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Abstract— X-ray induced acoustic computed tomography 

(XACT) provides X-ray absorption based contrast with acoustic 

detection. For its clinical translation, XACT imaging often has a 

limited field of view. This can result in image artifacts and overall 

loss of quantification accuracy. In this article, we aim to 

demonstrate model-based XACT image reconstruction to address 

these problems. An efficient matrix-free implementation of the 

regularized LSQR (MF-LSQR) based minimization scheme and a 

non-iterative model back-projection (MBP) scheme for 

computing XACT reconstructions have been demonstrated in 

this paper. The proposed algorithms have been numerically 

validated and then employed to perform reconstructions from 

experimental measurements obtained from an XACT setup. 

While the commonly used back-projection algorithm produces 

limited-view and noisy artifacts in the region of interest, model-

based LSQR minimization overcomes these issues. The model 

based algorithms also reduce the ring artifacts caused due to the 

non-uniformity response of the multichannel data acquisition. 

Using the model-based reconstruction algorithms, we are able to 

obtain reasonable XACT reconstructions for acoustic 

measurements of up to 120o view. Although the MBP is more 

efficient than the model-based LSQR algorithm, it provides only 

the structural information of the region of interest. Overall, it has 

been demonstrated that the model-based image reconstruction 

yields better image quality for XACT than the standard back-

projection. Moreover, the combination of model-based image 

reconstruction with different regularization methods can solve 

the limited view problem for XACT imaging (in many realistic 

cases where the full-view dataset is unavailable) and hence pave 

the way for the future clinical translation. 

Index Terms—X-ray induced acoustic tomography (XACT), 

model-based image reconstruction, Biomedical imaging, 

regularization, least-squares problem, model back-projection. 
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I. INTRODUCTION 

ver since their discovery, X-rays have been instrumental 

in biomedical research. X-rays are not only used for 

imaging and revealing tissue morphology through 

computerized tomography (CT) scans [1]-[3], but also for 

treating tumors with radiation therapy [4],[5]. However, an 

excess of X-ray exposure may lead to DNA mutations that can 

cause cancer [6], and hence, regular CT scans can be harmful. 

Therefore an imaging modality that induces low radiation 

exposure of patients is desirable. X-ray induced acoustic 

computed tomography (XACT) is a contemporary approach 

for biomedical imaging that employs X-ray excitation and 

acoustic detection, invented to address the challenges in 

traditional X-ray imaging. Time-varying X-ray radiation, 

when absorbed by materials, leads to an increase in local 

temperature (~mK) causing thermoelastic expansion which 

generates ultrasound (US) [1]. Unlike X-rays, X-ray induced 

acoustic (XA) waves are omnidirectional and hence a three-

dimensional image can be obtained from pulsed X-ray 

excitation thus reducing the radiation exposure required for 

imaging an organ. Due to the low scattering of X-rays in 

tissue, X-ray induced acoustic computed tomography (XACT) 

[7]-[10] can facilitate deep imaging and hence has numerous 

potential clinical applications such as radiation dosimetry [11] 

and bone density evaluation for osteoporosis assessment [12]. 

Generation of pressure waves caused by X-ray absorption 

was first reported in 1983 [13]. The pressure source and hence 

the pressure waves were hypothesized to carry the information 

about the internal properties of the material and therefore the 

collected pressure signals could be employed to study these 

properties. The first ultrasound emission following X-ray 

absorption (by water) in a therapeutic setting was 

demonstrated in 1991 [14]. The ultrasonic transducer used for 

collecting the XA signal was placed perpendicular to the 

direction of the X-ray beam. It was reported that with 34 Gy 

X-ray exposure, detectable XA signals were obtained as far as 

13 cm from the beam. These experiments indicated the 

possible clinical applicability of the X-ray induced ultrasound. 

The next two decades saw very little research in this field. The 

interest in X-ray induced ultrasound was revitalized in 2013 

when the first XACT image was reported by Xiang et al. [7]. 

