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Abstract 

Net primary productivity and carbon sequestration are dependent on an adequate source of 

nitrogen (N) in terrestrial ecosystems. Biological nitrogen fixation, the microbially-mediated conversion of 

atmospheric N2 to biochemically reactive ammonia (NH3) serves as an important source of new N to 

many natural ecosystems. Despite its crucial role in global biogeochemistry, controls over the rate of this 

microbially mediated process remain poorly understood. This is particularly true in the context of land use 

(LU) alteration, a major driver of climate change and ecological disruption. In the Amazon Basin, LU 

change from primary tropical forest to agricultural operations, particularly cattle pasture, has been 

prevalent and ongoing for decades. To better understand shifts in N inputs resulting from LU change, this 

dissertation investigates the activity and diversity of free-living soil diazotrophic communities across the 

LU dichotomy of forest and pasture in the Amazon Basin. First, to establish a broader perspective on the 

microbial response to LU change in the Amazon, we performed a comprehensive review of all studies 

investigating microbial communities or microbially mediated processes across variable LUs and 

successional states in the region, highlighting both generalized and repeated findings, as well as points of 

disagreement which may indicate regional heterogeneity or methodological biases. This meta-analysis 

revealed that although trends in the alpha-diversity of microbial communities vary somewhat across 

studies, spatial biotic homogenization in pastures compared to primary forests has been a near-universal 

finding among prokaryotes, fungi, and several other taxonomic or functional subgroups. Additionally, a 

large proportion of studies have identified soil Al3+ content and extractable acidity to be major factors 

shaping community structure, emphasizing the importance of tropical mineralogy. Significant shifts in 

microbially-driven biogeochemical cycling with LU change have been identified as well. Most studies have 

found that soil C stocks increase slightly with pasture conversion, simultaneous with elevated methane 

emissions and a decline in the community proportion and taxonomic richness of methanotrophs. 

However, the most drastic and consequential nutrient cycle shift has been to the N cycle. Studies have 

found that rates of net mineralization and nitrification decline sharply in maturing pastures, coincident with 

reductions in nitrous oxide emissions and inorganic N pools. Recent studies have indicated that free-living 

diazotrophs increase in abundance and diversity with pasture conversion, but measurements of 

asymbiotic nitrogen fixation (ANF) have not been made across LUs to bolster these community findings. 
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Addressing this knowledge gap in conjunction with community profiling was a primary focus of the original 

research presented here. 

To fulfill this aim, we surveyed three primary forests and three pastures (converted in or around 

1972) in the state of Rondônia, Brazil near the end of the wet season in April of 2017. At each site, we 

established a 100 m2 quadrat and collected four replicate soil cores (0-10 cm in depth) from seven 

locations each. After homogenization, fresh soil was utilized for 15N2 gas incubations to calculate soil N 

incorporation attributable to ANF. Additionally, preserved soil samples were used for nucleic acid 

extraction and analysis, quantifying a suite of physicochemical measurements, and profiling the bulk soil 

metabolome. Community nucleic acids were utilized for marker-gene targeted amplification to serve as a 

proxy of absolute abundance and functional community structure, as well as to obtain profiles of potential 

diazotrophs within the broader soil metagenome.  

From this analysis, we concluded that soil ANF is indeed stimulated (47x increase) in active cattle 

pastures coincident with an augmentation in soil nifH copy number (18x increase; in line with previous 

observations), but that the two are not directly related within LUs. Using soil physicochemical parameters 

(including various pools of C and N, natural isotopic abundance, soil texture, pH, P, cation exchange 

capacity, and enzyme metallocluster constituents including Mo and V) for variable selection in multiple 

linear regression, we were unable to identify variables strongly associated with nifH community 

augmentation from forest to pasture. Substantially lower soil NO3- concentrations provided significant, but 

modest value in explaining the stimulation of ANF in mature, active cattle pastures compared to primary 

forests. Additionally, when forests were considered separately from pastures, nifH copy number and ANF 

rates (which were consistently near zero) were poorly explained by physicochemical parameters. 

