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Abstract 

Numerical reproducibility and stability of large scale scientific simulations, espe­

cially climate modeling, on distributed memory parallel computers are becoming crit­

ical issues. In particular, global summation of distributed arrays is most susceptible 

to rounding errors, and their propagation and accumulation cause uncertainty in fi­

nal simulation results. We analyzed several accurate summation methods and found 

that two methods are particularly effective to improve (ensure) reproducibility and 

stability: Kahan's self-compensated summation and Bailey's double-double precision 

summation. We provide an MPI operator MPLSUMDD to work with MPI collective 

operations to ensure a scalable implementation on large number of processors. The 

final methods are particularly simple to adopt in practical codes. 

Keywords: Reproducibility, climate models, double-double precision arithmetic, self-compensated 

summation, distributed memory architecture. 

1 Introduction and Motivation 

One of the pressing issues for large scale numerical simulations on high performance dis­

tributed memory computers is numerical reproducibility and stability. Due to finite preci­
sions in computer arithmetics, different ordering of computations will lead to slightly different 

results, the so called rounding errors. As simulation systems become larger, more data vari­

ables are involved .. As simulation time becomes longer, teraflops of calculations are involved. 

All these indicate that accumulated rounding errors could be substantial. One manifestation 
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of this is that final computational results on different computers, and on the same computer 

but with different number of processors will differ, even though calculations are carried out 

using double precision (64-bit). 

It is important to distinguish between the high precision required in internal consistent 

numerical calculations and the expected accuracy of the final results. In climate model simu­

lations, for example, the initial conditions and boundary forcings can seldomly be measured 

more accurately than a few percent. Thus in most situations, we only require 2 decimal 

digits accuracy in final results. But this does not imply that 2 decimal digits accuracy arith­

metic (or 6-7 bits mantissa plus exponents) can be employed during the internal intermediate 

calculations. In fact, double precision arithmetic is usually required. 

In this paper, we are concerned with the numerical reproducibility and stability of the 
final computational results, and how the improvements in the internal computations could 

effect the final outcome. Numerical reproducibility and stability are particularly important 

in long term (years to decades and century long) simulations of global climate models. It is 

known that there are multiple stable regions in phase space (see Figure 1) that the climate 
system could be attracted to. However, due to the inherent chaotic nature of the numerical 

algorithms involved, it is feared that slight changes during calculations could bring the system 

from one regime to another. One common but expensive solution is to run the same model 

simulation with identical initial conditions with small perturbation at the level far below the 

observational accuracy for several times, and take the ensemble average. 

In a scenario climate experiment, first a controlled run of model simulation with standard 

parameters is produced. Then a sensitivity run of model simulation with slightly changed 

parameters, say CO2 concentration, is produced. The difference between these two runs 

is computed and the particular effect, say the average surface temperature, is discerned. 

Without numerical stability, the difference between the controlled run and the sensitivity 

run could be due to the difference in different regimes, not due to the fine difference in input 
parameters which is the focus of the scenario study. 

On distributed memory parallel computer (MPP) platforms, an additional issue is the 

reproducibility and stability with regard to number of processors utilized in the simulations. 

One simulation run on 32 processors should produce "same" or "very close" results as the 

same simulation run on 64 processors. Sometimes, different number of processors could be 

involved during different periods of a long term (10 simulated years or more) simulation due 

to computer resources availability, further demanding reproducibility of the simulation. 

Numerical reproducibility of the final results are determined by the internal computations 

during intermediate steps. Obviously, there are a large number of areas involved in the 

numerical rounding error propagation. In climate models, one major part is the dynamics, 

i.e., finite difference solution to the primitive equation. On MPP, stencil updates proceed 
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almost identically as in sequential implementation except the update order changes slightly. 

If the first order time stepping scheme is used, the order remains unchanged. 

In barotropic component of an ocean model[6, 17, 19,22]' an elliptic equation is solved us­

ing a global linear equation via a conjugate gradient method. In atmospheric data assimilation[5, 

7], a correlation equation is also solved via a conjugate gradient (CG) method. The key pa­
rameters Ct, f3 calculated through the global summation (dot product between global vectors) 

appear to be sensitive to the different summation orders on different number of processors. 

