
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Memory constraints affect statistical learning;
statistical learning affects memory constraints

Permalink
https://escholarship.org/uc/item/5wm2t4q9

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 37(0)

Authors
de Leeuw, Joshua R
Goldstone, Robert L

Publication Date
2015

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5wm2t4q9
https://escholarship.org
http://www.cdlib.org/

Memory constraints affect statistical learning;
statistical learning affects memory constraints.

Joshua R. de Leeuw (jodeleeu@indiana.edu)

Department of Psychological and Brain Sciences & Program in Cognitive Science
Bloomington, IN 47405 USA

Robert L. Goldstone (rgoldsto@indiana.edu)

Department of Psychological and Brain Sciences & Program in Cognitive Science
Bloomington, IN 47405 USA

Abstract

We present evidence that successful chunk formation during a
statistical learning task depends on how well the perceiver is
able to parse the information that is presented between
successive presentations of the to-be-learned chunk. First, we
show that learners acquire a chunk better when the
surrounding information is also chunk-able in a visual
statistical learning task. We tested three process models of
chunk formation, TRACX, PARSER, and MDLChunker, on
our two different experimental conditions, and found that only
PARSER and MDLChunker matched the observed result.
These two models share the common principle of a memory
capacity that is expanded as a result of learning. Though
implemented in very different ways, both models effectively
remember more individual items (the atomic components of a
sequence) as additional chunks are formed. The ability to
remember more information directly impacts learning in the
models, suggesting that there is a positive-feedback loop in
chunk learning.

Keywords: statistical learning; chunking; memory

Introduction
The formation of chunks is hypothesized to be a crucial

aspect of cognition, perception, and learning (Gobet et al.,
2001). Chunks are a means of creating compressed
encodings for frequently co-occurring inputs. The concept
of chunking has been used to explain a wide range of
psychological phenomena, including the advantages that
expert chess players have in remembering the position of
chess pieces on a board (Chase & Simon, 1973; Gobet &
Simon, 1998), differences in the speed of retrieving
successive letters of the alphabet (Klahr, Chase, &
Lovelace, 1983), and the ability to remember more words
when the words are part of familiar phrases (Simon, 1974).
A core aspect of chunking is that it increases the number of
items that can be stored in memory: It is possible to
remember more individual letters if they are chunked into
words, and more words if they are chunked into sentences.

Statistical learning paradigms are well suited for
investigating the conditions under which chunks are learned
(Perruchet & Pacton, 2006). In a typical statistical learning
task, a novel information stream containing latent structure
is presented to a subject for a moderate length of time, and
the subject is tested on how well they are able to learn the
structure that generated the stream. Often this structure is

explicitly in the form of chunks (e.g. Fiser & Aslin, 2001,
2002).

 A key part of statistical learning research is identifying
the conditions under which chunking occurs. The
foundational work focused on learning based on transitional
probabilities (Aslin, Saffran, & Newport, 1998; Saffran,
Aslin, & Newport, 1996), and much subsequent research has
explored different constraints and biases that affect learning.
A key theme from this research is that previous learning
experience alters how new information is processed.
Learners form expectations about the kind of structure that
is present in an information stream from previous exposure
to other streams (Lew-Williams & Saffran, 2012). This can
cause them to fail to learn structures that are in conflict with
their expectations (Gebhart, Aslin, & Newport, 2009). Prior
learning can also improve subsequent learning. For
example, acquiring non-adjacent dependencies is easier after
first learning the adjacent dependencies (Lany & Gómez,
2008).

Memory constraints are an important factor in
determining the success of learning new chunks. Frank and
Gibson (2011) showed that statistical rule learning is
improved in a variety of experimental paradigms when
memory constraints are alleviated by presenting examples
concurrently instead of sequentially. They hypothesize that
this is because learners need to be able to remember enough
items in order to extract the statistical regularities. However,
it is unknown what functional role the memory constraints
might play.

Models of statistical learning vary on whether they
include memory constraints and how such constraints are
implemented. Models with memory constraints, either in
terms of a limit on the number of input items that can be
remembered or a limit on the number of internal states that
the model can track, tend to fit human performance on word
segmentation tasks better than models without such
constraints (Frank, Goldwater, Griffiths, & Tenenbaum,
2010). However, previous models have not explored how
the learning process and the memory constraints might
interact. Since statistical learning is hypothesized to involve
chunk formation, and chunks are more efficient memory
structures for encoding information, learning may have a
cyclical effect: learning to chunk may reduce the memory
constraints of encoding a sequence, allowing people to

530

remember more items and more easily extract the
regularities. We tested this hypothesis in a simple
experiment.

