RATIO (F10.0)

- FOURIER SERIES LIMIT (14)

-~ NUMPIN
NUMBER OF PRINT OF RESULTSs MAXe. 100 (14)

- BLANK TO INCLUDE ODD FOURIER SERIES
1 TO SKIP ODD FOURIER SERIES

= BLANK TO INCLUDE EVEN FOURIER SERIES
1 TO SKIP EVEN FOURIER SERIES

DISTURBANCE LIMIT (E1063)
IF EXPF(-ALPHA®#PHIK) IS LESS THAN THIS LIMIT
DISTURBANCE FROM OTHER JOINT IS NEGLECTED

*NUMPIN® IS NOT ZERO

IF NEEDED

NUMBER OF CONSIDERED POINTSs MAXe 42 (13)
NUMBER OF LOAD CASESs MAXs 10 (13}
INDICATOR FOR SYMMETRICAL PROPERTY ABOUT X=0
0 = UNSYMe 1 = SYMe 2 = ANTISYM.
INDICATOR FOR SYMMETRICAL PROPERTY ABOUT PHI=0
O = UNSYMe 1 = SYMe 2 = ANTISYM.

NEXT CARDS - BOUNDARY CONDITIONS FOR THE POINTSs ONE CARD FOR EACH POINT

1 7O 10 = PHI ANGLE (IN DEGREES) OF THE POINT (F10e0)
11 70 20
21 TO 30

32

34

= DISTRIBUTED LOAD WIDTH (F10.0)

LOCATION FROM LEFT END (F10.0)

= INDEX FOR VERT. FORCE OR DISPLo AT THAT PT.
1=-GIVEN DISPL. 2-GIVEN FORCE O-NEGLECTED

= INDEX FOR HORIZ., FORCE OR DISPLe AT THAT PT,.



aNaNeNaNaNaNa¥aNaNa¥aNaXaXaXaXaXaXa!

(aNaNS

11
12
13
14
15
16

17

18
19
22
23
25
50
51
52

53

60
61
62
63
64
65
66

2
1-GIVEN DISPLe. 2-GIVEN FORCE O-NEGLECTE

NEXT CARDS - FORCE MAGNITUDE OR DISPLACEMENT FOR THE POINTS

ONE SET OF CARDS FOR EACH LOAD CASE

INPUT THE VERT. ACTION FIRST AND THEN HORIZ. ACTION OF THE
SAME POINT

INPUT THE ACTION(S) OF THE 1ST POINT FIRST AND THEN THE
ACTION(S) OF THE 2ND POINT AND SO ON

(TF10.0) USE NEXT CARD IF NEEDED

START WITH A NEW CARD FOR EACH LOAD CASE

ALL ABOVE DATA CARDS ARE REPEATED FOR NEXT PROBLEM TO BE SOLVED

TWO BLANK CARDS ARE ADDED AT END OF THE DATA DECK

DIMENSION AND COMMON STATEMENTS

DIMENSION TITLE(12)sDT(3)sNPIN(102)sYANG(42)sDEL(42)sIVH(4202) s

1 SINY(42)sCOSY(42)9VHI42)9XI1(42)sSYMP(2)sYINT(42942)9 IND(42542) s
2 YINT1(42542)9IND1(42942)9sTKM(B4)oL1(84)sMAXR(3)sGR(84510) eXI(42),
3 Al1(84584)9SERIES(42)9SK(858)sB(39s4)sADEL1(Bs8)sADEL2(858)
4 ZX(8)sZY(B)9COSKX(42)9sP(2)sD(B)sC1(8)9C2(8)9sB1(258)sB2(258)s

5 CE(B8)sAB(2+42)

COMMON YINTsINDsYINT1,IND1

FORMAT STATEMENT

FORMAT (12A6)

FORMAT (5F106052145212)

FORMAT (1814)

FORMAT (213,212)

FORMAT (2H1 )

FORMAT (15HOSPAN LENGTH = FB8.3/19HORADIUS OF SHELL = F7e3/22HOTHIC
1KNESS OF SHELL = F9e6)

FORMAT (25HOMODULUS OF ELASTICITY = El4¢6/17THOPOISSON RATIO = F6oe4
1/24HOFOURIER SERIES LIMIT = 13)

FORMAT (39HOPRINT RESULTS AFTER FOURIER SERIES NO)

FORMAT (7F1060)

FORMAT (//41HOCALCULATIONS SKIP ALL ODD FOURIER SERIES)

