
Lawrence Berkeley National Laboratory
Recent Work

Title
NEUTRON STARS IN THE RENORMALIZED CHIRAL-SIGMA MODEL

Permalink
https://escholarship.org/uc/item/5wm9d60m

Author
Glendenning, N.K.

Publication Date
1987-07-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5wm9d60m
https://escholarship.org
http://www.cdlib.org/


.) 
:a 

UC-3Lf8 
LBL-23832 \ 

Preprint ("" · 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Submitted to Astrophysical Journal 

Neutron Stars in the Renormalized Chiral-Sigma Model 

N.K. Glendenning 

July 1987 
OCT 1 9 1987 

For Reference 

Not to be taken from this room 

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



... 

.. 

LBL-23832 

Neutron Stars in the Renormalized Chiral-Sigma Modelt 

Norman K. Glendenning 

Nuclear Science Division 

Lawrence Berkeley Laboratory 

University of California 

Berkeley, California 94720 

July 27, 1987 

tThis work was supported by the Director, Office of Energy Research, Division of 
Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department 
of Energy under Contract DE-AC03- i6SF00098. 



• 

Neutron Stars 1n the Renormalized Chiral-Sigma Model t 

Norman K. Glendenning 

Nuclear Science Division 

Lawrence Berkeley Laboratory 

University of California 

Berkeley, California 94 720 

July 27, 1987 

Abstract 

Vacuum renormalization corrections are calculated for normal nu­
clear matter and neutron star matter in the chiral-sigma model. The 
theory is generalized to include hyperons in equilibrium with nucleons 
and leptons. It is shown that fully one half the mass of a neutron 
star at the limiting mass is composed of matter at less than twice nu­
clear density. Neutron star masses are therefore moderately sensitive 
to the properties of matter near saturation and to the domain of the 
hyperons, but dominated by neither. The predictions for a soft and 
stiff equation of state are compared with observed neutron star masses, 
and only the stiffer is compatible. 
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Neutron Stars in the Renormalized Chiral-Sigma Model 

Norman K. Glendenning 

July 27, 1987 

In the last few years there has been great interest in relativistic nuclear 

field theory, both concerning the normal state of nuclear matter and nuclei 

and states of matter under extreme conditions. 

In this paper we shall study the chiral-sigma model and take into account 

vacuum corrections [1], which are essential to obtain a normal saturation 

curve for nuclear matter. 

Hyperons form an important component in neutron stars, and have been 

shown to soften the equation of state appreciably in the moderate to high 

baryon density domain [2,3], As previously noted, this could be a critical fac­

tor in the first bounce mechanism for supernovae, since the time scales of star 

collapse are long (seconds) compared to the electroweak processes involved 

in relaxation of dense nucleon matter into hyperon matter [3]. The situa­

tion is opposite in high energy nuclear collisions which are fast compared to 

these processes so that net strangeness is not developed. Accordingly, for 

application to neutron stars we generalize the chiral-sigma model to include 

hyperons. 
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The Lagrangian for the chiral-sigma model is [4], 

£(7 1fiN[i;JJ8JJ.- g(u + i;sT·7r)]?/w 

+ H8JJ.u8JJ.u + 8JJ.11"·8JJ.1r)- ~.-\(u2 + 71"·71"- u6)2 (1) 

to which we add the Lagrangians for the vector and vector-isovector mesons, 

w and p, which are coupled to the conserved baryon and isovector currents 

respectively. Thus, 

(2) 

In this paper we shall be concerned only with the normal non-pion-

condensed state of matter, so we take 1r = 0, and inconsequentially therefore, 

also m.,.. = 0. 

The Dirac equation for the baryons is the Euler-Lagrange equation of£, 

and is readily obtained as, 

(3) 

This can be easily solved in the mean field approximation. The mass term 

in eq.(5) appears in the form gu, which is referred to as the effective nucleon 

mass, mJv = gu. to. be compared with the vacuum mass, mN = gu0 • The 

energy eigenvalue is readily obtained as, 

(4) 

where hN is the isospin of the baryon (nucleon) N. 

2 

v 



·~ 

The energy density can be found as the diagonal time-component of the 

stress-energy tensor and is found to be, 

(5) 

The last two terms have been separately added and represent the one-loop 

expressions for the renormalization of the energy arising from shifts in the 

spectrum of the filled Fermi sea of nucleons and the zero point energy of the 

a field, in comparison with the vacuum [1]. 