Pulsed X-rays generated from a medical linear accelerator 

(LINAC) were used to irradiate a chicken breast with a lead 

rod embedded in it. The XA signals thus produced were 

collected at multiple positions on a circle by scanning a single 

transducer. The image reconstruction was performed using the 

back-projection algorithm and the 2D XACT images were 
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able to locate the lead target in the tissue. They also 

demonstrated the linear dependence of the XA signal strength 

on the radiation dose thus spurring the possibility of radiation 

dosimetry using XACT which can be advantageous for 

monitoring and planning radiotherapy. The Monte Carlo 

simulations [15] used in radiation therapy for treatment 

planning can be coupled with acoustic propagation simulators 

(k-wave toolbox [16]) to numerically assess the suitability of 

XACT for dosimetry [17]. A computational study of the 

efficacy of XACT for dose monitoring for a human prostate 

was performed in 2014 [18]. In 2016, simulations were 

performed by Hickling et al. to study the behavior of the 

radiation induced acoustic waveforms due to variation in the 

X-ray energy, target material, and its dimensions [19]. The 

predicted acoustic waveform properties were found to be 

reasonably consistent with the experimental observations thus 

implying that the simulation framework can potentially be 

used in the study of XACT in different radiotherapy 

settings. Clinical XACT based dosimetry setups typically 

employ a clinical Linac X-ray system for irradiating the tissue 

along with a transducer array for collecting the XA signals. A 

typical Linac used in the clinics has a pulse width of a few 

microseconds. While X-rays with nanosecond pulse widths 

have been reported to generate XA signals more 

efficiently [20], [21], clinical Linacs have also demonstrated 

to produce detectable XA signals [7], [17]-[19], [22]-[24]. 

Initial XACT experiments employed heavy metals, which 

have high X-ray absorption, as targets [7], [20], [21]. In [22], 

XA signals following X-ray absorption in water were reported 

and further employed in the back-projection algorithm to 

image the X-ray energy deposition in water. XACT for 

imaging relative radiation dose distribution in real biological 

tissue (veal liver) was first shown by Lei et al. [25]. The 

potential of XACT for in vivo radiation dosimetry was first 

demonstrated in [22] and systematic characterization of 

XACT-based dosimetry was carried out [23].  Another XACT-

based dosimetry system was demonstrated by Kim et al. in 

2017 [24] where a medical LINAC was used to irradiate a lead 

sample scanned by a spherically focused transducer to image 

X-ray energy deposition and later in 2019, an XACT-based 

imaging device facilitating real-time dosimetry in water was 

patented [26]. Forghani et al. [27] performed simulations to 

compare the back-projection (BP) and iterative time-reversal 

(ITR) algorithms’ potential for absolute dosimetry in 3D 

XACT. They concluded that ITR reconstructions are 

quantitatively more accurate as compared to the BP 

counterparts. However, due to the high computational time 

associated with the ITR algorithm, it has limited clinical 

applicability. In a recent numerical study [28], the potential of 

XACT for tracking the X‐ray beam and in vivo dosimetry 

during stereotactic partial breast irradiation [29] was 

examined. Wang et al. carried out simulations to demonstrate 

the feasibility of using a transperineal (planar) ultrasound 

transducer array for XACT imaging to monitor prostate 

radiotherapy [30]. They also developed a workflow for 

simultaneous, real-time XA and US imaging capturing the 

dose deposition and the movement of the tissue respectively. 

These results foster the feasibility of the clinical translation of 

XACT based dosimetry. Clinically used linear accelerators 

can produce sufficiently strong XA signals for tissue imaging. 

Therefore, the existing radiotherapy set-ups only need to 

integrate the coupling medium and a transducer-array 

(detection grid) to adopt XACT-based dosimetry without 

significantly affecting existing radiotherapy practices.  

XACT has also shown the potential for radiological 

imaging in clinics. XACT imaging of gold fiducial markers 

(GFMs) which due to high X-ray absorption properties, are 

used in the clinics for improving visualization of tumors, was 

presented in [20]. A simulation study for XACT imaging of 

the human breast to identify microcalcifications, an indicator 

for cancer development, was presented by Tang et al [31] 

demonstrating the possibility of diagnosing breast cancer 

using XACT. In [32], 3D XACT was demonstrated using an 

XACT system that uses a pulsed X-ray source and a 96-

element arc shaped transducer array for acoustic detection. 

