
UC Berkeley
UC Berkeley Previously Published Works

Title
Phase change materials for thermal energy storage: A perspective on linking phonon 
physics to performance

Permalink
https://escholarship.org/uc/item/5wk7p3tj

Journal
Journal of Applied Physics, 130(22)

ISSN
0021-8979

Authors
Lilley, Drew
Menon, Akanksha K
Kaur, Sumanjeet
et al.

Publication Date
2021-12-14

DOI
10.1063/5.0069342
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5wk7p3tj
https://escholarship.org/uc/item/5wk7p3tj#author
https://escholarship.org
http://www.cdlib.org/


1 
 

Phase Change Materials for Thermal Energy Storage: A Perspective on Linking Phonon 
Physics to Performance 

 
Drew Lilley1,2, Akanksha K. Menon1,3, Sumanjeet Kaur1, Sean Lubner1 and Ravi S. Prasher1,2* 
 

1 Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, 
CA 94720, USA 

2 Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA  
3 George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA  
30332, USA 

* Author to whom correspondence should be addressed rsprasher@lbl.gov  
 

Abstract 

Thermal energy storage is being actively investigated for grid, industrial, and building applications 
for an all-renewable energy world. Phase change materials (PCMs), which are commonly used in 
thermal energy storage applications, are difficult to design because they require both excellent 
energy density and thermal transport, both of which are difficult to predict from simple physics-
based models. In this perspective, we describe recent advances in the understanding of the 
equilibrium and transport properties of PCM materials that can help accelerate technology 
development. We then emphasize how the microscopic phonon-picture of both liquids and solids 
enables better understanding and predictive power of novel PCM systems. We then show how this 
microscopic picture can be used to understand kinetic processes, such as supercooling, and how it 
can impact the thermal power output in thermal energy storage systems.  
 

Introduction 
 
One of the central challenges of this century is mitigating and reversing anthropogenic climate 
change. Reducing and ultimately eliminating greenhouse gas emissions to solve this problem will 
necessitate decarbonizing our entire energy infrastructure. This means that regardless of the 
diversity of down-stream forms of energy and end-uses for that energy, all primary energy sources 
will need to be carbon-free. It is expected that a significant fraction of this carbon-free energy will 
come from renewable sources such as solar and wind energy. Unfortunately, these sources are 
inherently intermittent, while our energy infrastructure and economy are predicated on reliable, 
dispatchable, and 24/7 consistent sources of energy. This creates a considerable timing mismatch 
between energy supply and demand for a carbon-free future. As a consequence, it will be 
impossible to switch to all-renewable primary energy sources without large scale (> 100 kW), long 
duration (10 to 100 hours), and inexpensive (levelized cost of storage (LCOS)< $0.05/kWh-cycle) 
energy storage technologies to bridge the gap between supply and demand.1 
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Among the many energy storage technology options, thermal energy storage (TES) is very 
promising as more than 90% of the world's primary energy generation is consumed or wasted as 
heat2. TES entails storing energy as either sensible heat through heating of a suitable material, as 
latent heat in a phase change material (PCM), or as the heat of a reversible chemical reaction in a 
thermochemical material (TCM) as shown in Figure 1. The stored energy can then be supplied 
directly as process heat to industrial applications and  to buildings for thermal comfort3 as needed, 
providing a steady energy output while receiving intermittent energy inputs4,5 .The development 
of TES materials and systems was highlighted as one of the top five grand challenges for 
decarbonization2, and it is particularly well suited for large scale and long duration storage: TES 
technology is not constrained by specific geographic requirements and can be made modular and 
deployable to most regions. For example, TES does not require terrain with large height 
differentials like pumped hydro does. Furthermore, heat and non-gaseous phase change are among 
the safest forms of stored energy. TES does not have a catastrophic failure mode that could 
suddenly and destructively release all of its stored energy at once, unlike many other forms of 
energy storage such as high-speed flywheels, electrochemical batteries, gravitational potential 
energy storage, or compressed air. Finally, the additional capital cost to increase storage capacity 
of TES can be very low, due to the abundance of inexpensive materials such as molten silicon for 
high temperatures6 or polymeric phase change materials for low temperatures7. Additionally, in 
TES most atoms comprising the storage material play a direct role in storing energy, so there is 
very little inactive material adding to the weight and cost. However, this can also create challenges 
in modeling the physics of TES systems, because all constituent parts of the (frequently messy and 
complex) material are participatory and therefore must be considered along with their full degrees 
of freedom, rather than being able to restrict analysis to smaller subcomponents that are doing all 
the work. Improving these TES material modeling capabilities would help provide insight that 
accelerates material design. 

 
Fig. 1: Overview of different thermal energy storage materials and the key properties that require 

prediction and control for optimal performance over a range of applications. 
 
Realizing large scales of integrated TES will require solving technological challenges associated 
with material design and thermal transport, which in turn vary with the application. For instance, 
industrial process heat for manufacturing requires TES at temperatures ranging from 200 – 1500 
℃, solar-thermal energy harvesting typically uses molten salts at temperatures ~400 ℃, while 

⇋
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several applications such as residential and commercial building HVAC, water desalination, 
typical sorbent regeneration for the direct air capture of CO2, thermal management of batteries, 
and personal thermoregulation all require low temperatures <150 ℃. Thermal energy storage 
materials and associated properties that govern thermal transport need to be tailored to these 
specific applications, which may include controlling transition temperatures, energy density (i.e., 
heat capacity or latent heat of fusion), thermal conductivity, nucleation dynamics, and overall 
enthalpies and entropies of reactions (Figure 1). Efficient control of these properties first requires 
an understanding of their fundamental mechanisms and associated governing physics, but this is 
often still lacking.  
 
While the physics of sensible heating of solids is well known with a high degree of confidence 
using the Debye Theory of Solids, physics of phase change and solid to liquid phase change in 
particular is still not a completely solved problem. One often needs to resort to computational 
methods such as molecular dynamics combined with density functional theory to understand the 
solid-liquid phase transition.  
 
Phase Change Materials (PCM) based on solid to liquid phase transition are one of the most 
promising TES material for both low and high temperature applications8. Considering the promise 
of PCM TES, in this perspective, we describe recent advances in the understanding of the 
thermodynamic and kinetic properties of PCM materials that can help accelerate technology 
development. Despite their potential, many fundamental and applied questions remain 
unanswered, such as: (i) how do we model and predict thermodynamic properties such as the latent 
heat of fusion to design new phase change materials? (ii) how do kinetic processes such as 
supercooling impact the metastability of PCMs at different length scales? And (iii) how do 
transport properties such as thermal conductivity impact the thermal power output from such a 
storage system? 
 