FORMAT (//42HOCALCULATIONS SKIP ALL EVEN FOURIER SERIES)

FORMAT (3F10605212)

FORMAT (1E10.3)

FORMAT (21HODISTURBANCE LIMIT = E1063//)

FORMAT (67H1DISTURBANCE FROM OTHER JOINT IS NEGLECTED AFTER FOURIE

1R SERIES NO. I4)

FORMAT (22HOAT FOURIER SERIES NOe. 14/24HO EXPF(=ALPHA1¥PHIK) =

1 E15,6/724H0 EXPF({-ALPHA3*PHIK) = E1566)

FORMAT (27HINUMBER OF LOADING POINTS = [3)

FORMAT (27HONUMBER OF LOADING CASES = 13)

FORMAT (33HOSYSTEM IS SYMMETRICAL WeReTe X=0 )

FORMAT (37HOSYSTEM IS ANTISYMMETRICAL WeReTo X=0 )

FORMAT (35HOSYSTEM IS SYMMETRICAL WeReTe PHI=0 )

FORMAT (39HOSYSTEM IS ANTISYMMETRICAL WeRoTe PHI=O )

FORMAT (76HOPOINT PHI (DEGREES) LOAD WIDTH LOCATION FROM



O NN

1 LEFT END 1v IH )

67 FORMAT (I1493E18e699X9I1195XeI1)

68 FORMAT (59HOIV = 1-GIVEN V DISPLe 2-GIVEN V FORCE O=NEGLECT V C
10MP. )

69 FORMAT (59HOIH = 1-GIVEN H DISPLe 2-GIVEN H FORCE O-NEGLECT H C
10MP. )

70 FORMAT (42HOINPUT FORCES OR DISPLe. FOR LOAD CASE NO. I2)

71 FORMAT (8F1566)

READs PRINT AND MODIFY INPUT DATA

101 READ 11 (TITLE(I)sI=1s12)
READ 129 SPANsRsTHoEsFNUsMAXSERsNUMPINsNODDsNEVEN
IF (SPAN) 99959995102
102 PRINT 15
PRINT 119 (TITLE(I)sI=1912)
PRINT 16s SPANsR»TH
PRINT 17s EsFNUsMAXSER
READ 509 DT(1)
PRINT 515 DT(1)
IF (NUMPIN) 10451045103
103 READ 13s (NPIN(I)eI=1sNUMPIN)
PRINT 18
PRINT 135 (NPIN(I)eI=1sNUMPIN)
104 J=NUMPIN+1
NPIN(J)}=MAXSER
READ 145 NPTsNLDsLSYMXsLSYMP
IF (NODD) 10651065105
105 PRINT 22
106 IF (NEVEN) 1085108,107
107 PRINT 23
108 PI=3,141592654
PIL=PI/SPAN
PRINT 60s NPT
PRINT 61 NLD
PRINT 66
DO 115 J=1sNPT
READ 255 (YANG(J)sDEL(J) o XT(J)sIVH(Js1)sIVH(Is2))
PRINT 6795 (JosYANG(J)sDEL(J)oXI(J)sIVH(Js1)sIVH(Js2))
YRAD=(YANG(J) /180, %P1
SINY(J)=SINF(YRAD)
COSY(J)=COSF(YRAD)
VHUJ) =4/ (PI#DEL(J))
DEL(J)=0e5%DEL(JY%PIL
115 XI(J)=XT(J)#P]IL
PRINT 68
PRINT 69
IF (LSYMX-1) 12051165117
116 SYMX=1.
PRINT 62
GO TO 118
117 SYMX=-1le
PRINT 63
118 DO 119 J=1eNPT
119 XI1(J)=PI-XI(J)



120
121
122

123

124

301

302

303

305

307

308

310

311

312

313

315
317

318
320

GO TO 121

SYMX=0e.

IF (LSYMP-1) 124,122,123
SYMP(1l)=1.

SYMP(2)==1,

PRINT 64

GO TO 124

SYMP(1)=-1,

SYMP(2)=1.

PRINT 65

CONTINUE

DO 308 J=1sNPT

DO 308 I=1eNPT
YNG=YANG(I)~YANG(J)

IF (YNG) 3059301.301
X=YNG-180.

IF (X) 302¢3025303
YINT(JsI)=PI*(0e5=YNG/180¢)
IND(JsI)=1

GO TO 308
YINT(JsI)=PI#(0e5=X/180,)
IND(Js I} =0

GO TO 308

X=YNG+180.