Reconstructions were achieved by employing the back-

projection algorithm driven by a graphics processor unit 

(GPU) which was found to be about 40-times more efficient 

than the CPU-based BP [33]. Li et al. carried out a 

computational study of the feasibility of 3D-XACT using a 

spherical array of transducers [34] and Robertson et al. 

demonstrated the first XACT imaging of bone where the 

acoustic measurements were obtained by scanning a 

transducer and the image reconstruction was performed using 

time-reversal [35]. Excitation sources for XACT are typically 

limited to Linacs and portable pulsed X-ray generator tubes. In 

a recent study, Choi et al. demonstrated the feasibility of 

XACT using synchrotron X-ray illumination [36].  

Each imaging modality has its advantages and limitations. 

Integrating the information extracted from multiple 

complementary imaging modalities can offer a better 

evaluation and visualization of the region of interest. XACT in 

combination with US imaging was employed for monitoring 

the alignment of the X-ray beam with respect to the target 

during the session [37]. Dual modality imaging systems that 

employ co-registration of real‐time dose deposition obtained 

from XACT with anatomical US images [38], [39] are also 

being developed. 

XACT typically employs the back-projection-based image 

reconstruction algorithm which can be implemented only for 

certain detection geometries (i.e. planar, circular, or spherical) 

[40]. Unlike the back-projection algorithm, model-based 

algorithms can incorporate experimental attributes (i.e. 

acoustic inhomogeneity, finite detector size, etc.) and can 

perform reconstructions for arbitrary data acquisition 

geometries. In laser induced photoacoustic imaging modality, 

model-based algorithms have been demonstrated to ameliorate 

the limited-view and noisy artifacts associated with 

conventional back-projection algorithms [41], [42].  

XACT-based detection often needs an acoustically 

matching medium (e.g., water) between the object and the 

detection grid which is generally achieved by immersing the 

entire object and the detection grid in water [8]-[10]. For such 

cases, full-view acoustic measurements can easily be 
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performed. However, for in vivo measurements, acoustic data 

acquisition is often feasible for a partial view only which leads 

to artifacts in the back-projection reconstructions. In this 

paper, we introduce the model-based image reconstruction to 

solve the limited view problem in XACT imaging. Model-

based schemes offer the flexibility to incorporate 

regularization priors to subdue the noisy and limited-view 

artifacts and hence are known to produce better 

reconstructions than the back-projection algorithm [40]. To 

the best of our knowledge, the results presented in this work 

are the first demonstration of the model-based XACT. 

Model-based reconstruction algorithms rely on an accurate 

forward model relating the X-ray energy deposition (XED) to 

the boundary acoustic measurements. Model-based three-

dimensional reconstruction problems are computationally 

demanding. To reduce the dimensionality of the tomographic 

problem, several set-ups employ circular arrays of detectors 

and corresponding model-based algorithms have been 

developed to reconstruct a two-dimensional energy deposition 

map [41], [44]-[54]. Typically, model-based reconstructions 

are carried out using a model-matrix, which relates the 

measurements with the initial pressure source (which is 

proportional to the XED). For problems aiming at large 

domain and high-resolution reconstructions as well as high 

data sampling rates, constructing a model-matrix can be slow 

and memory intensive. Reconstructions presented in this paper 

were computed iteratively using the LSQR (least squares with 

QR-factorization) method, which provides the ability to 

employ functions for on-the-fly computation of matrix-vector 

products, effectively avoiding storage of the measurement 

matrix. Computational efficiency was further improved by 

using a non-iterative reconstruction scheme (model-back-

projection (MBP) [42]) and corresponding results from 

numerical as well as experimental data have been illustrated in 

the sequel. 

The rest of this paper is structured as follows. Section 2 

deals with the mathematical formulation of modeling the 

forward problem as well as the inverse model-based 

algorithms associated with XACT. The numerical test cases 

and phantom XACT experiments are described in sections 3 

and 4 respectively and the reconstruction results thus obtained 

are discussed in section 5. The paper is concluded in section 6. 