Method

We replicated and extended a classic result from temporal
visual statistical learning (Fiser & Aslin, 2002). In the
original experiment, subjects were exposed to a sequence of
shapes, presented one at a time, with no overt task.
Unbeknownst to the subjects, the sequence was formed by
grouping the shapes into sets of three items (triples) and
presenting the triples in a random order. We replicated the
original experiment as a control condition, and also tested
subjects’ ability to learn an individual triple when the other
triples were scrambled. In both conditions, the target triple
appears equally often and with equal frequency throughout
the sequence. If learning chunks makes it easier to learn
other chunks, then learners should show improved learning
for the target triple in the condition with more triples.

Participants
41 people participated in the study via Mechanical Turk.
Subjects were paid $1.25 for participation. Subjects were
randomly assigned into either the four-triples (N = 21) or
one-triple (N = 20) condition.

Procedure
Subjects completed the experiment in a web browser of their
choice. The experiment was developed using the jsPsych
software library (de Leeuw, 2015).

The experiment consisted of an exposure phase and a test
phase. During the exposure phase, subjects viewed a
sequence of 300 images with the instructions to simply
observe the shapes because they would be asked questions
about what they saw. The sequence consisted of 12 unique
shapes, modeled after the shapes depicted in (Fiser & Aslin,
2002). The sequence was shown as an animation with
shapes oscillating horizontally, moving behind an occluding
rectangle in the center of the screen (see Fiser & Aslin, 2002
for a visual depiction). It took one second from the point
that a part of the shape appeared to the point that the shape
was completely occluded again. The entire sequence lasted
five minutes.

In the four-triples condition, the shapes were grouped into
four triples, with each shape belonging to one triple (figure
1). The assignment of particular shapes to triples was
randomized for each subject. The sequence was created by
randomly ordering the triples, with the constraints that: (1) a
triple could not occur twice in a row, (2) a triple could not
occur more than twice before every other triple occurred at
least once, and (3) all triples occurred exactly 25 times.

In the one-triple condition, the sequence was created in a
similar way, except that the order of three of the triples was
randomized for each presentation of the triple. Thus, if one
of the randomized triples was ABC, it would randomly
appear as ABC, ACB, BAC, BCA, CAB, and CBA. One of the

four triples was always presented as a consistent triple,
maintaining its original order. In addition, three impossible
triples were created for testing purposes. Impossible triples
contained one shape from each of the three randomized
triples. When the sequence was constructed, shapes that
occurred in the same impossible triple could not occur
sequentially. This constraint allowed for a comparable test
in both conditions: a triple that was seen could be paired
with a triple that was never observed.

In the test phase, subjects were sequentially presented
with two three-item sequences and asked to report which
triple occurred more often during the exposure phase. Each
three item sequence was presented in the same manner as
the sequence during the exposure phase. There was a 1
second gap between the two test sequences. Subjects were
required to choose one of the sequences, even if they were
unsure. There were 32 test pairs. In the four-triples
condition, four impossible triples were created, where the
probability of each item in the triple appearing adjacent to
the other items during the exposure phase was 0. Each triple
was tested against each impossible triple twice, once with
the triple first and once with the triple second. In the one-
triple condition, we also created four impossible triples, as
well as three low-probability triples. The impossible triples
never occurred in the sequence, and the low-probability
triples occurred rarely. We did not use any data from the test
pairs that contained low-probability triples; they were
merely created to make the testing phase the same length in
both conditions, and to ensure that the frequency of
individual shapes was identical in the testing phase. There

Figure 1: Shape stimuli used in experiment 1. In the four-
triples condition, stimuli were grouped into four triples
(illustrated with solid boxes). In the one-triple condition,
one triple appeared with the shapes in the same order
throughout the sequence (solid box), and the rest of the
stimuli appeared in groups of three but with a random order
of the shapes inside the box during each appearance
(dashed boxes)

531

were 24 trials containing low-probability triples, and 8
containing the single triple compared with one of the four
impossible triples.