Design of thermal energy storage materials and systems 
The storage properties of a thermal energy storage material are governed by equilibrium 
thermodynamics and can be represented by the Gibbs free energy: 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆 (1) 

For a first order phase transition in PCMs, solid-liquid equilibria exists when the Gibbs free energy 
of the liquid phase is equal to the solid phase such that Δ𝐺!→#	 = 0, yielding the relation Δ𝐻%&' =
𝑇(Δ𝑆%&', where Δ𝑆 is the change in entropy between the solid and liquid phases. The melting 
temperature, Tm dictates the range of temperatures that the PCM can operate effectively at, while 
the enthalpy of phase change (latent heat of fusion, Δ𝐻%&') is a measure of the energy storage 
density of the PCM as shown in Figure 2. Selecting the right material requires knowing two of 
these three terms; entropy change is challenging to accurately predict owing to multiple entropy 
contributions associated with the melting process (e.g., vibrational, configurational, mixing, intra-
molecular dynamics, etc.). As a result, thermodynamic properties of storage materials are 
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experimentally determined using various thermophysical characterization techniques - Δ𝐻%&' is 
typically measured using differential scanning calorimetry, and Tm is based on the application. The 
full suite of experimental techniques required to sufficiently characterize the equilibrium 
properties for TES applications is time-consuming and often expensive. Thus, the development of 
simple analytical models to down-select materials with promising thermophysical properties is 
needed.  

 
Fig. 2: Melting temperature and Enthalpy of Fusion of various PCM-based thermal energy storage 
materials, adapted from references [9-11]. 
 
While latent heat of fusion, heat capacity, density, and other equilibrium thermophysical properties 
are critical for material selection, it is the non-equilibrium properties that drive the system-level 
design and determine the overall TES performance. Among the various non-equilibrium properties 
relevant to phase change materials, thermal conductivity and supercooling are the most important. 
Thermal conductivity determines the thermal energy charge/discharge rate or the power output, in 
addition to the storage system architecture and boundary conditions. Most high-energy density 
PCMs have correspondingly low thermal conductivities and – by design – high heat capacities, 
resulting in exceptionally low thermal diffusivities. For thermal reservoir type applications, 
moving the heat in and out can therefore be particularly challenging while keeping capital costs of 
heat exchangers low. This tradeoff has recently been analyzed using thermal Ragone plots to 
optimize the design12. Low thermal conductivity can be addressed by techniques such as the 
addition of nanoparticles and the impregnation of PCM into graphite matrices or other composite 
architectures. However, approaches to reduce supercooling by using either nucleating or 
thickening agents have met with limited and unreliable success. If unanticipated supercooling 
persists in PCM applications, the system may never nucleate the solid state, and the system 
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utilization factor decreases to zero. Conversely, if the TES system is overdesigned, an unnecessary 
temperature bias may be introduced, which reduces the storage round-trip efficiency.  
 
In the following sections, we highlight different physics-based models that describe equilibrium 
thermodynamic properties of the liquid state, their implications for thermal energy storage, and 
identify future directions for research. We then discuss physics and statistics-based frameworks to 
explain metastable behavior and show that thermal transport strongly affects nonequilibrium TES 
performance.  
 
Material-level microscopic description 
Equilibrium thermodynamic properties: For solid-liquid phase change materials (e.g., ice and 
paraffin wax) or pumpable sensible storage (e.g., hot water and molten salts), the thermodynamic 
properties of liquids are paramount in the modeling of these TES systems. Valuable insights into 
these properties can be made by simple physical models describing the equilibrium solid and liquid 
states that are important for thermal storage. These models offer selection rules and help reduce 
the number of experiments needed for full thermodynamic characterization.  
 
To predict the melting point of a material, the enthalpy and entropy of both the solid and liquid 
phases must be known. Historically, quantifying the absolute value of the enthalpy and entropy of 
the liquid phase independent of the solid phase has been challenging. Consequently, simple 
melting “rules” formulated from experimental observation have been popular. The Lindemann 
melting criterion13–15 is perhaps the most widely used melting rule, and it states that melting occurs 
when the root mean amplitude of vibration exceeds a threshold value in relation to the nearest 
neighbor distance (originally stated to be 10%). At melt, all atoms vibrate at the Einstein frequency 
so the equipartition theorem can be used to equate the amplitude of vibration to the temperature, 

yielding 𝑇( = )*!(+",!

-#
, where m is the atomic mass, 𝑐.is the Lindemann constant, and a is the 

nearest neighbor distance. The Lindemann constant changes with crystal structure, and the 
Lindemann melting rule provides only modest agreement with experimentally recorded melting 
points. There have been many sophisticated attempts to improve upon the Lindemann rule, but to 
date there is no universally successful model for melting. Moreover, the exact mechanism 
responsible for the lattice instability that drives the transition to the liquid state remains a mystery, 
and no self-consistent solid-state model predicts it. 
 
Although no solid-state model exhibits explicit solid-liquid equilibria like the Van der Waals 
equation of state does for the liquid-gas transition, they do describe the solid-state thermodynamic 
properties reasonably well. Specifically, the Einstein and Debye models provide an excellent 
balance between accuracy and ease-of-use. However, a major failure of crystal thermodynamics 
theory is that it cannot predict melting. This is attributed to the inability to handle anharmonicity 
near melting, which is believed to cause instability that drives the discontinuity in the free energy 
curve. Without a model / equation of state that explicitly exhibits first-order phase transitions, it is 
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often easier to employ two separate mechanical models for the high temperature and low 
temperature phase, and equate the free energy predicted by the two to determine the phase 
transition. As mentioned, the Debye model and/or its variants are adequate to describe the solid 
phase, but a robust mechanical model to describe the liquid phase has been elusive.  In fact, a 
general approach to calculate the thermodynamic properties of liquids has been a long-standing 
problem in condensed matter physics16. On the fundamental side, the Vibration-Transit (VT) 
model17–22 elucidates much of the fundamental statistical mechanics underlying liquid phenomena, 
but application of this model requires sophisticated Molecular Dynamics (MD) simulations with 
high-fidelity interatomic potentials of the system. Wallace formulated the VT theory by building 
upon Stillinger and Weber’s work23–26 on the multi-atomic potential energy surface. By building 
upon their concept of inherent structures, Wallace re-casts the configurational partition function 
into the product of partition functions of independent liquid “structures”20,27. Each “structure” has 
a distinct contribution to the partition function and therefore the system thermodynamics, and the 
degeneracy of that structure provides the appropriate weighting function. The degeneracy, or the 
number of random structures per given energy level, is an unknown parameter. Only detailed MD 
simulations – whereby the system is repeatedly quenched, and the energy levels calculated and 
“binned” – can determine the number of random structures existing at each energy level. However, 
Wallace did find that for simple monatomic liquids, the average degeneracy was well-defined, and 
the standard deviation of that value is relatively small20.  
 