II. MATHEMATICAL FORMULATION  

A. Forward Problem 

The forward model deals with the prediction of the acoustic 

fields due to the thermoelastic expansion of the X-ray energy 

deposition (XED) in the tissue under the assumptions of 

thermal confinement and zero acoustic attenuation and is 

based on [40]: 

      ⃗   

   
        ⃗         ⃗ 

     

  
   

(1) 

where            is the Gruneisen parameter,   is the 

speed of sound,   is the volumetric expansion coefficient,    

is the specific heat at constant pressure and H is the XED 

distribution; initial pressure source is the product of the 

Gruneisen parameter and XED. The solution to Eq. (1) is 

given by: [41] 
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where       denotes a time-dependent spherical surface 

centered at a detector (located at  ⃗  such that | ⃗   ⃗ |    ). If 

the pressure source lies in a plane, Eq. (2) reduces to its 2D 

analog where the integral in Eq. (2) represents the integration 

of the pressure distribution in the domain of interest on a 

circular arc of radius    as demonstrated in Fig. 1(a). 
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 as unity and further solving Eq. (2) can be 

written as 
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The region of interest (typically chosen to be a rectangle 

containing the complete initial pressure source or XED) is 

discretized into triangular elements (three nodes each) and the 

initial pressure source is expressed in the nodal basis:    ⃗  

 . The interpolated value of the initial pressure source h( ⃗) (at 

location  ⃗) inside an element e can be written as [55] 
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with   
  being the linear basis function 

39
 for the     node 

of the element e. 

For computation of the integral term, each circular arc is 

discretized into a sufficiently high number of circular elements 

as demonstrated in Fig. 1. For ease of computation, the value 

of the initial pressure source on each of the contributing 

elements (total    elements (say)) has been considered to be 

constant and equal to the value at its midpoint which is 

computed using Eq. (4). Therefore the integration in Eq. (2) 

for the     detector location and     time step can be written 

as: 
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(5) 

where     ⃗⃗⃗   denotes the value of the initial pressure source 

at the midpoint and     denotes the angle subtended by the 

    contributing element onto the detector point   ⃗⃗⃗⃗⃗. The 

contribution from all the elements is assembled into sparse 

vector   (size:    ), such that the desired integral can be 

expressed as 
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                              [          ]   

(6) 

The vectors               are stacked to prepare matrix   

and the integral vector consisting of the integral contributions 

for all the    detectors can be written as  

 
                  

(7) 

Similarly the matrices             are stacked to prepare 

matrix   and the integral vector consisting of the integral 

contributions for all the    detectors and at all the time 

samples can be written as: 

 
          

(8) 

Using central difference, the time-derivative in Eq. (3) can 

be approximated as: 

 
   ⃗     

 

  
[   ⃗   ]   

   ⃗          ⃗      

   
   

(9) 

and using Eq. (7), the discrete measurements at all the 

detectors at the     time step (        ), can be expressed 

as:  

 
               

(10) 

Where  

 
     [

             

 
] . 

(11) 

Matrices             are stacked to prepare matrix M (size: 

         ) and the complete measurement vector   (size: 

         ) is written as: 

          (12) 

B. Inverse Problem 

The inverse problem is to reconstruct the X-ray energy 

deposition (XED) distribution ( ̂) from the time-domain 

boundary pressure measurements (     ) and corresponding 

regularized least-squares (LS) problem can be expressed as 

[41], [42] 

 
 ̂         ||        || 

     ||  || 
  , 

(13) 

 
where || ||  denotes the L

2
-norm. R is the regularizer 

matrix with λ being the regularization parameter; for Tikhonov 

regularization R = I (I being the identity matrix) and for 

Laplacian regularization R = L (L being the incidence matrix; 

L
T
L is the discrete Laplacian operator). The LS minimizer to 

Eq. (13) is given as: 

 
 ̂                           

(14) 

For certain problem settings (with large domain size, fine 

spatial discretization and high sampling frequency), 

constructing M requires huge computational time and 

memory, and hence solving Eq. (14) becomes impractical. 

Therefore, Eq. (13) is solved iteratively using LSQR 

algorithm, which utilizes routines computing matrix-vector 

products M  and M
T  on-the-fly instead of constructing the 

measurement matrix M. 