Results
Subjects in the four-triples condition had an overall

accuracy of 73.4% at identifying the triple they had seen
before in the forced-choice tests, while subjects in the one-
triple condition were only 58.8% accurate (Figure 2). Thus,
subjects in the four-triple condition were 14.8% more
accurate at identifying the target triple, on average.

We used a Bayesian data analysis model to estimate the
difference in probability of a correct response between the
two conditions. There are numerous reasons to favor
Bayesian data analysis over conventional null-hypothesis
significance testing (Kruschke, 2011), but a significant
advantage in this particular application is the ability to
naturally account for the different number of critical trials in
each condition (32 for the four-triples condition and 8 for
the one-triple condition). Each subject’s responses were
treated as being generated from a binomial distribution with
probability p and number of samples N. For subjects in the
four-triples condition, N=32, and for subjects in the one-
triple condition, N=8. We estimated p as the sum of two
random variables: pbaseline and pdifference. The baseline
component estimated the overall mean probability of a
correct response across conditions, and the difference
component estimated the magnitude of the difference
between conditions. The prior on pbaseline was a beta
distribution with both shape parameters equal to 1, and the
prior on pdifference was a normal distribution with the mean
equal to 0 and the standard deviation equal to 1. These
parameters represent vague priors that are appropriate to the
scale of the data. We used MCMC sampling with the
runjags R package to find the posterior distribution. The
95% highest-density interval (HDI)1 for pdifference was 6.39%
to 22.9%, with a mode of 13.4%. Thus, the model finds
strong evidence that the four-triple group did indeed learn
the triples better than the one-triple group2.

Modeling
The experiment found evidence that chunk learning is

influenced by more than just the repeated presentation of a
consistent set of items. The target triple was learned
significantly better when the surrounding information was
also generated from a triple-based structure. We tested three
well-established process models of statistical learning to see
if they predicted the difference in learning that we observed.

1 The range of parameter values containing 95% of the posterior

where each value inside the HDI is more probable than those
outside it. The HDI represents the most likely parameter values for
the model given the data.

2 A t-test of the difference in means also reached the same
conclusion of a significant difference in accuracy, t(39)=2.2855, p
= 0.028.

Model descriptions
We tested three models: PARSER, MDLChunker, and

TRACX. We chose these models because they are process
models that represent different approaches to sequence
segmentation and chunk learning, and they all had
publically available implementations that we could use.
Importantly, the three models all deal with memory
constraints in different ways. Here we briefly summarize
each model to provide an intuition for how they work. Due
to space constraints, please refer to the original source
material listed in the heading for a more detailed
explanation of each of the models.

PARSER (Perruchet & Vinter, 1998). PARSER
constructs an internal lexicon through an online chunk
formation process. Candidate chunks are created through a
random process as the model processes the input: PARSER
selects a percept length of 1, 2, or 3 units (with the default
parameter set). This percept becomes a candidate chunk.
Frequently seen chunks are reinforced, while candidate
chunks that are encountered rarely are forgotten. When the
strength of an individual chunk rises above a threshold, then
incoming information is shaped by the presence of the

Figure 2: Experiment results. Top: Mean accuracy for the
two conditions in experiment 1. Error bars show one
standard error of the mean. The y-axis begins at chance
performance (50%). Bottom: Posterior distribution of the
estimated difference in the probability of a correct answer
between conditions. Positive values indicate samples from
the posterior in which the four-triples group was more
accurate than the one-triple group. The 95% HDI is shown
in black, with the limits labeled.

532

chunk. For example, if the incoming sequence is ABCD and
PARSER selects a percept length of 2 and has no chunks,
then the model will form a candidate chunk of AB. But if
PARSER already has the chunks AB and CD and selects a
percept length of 2, then the input sequence ABCD will be
processed as AB/CD. This will result in both the AB and CD
chunks being reinforced, as well as the formation of a
candidate ABCD chunk.