Less fundamental but more easily applied and quantitatively fairly accurate , Eyring developed a 
purely analytical model28–31 that provides a quantitative description of the liquid state. 
Qualitatively, Eyring assumes that a liquid has a mixture of solid-like and gas-like characteristics 
such that it supports both conventional solid-like phonon transport and gas-like ballistic transport. 
The model assumes that any atoms next to a vacancy behave as gas-like, and then uses the vacancy 
concentration along with atom-coordination number to determine the fraction of gas-like atoms in 
the liquid. Once this fraction is established, Eyring employs what is essentially an interpolation 
between solid and liquid partition functions, weighted by the “gas-like” fraction; the percentage of 
gas-like particles is a fitting parameter, and it is phenomenological. Although this model provides 
an excellent fit for many liquids, it has little predictive power for TES applications because there 
is no way to know the fraction of gas-like molecules that will appear a priori. Eyring’s work has, 
however, been extended by Henry Frank32–34 in his formulation of a free volume theory to describe 
entropy changes upon isothermal expansions (e.g. phase transitions). Although its focus is mainly 
on the liquid to vapor transition, for which free volume theory has many merits and has seen much 
success, it can also be applied to the solid-liquid phase transition. To use it in the condensed state, 
details of crystal structure and bonding are necessary, along with the density change upon melting. 
If these are known, the free volume theory can be used to estimate the entropy of fusion, and in 
addition, it can be used to evaluate Eyring’s fraction of “gas-like” molecules, enabling quantitative 
prediction of the rest of the liquid’s thermodynamic functions vs temperature and volume.  
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Both Eyring and Wallace’s models lean on phonon theory to describe microscopic dynamics. 
Modern molecular dynamics approaches, such as the instantaneous normal mode theory35 and the 
two-phase thermodynamic model36, are consonant with the phonon picture. The instantaneous 
mode theory employs lattice dynamics at short time scales to resolve the eigen frequencies 
governing the lattice dynamics. Real frequencies correspond to normal, solid-like modes, and 
imaginary frequencies signal instability whereby the lattice will re-arrange. This picture is closely 
related to Wallace’s vibration-transit view of liquid dynamics. The two-phase model abides much 
more closely to Eyring’s microscopic view; in the two phase-model, a fourier-transform of a 
particle’s velocity autocorrelation function yields the liquids density of states, which they 
decompose into a solid-like part and a gas-like part, just as Eyring did in his analytical model. Both 
approaches are useful in extracting thermodynamic properties for molecular dynamics simulations 
but are quite complex to implement. 
 
 
 
Lacking a simple model without fitting parameters, scientists and engineers have traditionally 
looked towards empirical rules to estimate thermodynamic properties in the liquid phase. 
Empirical rules, such as Richard’s rule of melting37, Lindemann’s melting criteria, and Trouton’s 
rule of vaporization38, are practical rules of thumb, but they lack the fine-ness to offer design or 
selection rules for TES. In our recent work39, we proposed a simple model for the entropy of 
melting of monatomic liquids, which – when combined with the Debye model for the solid phase 
– can be used to predict the entropy and enthalpy of fusion without fitting parameters. Furthermore, 
this model – under the appropriate limits – recovers Richard’s rule of melting. The simple, physics-
based model considers a particle’s liquid phase dynamics in a rough potential energy surface. The 
dynamics of a particle in the liquid state include (i) lattice vibrations, which are solid-like, except 
they generally exhibit anharmonicity due to large displacements from meta-stable equilibrium; (ii) 
large scale diffusion, which is gas like and describes the hopping motion of the atom from one 
lattice cage to another as described by Frenkel 16; and (iii) small scale diffusion corresponding to 
movement within a local lattice cage and without significant or lasting change to neighbor atoms. 
The lattice vibrations are well-described by the conventional Debye model, and large-scale 
diffusion can generally be ignored at the melting point for elements with high viscosity upon 
melting40,41. Due to small-scale diffusion, the center of oscillation of the traditional lattice-like 
vibrations changes42,43, as shown in Figure 3. This changing center of oscillation is a consequence 
of the complex, time-dependent nature of the atom’s multi-atomic potential energy surface, so 
employing traditional lattice dynamics methods to resolve these effects on particle motion is 
impractical44. However, molecular dynamics simulations have shown that the changing center of 
oscillation occurs at a frequency similar to the lattice vibrations, and that they are often oscillatory 
in nature.  
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Fig. 3: Dynamics in liquids. (a) Profile of a potential experienced by a test particle in a liquid at different 
times, taken from molecular dynamics simulations43. The equilibrium position (zero derivative of the 
potential) changes with time, indicating a changing center of oscillation. (b) The implications of a 
changing center of oscillation on the mechanical model of an atom in a liquid. (a) Reproduced with 
permission from J. Chem. Phys. 101, 693 (1994). Copyright 1994 Journal of Chemical Physics 
 
 
Using these observations, we can re-construct the original high-temperature Debye model by 
incorporating the additional oscillatory nature of the center of an atom’s oscillation, which results 
in an effective Debye frequency for the liquid state.  
 

𝜔!,0%% =	
𝜔!,1$ 	
√2

 (2) 

We note that Girifalco45, after analyzing root mean square vibrational amplitudes in simple metals 
and fitting to Eyring’s Liquid model, also concludes empirically that the effective liquid Debye 
temperature is 2%,'$ 	

√4
 under the approximation that wl = ws confirming that equation 2 also works with 

Eyring’s model. Using the effective Debye frequency for the liquid state, the entropy and enthalpy 
of the liquid at melt can be described using:  

𝑆1$ = 4𝑅 + 3𝑅𝑙𝑛 6
𝑘5𝑇(
ℏ𝜔!,0%%

9 (3) 

 
where R is the ideal gas constant, 𝑘5 is boltzmann’s constant, and ℏ	𝑖𝑠	𝑝𝑙𝑎𝑛𝑐𝑘𝑠	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 
Combining this with the Debye model for the solid phase, the entropy and enthalpy of fusion for 
a PCM can be calculated as: 

∆𝑆6 = 3Rln 6
ω7,8(
9

𝜔0%%! 9

= 3Rln D
√2ω7,8(

9

𝜔:,1$
! E		 

(4) 

 

(a) (b) 
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For some applications, PCMs are heated beyond their melting points and the entropy and enthalpy 
as a function of temperature are needed. By including additional effects due to thermal expansion, 
anharmonicity, and loss of transverse phonons (more discussion on this in the thermal conductivity 
section) with increasing temperature based on the phonon theory liquids46, the entropy as a 
function of temperature, valid until the boiling point, can be expressed as: 
 

S(T) = S8( + 3Rln J
T
T;
K + MBα<4(T − T;)	

	+3Rα<(T − T;) − 	𝑅 6
𝜔=(𝑇)
𝜔:

9
>

				
 (5) 

  
where  𝑇( is the melting point, M is the molar volume, B is the fluid's bulk modulus and 𝛼? is the 
fluid’s volumetric thermal expansion coefficient, and 𝜔= is the liquid’s Frenkel frequency.  
 