 

Algorithm 1: Matrix free computation of M   

     procedure Computing         

              [ ]  (initialization by null-vector) 

           for             do 

                        ̃           ̃          ̃     

                   R                         

                   H    (R)                                                                                

                   V   N.*H;         ∑   
   (:,3)                                                                                       

►row-wise summation 

                                                                             

                       [   
[         ] [           ]

 
]
 

  

          end for 

          return   

     end procedure 

 

Algorithm 2:  Matrix free computation of M
T
   

     procedure Computing          

                     ]  (initialization by zero-vector) 

 

           for             do 

                        ̃           ̃          ̃     

                        [U(    )]
  

                       [ 
               

 
]
 

 

                     P  [         ]
 

                         

                     G   [N
T
.*P];      

                    R  [ (   )]                                 

                       [                           ]                                     

          end for 

          return   

     end procedure 

 

In order to compute M  and M
T  during LSQR iterations 

efficiently, the following set of quantities were computed and 

stored in MATLAB cells: 

1.   ̃           : Each cell contains the spatial 

element numbers in which the mid-points (quadrature 

points) of the contributing circular elements for a 

detector at all the time-samples lie in. 

2.   ̃           : Each cell contains the elemental 

interpolation function values corresponding to these 

quadrature points and elements. 

3.   ̃           : Each cell contains the time-

samples corresponding to these quadrature points.  

The algorithms for computing on-the-fly matrix-vector 
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products M  and M
T  are provided in algorithms 1 and 2 

respectively. A model back-projection (MBP) reconstruction 

has been proposed by Ding et al. [42], which is given by: 

  ̂              (15) 

This solution represents a highly (Tikhonov) regularized 

reconstruction. It needs to be noted that MBP reconstructions 

require a single matrix-vector product computation (algorithm 

2) and hence are much faster than the iterative model-based 

reconstruction algorithms. 

III. NUMERICAL STUDIES 

A. Model-matrix based XACT Algorithm (MB-XACT) 

Numerical studies were performed to validate the proposed 

reconstruction schemes. For the first numerical experiment, 

we consider a square of side length 2 cm as the region of 

interest (ROI). A circle of radius 5 cm, concentric with the 

ROI is considered as the detection array (Fig. 1(b)) with 128 

detection-points uniformly distributed on its circumference. 

The full- and partial-view detection geometries are 

demonstrated in Fig. 1(b). The pressure source chosen for this 

study (true phantom-I) is shown in Fig. 1(c). 

To simulate the pressure signals (mimicking experimental 

measurements) the ROI was discretized into triangular 

elements with a grid resolution of       m and each arc of 

integration (Fig. 1(a)) was divided into         quadrature 

elements. The numerical acoustic signal at each detector was 

recorded for a total of 410 time-samples at      MHz 

sampling frequency, and white Gaussian noise was added to 

obtain signals with 5 dB SNR. To perform the unregularized 

and Laplacian-regularized reconstructions in the ROI, the 

model-matrix was constructed with          and    

    , and reconstructions were obtained using Eq. (14). 

 The model-matrix-based LSQR (MB-LSQR) unregularized 

(Unreg-LSQR) and Laplacian regularized (Lap-LSQR) 

reconstructions along with the back-projection reconstructions 

for phantom-I are shown in Fig. 2 and corresponding 

computation time (τ) and correlation coefficients (ρ) [56] are 

provided in Table 1. The reconstructions were performed 

using full-view (360
o
) as well as partial-view (180

o
 and 120

o
) 

detection geometries as demonstrated in Fig. 1(b). As 

expected, the back-projection algorithm is computationally the 

most efficient and the structures in the cross-section are 

reconstructed well. However, not only do the back-projection 

reconstructions fail to provide the quantitative information of 

the cross-section, but they also carry limited view as well as 

noisy artifacts and hence yield low correlation coefficients 

with respect to the true phantom. For all the test cases, 

Laplacian regularization helped to reduce the noisy artifacts in 

the reconstruction and yield smoother images. This is also 

reflected in the relatively higher ρ values for the Laplacian-

regularized reconstructions than their unregularized 

counterparts. For partial-view (<180
o
) measurements, the 

visibility of structures oriented perpendicular to the detection 

grid is known to be adversely affected [52], [57], as is also 

evident in Fig. 2(c,f). While for both the 360
o
 and 180

o
 view 

measurements (Fig. 2(a,b,d,e)), both the unregularized and 

Laplacian-regularized algorithms reconstruct all the structures 

of the phantom reasonable well, for the 120
o
 view 

measurement neither can reconstruct the lower rectangle 

(oriented normal to the detection grid) due to missing data. 