A slight change on the least significant bits will accumulate quickly into the significant bits 

in Ct, f3 over several iterations, leading to a different CG trajectory in the multi-dimensional 

space, and a slightly different solution (see, e.g., [21]). Although the self-correcting nature 
of the conjugate gradient method ensures that these different solutions on different num­

ber of processors are equally correct regarding to solving the linear equation, this inherent 
difference generating nature could be significant. It is feared that the multiplicative effects 

on the small differences in each timestep will eventually lead the system into another stable 

regime (say from C to A in Figure 1), instead of merely wondering around the stable regime 

C (shifting from C1 to C2). 

Another example is the spectral transforms used in many atmospheric models[S, 12], 
where global summations are very sensitive to the summation order. (In this case, there is 

no self-correcting mechanism as in the CG method mentioned above.) There are many other 
parts in climate models where summation of global arrays is used. In general, experience in 

distributed memory parallel computing indicates global summation appears to be the most 
sensitive regarding to rounding error, a fact also known in numerical analysis[13]. 

One method to resolve the global summation related reproducibility problem is to use 

serialized implementation, as used in some ocean models[6, 10]. In this scheme, elements of 
distributed array are sent to one designated processor, and are summed up in a fixed order on 

the designated processor. The results are then broadcasted back to all the relevant processors. 
This scheme guarantees the reproducibility but at the extra cost of communication. On large 

number of processors, the designated processor has to receive P -1 messages, each from other 
P -1 processors, in a time linear to P. Clearly this scheme does not scale well to large number 

of processors [The broadcast back phase can use standard hypercube tree algorithm [11 ], in 

log(P) time]. 

Here we look into another approach to achieve reproducibility by reducing rounding errors 

with more accurate arithmetic. The basic idea is that rounding errors can be reduced very 
significantly (sometimes eliminated) by using accurate arithmetics. On a computer with 

infinitely accurate arithmetics, there is no rounding error. A simple and trivial solution 

is to use higher precision, say 12S-bit precision arithmetics in the relevant data arrays. 

However, most computer platforms we know do not support 12S-bit precision arithmetic. 
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Figure 1: An illustrative diagram of several stable regimes centered around A, B, and C in 

the multi-dimensional phase space at a simulated time far beyond initial period (spin-up). 

By reproducibility and stability, we mean that results of the same simulation running on 

different computers or on same computer but with different number of processors remain 

close inside one regime, say C1 and C2. (The "exact" or "absolute" reproducibility, i.e., 

identical numerical results on different computers, or on different number of processors, or 

even on different compiler versions or optimization levels, is impossible in our view, and is 

not our goal.) In contrast, non-reproducibility indicates the simulation results change from 

one regime to another regime on different computers. 

The only exception is Cray PVP (SV1, C90) line of computers, where the 128-bit precision is 

supported and implemented in software, resulting in huge (factor of 10 or more) performance 

degradation. The real challenge here is to find a simple and practical method that can 

effectively improve the numerical reproducibility and stability. 

In this paper, we examined several accurate summation methods, III particular, the 

fixed-point and the multi-precision arithmetics, the self-compensated summation (SCS) and 

doubly-compensated summation (DCS) methods, and the double-double precision arith­

metics. We first examined these methods in sequential computer environment, i.e., on a 

single processor. Next, promising methods found in the sequential environment are exam­
ined in the parallel environment. We provide necessary functions to work together with MPI 

communication library to utilize these accurate methods in parallel environment. 

Our main concern in this paper is to find simple and practical methods to improve 

the numerical reproducibility between runs on different number of processors on the same 

distributed memory computer, and also between runs on different computers. We approach 

this task by using more accurate (than standard double precision) methods in some of the 

key steps in parallel applications. Although the overall final computation results will be 
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undoubtedly more accurate, that is an added benefit, but is not our primary goal. 

2 Sea Surface Height Data 

Sea surface height (SSH) is the first serious difficulty we encountered in an ocean circulation 

model development[6]. The variable stores the average sea surface height from the model 

simulation, which can later be compared with satellite data. Repeating the same simulation 

on different number of processors leads to different results. This difficulty, along with issues 

mentioned above, motivated this work. This simple problem serves as a good example for 

the main ideas of global summation in parallel environment. All methods are tested against 

this SSH data in this paper (We also used synthetic data in this work, and the results are 

very similar). 