It has not been found how to calculate the renormalization of the p-

meson. In the uniform matter case, the only contribution of this meson is a 

term in the energy density that is quadratic in the isospin density. We may 

regard this as a phenomenological term, and determine the coupling by the 

empirical symmetry energy. 

We have used the other definitions, 

F(y) = (1 + y) 2 1n(1 + y)- y- ~y2 

(6) 

(7) 

(8) 

The field equation for the scalar, vector and isovector fields can be ob-

· tained as the condition that the energy is stationary at fixed baryon density. 

The pressure can be found from p = p( df.j dp)- f.. 
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The obvious generalization of the scalar coupling to hyperons is (5], 

(9) .. 

The nucleon terms, N, in eq.(1,2,5) should be interpreted as sums over the 

charge states of N, A, :E, :=:, · · ·. The pressure in this general case can be 

computed from p = p( dE/ dp) - f.. In addition, we add the energy and 

pressure of the leptons. 

In fitting the theory to the empirical properties of nuclear matter, we 

shall use the three coupling constants, g, 9w, gp and the scalar meson mass, 

mu. The vector meson masses are taken from experiment and are mw = 
783 MeV and mp = 770 MeV. Since the value of the nuclear compression 

modulus is currently debated, we shall use two values for J(, one that we 

refer to as soft, J( = 200 MeV, and one that is stiff, J( = 300 MeV. The 

other matter properties are Po= 0.151 fm-3 , B/A = -16.3 MeV, asym = 

32.5, m"N/mN = 0.85, and the corresponding coupling constants are listed 

in Table 1. The 'experimental' values for the first three properties are taken 

from ref. (6] and the effective nucleon mass at saturation is taken from ref. 

(7]. 

The equation of state is shown in Fig. 1 for nuclear matter in the form of 

binding energy per nucleon, B /A, as a function of density, Also shown are the 

two contributions VN and Vu to the shift of the nucleon and 0' vacua, whose 

sum is V, the two-body contribution E2 and the sum of the three- and four­

body contributions, E3+E4 • The renormalizationenergy is seen to be strong 

and repulsive. It almost cancels the two-body attractive contribution in the 

region of nuclear saturation, but saturates at higher density. Recall that 
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Table 1: Parameters of the Theory 

i!._ & & mu 411" 411" 411" 
(MeV) 

soft 16.8 2.74 6.3 982 
stiff 18.24 3.514 6.08 1071.5 

the solution to eq.(15) in the absence of the renormalization terms yields a 

saturation curve that bears no resemblance to that of normal nuclear matter. 

Instead the normal state is bifurcated by an abnormal state and terminates. 

The equilibrium admixture of nucleons, hyperons and leptons is shown 

in Fig. 2 for J( = 300 MeV for neutron star matter, which is charge neutral 

matter in equilibrium. The results are similar for J( =200M eV. 

Below the hyperon thresholds, the electron chemical potential is a rapidly 

increasing function of density, which is reflected in the rapid increase in the 

lepton populations in the lower density domain. However when ~he hyperon 

threshold is readied, charge neutrality can be more economically maintained 

through the conversion of neutrons to A's or protons to :=:- 's, etc., rather 

than neutron beta decay to proton and relativistic electron. The rapid 

increase in J.Le is therefore arrested, and it never exceeds 280 MeV in the 

density domain of neutron stars. As observed before [2], this makes kaon 

condensation very unlikely. 

The equation of state for neutron star matter corresponding to the stiff 
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equation of state is shown in Fig. 3. Three comparisons are made, pure 

neutron matter, matter in which neutrons and protons are in equilibrium 

with leptons, and the full generalized equilibrium consisting of nucleons, 

hyperons and leptons. The softening of pure neutron matter by beta decay 

of some neutrons to protons is evident by the shift to lower pressure, and the 

additional softening due to hyperons at their thresholds is clearly evident. 

All three lie below the causal limit, p = £, and reach it only asyptotically 

far beyond the domain of neutron star densities. 

The limiting neutron star mass is especially interesting because an ac­

ceptable theory of matter must be able to account for neutron stars whose 

masses are known. The most accurately measured mass is for PSR1913+16 

with M = 1.451 ± 0.007 M0 [8]. The largest measured mass is 1.85~8:~g 

for 4U0900-40. Until recently, measurements of neutron star masses were 

interpreted as though the stars belonged to a population all having the same 

mass. In this interpretation the common mass compatible with the existing 

measurements and their errors is 1.4 ± 0.2M0 [9]. It has been pointed out 

recently that the theoretical prejudice underlying this interpretation is no 

longer justified in view of recent developments [10]. In this case the con­

straint on theory must be taken provisionally as the largest mass that is 

apparently observed, namely 1.8·5M0 . 

