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Abstract 

We present evidence that successful chunk formation during a 
statistical learning task depends on how well the perceiver is 
able to parse the information that is presented between 
successive presentations of the to-be-learned chunk. First, we 
show that learners acquire a chunk better when the 
surrounding information is also chunk-able in a visual 
statistical learning task. We tested three process models of 
chunk formation, TRACX, PARSER, and MDLChunker, on 
our two different experimental conditions, and found that only 
PARSER and MDLChunker matched the observed result. 
These two models share the common principle of a memory 
capacity that is expanded as a result of learning. Though 
implemented in very different ways, both models effectively 
remember more individual items (the atomic components of a 
sequence) as additional chunks are formed. The ability to 
remember more information directly impacts learning in the 
models, suggesting that there is a positive-feedback loop in 
chunk learning.  

Keywords: statistical learning; chunking; memory 

Introduction 
The formation of chunks is hypothesized to be a crucial 

aspect of cognition, perception, and learning (Gobet et al., 
2001). Chunks are a means of creating compressed 
encodings for frequently co-occurring inputs. The concept 
of chunking has been used to explain a wide range of 
psychological phenomena, including the advantages that 
expert chess players have in remembering the position of 
chess pieces on a board (Chase & Simon, 1973; Gobet & 
Simon, 1998), differences in the speed of retrieving 
successive letters of the alphabet (Klahr, Chase, & 
Lovelace, 1983), and the ability to remember more words 
when the words are part of familiar phrases (Simon, 1974). 
A core aspect of chunking is that it increases the number of 
items that can be stored in memory: It is possible to 
remember more individual letters if they are chunked into 
words, and more words if they are chunked into sentences.  

Statistical learning paradigms are well suited for 
investigating the conditions under which chunks are learned 
(Perruchet & Pacton, 2006). In a typical statistical learning 
task, a novel information stream containing latent structure 
is presented to a subject for a moderate length of time, and 
the subject is tested on how well they are able to learn the 
structure that generated the stream. Often this structure is 

explicitly in the form of chunks (e.g. Fiser & Aslin, 2001, 
2002).  

 A key part of statistical learning research is identifying 
the conditions under which chunking occurs. The 
foundational work focused on learning based on transitional 
probabilities (Aslin, Saffran, & Newport, 1998; Saffran, 
Aslin, & Newport, 1996), and much subsequent research has 
explored different constraints and biases that affect learning. 
A key theme from this research is that previous learning 
experience alters how new information is processed. 
Learners form expectations about the kind of structure that 
is present in an information stream from previous exposure 
to other streams (Lew-Williams & Saffran, 2012). This can 
cause them to fail to learn structures that are in conflict with 
their expectations (Gebhart, Aslin, & Newport, 2009). Prior 
learning can also improve subsequent learning. For 
example, acquiring non-adjacent dependencies is easier after 
first learning the adjacent dependencies (Lany & Gómez, 
2008).  

Memory constraints are an important factor in 
determining the success of learning new chunks. Frank and 
Gibson (2011) showed that statistical rule learning is 
improved in a variety of experimental paradigms when 
memory constraints are alleviated by presenting examples 
concurrently instead of sequentially. They hypothesize that 
this is because learners need to be able to remember enough 
items in order to extract the statistical regularities. However, 
it is unknown what functional role the memory constraints 
might play.  

Models of statistical learning vary on whether they 
include memory constraints and how such constraints are 
implemented. Models with memory constraints, either in 
terms of a limit on the number of input items that can be 
remembered or a limit on the number of internal states that 
the model can track, tend to fit human performance on word 
segmentation tasks better than models without such 
constraints (Frank, Goldwater, Griffiths, & Tenenbaum, 
2010). However, previous models have not explored how 
the learning process and the memory constraints might 
interact. Since statistical learning is hypothesized to involve 
chunk formation, and chunks are more efficient memory 
structures for encoding information, learning may have a 
cyclical effect: learning to chunk may reduce the memory 
constraints of encoding a sequence, allowing people to 
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remember more items and more easily extract the 
regularities. We tested this hypothesis in a simple 
experiment. 