The SSH variable is a two-dimensional sea surface volume (integrated sea surface area 

times sea surface height) distributed among multiple processors. At each time step, the global 

summation of the sea surface volume of each model grid is needed in order to calculate the 

average sea surface height. The absolute value of the data itself is very large (in the order of 

1010 to 1015
), with different signs, while the result of the global summation is only of order 

of 1. Running the model in double precision with different number of processors generate 

very different global summations, ranging from -100 to 100, making the simulation results 

totally meaningless. 

We saved the SSH data from after one-day simulation as our test data. The 2D array is 

dimensioned as ssh(120, 64), with a total of 7680 double precision (64-bit) numbers. Other 

sizes and simulation time will not affect the conclusions reported here (Both the codes used 

here and the SSH data can be downloaded from our website[18]). 

For the 2D SSH array, the most natural way of global summation is to use the following 

simple codes: 

do j = 1, 64 ! index for latitude 

do i = 1, 120 ! index for longitude 

sum = sum + ssh(i,j) Code (1) 

end do 

end do 

We call this order the "longitude first" order, the result of summation is 0.67 (see Table 

1). If we exchange the do i and do j lines, so that elements with different j index (while 

i index remain fixed) are summed up first (latitude first), we get 34.4, a totally different 

result! Sometimes in practice, we need to sum up the array in reversed order, such as do i 

= 120, 1, -1, denoted as "reverse longitude first", the result would change again, to 0.73. 
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These results are listed in Table 1. Clearly the results are summation order dependent 

on the sequential computer. In fact, we do not know what is the exact correct result, until 

later with other methods: 

On a distributed memory computer platform, the 2D SSH array is decomposed into 

many sub domains among multiple processors. On different number of processors, the order 

of summation is not guaranteed, and the results are not reproducible! 

Table 1: Results of the Summation in Different Natural Orders with Different Methods in 

.Double Precision 

II Order I Result 

" Latitude First 34.414768218994141 

Reverse Latitude First 32.302734375 

Longitude First 0.67326545715332031 

Reverse Longitude First 0.734375 

Latitude First SCS 0.3823695182800293 

Latitude First DCS 0.3882288932800293 

Longitude First SCS ij.37443733215332031 

Longitude First DCS 0.32560920715332031 

The origin of the rounding error is due to finite representation of a floating point number. 

A simple example explains the idea best. In double precision, the following Fortran statement 

S = 1.25 X 1020 + 555.55 - 1.25 x 1020 will get S = 0.0, instead of S = 555.55. The reason 

is that when compared to 1.25 x 1020 , 555.55 is negligibly small, or non-representable. In 

hardware, 555.55 is simply right-shifted out of CPU registers when the first addition is 

performed. So the intermediate result of the first addition is 1.25 x 1020 , which is then 
cancelled exactly in the subtraction step. 

The sea surface height data is one of the extreme cases. For most variables, this de­

pendency on summary ordering is less pronounced. However, this error could propagate to 

higher digits in the following iterations. Our goal is to find an accurate summation scheme 

that minimizes this rounding error. 
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3 Fixed-Point Arithmetic 

The first method we investigate is a fixed point summation without loss of precision. It is 
a simple method and can be easily implemented (see [18] for implementation details). we 

wrote a code to first convert double precision floating point numbers of a global array into 

an array of integers, a db2int 0 function. Depending upon the dynamical range (maximum 

and minimum) and precision required, the integer representation chooses a proper fixed point 

(a scale factor) and one or a few integers to represent each floating point numbers. 

These integers are then summed up using standard integer arithmetic, (and sum across 

the multiple processors using MPLREDUCE with MPI..INTEGER data type) and are finally 

converted back to double precision numbers, rounding off all lower bits which are non­

representable in double precision, by using the int2db 0 function. 

This method is applied to the 3 number addition example and the correct result 8=555.55 
is obtained. We applied this method to the 88H data discussed above, and the summation 

result is 

L,ssh(i,j) = 0.35798583924770355 
i,j 

(1) 

This result remains the same upon changing the summation orders, convincing us that it is 

the exact result. (The double-double precision discussed later gives the same result.) 

This method requires the users to know the dynamical range before calling the db2int 0 
conversion routine. A simple way is to find the maximum and minimum magnitudes of the 

array. Based on this information, an initialization routine will properly determine the scale 

factor (the fixed point) and the number of integers (32 bits or 64 bits) required to represent 

the floating point numbers. 

In large simulation codes, however, finding the maximum and minimum in a large array 

distributed over multiple processors before each array summation is quite inconvenient in 

many situations. We strive to find methods which are simple to adapt in practical large scale 
coding. 