IF (X) 30793035303
X==X=90,
YINT(JsI)=PI*(X/180¢)
IND(Js 1) =1

CONTINUE

IF (LSYMP) 32053209310
DO 318 J=1oNPT

DO 318 I=1sNPT
YNG=YANG(I)+YANG(J)

IF (YNG) 315:311.311
X=YNG=180.

IF (X) 31263125313
YINT1(JeI)=PI%#(065=YNG/180¢)
INDI(JsI)=1

GO TO 318
YINT1{Je1)=PI#{05=X/180s)
IND1(Js1)=0

GO TO 318

X=YNG+180e.

IF (X) 31793135313
X==X=90s

YINT1(Je I)=PI#(X/180,)
IND1(Jsl)=1

CONTINUE

CONTINUE

K=0

KK=0

KKK=0

DO 323 J=1oNPT

DO 323 1I=192

IF (IVH(JeI)=1) 32393219322
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321

322

323

324

326

328

327

136

137
138

139

K=K+1

KK=KK+1
TKMIKK) =K

GO 70 323
K=K+1
KKK=KKK+1
LI(KKK)=K
CONTINUE
MAXR(1)=K
MAXR( 2} =KK
MAXR (3 )=KKK

DO 324 I=1eKKK
J=KK+1
IKM(JY=L1(])
DO 326 I=1eNLD
READ 199 (GR(Jsl)sJ=19K)

CONTINUE
DO 328 I=1sNLD
PRINT 70,5 I

PRINT 71s (GR(JsI)pJ=15K)
OUTPUT IS CLEARED

DO 327 I=1,K
DO 327 J=1,K
Al(I,J)=06

COEFFICIENTS PI#X/L ARE COMPUTED

P12=0.5%P1
DO 136 I=19NPT
SERIES(IN=XI(I)-PI2

CYCLE FOR EACH HARMONIC IS INITIATED

LDT = 0

LL=1

LPIN=NPIN(])

DO 700 NN=1,MAXSER
FQ={=10)#*(NN+1)

IF (FQ) 1370137,138

IF (NEVEN) 13991395650
IF (NODD) 13991396650

SPAN AND K ARE GENERALIZED

FN=NN
FKsFN#PIL

STIFFNESS MATRIX 1S COMPUTED BY SUBROUTINE SIMSTI

CALL SIMSTI (FKesFQsRoTHsEoFNUsSKoBoADELL1sADEL2sLDTsDT)

AL1=B(3,1)
AL3=B(3.2)
BE1=B(3¢3)
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321

322

323

324

326

328

327

136

137
138

139

K=K+1

KK=KK+1
TKM(KK) =K

GO 71O 323
K=K+1
KKK=KKK+1
L1(KKK)=K
CONTINUE
MAXR(1)=K
MAXR( 2) =KK
MAXR( 3 ) =KKK

DO 324 I=1¢KKK
J=KK+1
IKM(J)Y=L1(])
DO 326 I=1eNLD
READ 19s (GR(JsI)eJ=14K)

CONTINUE
DO 328 I=1eNLD
PRINT 70, I

PRINT 71s (GR(JsI)pJ=1sK)
OUTPUT IS CLEARED

DO 327 I=1,K
DO 327 J=1,K
Al(1oJ)=0e

COEFFICIENTS PI#X/L ARE COMPUTED

PI2=0e5#PI
DO 136 I=1sNPT
SERIES(II=XI(I)-PI2

CYCLE FOR EACH HARMONIC IS INITIATED

LDT = 0

LL=1

LPIN=NPIN(1)

DO 700 NN=1sMAXSER
FQ=(=1e)#¥(NN+1)

IF (FQ) 13751375138

IF (NEVEN) 13991399650
IF (NODD) 13951399650

SPAN AND K ARE GENERALIZED

FN=NN
FK=FN#PIL

STIFFNESS MATRIX 1S COMPUTED BY SUBROUTINE SIMSTI

CALL SIMSTI (FKesFQsRoTHsEoFNUsSKeBoADEL1sADEL2sLDTsDT)

AL1=B(3,1)
AL3=B(352)
BE1=B(3,3)



321 K=K+1
KK=KK+1
IKM({KK) =K
GO 7O 323
322 K=K+1
KKK=KKK+1
L1(KKK})=K
323 CONTINUE
MAXR(1)=K
MAXR( 2) =KK
MAXR (3} =KKK
DO 324 I=1sKKK
J=KK+1
324 IKM(J)=L1(I)
DO 326 I=1sNLD
READ 195 (GR(JsI)sJ=19K)
326 CONTINUE
DO 328 I=1»NLD
PRINT 70, I
328 PRINT 71s (GR{JsI)pJ=1sK)

OUTPUT IS CLEARED

(aNaXs!