In Fig. 4 we show the calculated masses corresponding to the stiff equa­

tion of state for pure neutron matter, beta stable neutron-proton matter, 

and the case of generalized beta equilibrium of nucleons, hyperons and lep­

tons. The last is the one that provides the limiting mass of the corresponding 
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equation of state, the first two being shown to illustrate the magnitude of 

the effects of beta stability. The effects on the limiting mass are appreciable, 

neutron-proton stability and nucleon-hyperon stability amounting each to 

about 1/4M0 . These effects are not as large as those found for the scalar­

vector-isovector theory [2,3]. The soft equation of statecannot support a star 

of mass greater than 1.3M0 . We conclude that](= 200M eV is marginally 

compatible with the limit 1.4 ± 0.2M0 in agreement with our earlier analy­

sis of the constraints placed on ]( by neutron stars [11]. However it cannot 

account for the mass 1.85M0 . In fact the "stiff" equation of state can 

only marginally account for the latter (ie. compatible within the lower error 

limit). 

In fig. 5 the fraction of mass of the star, M (p) / M, that is com posed of 

matter at baryon density greater than pis shown. From this figure we learn 

that about 85 percent of the star's mass resides in matter that is at densities 

greater than nuclear (p = 0.153fm-3 ) but that half the mass is composed 

of matter that is at densities less than twice nuclear density! Thus the 

sensitivity to the compression modulus arises in two ways. First although]( 

is a property at saturation density, by continuity of the theory and the causal 

constraint that the speed of sound in matter cannot exceed the speed of light, 

the stiffness or softness at saturation is reflected also in the high density 

equation of state. Secondly, because of the three dimensional geometry, 

much of the mass of the star is composed of matter at moderate density. 

The plateau region in Fig. 5 corresponds to the threshold for hyperons. The 

fact that only about a third of the star's mass is contributed by matter at 
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Table 2: Properties of Neutron stars at the limiting mass, the central baryon 
density in units of normal nuclear density, radius, gravitational mass in 
solar mass units, total baryon number, A, and surface gravitational redshift 
z=b.>..j>... 

soft 
stiff 

Pel Po R 

6.22 
5.90 

(km) 

12.0 
12.3 

1.30 
1.65 

1.73 
2.23 

z 

0.215 
0.286 

densities above this threshold accounts for the moderate dependance of the 

limiting mass on the presence of hyperons as was noted above. 

The properties of stars at the limiting mass for the two equations of state 

are summarized in Table 2. 

To summarize, we have included vacuum renormalization corrections 

to the chiral-sigma model, and extended it to include the hyperons. The 

vacuum corrections are large. Because of the significant softening of the 

equation of state caused by hyperons, only the stiff one is compatible with 

the evidence on neutron star masses. This softening could play a crucial role 

in the first bounce mechanism of supernovae [3] and should be taken into 

account in supernova simulations. The effect on the limiting neutron star 

mass as compared to pure neutron matter is a reduction of 1/2 to 3/4 1\1!0 

depending on whether the equation of state is otherwise stiff or soft. The 

central density of the limiting mass star is about six times the baryon density 

of normal nuclei, but fully one half of the mass of the star is contributed 
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by matter at less than twice nuclear density in this model. Consequently 

neutron star properties depend on the properties of matter in the domain 

near saturation as well as the domain of the hyperons, and is dominated by 

neither. 
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Fig. 1 For the 'soft' equation of state the binding per nucleon is shown 
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for nuclear matter as a function of baryon density. Also shown are the 

contributions to it, the two, three and fo).lr-body parts, and the vacuum 

polarization energy of the nucleon (VN) and u meson (Vu ), and their sum, 

denoted by V. 
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has hyperons in addition. The causal limit is p = c 
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Fig. 4 Neutron star gravitational mass in solar mass units as a function 

of central energy density for the 'stiff' equation of state. The curve marked 

'n' is pure neutron matter, 'n+p' is neutrons and protons in equilibrium 

with electrons and muons, and 'n+p+II' has hyperons in addition. 
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Fig. 5 For the star at the limiting mass in the case of the 'stiff' equation 

of state, the fraction of the mass of the star M(p )/M contained at baryon 

density greater than p is shown as a function of p. 
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