4 Multi-Precision Arithmetic 

The above fixed-point arithmetic is a simple example of a class of multi-precision arithmetic 
software packages which carry out numerical calculations at a pre-specified precision[13]. 

Brent's BMP [3] is the first complete Fortran package on the multi-precision arithmetics 

offering a complete set of arithmetic operations as well as the evaluation of some constants 

and special functions. Bailey's MPFUN [2] is a more sophisticated and more efficiently 

implemented complete package. He used this package to compute 7r to 29 million decimal 
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digits accuracy! Several other packages are also available (see [13] for more discussions). 

We looked into both BMP and MPFUN multi-precision packages and decided not to 

investigate them further because of the nontrivial practical coding efforts involved to adopt 
them in large simulation codes. At the same time we learned of the error-compensated 

summation methods and the double-double precision arithmetics which are much more easier 

to adopt. They seem to offer the practical solution we are looking for. 

5 Self-Compensated Summation Methods 

Kahan[14] in 1965 suggested a simple, but very effective method to deal with this problem. 

The idea is to estimate the roundoff error and store in an error buffer; this error is then 

added back in the next addition (For consistency, from now on subtraction will be called as 

addition, since subtraction = addition of a negative number). The computer implementation 

is as follows: 

sum = a + b 

error = b + (a - sum) 

U sing this self-compensated summation method in the previous example, the first addition 

would give 1.25 x 1020 and 555.55 as the sum and error. 

The pair (sum, error) is returned as a complex number from the function SCS (a, b) [See 

Appendix A]. In the next addition, the error is first "compensated" or added back to one 

of the addends (numbers to be added); the same addition and error· estimation are then 

repeated. Suppose we need to calculate d = a + b + c. The following two function calls 

give the final results: 

(sum, error) = SCS(a, b) Code (2) 

(sum1, error1) = SCS(sum, c + error) 

The final result is d = sum1 with error = error1. The results of the error compensated 

summation is always a (sum, error) pair. 

Priest[20] further improved the error-compensating method by repeated applications of 

SCS. Note that in the second SCS in Code (2) for addition of c, the addition of error to 
c could have substantial precision loss. The doubly-compensated summation is to use SCS 

again on this c + error to compensate the error for any possible loss of precision. This 

further application of SCS could be implemented as 3 SCS calls; the calculation of d = a + 
b + c is done by the following codes: 

(sum, error) . = SCS (a, b) 
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(suml, errorl) = SCS (error, c) 

(sum2, error2) = SCS (sum, suml) 

(sum3, error3) = SCS (sum2, errorl + error2) 

Code (3) 

Here error from the first SCS is added back to c using SCS, which produces a second 

level error errorl (called a second level error because it comes from an addition involving 

the error ). The third line in Code (3) performs the same function as the second line in 

Code (2), which is essentially sum + c with another first level error2 generated. These 

two errors are both compensated in the fourth line of Code (3). The final result is d = 

sum3 with error = error3. See Appendix B for the Fortran implementation. This doubly­

compensated summation method works the best when the original array is sorted in the 

decreasing magnitude order beforehand. 

This concludes our intuitive discussions on the error-compensated methods. Good theo­

retical analyses about rounding error bounds of the methods could be found in [9, 13, 16]. 

We applied both SCS and DCS to the 2D sea surface height data, using the straight 

summation in Code (2). The results are listed in Table 1, "latitude first SCS", etc. Now all 
4 orders give results with agreement on the first significant decimal digit; in fact they are 

quite close to the correct result in Eq.(l). This indicates very substantial improvements in 

rounding error reductions during the summations. We also note that DCS does not seem to 

outperform the much simpler SCS. 

5.1 Sensitivity Regarding to Summation Order 

To further study the sensitivity regarding to different summation orders and to see further 

difference in performance between SCS and DeS, we applied a number of different sorting 

orders on the SSH data. For simplicity, SSH data is treated as a simple 1D array of 7680 

double precision numbers. 

This 1D array is easily sorted in 6 different ways as explained in Table 2. They are 

summed up from the left to right. For an array of all positive numbers, the increasing order 

would be the best, since the smaller numbers are added first, and they would accumulate 
large enough not to be rounded off when added with big numbers. But for arrays with mixed 

positive and negative numbers, the decreasing magnitude order would be the best, especially 

when the absolute value of the summation is much smaller than the addends due to the 

cancellation of most addends. We also tried several other orders. The summation results are 
shown in Table 3 .. 