DO 327 I=14K
DO 327 J=1eK
327 Al(IeJ)=00

COEFFICIENTS PI#X/L ARE COMPUTED

N NN

PI2=0s5%#PI
DO 136 I=1sNPT
136 SERIES(I)=XI{(I)1-PI2

CYCLE FOR EACH HARMONIC IS INITIATED

NnNNN

LDT = 0

LL=1

LPIN=NPIN(L)

DO 700 NN=1sMAXSER

FQ=(=1e)#**(NN+1)

IF (FQ) 13751370138
137 IF (NEVEN) 139,139:650
138 IF (NODD) 13951394650

SPAN AND K ARE GENERALIZED

(aNa¥ae!

139 FN=NN
FK=FN#PIL

STIFFNESS MATRIX IS COMPUTED BY SUBROUTINE SIMSTI

[a¥aka!

CALL SIMSTI (FKoFQsRoTHsEoFNUsSKeBoADEL1sADEL2+LDTsDT)
AL1=8(3,1)
AL3=B(3,2)
BE1=B(3,3)




NnNNNn

aXaka

160

162

165

167
170

141

142

143

144

145
146

155

156
157

171

BE3=B(3,4)
CALL INVERT (SKsB9BsZXsZY)

CALCULATE SINKX AND COSKX MATRICES

IF (FQ) 16091605165
N=NN/2

DO 162 I=1eNPT
X=FN#SERIES(I)
COSKX(IYy=SINF{X)
GO TO 170
N=(NN+3)/2

DO 167 I=1eNPT
X=FN#SERIES(I)
COSKX(I)=COSF(X)
X=(~1o)¥%*N

CALCULATE INPUT LOADS FOR EACH LOADED GENERATOR

KK=0

DO 200 J=1sNPT
SD=SINF{FN#DEL (J))
SX=SINF(FN#XT (J))+SINF(FN#XI1(J)})#SYMX
VHJ=(VH(J) /FN) ¥SD*SX
DO 200 JJ=1s2

IF (IVH(JsJJ)) 20092005141
KK=KK+1

IF (JJ=-1) 14251425143
P(2)=VHJU*COSY (J)
P(1)=VHJ¥SINY (J)

GO TO 144
P(2)==VHJ%XSINY (J)
P(1)=VHJ#*#COSY (J)

DO 199 JJJ=1s2
JJIJdl=JJJ~1

IF (JJJ1) 15551554145
IF (LSYMP) 1995199146
P(2)=P(2)%#SYMP(1)
P({1)=P(1)%#SYMP(2)

GO TO 157

CONTINUE

DO 156 I=1s2
P(1)=P(I)*X

CONTINUE

UNKNOWN JOINT DISPLACEMENTS ARE COMPUTED
DO 171 [=1,8

DlI)=0.

DO 171 K=192

DII)=D(I)+SK(IsK)*P(K)

CALCULATE ARBITRARY CONSTANTS FOR SHELLS

DO 185 I=148



Cl(I)=0,

C2(11=0e

DO 185 K=148

Cl(I)=Cl(I)+ADEL1I(I-K}®D(K)
185 C2(I1)=C2(I1)+ADEL2(IsK)H#D(K}

C TO FIND MAXo INTERNAL FORCES AT DIFFERENT PHI ANGLES

DO 190 I=1s2
Bl(Ilosl)=Cl(1)#B(Io1)=Cl(2)#B(]52)
Bl(I52)=Cl(1)#B(1s2)+C1l(2)#B(Is1)
Bl(I+3)=Cl(3)#B(13)=Cl(4)#B(1s4)
Bl(Is4)=Cl(3)#B(I¢4)+Cl(4)#B(1,3)
Bl(Is5)=Cl(5)%#B(1s1)=C2(6)%B(I,2)
Bl(I:6)=C1(5)#BlIs2)+CL(6)#B(151)
Bl(Ie7)=Cl(7)%#B(193)=C1(8)#B(Is4)
Bl(Ies8)=CLl(7)#B(I1s4)+C1l(8)#B(153)
B2(Is1)=C2(1)1#B(191)=C2(2)%#B(152)
B2(1s2)=C2(1)#B(162)+C2(2)%#B(Is1)
B2(I193)=C2(3)#B(163)=C2(4)%#B(1s4)
B2(Io4)=C2(3)%B(I1s4)+C2(4)%#B(1+3)
B2(Is5)=C2(5)%#B(1s1)=C2(6)%#B(152)
B2(1+6)=C2(5)#B(I192)+C2(6)#B(151)
B2(Is7)=C2(7)%#B(13)=C2(8)#B(14)