 

B. Model-matrix free XACT Algorithm (MF-XACT) 

In the second numerical experiment, the size of the ROI was 

chosen to be               ; the initial pressure source is 

depicted in Fig. 1(d). The detection geometry was chosen to 

be the same as the previous numerical experiment. Due to the 

sharper structures in the initial pressure source, the 

measurements were computed at a higher spatial resolution 

      m), a higher sampling frequency (      MHz), and 

a higher number of quadrature points (         than the 

first numerical experiment. The size of the structures in the 

ROI decides the frequency content in the signal. Thinner 

structures result in high frequency content and hence need 

higher sampling frequencies. Gaussian noise was added to 

obtain data with 5 dB SNR. For this problem setting, model-

based reconstructions were performed with       m and 

       without explicitly constructing M. 

 

 

 

FIG. 1. (a) Arc of integration for a detector at distance d from the center of the ROI at time t and corresponding range of θ . The 

quadrature points on the arc are denoted by small circles. (b) Full and limited-view detection geometries, and the cross-sections 

of the initial pressure sources (c) I and (d) II. 
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MF-LSQR and MBP reconstructions corresponding to full 

and partial-view noisy measurements for phantom-II are 

demonstrated in Fig. 3 and corresponding computation time 

(τ) and correlation (ρ) with respect to the true phantom are 

tabulated in Table 1. For the 360
o
 and 180

o
 view measurement 

data, all the structures are reconstructed reasonably well (Fig. 

3(a,b,d,e)), but for the 120
o
 view, the structures normal to the 

detection grid are poorly reconstructed - a trend also observed 

in numerical experiment-I.  

While both these model-based algorithms are able to 

provide reasonably good structural information of the 

phantoms, the MF-LSQR demonstrates better quantitative 

accuracy than the MBP algorithm which is reflected in lower ρ 

values for MBP reconstructions with respect to their MF-

LSQR counterparts. Moreover, Laplacian regularization 

enabled MF-LSQR to render smoother reconstructions than 

the MBP reconstructions which carry streak artifacts. 

 

FIG. 2. Unregularized (a,b,c) and Laplacian-regularized (d,e,f) model-matrix-based reconstructions and back-projection 

reconstructions (g,h,i) obtained from 360
o
, 180

o
 and 120

o
 views, respectively. 

 

 

FIG. 3. Model-matrix free reconstruction results: Laplacian-regularized (first row: a,b,c) and model-back-projection (second 

row: d,e,f) reconstructions obtained from 360
o
, 180

o
 and 120

o
 views, respectively. 
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However, it needs to be noted that while MF-LSQR is an 

iterative algorithm, MBP is not and hence takes less 

computational time to produce the reconstructions. Both these 

matrix-free model-based algorithms need to precompute the 

quantities   ̃           ,   ̃           , and   ̃    
        (as mentioned in section 2.2), which takes about 8, 

6.7, and 5.7 seconds respectively for the 360
o
 180

o
 and 120

o
 

view measurement settings. The MF-LSQR algorithm takes 

about 10-15 LSQR iterations to produce reasonable 

reconstructions. Each LSQR iteration needs one computation 

of {M , M
T  } each which takes ~{1.5, 2} seconds, ~{1.1, 

1.5} seconds, and ~{1.0, 1.3} seconds respectively for the 

360
o
, 180

o
 and 120

o
 views. The MBP algorithm requires a 

single M
T  computation and hence takes ~20 folds less time 

(after computing   ̃   ̃       ̃) as compared to the MF-LSQR 

reconstruction algorithm. 

Moreover, in section IIIA, the model-based reconstructions 

require constructing and storing the model-matrix (size: 

(number of detectors x number of time samples) x number of 

nodes in the reconstruction domain). For high sampling 

frequencies, constructing the model matrix can take huge 

computation time and its storage may demand huge memory. 

Therefore, the studies performed in section IIIA are carried 

out for low (8 MHz) sampling frequency.  

This section demonstrates the LSQR reconstructions 

obtained in a model-matrix free approach. This approach does 

not need the model-matrix explicitly, and hence computations 

can be performed for higher sampling frequencies. 