From these results we observe that (1) Using straight double precision summation, differ­
ent sorted orders always lead to different results ranging from -73.6 to 34.4 , similar to those 

listed in Table 1. (2)In all 6 sorted orders (excluding Order 1 which is same as the Latitude 
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Table 2: Seven Different Orders of the Array Tested for Summation 

II Order I Sequential Order I Example II 
1 no sort -10.2 5.6 2.8 -3.4 -6.3 0 1.7 

2 increasing order -10.2 -6.3 -3.4 0 1.7 2.8 5.6 

3 decreasing order 5.6 2.8 1. 7 0 -3.4 -6.3 -10.2 

4 increasing magnitude order o 1. 7 2.8 -3.4 5.6 -6.3 -10.2 

5 decreasing magnitude order -10.2 -6.3 5.6 ~3.4 2.8 1.7 0 

6 positives reverse from order 2 -10.2 -6.3 -3.4 0 5.6 2.8 1.7 

7 negatives reverse from order 2 -3.4 -6.3 -10.2 0 1.7 2.8 5.6 

Table 3: Results of the Summation in Different Sorting Orders with Different Methods in 

Double Precision (Fixed point arithmetic and double-double precision arithmetics always 
give the same and correct answer: 0.35798583924770355) , 

II Order I Normal Double Precision I SCS I DCS 

" 1 34.414768218994141 0.3823695182800293 0.3882288932800293 

2 -70.640625 0.359375 0.359375 

3 -73.015625 0.359375 0.359375 

4 13.859375 0.359375 0.359375 

5 14.318659648299217 0.35798583924770355 0.35798583924770355 

6 -36.254243895411491 0.35812444984912872 0.35812444984912872 

7 -66.640625 0.359375 0.359375 
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First order in Table 1), DCS gives the identical results as SCS does. They are always between 

0.358 and 0.359, very close to the real result of 0.358 (less than 0.4% error). This indicates 
. . 

that sorting helps reducing the rounding error in SOS and DOS, but not much in the double 

precision arithmetic. (3) Among the 6 different orders, the one with decreasing magnitude 

order produces the correct answer of Eq.(l). Intuitively in this order, the numbers with 

similar magnitude but oppositive signs are added together first, and then the result is added 

to the accumulation without much loss of precision. This order is the recommended order 

in summation of large arrays [20, 13]. 

From these observations and results in Table 1, we conclude first that SOS and DOS 

always give results very close to the correct result (better results when the array is sorted), 

and show dramatic improvements over the straight double precision summation. Secondly, 

the differences between DOS and SOS are also very small: when array is sorted, there is 

no difference (Table 3); when array is unsorted, there is small difference (Table 1), but no 

indication that DeS does better than SOS. Therefore, from now on, we will concentrate on 

the simpler SOS. 

So far, we have studied compensated methods that require no extra storage space (ex­

cept 1-3 temporary buffer space) at the cost of extra additions. Although no exact tight 
error bounds can .be given, they improve the accuracy very substantially. Another practi­

cal approach is to do truly higher precision arithmetic using existing double precision data 

representation and OPU arithmetic units. 

6 Double-Double Precision Arithmetic 

In double-double precision arithmetics, each floating point number is represented by two 

double-precision numbers. In effect, the extra bits in the second double precision number 

are extended mantissa of the first double precision number. The dynamic range of the 

double-double precision number remains the same as the double precision number. As an 

analogy to the self-compensated summation discussed above, one may think that the first 

double precision number as the summation result and the second double precision number 

as the estimated rounding error. A suite of Fortran 90 compatible codes are developed by 

Bailey[l] by using Knuth's[15] trick. 

We used this double-double precision codes in the sea surface height data summation. 

It always gives the same correct result of Eq.(l), irrespective of the 9 different summation 
orders listed in Tables 1 and 3; This indicates the extra precisions (about 53 bits) in the 

double-double representation is highly effective in reducing the round off errors during the 

summation. 

The double-double arithmetic employs slightly more arithmetic steps. The number of 
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additions increases much more than in the self-compensated method. For a single addition, 

double-double arithmetic requires 11 double precision additions VB. 4 for the SCS. How­

ever, on cache-based processor architectures, the increased CPU arithmetic does not slow 

down calculation as much as the increased memory access required since we use two double 

precision numbers for one single double-double number. In practice, on wide range of pro­

cessors, the double-double arithmetic only slows down by a factor of 2 while getting effective 

double-double precision. 