190 B2(1+8)=C2(7)%#B(1s4)+C2(8)%#B(153)
DO 191 K=5.8
B1(2sK)==-B1(2sK}

191 B2(2¢K)=-B2(24K)
DO 197 1J=1sNPT
IF (JJJ1) 345,345,346

345 PHI=YINT(JsIJ)
IK=IND(Js1I D)
GO TO 347

346 PHI=YINT1(JsIJ)
IK=IND1(Jo 1)

347 CC=COSF(BE1#PHI)
C3=COSF(BE3#PHI)
S1=SINF(BE1#PHI)
S3=SINF(BE3#PHI)
IF (LDT=1) 35153510350

350 PHJ= PHI-1.570796327
E1=EXPF(AL1%#PHJ)
E2=EXPF(AL3#PHJ)
PHJ==PHI-1570796327
E3=EXPF(AL1%#PHJ)
E4=EXPF(AL3%#PHJ)
GO TO 352

351 El1=EXPF(AL1®PHI)
E2=EXPF(AL3%#PHI}
E3=EXPF(~AL1#PHI])
E4=EXPF(-AL3¥PHI)

352 CE(1l)= CC*E]
CE(2)==S1%*E1
CE(3)= C3%E2
CE(4)==5S3%E2




193

194

195

196
197

[a¥aka!

353

354
355

198
199
200

[aNaN}

650
651

652
653

700

999

#*
#*
#

CSOLA

CE(5)= CCHE3

CE(6)= S1%*E3

CE(T)= C3%E4

CE(8)= S3%E4

IF (IK) 19551955193

DO 194 =12

AB(1,1J)=0,

DO 194 K=1:8
AB(Io1J)=AB(Is1J)+B1(1sK)RCE(K)
GO TO 197

DO 196 1=1e2

AB(I,1J)=0,

DO 196 K=1,8
AB(ToIJ)=AB(Io1J)+B2(1sK)*¥CE(K)
CONTINUE

V AND H DISPLACEMENTS ARE COMPUTED AND ADDED

KKK=0

DO 198 I=1,NPT

IF (IVH(Is1)) 35493544353

KKK=KKK+1

AL(KKKsKK)=A1 (KKKsKK)=(AB(2sI)*¥SINY(I)+AB(1s 1) %#COSY(I) ) *#COSKX (I}
IF (IVH(Is2)) 198,198,355

KKK=KKK+1

AL(KKKoKK)=A1 (KKKsKK)+(AB(I1sI)#*SINY(I)=AB(25s1)%#COSY(1))*COSKX (1)
CONTINUE

CONTINUE

CONTINUE

PRINT CHECK AND PRINT FORCES AND DISPLACEMENTS

IF (NN=-LPIN) 65256519652
CALL SOLA (Al sMAXRIKMsGR sNLD)
LL=LL+1

LPIN=NPIN(LL)

IF (LDT=1) 70096535700
LDT=2

PRINT 525NN
PRINT 53s NNsDT(2)sDT(3)
CONTINUE

GO 70 101
CALL EXIT

END

LIST
LABEL
FORTRAN

SUBROUTINE SOLA (A1sMAXRs IKMsGRoNLD)

DIMENSION A1(84984)91KM(84)sGR(84510) sMAXR(3)9A(B43s84)sD(84)s
1 R(84)oX(84)sRR(84)

MM=MAXR(1)



11

12

15

20

21

23
25

30

31

35

36

37

38

39

MD=MAXR(2)

MR=MAXR(3)

MD1=MD+1

IF (MD) 551055

IF (MR) 30920530

DO 15 I=1sNLD

DO 11 J=1,MM
R{JY=GR({Js 1)

DO 12 K=1o,MM

D(K)=0e

DO 12 J=1sMM
D(KY=D(K)Y+AL{KoJ)Y#R(J)
CALL PINRD (DsRoMMsI)
CONTINUE

GO TO 100

DO 21 I=1sMM

DO 21 J=1sMM
AlTIsJd)=Al(]sJ)