Equation (4) gives an RMSE of 1.64% when compared to experimental values for different 
elements whose liquid state Debye frequencies have been calculated47 - Ar, Cs, Rb, K, and Li. For 
elements with unknown liquid state Debye temperatures, the grunesian approximation can be used 
to calculate the liquid state Debye temperature from that of the solid state using 𝜃:(𝜌) ≈

𝜃(𝜌@) S
A
A)
T
B
, where 𝜌@ is the initial density, 𝜌 is the new density, and 𝛾 is the grunesian parameter, 

which can be assumed to be 2 if it is not tabulated. Using this approximation, eq. (4) gives an 
RMSE of 6.35% for 16 elements, and eq. (4) gives less than 10% error compared to experimentally 
measured data across all temperatures for 9 different elements, as shown in Figure 4. Using 
Equation 5 and ideal gas law for vapor state this model also provides excellent corrections to the 
well know empirical Trouton’s rule.  
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Fig. 4: Predicted vs. experimental entropy of fusion using Eq. (4). The blue asterisks denote exact 
predictions using liquid Debye frequencies. The black circles represent approximate predictions where 
the liquid and solid Debye frequencies were evaluated at their respective densities. In order of increasing 
predicted enthalpy of fusion, the dots represent Li, K, Cs, Na, Rb, In, Pb, Ag, Cu, Mg, Hg, Au, Zn, and Al. 
The solid red line is the 45-degree line, and the dashed lines represent 10% error. Reproduced from 
Appl. Phys. Lett. 118, 083902 (2021), with the permission of ALP Publishing 

 
 
The above-mentioned equations apply to monatomic systems to isolate the thermodynamic 
contributions from inter-molecular interactions. However, TES applications usually involve multi-
atomic materials; here, intra-molecular interactions in the liquid state are well-described using 
Einstein oscillators for vibrational modes and the Debye density of states for librational modes, 
which are the hindered rotational modes along the molecules three principle rotational axes. Intra-
molecular vibrations are straightforward when the characteristic frequency, determined by the 
intra-molecular potential, is known. Librational modes are more nuanced - in addition to the intra-
molecular potential, the nature of the librational modes depends on the molecular geometry and 
the lattice coordination in the liquid state at small time scales. Thus, making predictions without 
detailed knowledge of the molecule and lattice structure become quite complex. Future work must 
be done to simplify the inclusion of intra-molecular contributions in the calculation of 
enthalpy/entropy in the liquid state to predict the enthalpy of fusion of TES materials.  
 
Thermal conductivity: The thermal conductivity of liquids is difficult to describe from the 
microscopic picture48. In 1964, Mclaughlin49 reviewed 18 physics-based models that describe 
liquid thermal conductivity, yet none accurately capture the temperature and pressure dependent 
behavior over a wide range of liquids governed by different interatomic potentials. Since his 
review, Molecular Dynamics simulations (e.g. Modal contributions via Green-Kubo modal 
analysis)50 have dominated the field, and few new analytical models have been proposed. In the 
solid phase, phonon gas models have been successfully applied to various types of solids51. Most 
phonon gas models begin with the Boltzmann transport equation or kinetic theory and perform a 
modal analysis of the relevant energy carriers. In the case of non-metallic solids, the energy carriers 
are predominantly phonons, or quantized vibrations propagating through the lattice. In liquids, 
there is some debate over the appropriate quantization. Many have championed the phonon picture 
at short timescales52  while recent work53 has suggested local atomic re-arrangements, which they 
referred to as anankeons54, as the more fundamental quantization in liquids. It is not yet clear how 
anankeons can be incorporated into traditional statistical mechanics schemes for thermodynamic 
predictions, which is needed before they can be evaluated as energy carriers for analyzing thermal 
conductivity. During the interim, perhaps insight can be gleaned from the work of Allen and 
Feldman55 on the concepts of locons, propagons, and diffusions, which are responsible for thermal 
transport in amorphous solids. More work is needed in this direction to see if it will prove fruitful, 
and until then we believe the phonon picture has the most merit. For each polarization, the typical 
modal analysis reads like51: 
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𝑘 = V
1
3𝐶C

(𝜔)𝑣D(𝜔)𝜆(𝜔)𝑑𝜔
E

F
 (6) 

 
Where 𝐶C is the constant volume heat capacity, 𝑣D is the phonon group velocity, and 𝜆 is the mean 
free path of the phonon.There have been many attempts to evaluate this integral for amorphous 
solids, which are similar in structure to liquids in that they exhibit short-range but not long-range 
order. The temperature-dependent behavior of constant-volume heat capacity in liquids, however, 
exhibits a difficult trend to account for monatomic decrease up until the liquid-gas transition56.  
 
Eyring accounted for the decrease in constant-volume heat capacity with his solid-gas interpolation 
of the liquid state28,45. As the liquid increases in temperature, the fraction of gas-like molecules 
increases. The gas-like molecules are immune to the intermolecular potential, so when a molecule 
converts from solid-like to gas-like via vacancy formation, it loses its potential energy, or -#

4
 of 

energy via the equipartition theorem. At the melting point when there is low vacancy formation, 
Eyring’s equation predicts that of Dulong Petit, 3𝑘5. At the gas transition when vacancies 
dominate, it predicts that of an ideal gas, >

4
𝑘5. At intermediate temperatures, it uses the vacancy 

formation to determine the fraction of gas-like molecules, which modulates the constant-volume 
heat capacity between the solid and gas limits.  
 
Wallace also accounted for the decrease in constant-volume heat capacity with his vibration-transit 
theory40. By re-casting the configurational partition function into the partition function of 
independent structures, he argued that the integral of the partition function should no longer be 
from −	∞ to ∞, as is customary. Instead, the structures have distinct boundaries, after which they 
begin to impinge on each other. As the temperature increases and atoms vibrate with larger 
amplitudes, the boundaries get closer and closer so that the atom’s configurational phase space 
becomes increasingly more restricted. Thus, in his integral of the partition function for each 
structure, he bounds the configurational space and thus the integrand. That bound gets smaller with 
temperature, and the heat capacity concomitantly decreases.  
 