Method 

We replicated and extended a classic result from temporal 
visual statistical learning (Fiser & Aslin, 2002). In the 
original experiment, subjects were exposed to a sequence of 
shapes, presented one at a time, with no overt task. 
Unbeknownst to the subjects, the sequence was formed by 
grouping the shapes into sets of three items (triples) and 
presenting the triples in a random order. We replicated the 
original experiment as a control condition, and also tested 
subjects’ ability to learn an individual triple when the other 
triples were scrambled. In both conditions, the target triple 
appears equally often and with equal frequency throughout 
the sequence. If learning chunks makes it easier to learn 
other chunks, then learners should show improved learning 
for the target triple in the condition with more triples. 

Participants 
41 people participated in the study via Mechanical Turk. 
Subjects were paid $1.25 for participation. Subjects were 
randomly assigned into either the four-triples (N = 21) or 
one-triple (N = 20) condition. 

Procedure 
Subjects completed the experiment in a web browser of their 
choice. The experiment was developed using the jsPsych 
software library (de Leeuw, 2015). 

The experiment consisted of an exposure phase and a test 
phase. During the exposure phase, subjects viewed a 
sequence of 300 images with the instructions to simply 
observe the shapes because they would be asked questions 
about what they saw. The sequence consisted of 12 unique 
shapes, modeled after the shapes depicted in (Fiser & Aslin, 
2002). The sequence was shown as an animation with 
shapes oscillating horizontally, moving behind an occluding 
rectangle in the center of the screen (see Fiser & Aslin, 2002 
for a visual depiction). It took one second from the point 
that a part of the shape appeared to the point that the shape 
was completely occluded again. The entire sequence lasted 
five minutes. 

In the four-triples condition, the shapes were grouped into 
four triples, with each shape belonging to one triple (figure 
1). The assignment of particular shapes to triples was 
randomized for each subject. The sequence was created by 
randomly ordering the triples, with the constraints that: (1) a 
triple could not occur twice in a row, (2) a triple could not 
occur more than twice before every other triple occurred at 
least once, and (3) all triples occurred exactly 25 times.  

In the one-triple condition, the sequence was created in a 
similar way, except that the order of three of the triples was 
randomized for each presentation of the triple. Thus, if one 
of the randomized triples was ABC, it would randomly 
appear as ABC, ACB, BAC, BCA, CAB, and CBA. One of the 

four triples was always presented as a consistent triple, 
maintaining its original order. In addition, three impossible 
triples were created for testing purposes. Impossible triples 
contained one shape from each of the three randomized 
triples. When the sequence was constructed, shapes that 
occurred in the same impossible triple could not occur 
sequentially. This constraint allowed for a comparable test 
in both conditions: a triple that was seen could be paired 
with a triple that was never observed.  

In the test phase, subjects were sequentially presented 
with two three-item sequences and asked to report which 
triple occurred more often during the exposure phase. Each 
three item sequence was presented in the same manner as 
the sequence during the exposure phase. There was a 1 
second gap between the two test sequences. Subjects were 
required to choose one of the sequences, even if they were 
unsure. There were 32 test pairs. In the four-triples 
condition, four impossible triples were created, where the 
probability of each item in the triple appearing adjacent to 
the other items during the exposure phase was 0. Each triple 
was tested against each impossible triple twice, once with 
the triple first and once with the triple second. In the one-
triple condition, we also created four impossible triples, as 
well as three low-probability triples. The impossible triples 
never occurred in the sequence, and the low-probability 
triples occurred rarely. We did not use any data from the test 
pairs that contained low-probability triples; they were 
merely created to make the testing phase the same length in 
both conditions, and to ensure that the frequency of 
individual shapes was identical in the testing phase.  There 

 
 

Figure 1: Shape stimuli used in experiment 1. In the four-
triples condition, stimuli were grouped into four triples 
(illustrated with solid boxes). In the one-triple condition, 
one triple appeared with the shapes in the same order   
throughout the sequence (solid box), and the rest of the 
stimuli appeared in groups of three but with a random order 
of the shapes inside the box during each appearance 
(dashed boxes) 
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were 24 trials containing low-probability triples, and 8 
containing the single triple compared with one of the four 
impossible triples.  

Results 
Subjects in the four-triples condition had an overall 

accuracy of 73.4% at identifying the triple they had seen 
before in the forced-choice tests, while subjects in the one-
triple condition were only 58.8% accurate (Figure 2). Thus, 
subjects in the four-triple condition were 14.8% more 
accurate at identifying the target triple, on average. 