Together these findings indicate that factors such as high inorganic N concentration as well as alternative, 

more productive N input pathways (i.e., canopy lichens, nodules, or the surface litter layer), which were 

not measured in this study, could largely suppress the activity of potential diazotrophic bacteria in primary 

forests. Within pasture soils, however, we found that nifH copy number was primarily associated with C 

pools. We found a modest, but significant association between pasture soil ANF rate and the ratio of low 

molecular weight extractable organic C to N, as well as the fraction of total N in the dissolved organic 

form, suggesting that this energy-intensive reaction is stimulated by a limited availability of N combined 
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with sufficient fuel in the form of low molecular weight C compounds. Additionally, using a multigene 

approach to profile soil diazotrophs within the broader microbial community revealed that the genetic 

potential for asymbiotic diazotrophy is one of the most (if not the most) enriched soil microbial functions 

accompanying pasture conversion. This realization speaks to the immense influence that large-scale LU 

change can have on microbial communities, and the strong pressure for N replenishment in grazed (but 

unfertilized) pastures of the Amazon Basin. 

After observing that the absolute abundance of potential diazotrophs (based on DNA copy 

number) did not scale with ANF measurements in either LU, we aimed to further explore any meaningful 

relationships between diazotrophic communities and this crucial biogeochemical process they mediate. A 

previous analysis of the potential diazotroph community in forest and pasture soils of Rondônia found 

significant shifts in its structure. However, given the phylogenetic and trophic breadth of potential 

diazotrophs (i.e., microorganisms bearing nitrogenase-encoding genes, but not necessarily contributing to 

ANF), it is not clear whether these shifts have occurred independent of the larger soil prokaryotic 

community. By comparing potential diazotroph community structure (using DNA-based amplification of 

the nitrogenase marker gene, nifH) with that of all prokaryotes (by amplifying the 16S rRNA gene), we 

found that potential diazotroph community alpha-diversity was significantly higher in pasture soils, while 

the overall prokaryotic community did not reflect an increase. However, both profiles reflected a similar 

degree of community compositional dissimilarity with respect to LU change. Additionally, both 

communities exhibited significantly lower groupwise compositional dispersion in pasture compared to 

forest soils, agreeing with several earlier studies observing biotic homogenization of soil microbial 

communities with LU change. The compositional dissimilarities of both communities were associated with 

a similar subset of physicochemical conditions including clay content, pH, and total sulfur content, as well 

as the proportion of nitrogen in inorganic forms.  

We further investigated how these potential diazotrophic communities relate to the subset of taxa 

that are both metabolically active, and actively transcribing the nitrogenase enzyme (via RNA-based 

sequencing of nifH), to determine if the latter community exhibits a community structural response to LU 

change differing from that of DNA-based communities, and whether active communities may better 

explain ANF activity. In contrast to our expectations, we found that active diazotrophs did not reflect an 
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increase in alpha-diversity with LU change and exhibited only a modest compositional response with no 

environmental correlates. Surprisingly, active, RNA-based communities across LUs were more similar to 

each other than they were to their DNA-based counterparts, showing an opposite trend in community 

dispersion with respect to LU. This increase in dispersion was related to ANF rates; we identified 17 of 

882 taxa whose relative abundance scaled linearly and significantly (Pearson r = 0.88) with ANF. Of 

these, two OTUs, annotated as Bradyrhizobium and Enterobacteriaceae, reflected strong correlations 

with ANF on individual bases and were found to have the third and twentieth highest relative abundances 

among active pasture taxa, respectively. While paired potential and active diazotrophic communities (i.e., 

derived from the same sample) reflected a high degree of compositional dissimilarity from each other 

overall, by far the most drastic shift observed was the more than 100x enrichment of the photosynthetic 

cyanobacterial family Aphanizomenonaceae in active diazotroph profiles, irrespective of LU. Therefore, 

soil surface diazotrophs may also play an important role in providing N to pastures and forests alike, 

suggesting further work is needed to capture measurements of ANF activity under lighted conditions. 
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Abstract 

The Amazon Rainforest is a global diversity hotspot that has experienced a significant level of 

deforestation over the past half century, primarily for the establishment of cattle pasture. Characterizing 

the impact of this large-scale ecosystem conversion on the composition and activity of the soil microbial 

community is crucial for understanding potentially consequential shifts in nutrient and greenhouse gas 

cycling, as well as adding to the body of knowledge concerning how tropical ecosystems respond to 

human disturbance. Research to date has shown that locally, communities of soil microorganisms tend to 

become more diverse upon conversion of forest to pasture. However, these communities undergo 

taxonomic homogenization at landscape-level spatial scales, mirroring the homogenization of plant 

communities across pastures. Microbial community structure is distinct between forest and pasture soil 

communities across several studies, and specific taxa, such as Firmicutes and Acidobacteria, show 

consistent association with pasture and forest soils, respectively. In addition, shifts in microbial community 

functions with pasture conversion have relevant impacts on both carbon and nitrogen cycling at the 

ecosystem scale: the abundance and diversity of methane-cycling prokaryotes shifts in conjunction with 

increased methane flux in pastures. Further, quantitation and community profiling of free-living nitrogen 

fixers has demonstrated that this functional group is favored in pastures and suggests that asymbiotic N2 

fixation may be a significantly augmented process. While human-driven deforestation is continuing, a 

large percentage of once-converted pastures are undergoing the process of secondary forest succession. 