More recently, Trachenko and colleagues46,56,57 have re-championed Frenkel’s picture of liquid 
dynamics in which transverse phonons, previously believed to disappear in the liquid state, can 
persist so long as they are above the “Frenkel frequency”, or the Maxwell relaxation time of a 
molecule subjected to a simple spring and damper in parallel. The spring is given by the shear 
modulus of the liquid, and the damper is given by the viscosity. Using this postulate, Trachenko 
et al. re-counted the number of phonons existing at each temperature. If each phonon contributes 
𝑘5 of energy to the system, then the final energy will be equal to 𝑁𝑘5, where N is the number of 
phonons. By assuming a Debye density of states, the number of transverse phonons having 
frequencies below the Frenkel frequency can be evaluated, and then subtracted from 𝑁𝑘5 for the 
energy. The kinetic energy of those atoms can be added back into the account, and the result is the 
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total energy of the system, with its derivative giving the constant volume heat capacity. The result 
of this model agrees fairly well with experimental data for many simple liquids. 
 
It is difficult to reconcile Trachenko and Wallace’s model under a single physical picture; 
Trachenko et al. relied on a phonon-gas model, where they assume the thermodynamic functions 
of each phonon are independent of one another, and use traditional lattice-dynamical approaches, 
including the Frenkel modification, to prescribe the appropriate thermodynamic weighting to each 
phonon in the gas comprising the liquid. Wallace also assumes a phonon gas, but instead of 
employing a mechanical modification to the dynamics, as Trachenko did with the vanishing 
transverse phonons, he prescribes a limit on the available amplitude (and therefore volume) 
occupied by each phonon, imposing a restriction on the system’s configurational phase space. It is 
unclear how the configurational restriction relates to the vanishing of transverse phonons; 
however, both certainly predict a decreasing constant volume heat capacity as a function of 
temperature in the liquid state. We note that for PCMs, Trachenko et. al’s model seems more 
promising because it can be directly evaluated from material properties, whereas Wallace’s model 
requires experimental fitting parameters. 
 
 
To evaluate the thermal conductivity of liquids, several models must be chosen to evaluate each 
of the contributing terms: 𝐶C(𝜔, 𝑇), 𝑣D(𝜔) and 𝜆(𝜔). A recent model with reasonably good 
predictions for a large variety of liquids relative to experiment (within 15% error for Argon, Water, 
Potassium Nitrate, and Sodium Nitrate)was proposed by Zhao58 et al. In this model, Trachenko’s 
model for 𝐶C(𝜔, 𝑇) was employed, which re-formats the modal analysis into a sum of integrals: 
 

𝑘 = 	V
1
3𝐶C

(𝜔)𝑣D(𝜔)𝜆(𝜔)𝑑𝜔
2*,%)+,-./0-+1"

F

+	V
2
3𝐶C

(𝜔)𝑣D(𝜔)𝜆(𝜔)𝑑𝜔
2*,'21+345235

26
 

(7) 

 
 The Debye model was used for the group velocity, which equates the group velocity to the speed 
of sound.  Finally, instead of using the Cahill-Pohl model for the mean free path, they posit that 
dominant energy carriers are short-wavelength, high-energy modes, and that they scatter 
frequently so that the mean free-path can be taken as the intermolecular distance. This is perhaps 
their biggest assumption, and more experimental evidence is needed to resolve the mean-free 
path of high energy phonons in liquids. Nevertheless, predictions match experimental data fairly 
well, so that assumption is likely valid for the class of liquids they compared to.  
 
System-level macroscopic description 
Impact of non-equilibrium behavior: As discussed earlier, among the various non-equilibrium 
properties relevant to phase change materials, thermal conductivity and supercooling are the most 
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important59–61 as these dominate thermal transport. Figure 5 depicts the cycling of erythritol62, a 
commonly used sugar alcohol PCM, in a DSC. The downward sloping curves are endothermic and 
indicate melting, while the upward sloping curves are exothermic and indicate crystallization. The 
onset of nucleation is the first deviation from the baseline upon cooling, which is scattered around 
20°𝐶. The melting point is about 120°𝐶, indicating that erythritol exhibits over 100°𝐶 of 
supercooling. From these experiments, it would appear to rule it out as a candidate for TES 
systems, but it is important to quantify the volumetric and rate effects on the supercooling behavior 
before overlooking its use in larger systems. Traditionally, supercooling is described using the 
well-known classical nucleation theory63.  While it provides excellent physical insight into the 
nucleation process, the inputs to such models (e.g., surface energies, surface shape, free energy 
barriers) are difficult to know a priori. For TES applications, engineers are not concerned with the 
surface energies or nucleus shapes, and instead, they seek predictive power. To properly model 
and design a TES system then, it is imperative to know the temperature at which the PCM is 
expected to nucleate as this defines the operating range of the system. Unfortunately, predicting 
the nucleation temperature of a PCM in an arbitrary system has been very difficult because 
supercooling changes with geometry, volume, material, microstructure, purity, discharge rate, etc. 
Thus, predicting the performance of any large-scale practical system based on lab data from mg-
scale samples is a very difficult task64. As a result, literature reports on supercooling temperature 
from lab-scale experiments are meaningless beyond that specific experimental system, size, 
material, and environment.  

 
Fig. 5: DSC Cycling of erythritol62, a commonly studied PCM. It consistently melts around 120°𝐶, and 
crystallizes between 0 − 20°𝐶 over multiple trials. The melting behavior is deterministic, while the 
crystallization appears to be stochastic. This behavior is typical of any DSC cycling of PCMs. Reproduced 
with permission from J. Therm. Anal. Calorim. 129, 1291 (2017)., Copyright 2017 Springer Nature 
 
To predict the supercooling performance of phase change materials, we have developed a 
statistical framework65 that bridges lab-scale characterization with large-scale performance. The 
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analysis can be used in conjunction with existing numerical methods to accurately incorporate 
supercooling into phase change models, thus combining material modeling with system modeling. 
The framework describes nucleation as a non-homogeneous Poisson process because the rate 
parameter, i.e., the nucleation rate, may not be constant over time (e.g., under non-isothermal 
conditions).  Note that this use of “non-homogenous” is different from the nucleation itself being 
homogeneous or heterogeneous. The properties of the distribution of supercooling temperatures 
can be described by the survivor function 
 

𝜒(𝑇) = 	 𝑒G
?
H ∫ J7(1L)	N1L

'
'$  

 
(8) 

 
Where V is the material volume, 𝛽 is the cooling rate, 𝑇( is the equilibrium melting point 
temperature, and 𝐽? is the volume-normalized nucleation rate. We note that equation 6 is for 
applications with volume-dominated nucleation, but in principle, the modeling results obtained 
could be easily translated to a system with surface area-dominated nucleation physics (𝐴𝐽O(𝑡) ≫
𝑉𝐽?(𝑡)) by suitable exchanges: 𝐽?(𝑡) ↔ 𝐽O(𝑡) and  𝑉 ↔ 𝐴.  To compute the volume-specific 
nucleation rate, 𝐽?(𝑇), from experimental data, we invert the survivor function, 𝜒(𝑇) : 
 