IV. XACT EXPERIMENTAL VERIFICATION 

After numerical validation of the proposed model-based 

algorithms, these schemes were employed to obtain XACT 

reconstructions from experimental measurements. Fig. 4 

shows the schematic of the XACT experimental setup [10].         

 

FIG. 4. Schematic of XACT experimental setup. 

 
This XACT set up employs a 128-element ring array 

transducer (radius 5cm; Doppler Electronic Technologies Co. 

Ltd., Guangzhou, China) with 5 MHz central frequency and 

60% bandwidth for sensing the XA waves. A target in ‘T’ 

shape, made of a 1/64 inch thick lead sheet was fixed at the 

center of a 3% gelatin water-based phantom. The phantom 

was placed at the center of the ring-array inside of a water 

tank and a pulsed X-ray generator (XR200, Golden 

Engineering, USA) with the tube energy of 150 kVp, pulse 

repetition rate of 10 Hz, and pulse width of 50 ns, was used to 

excite the phantom. The X-ray beams emitted from the X-ray 

generator carried an average dose of ~2.6 mR/pulse with a 

divergence angle of 40
o
. The XA waves are sensed by the 

transducer elements and sent to the amplification and data 

acquisition unit. The X-ray beams exiting the water tank were 

converted into visible light photons by a Ce:Lu2SiO5 crystal 

(MTI Corporation, USA) scintillator which were converted to 

voltage pulses by an integrated amplified photodetector 

(APD410C, Thorlab USA) and sent as the trigger pulses to the 

amplification and data acquisition system. The collected XA 

signals were averaged over 1500 pulses and the MF-LSQR 

and MBP-based XACT reconstructions were performed.  

Model-based (MF-LSQR and MBP) and back-projection 

(BP) algorithms were employed on the full and partial-view 

(Fig. 5(b)) XACT measurements for reconstructions which are 

provided in Fig. 5(c-k) and corresponding computation time 

and contrast-to-noise ratios (CNR) [48] are tabulated in Tab. 

1. While all the algorithms are able to reconstruct the target, 

the back-projection reconstructions (MBP (Fig. 5(d,f,h)) and 

BP (Fig. 5(i,j,k))) carry more noisy artifacts and hence have 

lower CNRs as compared to their MF-LSQR (Fig. 5(c,e,g)) 

counterparts. Non-uniform response associated with multi-

channel data acquisition (DAQ) for ring-array transducers 

results in vertical lines in the XA sinogram. Vertical lines in 

sinograms form ring artifacts in reconstructions [58]. Both, the 

Laplacian and Tikhonov regularizers have a smoothening 

effect on the reconstructions. Therefore, the Laplacian 

regularized MF-LSQR and the highly Tikhonov regularized 

MBP algorithm manage to suppress the ring artifacts up to a 

certain extent. However, it needs to be noted that severe ring 

artifacts cannot be corrected simply by using the regularized 

reconstruction algorithms; additional signal processing can 

help to correct in such cases [58].  

The artifacts in the reconstructions can be attributed to the 

electromagnetic interference in data collection as well as the 

attenuation and distortion of XA waves due to the finite-

shaped lead target. Other possible sources of error include the 

acoustic reflections due to acoustic mismatch between the 

target and the background, out-of-plane contribution to the XA 

signal, as well as inaccuracy in the radius and shape of the 

ring-array. 

V. CONCLUSION 

We demonstrated model-based algorithms to perform 

XACT reconstructions for numerical test cases as well as 

experimental measurements. The first numerical experiment 

employed the model-matrix (M) to solve the unregularized as 

well as Laplacian-regularized least squares problems (Eq. 

(13)) for low-scale test cases. While both the schemes 

reconstructed the initial pressure source reasonably well, the 

unregularized reconstructions were observed to carry noisy 

artifacts that the Laplacian regularizer was able to ameliorate 

up to a certain extent. Corresponding back-projection 
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reconstructions carried limited-view and noisy artifacts while 

also failing to provide quantitative information about the 

cross-section thus affirming the superiority of the model-based 

schemes over back-projection. 