Assessment of microbial communities in secondary forests compared to primary forests and pastures 

suggests convergence towards a recovery of functionality and community composition with reforestation.  

 

Keywords: tropical deforestation; microbial diversity; biotic homogenization; nutrient cycling; 

metagenomics; forest succession 
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Introduction: The Amazon is an Ecosystem of Global Importance 

The Amazon Basin contains the largest tropical forest on Earth, covering a cumulative area of 6.3 

million square kilometers across eight different countries (plus the Territory of Guiana) in South America, 

although over two-thirds of its total area is contained within Brazil’s borders (Butler (2020); (Hansen et al., 

2020). The basin plays a major role in the planet’s biosphere, supplying one fifth of the total freshwater 

flow to the oceans, controlling regional climate parameters, including temperature and precipitation, and 

regulating the exchange of atmospheric gases (Coe et al., 2017; Davidson et al., 2012). The Amazon 

Rainforest also contains a disproportionately high number of plants and animals in comparison to any 

other ecosystem on the planet (i.e., a hotspot), potentially housing 25% of all terrestrial species, including 

approximately 16,000 tree and 1,300 bird species (Barlow et al., 2018; Butler, 2020; Dion, 2010; Gaston, 

2000; Oliviera and ter Steege, 2013). 

Total rates of deforestation in the Amazon are difficult to assess due to differential coverage of 

satellite data across the region over the past several decades. Likely the most comprehensive data 

source available, Brazil’s National Institute for Space Research recorded approximately 457,00 square 

kilometers of deforestation between 1988 and 2020 using satellite imagery (Figure 1-1a). Another 

345,000 square kilometers is estimated to have been lost between 1970 and 1987, amounting to a 

cumulative projection of 18–20% of Brazil’s historic coverage (INPE, 2020). During the first half of the 

1970s, the widespread development of highways was likely an important catalyst for increased rates of 

deforestation. These highways afforded new access to the Amazon and created a feedback loop of 

speculative buying, land clearing, and subsequent inflation of value, driving further speculative buying 

(Fearnside, 1987). The progression of deforestation throughout the Amazon Rainforest Biome has left 

small, disconnected fragments of primary forest across a disturbed landscape (Lovejoy et al., 1986). 

Annual rates of loss peaked in the early 2000s before falling dramatically in 2005, though rates have been 

on the rise again since 2015, particularly within the Brazilian Legal Amazon (BLA; Figure 1-1a).  

By far the most common cause of forest clearing in the Amazon Basin is for the establishment of 

cattle pasture, accounting for approximately 68% of land-use change-driven clearing between 2000 and 

2013 in the BLA (Tyukavina et al., 2017). The establishment of small- and large-scale agriculture 

accounted for 13% and 11% of forest clearing over this same period, respectively (Figure 1-1b). The 
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remaining <8% of clearing resulted from activities including logging, construction, and mining (Tyukavina 

et al., 2017). The prevalence of pasture across the Amazon has heavily influenced the focus of 

investigations research into the environmental and ecological implications of this conversion type, and 

consequently, forest-to-pasture comparative studies in the BLA will be the main focus of this chapter. 

Pasture conversion across the region typically begins with selective logging to remove valuable 

timber, followed by clear cutting and burning of the remaining vegetation. To establish a pasture, sites are 

aerially reseeded with fast-growing African perennial bunchgrass species (Mueller et al., 2014; Navarrete 

et al., 2015a). Dominant species include Urochloa brizantha, Urochloa decumbens, Brachiaria 

humidicola, and Panicum maximum, of which U. brizantha and U. decumbens are estimated to cover 

approximately 75% of total pasture area (Jank et al., 2014; Nogueira, 2012). The use of fertilizers on 

pasture is atypical throughout much of the Amazon due to cost limitations (Jank et al., 2014; Mueller et 

al., 2014); therefore, productivity of grasses may be very vulnerable to overgrazing. The carrying capacity 

of the pastures is typically considered to be 1.1 hectares per cattle head with improved cultivars of U. 

brizantha, but large variation in seasonality and rotational periods across managed ranches may not 

reflect the reality of this estimate (Jank et al., 2014; Pedreira et al., 2015). 