MDLChunker (Robinet, Lemaire, & Gordon, 2011).
MDLChunker also creates an explicit internal lexicon, but it
uses the minimum description length principle (Rissanen,
1978) to guide the formation of new chunks. As
MDLChunker processes a sequence, it checks to see if
recoding the sequence using chunks would decrease the
number of bits required to encode the sequence.
Importantly, adding chunks increases the number of bits
required to store the lexicon, and MDLChunker will only
add a new chunk if the cost of adding the chunk to the
lexicon is outweighed by the overall reduction in coding
complexity of the sequence. We used the memory-
constrained version of MDLChunker (see section 7.3 of
Robinet et al., 2011). Without memory constraints,
MDLChunker checks the cost of adding a new chunk
against all of the input that it has previously seen. The
memory constraint imposes a limit, expressed in bits, for
how much of the previous input can be retained by the
model (and thus used in the calculation for adding a new
chunk). Importantly, the memory cost is calculated based on
the lexicon. Thus as the model gets more efficient at
encoding the input, the absolute number of items in memory
will grow.

TRACX (French, Addyman, & Mareschal, 2011).
TRACX is a connectionist model of chunk learning. The
core of TRACX is an auto-associative network. The input
layer represents two adjacent items (called the left- and
right-hand items, with the left-hand item occurring
temporally before the right-hand item) from the sequence,
the hidden layer forms a compressed representation of the
input, and the output layer recreates the input. Back-
propagation is used to adjust the weights so that the output
better matches the input. The key innovation is that the
network will use the hidden layer as the left-hand item in the
next input when the error in reconstruction is low. Low
reconstruction error occurs when the input is very familiar
to the network, and thus is a candidate chunk. The
distributed pattern of activity on the hidden layer is a
representation of the chunk. Initially, TRACX will learn
only two-item chunks, but as these chunks are learned and
subsequently become part of the input, then longer chunks
can also be learned.

Method
Model implementations. We used publicly available
implementations of each of the three models. For PARSER
and MDLChunker, we used the U-LEARN software from

http://perruchet.jimdo.com/u-learn/. For
TRACX, we used a JavaScript version of the model from
https://github.com/YourBrain/TRACX-Web.
We made no modifications to the model code.

Procedure. We converted the sequences seen by
participants in the experiment into strings of letters, with
each shape being represented by a unique letter. The strings
were 300 characters long. We used the exact same
sequences seen by participants in the experiment. Each
model was tested with 20 different four-triple sequences and
20 different one-triple sequences. We used the default
parameters for all models.

Figure 3: Model results. Each of the three models has a
different way of indicating how well the target chunk was
learned, indicated on the y-axis. The distributions of the
measurement values are shown in grey. PARSER produced
a bimodal distribution in the one-triple condition, showing
that the target triple was learned only some of the time. The
box-and-whisker overlay is provided to show a
representation of the central tendency. The dark line is the
median, the boxes represent the range of values between the
25th and 75th percentile of the distribution, and the whiskers
show the range of data that is within the inter-quartile range
(height of the box) times 1.5. Values outside this range are
plotted as individual dots.

533

Each of the three models generates a different kind of
output. PARSER and MDLChunker both construct lexicons
containing explicit chunks. PARSER assigns a weight to
each chunk, with higher scores being chunks that have
greater weight. MDLChunker reports the number of bits
needed to encode each chunk; smaller bit lengths represent
chunks that are more strongly encoded. TRACX produces a
network recognition error score for any given input chunk,
but because the chunks are represented as distributed
patterns there is no list of known chunks produced by the
model. Instead, the model is queried with a particular chunk
to see what the error rate is. Since our main interest was
seeing if any of the models could fit the qualitative pattern
and this only requires within-model comparisons, we did
not attempt to equate these different output values between
models.

It was unclear how to link the various model’s outputs to
performance on the forced-choice test. TRACX provided a
relatively straightforward option, since the recognition error
for any particular chunk can be tested. However, both
PARSER and MDLChunker will never learn the foil items
from the forced-choice test, since the transitional probability
for each pair of shapes in a foil triple was 0. Thus, we
decided it was best to investigate how well the target triple
was learned, rather than looking at relative learning between
the target triple and a foil triple that was impossible for two
of the three models to have any sort of false confidence in.

Results. PARSER and MDLChunker both showed better
learning of the target triple in the four-triple condition than
in the one-triple condition (PARSER: t(38) = 2.79, p =
0.008; MDLChunker: t(38) = 3.14, p = 0.003). TRACX
showed equivalent performance in both conditions, t(38) =
0.05, p = 0.96. Figure 3 shows the distribution of model
outputs for each condition.