The double-double arithmetics has also increased memory requirements, which is doubled. 

However, this is not a real problem in today's computers when DRAM is very plentiful. 

Furthermore, one can implement the basic arithmetic codes in a way that also requires no 

increase in memory requirement, similar to the self-compensated methods. 

7 Summation Across Distributed Memory Processors 

Among the above methods we have investigated so far, fixed-point/multi-precision and 

double-double arithmetics always give the same and correct result. However, as pointed 

out earlier, the fixed-point arithmetic requires the dynamical range of the data array before 

the summation which is not practical. The true multi-precision packages require too much 

effort to adopt regarding the conversion of the data format. 

The self-compensated summation emerges as a very simple and effective method as it 

gives results very close to the exact one in the worst case of SSH data in 9 totally different 
summation orders (Tables 1 and 3). The doubly-compensated summation does not show 

significant improvement in accuracy over SCS but more arithmetic operations are involved. 

Double-double arithmetic is easy to be implemented. Thus, we will concentrate on only two 
summation methods in the distributed systems, i.e., the SCS method and double-double 

precision arithmetics. DCS method can be adopted in same way as SCS. 

In distributed memory environment, each processor will first do the summation on a 

subsection of the global array covered by the processor. One may use the self-compensated 

method or the double-double precision arithmetics. The results of this local summation are 

two double precision numbers: (sum, error) in the SCS and (double, double) in double­

double arithmetic. In both cases, the result can be represented as a single complex number. 

The issue here is how to sum up the pair of numbers on each processor in a consistent 
way to achieve high accuracy. We investigated a number of different approaches and found 

a unified and consistent approach. 
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7.1 Double-Double Precision Arithmetic 

Consider the double-double arithmetic case first. If we simply use MPI to sum up the first 

double number on all processors together, and the second double numbers on all processors, 

we can use 

Here the complex variable locaLEum contains the local sums and global-Bum is the 

result of the global summation. Note we use MPLCOMPLEX as the data type. During this 

procedure, the first double and second double numbers on different processors are summed 

up separately, using the usual double precision arithmetic, not the double-dol!ble arithmetic. 

Therefore the final results of first and second double numbers are not consistent and precision 
is lost during this procedure. Applying this to the SSH data, the final summation result 

changes on different processors, and is not exactly correct. 

A consistent way to sum up double-double numbers across multiple processors is to imple­

ment the double-double addition as an MPI operator, in the same functionality as MPLSUM. 

This can be done by using the MPI operator creation subroutine MPLOP _CREATE to cre­

ate an operator MPLSUMDD for the double-double summation. An implementation of 

MPLSUMDD creation is given in the Appendix C. With the operator MPLSUMDD, the 

consistent double-double arithmetic can be done in the same way as the normal complex 

double precision 

With this approach, we always get the exact result of Eq.(l) on different number of 

processors, as expected. 

7.2 Global Summation Using Self-Compensated Method 

Separating global summation of an array into local summation followed by summation across 
processors requires a slight change of the basic procedure of the self-compensated summa­

tion. Here on, say, 4 processors we have 4 (sum, error) pairs. In principle, we can just add 

up 4 sums and add up 4 errors back for the final results. We can use collective function 

MPLREDUCE with double precision operator MPLSUM to sum all sums and errors sep­

arately;. and then add the sum of sums and the sum of errors. In this way, the results are 

unpredictable (see Table 4). 

From our experience in the sequent.ial environment, we need to sort the sums in decreas­

ing magnitude order before summation. In order to sort the local sum and error across 
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Table 4: Results of Adding Sums and Errors Produced from SCS Separately with Different 

Number of Processors Using MPLREDUCE 

II Processors I Result II 
2 0,35798583924770355 

4 0.35798583924770355 

8 1.9829858392477036 

64 2.2822412103414536 

processors, we need to gather them to one processor, and apply the same sorting and SCS 

summation algorithm. The test results with 2, 4, 8 or 64 processors are 0.35798583924770355, 

which is correct. However, as discussed in the introduction, this serialized communication 

method will not scale well to large number of processors. 