CALL INVERT (AsMMeB84osRsD)
DO 25 I=1sNLD

DO 22 J=1sMM
D(J)=GR{Js I

DO 23 K=1sMM

R{K)=0e

DO 23 JU=1sMM
R(K)I=R(K)+A(KsJIED(J)
CALL PINRD (DsRoMM,I)
CONTINUE

GO TO 100

DO 31 I=1sMM
II=IKM(T)

DO 31 J=1.MM
JJI=IKM(J)
AlTo)=AL(IIdN)

CALL INVERT (AsMDs84sRsD)
DO 45 [=1eNLD

DO 35 J=1sMM
JJI=IKM(J)
RtJ)I=GR(JJseI)

DO 36 J=1sMD

D(J)=0s

DO 36 K=MD1sMM
DtUY=D(J)+A(JsK) %R (K)
DO 37 J=1sMD

X{J)=0oe

DO 37 K=1sMD

X =XLI)+A(JK)E(R(K)~-D(K))

DO 39 J=MD1sMM
X(J)=0e

DO 38 K=1,sMD
X(J)=X{J)+A(JsK)EX(K)
DO 39 K=MD1 oMM

XD =X{J)+A(JsK)#R(K)
DO 40 J=1sMD
JJI=IKM(J)
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Do =R
40 RR(JII=X(J)
DO 41 J=MD1lesMM
JJI=1KM(S)
D(JJY=X(J)
41 RR(JJIY=R(J)
CALL PINRD (DsRRsMMs 1)
45 CONTINUE
100 RETURN
END

* LIST

#* LABEL

* FORTRAN

CPINRD

SUBROUTINE PINRD (DsReMMs 1)

DIMENSION D(84)sR(84)

FORMAT (52H1FINAL FORCES AND DISPLACEMENTS FOR LOADING CASE NO.I3)
FORMAT (43HO FORCES DISPLACEMENTS )
FORMAT (I492E2068)

PRINT 1o 1

PRINT 2

PRINT 3s (JoR(JYoD(J)pJ=1sMM)

RETURN

END

WIN

* LIST

* LABEL

* FORTRAN

CSIMSTI
SUBROUTINE SIMSTI (VKsSLsVRsVASVEsFNUs SMALLK sBMATsADEL1sADEL2
1 LDTHDT)
DIMENSION SMALLK(898)9B(1394)sRBAR(13)sBMAT(394)5BQ(898)
1 BDEL(898)9CE(498)sADEL1(898)sADEL2(898)sX(8B58)sY(8+s8)s2(848)>
2 ZX{(8)92Y{(8)sDT(3)

VR

VA

VE

= VK

FMU = FNU

EA = E*A

FKK = FK#¥FK

RR = R#*R

FKR = FK#¥*R

FKR2 = FKR##%2

PHIK=1.570796327

XDT=DT(1)

n u

R
A
E
FK

CALCULATE B MATRIX

RYANS!

G = le=FMU##2




F1 A#¥#3/12,
PD (3e#G)#*¥0,125%(R/A)#¥ 0 25% (R¥FK)*#0,5
GAMMA = R¥FK¥* (A/R)#%*0,5/(3,%G)*%#0,25

o

17 FM1 = ((1e+GAMMA )% #2411 ,)#%0,5
FN1 = ((FM1-~1e~GAMMA) /2, )%#0,5
FMI = ((FM1+1e+GAMMA) /2, )%%#0,5
FM2 = ((1e~GAMMA)Y##241,)%%0,5
FN2 = ((FM2+1o~GAMMA) /2. )%%0,5
FM2 = ((FM2-16+GAMMA) /2. )¥%0.5
ALPHALl = PD¥*FM]

ALPHA3 = PD*FM2

BETA1 = PD#FN1

BETA3 = PD#FN?2

BETA2 = PD#PD

BETA4 = BETA2

ALPHAZ = BETA2#(]1,+GAMMA)
ALPHA4 = BETA2#(GAMMA=1,)
DO 20 I=4+7

DO 20 J=ls4

20 B(Ied) = 1o
Bllsl) = ALPHAZ2~-FMU#*FKR2
B(ls2) = BETAZ2
Blle3) = ALPHA4-FMU%FKR?2
B(ls4) = BETA4
Bl4sl) = Qo
B{4s3) = Qe
Bl4sb4) = =1,