The process of forest removal has a calculated net efflux of 325 Tg carbon (C) per year through 

biomass burning and degradation of remaining forest margins (Baccini, 2017). Data further shows a 

curtailing of the South American monsoonal circulation in response to deforestation (Boers et al., 2017).  

The reduction in condensational latent heat over once-forested areas results in lower inflow of 

atmospheric moisture from the Atlantic Ocean (Boers et al., 2017; Ciemer et al., 2020), resulting in 

conditions such as recurrent drought that accelerate tree mortality (Phillips et al., 2009). Consequently, 

future deforestation may approach a dangerous tipping point where forest-derived latent heat is 

insufficient to maintain the Atlantic moisture feedback (Boers et al., 2017), leading some to suggest the 

potential savannization of the entire ecosystem (Silvério et al., 2013). It is crucial, therefore, to understand 

current and future biological response to Amazon land-use change. 

In terms of landscape-scale ecological response, perhaps the most conspicuous consequence of 

forest conversion in the Amazon is the loss of highly diverse and endemic floral and faunal communities, 

and replacement with a small number of forage grasses, crops, and cattle (Ferraz et al., 2003). 
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Unfortunately, some undesirable species have thrived; populations of Anopheles darlingi, a mosquito 

vector that transmits malaria, has gained habitat range due to the process of forest clearing removing 

physical barriers to their dispersal. This has ultimately increased the risk of malaria infection up to 300-

fold across the region (Vittor et al., 2006).  

A microcosm of the global biosphere with a somewhat ambiguous response to anthropogenic 

disturbance is the soil microbial community. Soil is known to harbor the highest known taxonomic and 

functional diversity across different environments, but its composition is largely undescribed (Bahram et 

al., 2021; Torsvik and Øvreås, 2002). The focus of this chapter will be to review what is currently known 

about the effects of human-induced land-use change in the Amazon Rainforest on soil microbial 

communities in terms of diversity and composition, as well as in relation to important microbially-mediated 

biogeochemical cycles. Also to be discussed are the specific factors of land-use conversion by fire and 

the recovery of secondary forests from abandoned pasture, which at present comprises a significant 

portion of the Amazon Rainforest. Current limitations in knowledge and considerations for interpreting 

data in light of regional differences, such as climate and endemic soil conditions, will be highlighted. In 

this chapter, we aim to convey the potential importance of expanding our understanding of soil microbial 

response to large-scale land-use change and will provide insight as to future directions for research 

efforts. 

 

Why do Microbes Matter? 

 At first thought, considering the impact of land-use disturbance on soil microbial communities 

may seem somewhat abstruse, given that their species diversity and environmental activity is unseen to 

the human eye. Yet, closer examination reveals their relevance as major drivers of a myriad of crucial 

biogeochemical processes within the soil-plant-atmosphere continuum. Plants interact intimately with 

microbial community constituents, including archaea, bacteria, and fungi at-or-near their root surfaces 

(i.e., the rhizosphere). In many cases, plants rely on microbes for nutrient acquisition. Microorganisms 

collectively produce a complex suite of extracellular enzymes, aide in extension of soil exploration via 

hyphal networks, and can directly provide plants with nitrogen (N) through root nodule structures in 

exchange for carbon-rich root exudates (Brzostek et al., 2012; Desbrosses and Stougaard, 2011; Huang 
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et al., 2014; Linderman, 1991). These relationships are important considerations for understanding or 

predicting plant community succession or overall ecosystem function and sustainability following land-use 

change.  

In addition to their direct relationships with plants, soil microbial communities mediate 

biogeochemical cycles relevant to greenhouse gas emissions and climate change. Heterotrophic soil 

microorganisms are primary agents of soil organic matter decomposition, typically accounting for the bulk 

of CO2 released from soils (Yuste et al., 2011). Evidence suggests that substrate affinity competition 

between various microbial functional groups controls the rate of C mineralization (Fontaine et al., 2004; 

Fontaine and Barot, 2005). Therefore, shifts in organic matter composition or soil conditions, such as pH, 

temperature, moisture, and bulk density, with land-use change may impact decomposition rates and C 

use efficiency by altering the composition and interactions of the microbial community. This in turn may 

influence CO2 emissions and long-term soil C storage (Öquist et al., 2016).  