Fortunately, we found that the MPLSUMDD operator discussed above can be "directly" 

applied to the results of SCS method. Therefore the local summation results of SCS on 
different processors can be added up using MPLREDUCE with the operator MPLSUMDD. 

It will carry out the double-double precision arithmetic during the intermediate steps with 

the tree algorithms typically employed in MPLREDUCE. This is sufficient to produce the 

exactly correct result in a scalable way. 

The reason that the results, the (sum, error) pairs, produced by the SCS (and DCS) 
method, can be used with MPLSUMDD operator is that the error in the (sum, error) 

pair is exactly the non-representable portion of the double precision number sum [In other 

words, suppose on an imagined computer, the mantissa has 106 bits (which is effectively 

the precision offered by the double-double representation) to represent the exact summation 

result. On the real computer in IEEE format, a double precision number has mantissa 

of 53 bits. error would be the portion represented by those lower 53 bits beyond the 

upper 53 bits representable in the IEEE double precision number]. By design, this non­
representable portion is exactly the lower double precision number in the double-double 

number representation. Therefore, (sum, error) is already in the correct double-double 

representation. This reveals the intimate relationship between SCSmethod and double­
double arithmetic. 

This relation between SCS and double-double arithmetic could also be usedin situations 
other than summation across processors. Suppose we have several subroutines or modules 

each producing a (sum, error) pair by employing SCS. Then these SCS results can be directly 
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summed up using the double-double arithmetic without loss of precision. This technique will 

be very useful for maintaining modularity of large simulation codes. 

Note that since DCS has the same representation of the final results as the SCS [(sum3, 

error3) in'Code (3) VS. (sum1, error1) in Code (2)], this relationship holds for DCS too. 

In particular, one may use DCS on local summation, and then double-double arithmetic on 
global summation. 

In summary, we found that SCS method can be effectively combined with double-double 

precision arithmetics to achieve accurate summation on a distributed global array. 

8 Practical Implications 

Our main results are (a) SCS and double-double arithmetic are very effective; (b) The results 

of SCS are directly in double-double representation; (c) A simple MPLSUMDD can carry 

out double-double arithmetic consistently during the summation across processors. Together 

with our experiences in this work and other large scale ocean and atmospheric model codes, 

we recommend the followi:o.g steps in adopting the accurate arithmetics in real application 

codes to improve numerical reproducibility and stability: 

(1) Select the parts or modules where global summation plays important roles, such as the 

conjugate gradient solution of the barotropic equations or the spectral transforms. The very 

simple self-compensated summation can be easily adopted. The double-double arithmetic 

can also be easily adopted to guarantee the summation accuracy. The results of different 

modules are summed up using double-double arithmetic. Results on different processors are 

summed up using MPLREDUCE with MPLSUMDD. 

(2) Carry out test runs of the resulting codes on different computer platforms and on 

different number of processors to see if the numerical stability, especially reproducibility are 
improved. If the improvements are small in some measure, it might indicate that more parts 

of the codes should be considered for modification to adopt the SCS. If the improvements are 

substantial in some measure, either more parts of the codes should be considered for adoption, 

or the double-double arithmetic should be adopted on the selected codes for further accuracy 
enhancements. 

Adoption of double-double arithmetics generally requires more memory and slight changes 

of codes. One technique we found useful is to think of both the (sum, error) in SCS and 

double-double number as a complex number (see our implementations listed in the Appen­

dices r This is conceptually more consistent than simply using two double numbers in a 

row, and makes the modifications a little easier. As long as addition and subtraction are 

concerned, they can be carried out simply as complex numbers. Care must be taken, how-
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ever, when multiplications and divisions are involved, which are fortunately not the major 

problems here. 

We note that there is an effort to develop XBLAS[4], extended precision BLAS using 
the double-double precision arithmetics. With this suite of efficient codes, many interme­

diate results during matrix-vector operations can be promoted to double-double precision, 

therefore further improve the reproducibility and stability. 

Although we studied effects on summation due to sorted orders, and found sorting array 

does reduce rounding errors in SCS and DCS, we do not see it as a solution to the repro­

ducibility problem: (1) sorting an array is much slower compared to summation; (2) sorting 

a distributed array across processors is even more time consuming and unnecessarily com­

plicated. As explained, we believe the SCS and double-double arithmetics could effectively 
resolve the problem. 