B(6s1l) = -1

B(692) = 1e+GAMMA%*(1,+FMU)
B(bs4) = 1.—GAMMA#(1,+FMU)
B(7+2) = 0a

B(7e4) = 0o

GAMMA1l = GAMMA#(1,-FMU)
B(9s1) = FM1¥{1,-GAMMA1l)~-FN1
B(9s2) = FN1¥(1le—-GAMMAL)4+FM1
Bl993) = ~FM2¥#(]1.+GAMMA]1 )~FN2
B(Ss4) = —FN2%(]e+GAMMAL)+FM2
B(10s1)= —=FN1

B(10e2)= FM1

B(10s3)= FN2

B(10s&)= -FM2

GAMMA2 = GAMMA#*(]1.+FMU)

B(llsl)= FM1+FN1#%#(1e~GAMMA2)

B(1lls2)= FN1-FM1%(1o=GAMMA2)

B(1lls3)= ~FM2+FN2#(1l.+GAMMA2)

Bllls4)= -FN2-FM2%(1le+GAMMA2)
23 EIG = E*FI1/G

RBAR(1) = 2.,*EIG/RR

RBAR(2) = =2o%*EIG*FKK

RBAR(3) = RBAR(2)#FK/GAMMA

RBAR(4) = RBAR(3)#2.#FKR/GAMMA

RBAR(6) = 4 *FI#FKR*FKK/ (G*A*GAMMA*#3 )
RBAR(7} = 2,

RBAR(8) = =-RBAR(3)/GAMMA##%0,5

RBAR(9) = RBARI(8)




RBAR(10)=(RBAR(8)#2+#FKR/GAMMA ) *SL
RBAR(11)= =RBAR(6)/GAMMA#%0,5
RBAR(12)= 1,

RBAR(6)=RBAR(6)#SL

DO 24 I=1,511

DO 24 JU=144

26 B(IsJ) = B(IsJ)I®RBAR(])
B(1251) = (B(11s1)~2.%#ALPHALl)/R
B(12+2) = (B(1192)=2,%BETA1)/R
B(1253) = (B(11s3)-2,*%ALPHA3)/R
B(1l2s4) = (B(11s4)=2,%BETA3)/R
DO 25 J = 1,54
BMAT(1sJ) = B(7sJ)

25 BMAT(29J) = B(1llsJ)
BMAT(351) = ALPHA1
BMAT(352) = ALPHA3
BMAT(393) = BETA1l
BMAT(3s4) = BETA3
SET UP BQ AND BDEL MATRICES

C

Cl = COSF(BETA1%*PHIK)
C3 = COSF(BETA3#PHIK)
S1 = SINF(BETA1#PHIK)
53 = SINF(BETA3#PHIK)
IF (LDT) 28928427

27 El=1,
E2=1,
E3=0,
E4=0,
GO TO 29

28 E1 = EXPF(ALPHA1#PHIK)
E2 = EXPF(ALPHA3#PHIK)
E3 = EXPF(-ALPHA1%*PHIK)
E4 = EXPF(-ALPHA3#PHIK)

IF (E3-XDT) 61561960
; 60 IF (E4=XDT) 61561529
61 LDT=1

DT(2)=E3

DT(3)=E4
29 DO 30 I=1s4

DO 30 J=158

30 CE(lsJ) = Qo
CE(1s1) = Cl%*E]
CE(1e2) ==~S1#%*E1
CE(241) = CE(1+2)
CE(252) ==CE(1s1)
CE(353) = C3*%E2
CE(3s4) =-S3%E?2
CE(493) = CE(3e4)
CE(4494) =—CE(3,3)
CE(1s5) = C1%#E3
CE(196) = S1%E3
CE(295) = CE(196)
CE(246) =—CE(1s5)



C3#E4
S3*EL

CE(3,7)
CE(3+8)
CE(457) CE(3,8)
CE(498) =-CE(3,7)

31 CALL MPYBCE (Bp1+sCEsBQo4)
CALL MPYBCE (Bo4sCE9BQs2)
CALL MPYBCE (Bs6oCEsBDEL 1)
CALL MPYBCE (BoT79CEsBDEL3)
DO 32 I=194
DO 32 J=5,8

LI | R R 1}

32 CE(Isd) = =CE(IsJ)
CALL MPYBCE (Be9FsCE9BQs3)
CALL MPYBCE (Bs10sCE»BQs1)
CALL MPYBCE (Bs1lleCE9sBDELs2)
CALL MPYBCE {B912sCEsBDEL &)