We used a Bayesian data analysis model to estimate the 
difference in probability of a correct response between the 
two conditions. There are numerous reasons to favor 
Bayesian data analysis over conventional null-hypothesis 
significance testing (Kruschke, 2011), but a significant 
advantage in this particular application is the ability to 
naturally account for the different number of critical trials in 
each condition (32 for the four-triples condition and 8 for 
the one-triple condition). Each subject’s responses were 
treated as being generated from a binomial distribution with 
probability p and number of samples N. For subjects in the 
four-triples condition, N=32, and for subjects in the one-
triple condition, N=8. We estimated p as the sum of two 
random variables: pbaseline and pdifference. The baseline 
component estimated the overall mean probability of a 
correct response across conditions, and the difference 
component estimated the magnitude of the difference 
between conditions. The prior on pbaseline was a beta 
distribution with both shape parameters equal to 1, and the 
prior on pdifference was a normal distribution with the mean 
equal to 0 and the standard deviation equal to 1. These 
parameters represent vague priors that are appropriate to the 
scale of the data. We used MCMC sampling with the 
runjags R package to find the posterior distribution. The 
95% highest-density interval (HDI)1 for pdifference was 6.39% 
to 22.9%, with a mode of 13.4%. Thus, the model finds 
strong evidence that the four-triple group did indeed learn 
the triples better than the one-triple group2. 

Modeling 
The experiment found evidence that chunk learning is 

influenced by more than just the repeated presentation of a 
consistent set of items. The target triple was learned 
significantly better when the surrounding information was 
also generated from a triple-based structure. We tested three 
well-established process models of statistical learning to see 
if they predicted the difference in learning that we observed. 

                                                             
1 The range of parameter values containing 95% of the posterior 

where each value inside the HDI is more probable than those 
outside it. The HDI represents the most likely parameter values for 
the model given the data. 

2 A t-test of the difference in means also reached the same 
conclusion of a significant difference in accuracy, t(39)=2.2855, p 
= 0.028. 

Model descriptions 
We tested three models: PARSER, MDLChunker, and 

TRACX. We chose these models because they are process 
models that represent different approaches to sequence 
segmentation and chunk learning, and they all had 
publically available implementations that we could use. 
Importantly, the three models all deal with memory 
constraints in different ways. Here we briefly summarize 
each model to provide an intuition for how they work. Due 
to space constraints, please refer to the original source 
material listed in the heading for a more detailed 
explanation of each of the models. 

 
PARSER (Perruchet & Vinter, 1998). PARSER 
constructs an internal lexicon through an online chunk 
formation process. Candidate chunks are created through a 
random process as the model processes the input: PARSER 
selects a percept length of 1, 2, or 3 units (with the default 
parameter set). This percept becomes a candidate chunk.  
Frequently seen chunks are reinforced, while candidate 
chunks that are encountered rarely are forgotten. When the 
strength of an individual chunk rises above a threshold, then 
incoming information is shaped by the presence of the 

 
Figure 2: Experiment results. Top: Mean accuracy for the 
two conditions in experiment 1. Error bars show one 
standard error of the mean. The y-axis begins at chance 
performance (50%). Bottom: Posterior distribution of the 
estimated difference in the probability of a correct answer 
between conditions. Positive values indicate samples from 
the posterior in which the four-triples group was more 
accurate than the one-triple group. The 95% HDI is shown 
in black, with the limits labeled. 
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chunk. For example, if the incoming sequence is ABCD and 
PARSER selects a percept length of 2 and has no chunks, 
then the model will form a candidate chunk of AB. But if 
PARSER already has the chunks AB and CD and selects a 
percept length of 2, then the input sequence ABCD will be 
processed as AB/CD. This will result in both the AB and CD 
chunks being reinforced, as well as the formation of a 
candidate ABCD chunk. 
 
MDLChunker (Robinet, Lemaire, & Gordon, 2011). 
MDLChunker also creates an explicit internal lexicon, but it 
uses the minimum description length principle (Rissanen, 
1978) to guide the formation of new chunks. As 
MDLChunker processes a sequence, it checks to see if 
recoding the sequence using chunks would decrease the 
number of bits required to encode the sequence. 
Importantly, adding chunks increases the number of bits 
required to store the lexicon, and MDLChunker will only 
add a new chunk if the cost of adding the chunk to the 
lexicon is outweighed by the overall reduction in coding 
complexity of the sequence. We used the memory-
constrained version of MDLChunker (see section 7.3 of 
Robinet et al., 2011). Without memory constraints, 
MDLChunker checks the cost of adding a new chunk 
against all of the input that it has previously seen. The 
memory constraint imposes a limit, expressed in bits, for 
how much of the previous input can be retained by the 
model (and thus used in the calculation for adding a new 
chunk). Importantly, the memory cost is calculated based on 
the lexicon. Thus as the model gets more efficient at 
encoding the input, the absolute number of items in memory 
will grow. 
 