9 Concluding Remarks 

We studied the numerical reproducibility and stability issue on scientific applications, es­

pecially in climate simulations, on parallel distributed memory computers. We focus on 

the dominant issue that affects the reproducibility and stability: the global summation of 

distributed data arrays. We investigated accurate summation methods and found two partic­

ular effective methods which can also be easily implemented and scale well to large number 
of processors. 

Our main point here is that numerical reproducibility and stability can be improved 

substantially by using high accur~cy in some of the key steps in parallel computations. As 

a result, the final results will be slightly more accurate; This is a welcome benefit, but of 

secondary consideration. In fact, we do not propose to use higher precision on all parts of a 

simulation codes, unless it is shown to be absolutely necessary. 

To our knowledge, this work is the first syatematic attempt to address the reproducibility 

from accurate arithmetic approach. Here we used the SSH data as a validation test of the 

improvement techniques. How well these techniques perform in practical codes when the 

variables affect dynamics? Are they adequate? All these require further investigations. We 

plan to examine the spectral transforms in the CCM atmosphere model[8, 12] and conjugate 

gradient solver in the POP ocean model[22]. 
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Appendices 

Note: These codes are written on Cray T3E, where real is of 64-bit precision by default. 
On many other computers, real is of 32-bit by default and one needs to replace real by 

real*8, complex by complex*16, etc., in the implementation. 

A. Self-Compensated Summation Method 

C This function returns the (sum,error) pair as a complex number. 

complex function SCS_sum (array, n) 
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real array(n) 

complex cc, SCS 
cc = cmplx (0.0,0.0) 

do i= 1, n 

cc = SCS (real(cc), imag(cc) + array(i)) 

enddo 

SCS_sum = cc 

end 

complex function SCS (a, b) 

real a, b, sum 
sum = a + b 

SCS = cmplx (sum, b - (sum - a)) 

end 

B. Doubly-Compenstated Summation Method 

C This function returns the (sum,error) pair as a complex number. 

complex function DCS_sum (array, n) 

real array(n) 

complex cc, SCS, c1, c2 

cc = cmplx (array(1),O) 

do i= 2, n 
c1 = SCS 
c2 = SCS 
cc = SCS 

enddo 
DCS_sum = cc 

end 

(imag(cc), 

(real(cc), 
(real(c2), 

array(i)) 

real(c1) ) 

imaged) + imag(c2)) 

C. Double-Double Precision Summation 

C This code calculates the summation of an array of real numbers 
C distributed on multiple processors using double-double precision. 

include 'mpif.h' 
real array(n) 
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integer myPE, totPEs, stat (MPl_STATUS_SlZE), ierr 

integer MPl_SUMDD, itype 

external DDPDD 

complex local_sum, global_sum 

call MPl_lNlT(ierr) 

call MPl_COMM_RANK( MPl_COMM_WORLD, myPE, ierr ) 

call MPl_COMM_SlZE( MPl_COMM_WORLD, totPEs, ierr ) 

C operator MPI_SUMDD is created based on an external function DDPDD. 

call MPl_OP_CREATE(DDPDD, .TRUE., MPl_SUMDD, ierr) 

C assume array(n) is the local part of a global distributed array. 

local_sum = cmplx (0.0,0.0) 

do i = 1, n 
call DDPDD (cmplx(array(i), 0.0), local_sum, 1, itype) 

enddo 

C add all local_sums on each PE to PEO with MPl_SUMDD. 
C global_sum is a complex number, represents final (sum, error). 

call MPl_REDUCE (local_sum, global_sum, 1, MPl_COMPLEX, MPl_SUMDD, 

& 0, MPI_COMM_WORLD, ierr) 

call MPl_FlNALIZE(ierr) 

end 

C Modification of original codes written by David H. Bailey. 

C This subroutine computes ddb(i) = dda(i) + ddb(i) 
subroutine DDPDD (dda, ddb, len, itype) 

implicit none 

real*8 e, t1, t2 

integer i, len, itype 

complex*16 dda(len), ddb(len) 

do i = 1, len 
c Compute dda + ddb using Knuth's trick. 

t1 = real(dda(i)) + real(ddb(i)) 

e = t1 - real(dda(i)) 

t2 = ((real(ddb(i)) - e) + (real(dda(i)) - (t1 - e))) 

& +imag(dda(i)) + imag(ddb(i)) 

c The result is t1 + t2, after normalization. 

ddb(i) = cmplx ( t1 + t2, t2 - ((t1 + t2) - t1) ) 
enddo 

end 
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