𝐽?(𝑇) = 	−
1
𝑉

𝛽
𝜒(𝑇)

𝑑χ(𝑇)
𝑑𝑇  (9) 

 
The distribution of supercooling temperatures, 𝜒(𝑇), can be determined for a given PCM sample 
from simple cooling experiments, and thus from Eq. (7) the nucleation rate as a function of 
subcooling temperature can be calculated for the material given the sample volume and the 
experimental cooling rate – both of which are easily fixed in conventional experimental techniques 
such as differential scanning calorimetry. It is crucial that the sample volume be cooled uniformly 
during supercooling experiments, which is generally the case in common lab-scale calorimetry 
procedures. Before continuing, we define66 a fitting function to the normalized nucleation rate: 
 

𝐽?(𝑇) = 𝛾Δ𝑇P (10) 
 
 

where Δ𝑇 is the difference between the thermodynamic equilibrium phase change temperature and 
the supercooling temperature. We argue that it is very important that researchers report 𝛾 and 𝑛, 
or some other description of 𝐽?(𝑇), when characterizing new PCMs. As will be shown, once 𝛾 and 
𝑛 are known, the supercooling behavior of the material in an arbitrary thermal and geometric 
system can be predicted.  
 
Using the nucleation rate determined by eq. (9) and re-formatted in eq. (10), the average time it 
will take for a PCM to nucleate given the system geometry, volume, material properties, and 
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thermal boundary conditions can be determined using the probability density function (PDF) and 
cumulative distribution funciton (CDF):  
 

𝑡,CD(𝛾, 𝑛) = V 𝑡	𝑃𝐷𝐹(𝑡)𝑑𝑡
E

F
 (11) 

 
 
Where 𝑃𝐷𝐹(𝑡) = NQ:=(R)

NR
 and  

 

𝐶𝐷𝐹(𝑡, 𝛾, 𝑛) = 1 − 𝑒G∫ S588
.
9 TR:UNR: . (12) 

 
And  

𝜆0%%(𝑡, 𝛾, 𝑛) = 	∫ ∫ ∫ 𝛾(𝑇(𝑥, 𝑦, 𝑧, 𝑡) − 𝑇()P𝑑𝑥𝑑𝑦𝑑𝑧 (13) 
 
Thus, if 𝛾	 and n are determined experimentally by running simple cooling experiments and 
recording a series of temperatures at which nucleation occurred, the nucleation probability can 
then be coupled with thermal transport to accurately predict when supercooling will occur in the 
system. Analytical solutions for 𝑇(𝑥, 𝑦, 𝑧, 𝑡) are not available for all but the simplest geometries 
and boundary conditions, so this procedure must be carried out numerically. Equations 9-11 are 
naturally discretized in space (index i) and time and can be easily incorporated into existing 
numerical schemes for PCMs. In general, T(x,y,z) can be determined at each time step by solving 
the heat conduction equation, and the integral of the nucleation rate as a function of T(x,y,z) over 
the volume in eq. (10) can be calculated to determine the effective global nucleation rate at time t. 
Stepping through time, 𝜆0%%(𝑡) can be calculated, and from 𝜆0%%(𝑡) , the CDF, PDF, and then 
average time to nucleation can be determined.  
 
For systems with small thermal gradients, the temperature distribution can be approximated as 
uniform, yielding an analytical result66–68 for the temperature at which nucleation will occur: 
 

Δ𝑇,CD(𝑉, 𝛽) = 	𝛽
V

PWV J
𝑛 + 1
𝛾𝑉 K

V
PWV

Γ J
𝑛 + 2
𝑛 + 1K		 

(14) 

 
Where 𝛤 is the gamma function. Equation (14) assumes equal temperature at each material element 
in the system, which sets the nucleation probability equal throughout. Real TES systems have slow 
thermal transport due to low thermal diffusivities, so thermal gradients – especially at high power 
output – become significant12. When thermal gradients develop, the nucleation probability at each 
material element becomes different. In the middle of the material, where the temperature is highest 
(lowest supercooling), the nucleation probability is far lower than it is at the system boundaries, 
where supercooling is highest. Thermal transport, therefore, strongly influences the nucleation 
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behavior of a system. Larger systems imply more nucleation sites, but if operating in a transport 
limited regime, those nucleation sites may never become active, stifling nucleation.  Conversely, 
if perfect thermal transport exists, (i.e., lumped, or uniform approximation), the temperature at the 
boundaries is pulled upward relative to a non-lumped system, and although more of the nucleation 
sites become active, the most active nucleation sites at the boundaries can become less potent.  
 
Figure 6 compares equations 11-13 for Neopentyl Glycol at constant volume with varied aspect 
ratio and therefore varied thermal transport. The equations predict experimental results as a 
function of aspect ratio quite well. The plot also highlights the significant effect thermal transport 
has on the supercooling behavior. As shown, the lumped/uniform approximation with constant 
cooling rate (equation 14) gives average nucleation times that are ~1.5x lower than that given by 
the more detailed treatment of the non-uniform (𝑇(𝑥, 𝑦, 𝑧, 𝑡)) with equations 10-12. In addition, 
we show the predictions for a uniform, convective cooling process. This ignores the thermal 
transport through the material, but it matches the boundary conditions to what is seen in the 
experiment, which is convective cooling. In real applications, convective cooling is more 
appropriate than constant cooling, which is used in DSC. It is shown in the gray dashed line in Fig. 
6 and overpredicts the experimental cooling time by about a factor of 2 for each aspect ratio. It 
overpredicts because the uniform assumption ignores large temperature gradients which generally 
arise near the material surface. As mentioned, the large temperature gradients lead to much lower 
temperature near the surface, which catalyzes nucleation. Without including detailed analysis of 
the temperature profile as a function of time, the catalyzed effect on nucleation is missed, leading 
to huge over-prediction. Thus, thermal transport must be included in any detailed analysis of PCM 
supercooling behavior.  
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 Fig. 6: Experimental vs Predicted supercooling times for NPG at fixed volume with varying aspect ratio. The 
black dots represent the experimental averages and their standard deviations on the vertical. The solid blue line 
represents the predicted supercooling times from equations 11-13 using 𝛾 = 4.2 ∗ 10!"" and 𝑛 = 35.87. The 
blue shaded zone represents ±	1 standard deviation. The gray dashed and dotted lines show predictions for 
lumped convective and lumped constant cooling cases and are included to highlight the importance of 
considering temperature gradients (non-lumped) to correctly predict the supercooling behavior of a system. 
Reproduced with permission from Appl. Energy 290, 116635 (2021), Copyright 2021 Elsevier 
 
Energy Transfer Rate: For predicting the charging and discharging rate i.e. power  in solid-liquid 
PCM  , the thermal transport is formally described by the Stefan problem, which for a one-phase 
system in 1D is expressed by69: 
 

𝜕𝑇
𝜕𝑡 = 𝛼

𝜕4𝑇
𝜕𝑥4 	 

(15) 

 

𝜌!Δ𝐻%
𝜕𝑋(𝑡)
𝜕𝑡 = −𝑘!