Construction of the model-matrix can be expensive in terms 

of computational time and memory, especially for problems 

associated with a large region of interest, high resolution, and 

high sampling frequency. To overcome this issue, algorithms 

for computing matrix-vector products {M , M
T  } on-the-fly 

 

FIG. 5. XACT experimental reconstruction results: (a) true phantom, (b) full and limited-view measurement geometry, and 

Laplacian-regularized MF-LSQR (c,e,g), model-back-projection MBP (d,f,h), and traditional back-projection (BP) (i,j,k) 

reconstructions obtained from 360
o
, 180

o
 and 120

o
 views, respectively. 

 

TABLE. 1. Computation time (τ) and reconstruction quality measures – correlation coefficient (ρ) for numerical and contrast to 

noise ratio (CNR) for XACT experimental studies 

View 

MB-XACT MF-XACT XACT Experiment 

BP 

Unreg-

LSQR 

Lap-

LSQR 

MF-LSQR MBP MF-LSQR MBP BP 

Ρ τ(s) Ρ τ(s) Ρ τ(s) Ρ τ(s) Ρ τ(s) CNR τ(s) CNR τ(s) CNR τ(s) 

360
o 

0.42 0.3 0.93 310 0.99 310 0.95 45 0.49 10 0.83 80 0.31 42 0.35 1.1 

180
o 

0.07 0.2 0.93 160 0.99 160 0.95 35 0.39 8 0.70 55 0.27 27 0.30 0.7 

120
o 

0.06 0.2 0.92 115 0.97 115 0.88 29 0.33 7 0.61 36 0.22 16 0.27 0.5 
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(without storing M) have been developed. These algorithms 

can be passed as function handles in the MATLAB-based 

LSQR function to solve Eq. (13) iteratively. This scheme was 

employed in the second numerical experiment to efficiently 

compute Laplacian-regularized (MF-LSQR) reconstructions. 

For the test cases considered in this paper, the MF-LSQR 

algorithm produces reasonable reconstructions in ~10-15 

LSQR iterations and each LSQR iteration needs one set of 

{M , M
T  } computation. In order to further reduce the 

computational costs, the model-back-projection (MBP) 

algorithm which produces highly Tikhonov regularized 

reconstructions, was employed. MBP is a non-iterative scheme 

and requires a single M
T  computation. Therefore, it is 

computationally much more efficient than the MF-LSQR 

algorithm. Despite both the MF-LSQR and MBP algorithms 

being able to reconstruct the structures in the cross-section 

reasonably well, the MBP reconstructions lacked quantitative 

accuracy and carried more artifacts as compared to their MF-

LSQR counterparts. The MF-LSQR and MBP algorithms were 

further employed to reconstruct a ‘T’ shaped target (made of 

lead) embedded in an agar-based phantom from experimental 

XACT measurements collected by a 128-element ultrasound 

ring-array and compared with the corresponding BP 

reconstructions. Both the model-based algorithms produced 

acceptable reconstructions of the target and were able to 

significantly reduce the ring artifacts caused by the non-

uniformity response of the multichannel data acquisition. The 

Laplacian regularized MF-LSQR reconstructions carry lesser 

artifacts than both of the back-projection (MBP and BP) 

reconstructions. 

These results, to the best of our knowledge, are the first 

model-based XACT reconstructions. While the 

computationally efficient MBP algorithm can be used to 

obtain the structural information of the cross-section, MF-

LSQR can also be employed in dosimetry-based applications 

which desire quantitative information of the cross-section.  

The results presented in this paper affirm that regularized 

model-based schemes are advantageous over the 

conventionally used back-projection algorithms in terms of the 

quantification accuracy as well as image artifacts. Matrix free 

implementation of the model-based algorithms potentially 

enables high resolution and large scale XACT imaging. The 

algorithms 1 and 2 for computing {M , M
T } can be 

accelerated using GPUs to reduce the reconstruction time. 

In comparison to the commonly used back-projection 

scheme, model-based algorithms not only give the ability to 

employ regularization to improve the reconstructions but also 

provide the flexibility to incorporate features such as 

heterogeneous speed of sound distribution, finite detector 

shape, etc. which will be addressed in future work. Moreover, 

the strong acoustic mismatch between bone and soft tissue 

causes acoustic refraction and reflection at the interface. These 

corrections also need to be integrated in the model-based 

algorithms for accurate XACT reconstruction and will be the 

focus of future studies. 
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