While both PARSER and MDLChunker matched the
direction of the effect, PARSER’s performance seems to
match the experimental data better. MDLChunker learned
the target triple in every single run of the model, though the
average bit length was lower in the four-triple condition.
PARSER showed greater variability: PARSER learned the
target triple in only 11 of 20 runs in the one-triple condition,
but in 19 of 20 runs in the four-triple condition. PARSER’s
occasional lack of learning maps onto the forced-choice data
a bit more naturally than MDLChunker’s varying degrees of
learning. PARSER might genuinely predict uncertainty
between the target and foil triple when the target is not
learned, but MDLChunker always learned the target to some
degree.

Discussion
We presented results from an experiment designed to
investigate how the learning of a chunk is influenced by the
presence or absence of other chunk-able information. We
found that a chunk was better learned when it was
embedded in a sequence that was also chunk-able than when
it was embedded in a more randomly generated sequence.

We tested three process models on this task, and found that
two of them, PARSER and MDLChunker, predicted a
difference in learning between the two conditions, while the
third, TRACX, did not.

Why did PARSER and MDLChunker both match the
direction of the effect, while TRACX showed equivalent
performance in both conditions? The key difference seems
to be the way that memory constraints are implemented in
the models. PARSER and MDLChunker both share a
common feature: As the models learn to chunk the input
sequence, the relative strength of the memory encoding for
individual chunks increases. In both models, this effectively
leads to a longer lasting memory for previously seen
chunks. The longer memory span improves learning for
individual chunks, as they seem to be more frequent from
the perspective of the memory-limited model. We’ll
illustrate this by walking through each model.

PARSER processes a sequence in sets of 1, 2, or 3 units at
a time. The number of units is randomly selected at each
model step. Consider the sequence ABCGHIDEFABC. If
PARSER contains no chunks, and randomly selects to see 3
items, then the input on this step will be A/B/C. But, if
PARSER has already learned the chunks ABC, GHI, and
DEF, then the input would be ABC/DEF/GHI. In both
cases, the chunk ABC will be reinforced, increasing its
weight in memory. However, on the next step, the version
with no chunks will see the input G (supposing that
PARSER randomly chooses 1 unit as the input), and the
ABC chunk will decay slightly in memory. The version with
chunks will see ABC again, since it has already processed
the first nine items in the sequence, reinforcing ABC even
further. When PARSER is able to chunk the input sequence,
it can process the input in fewer model steps, as shown by
this toy example. This has the effect of accelerating the
exposure rate of chunks. Since the decay rate of items in
memory is fixed to the number of model steps, an individual
chunk will experience less decay between successive
presentations when the intermediate sequence is chunk-able.
This process could equivalently be thought of as decreasing
the decay rate of stored items when the incoming items are
chunks. PARSER, in essence, behaves like it has a longer
lasting memory when the input sequence is chunk-able than
when it is not.

MDLChunker ends up with functionally similar behavior,
but through a different kind of memory limitation. In
MDLChunker, the minimum description length (MDL) is
calculated on a set of two components: the set of chunks the
model has stored in its lexicon, and the input sequence
coded in terms of the chunks in the lexicon. The bit length
of an individual chunk depends on the relative frequency of
that chunk in memory. In the one-triple condition, the
optimal encoding would be one triple and nine singletons,
so the relative frequency of the triple will be, on average,
1/10. In the four-triple condition, the optimal encoding
would be four triples, and the relative frequency of the
target triple would be 1/4. Since the bit length of an
individual chunk depends on its frequency in memory, the

534

bit length of the target chunk is smaller when the
surrounding sequence also contains chunks. If we take bit
length to indicate relative strength of encoding, then the
target chunk will have a stronger encoding in the four-triple
condition, due to an increase in relative frequency.

TRACX, in contrast, has no explicit memory storage nor
any explicit forgetting parameter. TRACX also processes a
sequence at a rate of one item per step regardless of
previous learning. Memory constraints in TRACX will
depend on interference in learning connection weights.
Thus, TRACX lacks the kind of mechanism that we
hypothesize might be responsible for the observed effect.

This interpretation of the model results makes a key
prediction: The reinforcement schedule necessary for
successful chunk learning depends on the complexity,
defined in terms of the perceiver’s internal
model/representation, of the information that is seen in
between successive presentations of the chunk. When the
information between successive presentations of a chunk is
highly compressible, then less frequent presentations are
necessary to support chunk formation. However, when the
information between sequences is unpredictable, then more
frequent presentations of the chunk are necessary in order
for learning to take place. This prediction can be tested
empirically in future work.