DO 33 I=1ls4
DO 33 JU=ls4

BQUI+4sJ) = BQUIsJ+4) % (=10 )¥%]
BQ(I+4sJ+4) = BQ(IoJ)#(-1e %]
BDEL(I+45J) = BDEL(IosJ44 )% (—1o)#%(1+1)
33 BDEL(I+4sJ+4) = BDEL(ToJ)¥(=1e)%%(I+1)
C
C INVERT BDEL MATRIX
C
CALL INVERT (BDEL9898sZXs2Y)
C
C CALCULATE ADEL1sADEL2s AND SMALLK MATRICES

35

DO 35 [=1,.8
DO 35 J=1,8
Z(I9J)=0a

DO 35 K=1s8

Z(1sJ)=2(1sJ)+BQ(IsK)*BDEL(KsJ)

DO 40 I=1+8
ADEL1(I+1)
ADEL1(Is2)
ADEL1(153)
ADEL1(Is4)
ADEL1(1s5)
ADEL1(Is6)
ADEL1(Is7)
ADEL1(I+8)
ADEL2(]Is1)
ADEL2(1,2)
ADEL2(153)
ADEL2(144)
ADEL2(145)
ADEL2(146)
ADEL2(1I57)
ADEL2(T1,8)
X{Isl) ==2{
X(1s2) ==2{
X(1s3) Z(
X(Is4) Z{
X{(1s5) 2

[ L | BT I ]

==-BDEL(I92)

=-BDEL(1+3)
BDEL(1Is4)
BDEL(Is1)
BDELI(Is6)
BDEL(Is7)
BDEL(1+8)
BDEL(Ie5)

-BDEL(Is6)

~BDEL(1+7)
BDEL(I+8)
BDEL(Is5)
BDEL(Is2)
BDEL(Is3)
BDEL(194)
BDEL({Ie1)

Io2)

I+3)

Is4)

Is1)

I1:6)

LN L | I L T | O T ¢ N T TR (R



1k
X(Is6) = Z(1s7)
X(Te7) = 2(1+8)
w X{I1e8)Y = Z(1e5)
Y{Iel) ==Z2(1s6)
Y(I1e2) ==2(167)
Y(I93) = Z(1+8)
Y(Is&) = Z2(1e5)
Y{(IeS) = Z(1s2)
Y(Is6) = Z(193)
Y(1e7) = Z(1so4)
40 Y(1e8) = Z(1s1)
DO 50 I=1,8
SMALLK(L1eI) ==X(2s1)4+Y(6s1)
SMALLK(2sI) = X(3,1)=Y(Ts1)
SMALLK(3sI) =—X(4,1)+Y(8s1)
SMALLK(4sI) = X{1s1)=-Y(50e1)
SMALLK(5s]) ==X(631)+Y(2s1)
SMALLK (69} = X(T7e1)-Y(351)
SMALLK(T79I) = X{8es1)=Y(4s])
50 SMALLK(8sI) ==X(581)4+Y(1s1)
RETURN
END
# LIST
#* LABEL
s FORTRAN
CMPYBCE
SUBROUTINE MPYBCE (BsleCEsBQDyJ)
C .
C TO MULTIPLY B BY CE MATRIX AND STORE IN BQ OR BDEL
. C
. DIMENSION B(1354)9CE(458)sBQD(858)
é, DO 1 K=1,8
BQD(JsK) = 0o
DO 1 L=1e4
1 BQD(JsK) = BQAD(JoKI+B(IsL)IH*CE(L oK)
RETURN
END
* LIST
* FORTRAN INVT 001
* LABEL INVT 00:
C GENERAL MATRIX INVERSION SUBROUTINE INVT 00:
C INVT 004
SUBROUTINE INVERT({AsNNsNsMsC) INVT 00¢
C INVT 00¢
DIMENSION A(1)eM{1)sC(1) INVT 007
C INVT 0Q¢
IF (NN-1) 80570580 . INVT 0056
70 A(l)=1le/A(1) INVT 01cC
GO TO 300 INVT 011




140

150

160

200

300

C(KD)==1,0
J=KD

DO 140 K=14gNN
AtJ)y==C(K)/D
J=J+N

INTERCHANGE COLUMNS

DO 200 I=1¢NN
L=0

L=L+1
IF(M(L)=-T1) 15091605150
K=(L=1)#N+1
J=(1-1)%N+1
ML)Y=M(TI)
M(I)=1

DO 200 L=19¢NN
TEMP=A (K)
A(K)I=A(J)
A(JY=TEMP
J=J+1

K=K+1

RETURN

END

16

INVT

INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT
INVT

Oi

o]
o]

o

o

07

oy

07

07

a7
08
08
08
8
o8
08
08
08
08
08
09
09
09
09