TRACX (French, Addyman, & Mareschal, 2011). 
TRACX is a connectionist model of chunk learning. The 
core of TRACX is an auto-associative network. The input 
layer represents two adjacent items (called the left- and 
right-hand items, with the left-hand item occurring 
temporally before the right-hand item) from the sequence, 
the hidden layer forms a compressed representation of the 
input, and the output layer recreates the input. Back-
propagation is used to adjust the weights so that the output 
better matches the input. The key innovation is that the 
network will use the hidden layer as the left-hand item in the 
next input when the error in reconstruction is low. Low 
reconstruction error occurs when the input is very familiar 
to the network, and thus is a candidate chunk. The 
distributed pattern of activity on the hidden layer is a 
representation of the chunk. Initially, TRACX will learn 
only two-item chunks, but as these chunks are learned and 
subsequently become part of the input, then longer chunks 
can also be learned. 

Method 
Model implementations. We used publicly available 
implementations of each of the three models. For PARSER 
and MDLChunker, we used the U-LEARN software from 

http://perruchet.jimdo.com/u-learn/. For 
TRACX, we used a JavaScript version of the model from 
https://github.com/YourBrain/TRACX-Web. 
We made no modifications to the model code. 
 
Procedure. We converted the sequences seen by 
participants in the experiment into strings of letters, with 
each shape being represented by a unique letter. The strings 
were 300 characters long. We used the exact same 
sequences seen by participants in the experiment. Each 
model was tested with 20 different four-triple sequences and 
20 different one-triple sequences. We used the default 
parameters for all models. 

 
Figure 3: Model results. Each of the three models has a 
different way of indicating how well the target chunk was 
learned, indicated on the y-axis. The distributions of the 
measurement values are shown in grey. PARSER produced 
a bimodal distribution in the one-triple condition, showing 
that the target triple was learned only some of the time. The 
box-and-whisker overlay is provided to show a 
representation of the central tendency. The dark line is the 
median, the boxes represent the range of values between the 
25th and 75th percentile of the distribution, and the whiskers 
show the range of data that is within the inter-quartile range 
(height of the box) times 1.5. Values outside this range are 
plotted as individual dots. 
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Each of the three models generates a different kind of 
output. PARSER and MDLChunker both construct lexicons 
containing explicit chunks. PARSER assigns a weight to 
each chunk, with higher scores being chunks that have 
greater weight. MDLChunker reports the number of bits 
needed to encode each chunk; smaller bit lengths represent 
chunks that are more strongly encoded. TRACX produces a 
network recognition error score for any given input chunk, 
but because the chunks are represented as distributed 
patterns there is no list of known chunks produced by the 
model. Instead, the model is queried with a particular chunk 
to see what the error rate is. Since our main interest was 
seeing if any of the models could fit the qualitative pattern 
and this only requires within-model comparisons, we did 
not attempt to equate these different output values between 
models. 

It was unclear how to link the various model’s outputs to 
performance on the forced-choice test. TRACX provided a 
relatively straightforward option, since the recognition error 
for any particular chunk can be tested. However, both 
PARSER and MDLChunker will never learn the foil items 
from the forced-choice test, since the transitional probability 
for each pair of shapes in a foil triple was 0. Thus, we 
decided it was best to investigate how well the target triple 
was learned, rather than looking at relative learning between 
the target triple and a foil triple that was impossible for two 
of the three models to have any sort of false confidence in. 
 
Results. PARSER and MDLChunker both showed better 
learning of the target triple in the four-triple condition than 
in the one-triple condition (PARSER: t(38) = 2.79, p = 
0.008; MDLChunker: t(38) = 3.14, p = 0.003). TRACX 
showed equivalent performance in both conditions, t(38) = 
0.05, p = 0.96. Figure 3 shows the distribution of model 
outputs for each condition. 

While both PARSER and MDLChunker matched the 
direction of the effect, PARSER’s performance seems to 
match the experimental data better. MDLChunker learned 
the target triple in every single run of the model, though the 
average bit length was lower in the four-triple condition. 
PARSER showed greater variability: PARSER learned the 
target triple in only 11 of 20 runs in the one-triple condition, 
but in 19 of 20 runs in the four-triple condition. PARSER’s 
occasional lack of learning maps onto the forced-choice data 
a bit more naturally than MDLChunker’s varying degrees of 
learning. PARSER might genuinely predict uncertainty 
between the target and foil triple when the target is not 
learned, but MDLChunker always learned the target to some 
degree. 