Acknowledgments
This material is based on work that was supported by a
National Science Foundation Graduate Research Fellowship
under Grant No. DGE-1342962.

References

Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998).
Computation of Conditional Probability Statistics by
8-Month-Old Infants. Psychological Science, 9(4),
321–324. doi:10.1111/1467-9280.00063

Chase, W. G., & Simon, H. A. (1973). Perception in chess.
Cognitive Psychology, 61, 55–61.

de Leeuw, J. R. (2015). jsPsych: A JavaScript library for
creating behavioral experiments in a Web browser.
Behavior Research Methods, 47(1), 1–12.
doi:10.3758/s13428-014-0458-y

Fiser, J., & Aslin, R. N. (2001). Unsupervised statistical
learning of higher-order spatial structures from visual
scenes. Psychological Science, 12(6), 499–504.

Fiser, J., & Aslin, R. N. (2002). Statistical learning of
higher-order temporal structure from visual shape
sequences. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 28(3), 458–467.
doi:10.1037/0278-7393.28.3.458

Frank, M. C., & Gibson, E. (2011). Overcoming Memory
Limitations in Rule Learning. Language Learning and
Development, 7, 130–148.
doi:10.1080/15475441.2010.512522

Frank, M. C., Goldwater, S., Griffiths, T. L., & Tenenbaum,
J. B. (2010). Modeling human performance in

statistical word segmentation. Cognition, 117, 107–
125. doi:10.1016/j.cognition.2010.07.005

French, R. M., Addyman, C., & Mareschal, D. (2011).
TRACX: a recognition-based connectionist
framework for sequence segmentation and chunk
extraction. Psychological Review, 118(4), 614–636.
doi:10.1037/a0025255

Gebhart, A. L., Aslin, R. N., & Newport, E. L. (2009).
Changing structures in midstream: Learning along the
statistical garden path. Cognitive Science, 33, 1087–
1116. doi:10.1111/j.1551-6709.2009.01041.x

Gobet, F., Lane, P. C., Croker, S., Cheng, P. C. H., Jones,
G., Oliver, I., & Pine, J. M. (2001). Chunking
mechanisms in human learning. Trends in Cognitive
Sciences, 5(6), 236–243.

Gobet, F., & Simon, H. A. (1998). Expert chess memory:
revisiting the chunking hypothesis. Memory, 6(3),
225–255. doi:10.1080/741942359

Klahr, D., Chase, W. G., & Lovelace, E. A. (1983).
Structure and process in alphabetic retrieval. Journal
of Experimental Psychology: Learning, Memory, and
Cognition, 9(3), 462–477.

Kruschke, J. K. (2011). Doing Bayesian Data Analysis: A
Tutorial with R and BUGS (1st ed.). Academic Press.

Lany, J., & Gómez, R. L. (2008). Twelve-month-old infants
benefit from prior experience in statistical learning.
Psychological Science, 19(12), 1247–1252.

Lew-Williams, C., & Saffran, J. R. (2012). All words are
not created equal: Expectations about word length
guide infant statistical learning. Cognition, 122, 241–
246. doi:10.1016/j.cognition.2011.10.007

Perruchet, P., & Pacton, S. (2006). Implicit learning and
statistical learning: one phenomenon, two approaches.
Trends in Cognitive Sciences, 10(5), 233–238.
doi:10.1016/j.tics.2006.03.006

Perruchet, P., & Vinter, A. (1998). PARSER: A Model for
Word Segmentation. Journal of Memory and
Language, 39, 246–263. doi:10.1006/jmla.1998.2576

Rissanen, J. (1978). Modeling by shortest data description.
Automatica, 14(5), 465–471.

Robinet, V., Lemaire, B., & Gordon, M. B. (2011).
MDLChunker: A MDL-based cognitive model of
inductive learning. Cognitive Science (Vol. 35, pp.
1352–1389). doi:10.1111/j.1551-6709.2011.01188.x

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996).
Statistical learning by 8-month-old infants. Science,
274(5294), 1926–1928.
doi:10.1126/science.274.5294.1926

Simon, H. A. (1974). How big is a chunk? Science, 183,
482–488. doi:10.1126/science.183.4124.482

535

	cogsci_2015_530-535