𝜕𝑇(𝑋(𝑡), 𝑡)
𝜕𝑥 		 (16) 

 
where equation 15 is the standard heat equation, and equation 16 is the “Stefan condition” which 
stitches the solid phase to the liquid phase at the interface, X(t). Because the interface is defined 
by the region of solid-liquid equilibria, it is always at the equilibrium melting point temperature 
so that 𝑇(𝑋(𝑡), 𝑡) = 𝑇(. Semi-analytical solutions exist for the 1D problem69, but in general 
numerical methods are needed in higher dimensions and to include more realistic temperature-
dependent thermophysical properties. Finite difference schemes employing the effective heat 
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capacity method are common for this type of analysis. Heat flux at the boundary is extremely 
important in TES applications because it determines how quickly the system can be charged and 
discharged, along with the effective thermal capacity for a given discharge rate (e.g., thermal 
Ragone plot12). By solving the Stefan problem, or some numerical variant, the heat flux as a 
function of time at the heat exchange boundary can be calculated. In general, the heat flux at large 
times decreases as a function of heat capacity and latent heat of fusion and increases with thermal 

conductivity. That is, 𝑞 ∝ J V
XY
, V
Q;
, 𝑘K. Therefore, high power output thermal storage systems may 

need to sacrifice energy density, and vice-versa.  
 
At large times, the flux is especially dependent on the thermal conductivity and heat capacity of 
the liquid. To extract the heat from the phase change front, it must be propagated through the liquid 
phase to the boundary at which the heat is collected. As the PCM melts and the phase change front 
recesses further and further into the material, more and more heat must be transported through 
longer distances of the liquid phase. Thus, if the thermal diffusivity of the liquid is low (i.e., low 
thermal conductivity and high heat capacity), extracting heat becomes increasingly difficult with 
time, and a larger bias temperature must be applied at the boundary, ultimately reducing the 
effective energy density. Thermal conductivity of liquids is therefore essential in predicting the 
power output of thermal energy storage systems. Therefore, as discussed in the previous section a 
fundamental understanding of thermal conductivity of the liquid phase is very important in 
understanding the rate of thermal energy transfer in TES.  
 

Summary and Outlook 
There is much work to be done in describing the physics of the liquid state. No model can 
thoroughly predict the solid-liquid transition using a single equation of state, like the van der Waals 
equation does for liquid-gas transitions. Without such a model, accurately predicting the melting 
point without fitting parameters has yet to be done and would significantly contribute to our ability 
to screen materials for thermal energy storage applications. In addition, no model exists that 
accurately predicts the temperature-dependent thermal conductivity of diverse liquids, and without 
such a model predicting the power output and charging time of PCM-based thermal energy storage 
systems requires experimental data that is time-consuming to acquire. It is the authors opinion that 
the microscopic/molecular picture is best to inform equilibrium thermodynamic modelling, 
whereby the traditional partition function formulation of statistical mechanics and all its many 
results can be employed. For transport properties, such as thermal conductivity, the microscopic 
picture quickly grows complex, and traditional lattice dynamics approaches are confounded by 
strong anharmonic potentials with no fixed point for Taylor expansion. It seems more fruitful, 
therefore, to look toward kinetic theory leaning approaches, whereby the existence of a 
fundamental energy carrier is assumed, and results are derived from spectral/modal considerations 
of that energy carrier. In non-metallic solids that carrier is the phonon. In liquids, there is strong 
evidence that high energy and short-range phonons certainly exist in the longitudinal direction, 
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and below certain timescales, in the transverse direction as well. It will be interesting to see if new, 
more fundamental quasi-particles can be discerned that encompass both the phonon and the 
transverse-shear relaxations leading to local atomic re-arrangement – and whether they can be used 
to describe thermal transport more thoroughly. The more satisfactorily these questions can be 
answered, the more predictive power we gain for screening and designing thermal energy storage  

Data Availability: 
 
The data that support the findings of this study are available within this article. 
 
Conflicts of Interest: 
 
The authors have no conflicts to disclose. 
 
Acknowledgements: 
 
This work was supported by Energy Efficiency and Renewable Energy, 
Building Technologies Program, of the U.S. Department of Energy 
under Contract No. DEAC02-05CH11231. 
 
 
 
References: 
 
1 P. Albertus, J.S. Manser, and S. Litzelman, Joule 4, 21 (2020). 
2 A. Henry, R. Prasher, and A. Majumdar, Nat. Energy 5, 635 (2020). 
3 C. Booten, P. Rao, V. Rapp, R. Jackson, and R. Prasher, Joule 5, 24 (2021). 
4 B.A. Babb and M.K. Pruett, Fam. Court Rev. 57, 459 (2019). 
5 C.W. Forsberg, D.C. Stack, D. Curtis, G. Haratyk, and N.A. Sepulveda, Electr. J. 30, 42 (2017). 
6 C. Amy, H.R. Seyf, M.A. Steiner, D.J. Friedman, and A. Henry, Energy Environ. Sci. 12, 334 
(2019). 
7 P. Khomein, A. Nallapaneni, J. Lau, D. Lilley, C. Zhu, S. Kaur, R. Prasher, and G. Liu, Sol. 
Energy Mater. Sol. Cells 225, 111030 (2021). 
8 D. Zhou, C.Y. Zhao, and Y. Tian, Appl. Energy 92, 593 (2012). 
9 A. Abhat, Sol. Energy 30, 313 (1983). 
10 J. Dieckmann, (n.d.). 
11 G. Li, REVIEW OF THERMAL ENERGY STORAGE TECHNOLOGIES AND 
EXPERIMENTAL INVESTIGATION OF ADSORPTION THERMAL ENERGY STORAGE 
FOR RESIDENTIAL APPLICATION, 2014. 
12 J. Woods, A. Mahvi, A. Goyal, E. Kozubal, A. Odukomaiya, and R. Jackson, Nat. Energy 6, 
295 (2021). 
13 A.C. Lawson, Philos. Mag. 89, 1757 (2009). 
14 S. Sarkar, C. Jana, and B. Bagchi, J. Chem. Sci. 833 (2017). 