Discussion 
We presented results from an experiment designed to 
investigate how the learning of a chunk is influenced by the 
presence or absence of other chunk-able information. We 
found that a chunk was better learned when it was 
embedded in a sequence that was also chunk-able than when 
it was embedded in a more randomly generated sequence. 

We tested three process models on this task, and found that 
two of them, PARSER and MDLChunker, predicted a 
difference in learning between the two conditions, while the 
third, TRACX, did not. 

Why did PARSER and MDLChunker both match the 
direction of the effect, while TRACX showed equivalent 
performance in both conditions? The key difference seems 
to be the way that memory constraints are implemented in 
the models. PARSER and MDLChunker both share a 
common feature: As the models learn to chunk the input 
sequence, the relative strength of the memory encoding for 
individual chunks increases. In both models, this effectively 
leads to a longer lasting memory for previously seen 
chunks. The longer memory span improves learning for 
individual chunks, as they seem to be more frequent from 
the perspective of the memory-limited model. We’ll 
illustrate this by walking through each model. 

PARSER processes a sequence in sets of 1, 2, or 3 units at 
a time. The number of units is randomly selected at each 
model step. Consider the sequence ABCGHIDEFABC. If 
PARSER contains no chunks, and randomly selects to see 3 
items, then the input on this step will be A/B/C. But, if 
PARSER has already learned the chunks ABC, GHI, and 
DEF, then the input would be ABC/DEF/GHI. In both 
cases, the chunk ABC will be reinforced, increasing its 
weight in memory. However, on the next step, the version 
with no chunks will see the input G (supposing that 
PARSER randomly chooses 1 unit as the input), and the 
ABC chunk will decay slightly in memory. The version with 
chunks will see ABC again, since it has already processed 
the first nine items in the sequence, reinforcing ABC even 
further. When PARSER is able to chunk the input sequence, 
it can process the input in fewer model steps, as shown by 
this toy example. This has the effect of accelerating the 
exposure rate of chunks.  Since the decay rate of items in 
memory is fixed to the number of model steps, an individual 
chunk will experience less decay between successive 
presentations when the intermediate sequence is chunk-able. 
This process could equivalently be thought of as decreasing 
the decay rate of stored items when the incoming items are 
chunks.  PARSER, in essence, behaves like it has a longer 
lasting memory when the input sequence is chunk-able than 
when it is not. 

MDLChunker ends up with functionally similar behavior, 
but through a different kind of memory limitation. In 
MDLChunker, the minimum description length (MDL) is 
calculated on a set of two components: the set of chunks the 
model has stored in its lexicon, and the input sequence 
coded in terms of the chunks in the lexicon. The bit length 
of an individual chunk depends on the relative frequency of 
that chunk in memory. In the one-triple condition, the 
optimal encoding would be one triple and nine singletons, 
so the relative frequency of the triple will be, on average, 
1/10. In the four-triple condition, the optimal encoding 
would be four triples, and the relative frequency of the 
target triple would be 1/4. Since the bit length of an 
individual chunk depends on its frequency in memory, the 
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bit length of the target chunk is smaller when the 
surrounding sequence also contains chunks. If we take bit 
length to indicate relative strength of encoding, then the 
target chunk will have a stronger encoding in the four-triple 
condition, due to an increase in relative frequency. 

TRACX, in contrast, has no explicit memory storage nor 
any explicit forgetting parameter. TRACX also processes a 
sequence at a rate of one item per step regardless of 
previous learning. Memory constraints in TRACX will 
depend on interference in learning connection weights. 
Thus, TRACX lacks the kind of mechanism that we 
hypothesize might be responsible for the observed effect. 

This interpretation of the model results makes a key 
prediction: The reinforcement schedule necessary for 
successful chunk learning depends on the complexity, 
defined in terms of the perceiver’s internal 
model/representation, of the information that is seen in 
between successive presentations of the chunk.  When the 
information between successive presentations of a chunk is 
highly compressible, then less frequent presentations are 
necessary to support chunk formation. However, when the 
information between sequences is unpredictable, then more 
frequent presentations of the chunk are necessary in order 
for learning to take place. This prediction can be tested 
empirically in future work. 
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