20 
 

15 A. V Granato, D.M. Joncich, and V.A. Khonik, Appl. Phys. Lett. 97, 12 (2010). 
16 K. Trachenko and V. Brazhkin, Reports Prog. Phys. 1, 016502 (2016). 
17 G. De Lorenzi-Venneri, E.D. Chisolm, and D.C. Wallace, Phys. Rev. E - Stat. Nonlinear, Soft 
Matter Phys. 78, (2008). 
18 D.C. Wallace, S. Rudin, G. De Lorenzi-Venneri, and T. Sjostrom, Phys. Rev. B 99, 104204 
(2019). 
19 T. Sjostrom, G. De Lorenzi-Venneri, and D.C. Wallace, Phys. Rev. B 98, 54201 (2018). 
20 D.C. Wallace, Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 55, 4179 
(1997). 
21 G. De Lorenzi-Venneri and D.C. Wallace, J. Chem. Phys. 123, 244513 (2005). 
22 E.E. Chisolm, B.B. Clements, and D.D. Wallace, Phys. Rev. E - Stat. Physics, Plasmas, Fluids, 
Relat. Interdiscip. Top. 63, (2001). 
23 F.H. Stillinger and T.A. Weber, Phys. Rev. A 25, 978 (1982). 
24 F.H. Stillinger and T.A. Weber, Phys. Rev. A 28, 2408 (1983). 
25 T.F. Middleton and D.J. Wales, Phys. Rev. B - Condens. Matter Mater. Phys. 64, (2001). 
26 F.H. Stillinger, in Energy Landscapes, Inherent Struct. Condens. Phenom. (2019), pp. 134–
194. 
27 D.C. Wallace, Proc. R. Soc. London. Ser. A Math. Phys. Sci. 433, 615 (1991). 
28 H. Eyring, D. Henderson, E.M. Eyring, and B.J. Stover, Statistical Mechanics and Dynamics 
(Wiley, 1964). 
29 J. Walter and H. Eyring, J. Chem. Phys. 9, 393 (1941). 
30 J. Walter and H. Eyring, A Theory Liq. Struct. J. Chem. Phys. 9, 896 (1941). 
31 D.R. McLaughlin and H. Eyring, Proc. Natl. Acad. Sci. 55, 1031 (1966). 
32 H.S. Frank, J. Chem. Phys. 13, 478 (1945). 
33 H.S. Frank, J. Chem. Phys. 13, 493 (1945). 
34 H.S. Frank and M.W. Evans, J. Chem. Phys. 13, 507 (1945). 
35 G. Seeley and T. Keyes, J. Chem. Phys. 91, 5581 (1998). 
36 S.-T. Lin, M. Blanco, and W.A.G. III, J. Chem. Phys. 119, 11792 (2003). 
37 G.P. Tiwari, Met. Sci. 12, 317 (1978). 
38 D.W. Reger, Daniel L and Goode, Scott R and Ball, Chemistry: Principles and Practice 
(Cengage Learning, 2009). 
39 D. Lilley, A. Jain, and R. Prasher, Appl. Phys. Lett. 118, 083902 (2021). 
40 D.C. Wallace, Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 57, 1717 
(1998). 
41 D.C. Wallace, Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 56, 1981 
(1997). 
42 A. Magro, D. Frezzato, A. Polimeno, G.J. Moro, R. Chelli, and R. Righini, J. Chem. Phys. 
123, 6851 (2005). 
43 G.J. Moro, P.L. Nordio, M. Noro, and A. Polimeno, J. Chem. Phys. 101, 693 (1994). 
44 K. Trachenko and V. V. Brazhkin, Reports Prog. Phys. 79, (2015). 
45 M. Luban and H. Novogrodsky, Phys. Rev. B 6, 1130 (1972). 
46 D. Bolmatov, V. V. Brazhkin, and K. Trachenko, Sci. Rep. 2, 1 (2012). 
47 D.C. Wallace, Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 58, 538 
(1998). 
48 G. Chen, J. Heat Transfer (2021). 
49 E. McLaughlin, Chem. Rev. 64, 389 (1964). 



21 
 

50 W. Lv and A. Henry, New J. Phys. 18, 013028 (2016). 
51 G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, 
Molecules, Phonons, and Photons (Oxford university press, 2005). 
52 K. Trachenko and V. V. Brazhkin, Sci. Rep. 3, 1 (2013). 
53 T. Iwashita, D.M. Nicholson, and T. Egami, Phys. Rev. Lett. 110, 205504 (2013). 
54 T. Egami, Mod. Phys. Lett. B 28, 1430006 (2014). 
55 P.B. Allen, J.L. Feldman, J. Fabian, and F. Wooten, Philos. Mag. B Phys. Condens. Matter; 
Stat. Mech. Electron. Opt. Magn. Prop. 79, 1715 (1999). 
56 M.T. Dove, K. Trachenko, V. V Brazhkin, C.J. Walker, A.E. Phillips, E.I. Andritsos, and E. 
Zarkadoula, J. Phys. Condens. Matter 25, 235401 (2013). 
57 V. V. Brazhkin and K. Trachenko, J. Non. Cryst. Solids 407, 149 (2015). 
58 A.Z. Zhao, M.C. Wingert, R. Chen, and J.E. Garay, J. Appl. Phys. 129, 235101 (2021). 
59 A. Safari, R. Saidur, F.A. Sulaiman, Y. Xu, and J. Dong, Renew. Sustain. Energy Rev. 70, 905 
(2017). 
60 F. Souayfane, F. Fardoun, and P.H. Biwole, Energy Build. 129, 396 (2016). 
61 J. Pereira da Cunha and P. Eames, Appl. Energy 177, 227 (2016). 
62 J.L. Zeng, L. Zhou, Y.F. Zhang, S.L. Sun, Y.H. Chen, L. Shu, L.P. Yu, L. Zhu, L. Bin Song, 
and Z. Cao, J. Therm. Anal. Calorim. 129, 1291 (2017). 
63 V.I. Kalikmanov, in (Springer, Dordrecht, 2013), pp. 17–41. 
64 R.E. Steendam, L. Keshavarz, M.A. R Blijlevens, B. de Souza, D.M. Croker, and P.J. Frawley, 
(2018). 
65 D. Lilley, J. Lau, C. Dames, S. Kaur, and R. Prasher, Appl. Energy 290, 116635 (2021). 
66 N. Kubota, J. Cryst. Growth 418, 15 (2015). 
67 N. Kubota, Y. Fujisawa, and T. Tadaki, J. Cryst. Growth 89, 545 (1988). 
68 N. Kubota, J. Cryst. Growth 345, 27 (2012). 
69 Y. Yener and S. Kakaç, Heat Conduction (CRC Press, 2018). 
 
 