At present, our collective understanding of the relationship between the distribution of organisms 

within a given soil habitat and their functional importance is limited (Torsvik and Øvreås, 2002). In the 

context of large-scale anthropogenic land-use change, shifts in soil microbial processes and physiological 

plasticity could have key consequences in biogeochemical cycles (Mackelprang et al., 2011). Augmenting 

our understanding of these relationships has the potential to greatly enhance our ability to predict nutrient 

transformations and improve the representation of microbial processes in nutrient cycling models 

(Bradford et al., 2016; Treseder et al., 2011). Studies suggest that microbial community features, like 

composition and diversity, correspond to rates of activity at varying scales (Chen et al., 2019; Delgado-

Baquerizo et al., 2016; Peter et al., 2011; Philippot et al., 2013; Strickland et al., 2009; van Elsas et al., 

2012); however, more work is needed to understand the functional overlap across community members 

and how specific biogeochemical processes are impacted by changes in these communities. 

The task of linking 1) the impact of land-use disturbance on the soil environment, 2) microbial 

community parameters including diversity, composition, and abundance, and 3) shifts in the soil functions 

they mediate, is immense. Attempting to resolve these complex abiotic and biotic relationships relies 

upon a variety of molecular methods typically targeting specific groups or whole soil communities, paired 

with activity measurements and relevant biogeochemical parameters. The next section will briefly review 
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the modern methodologies available to researchers in order to characterize soil microbial communities. 

Additionally, important terms used to define microbial community diversity will be explained. This will 

serve as a useful pretext in understanding the work being done by researchers to understand the 

response of soil microbial communities to land-use change throughout the Amazon Rainforest. 

 

Characterizing Soil Microbial Communities: Current Methodologies and Metrics 

 

Methods to Study Complex Communities 

A straightforward, but fairly low-resolution method of gauging microbial community response to 

disturbance is through bulk biomass measurement, with the underlying assumption that a reduction in 

biomass corresponds to a negative impact, or vice versa. In soils, such measurements are made through 

chloroform fumigation and subsequent extraction and quantification of biomass-derived C and N (DeLuca 

et al., 2019). This can be put into the context of a community-wide activity response by measuring 

processes, such as respiration (either under ambient conditions or in response to a variety of substrates), 

in order to infer catabolic diversity or stress response based on C use efficiency (Degens and Harris, 

1997; Wardle and Ghani, 1995). These methods do not, however, provide a dimension of genetic 

differentiation among community members and lack a detailed understanding of microbial diversity.  

A comprehensive means of understanding the physiology and genetics of a microorganism is 

through culturing. When studying communities as complex as those found in soil, though, culturing is a 

rather impractical way of gauging diversity or microbial response to environmental change. Only a handful 

of microorganisms relative to global diversity have been successfully cultured (Handelsman, 2004; 

Overmann et al., 2017; Schloss and Handelsman, 2004), and even just a gram of soil is likely to contain 

billions of cells and thousands of distinct organisms (Trevors, 2010). Methods like phospholipid fatty-acid 

analysis (PLFA), terminal restriction fragment length polymorphism (T-RFLP), and denaturing gradient gel 

electrophoresis (DGGE) are not dependent on culturing and allow limited characterization of community 

profiles, but lack the sensitivity of molecular-based approaches and risk misinterpretation of community 

composition (Dickie et al., 2002; Nakatsu et al., 2000; Schoug et al., 2008). 
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The most common modern method employed to study microbial communities is the extraction of 

total soil community DNA and molecular amplification by polymerase chain reaction (PCR). A simple 

approach to measuring abundance of microbial groups is through quantitative PCR, which allows 

calculation of gene copy number using a fluorescently tagged DNA polymerase (Zemb et al., 2020). 

Profiling of communities based on composition can be achieved through high-throughput sequencing, 

which is commonly used to target the variable regions within the 16S ribosomal RNA (rRNA) gene or 

Internal Transcribed Spacer (ITS) region for prokaryotes and fungi, respectively (Preheim et al., 2013). 

While less commonly employed, functional genes may also be targeted. Sequence processing pipelines 

have become fairly streamlined and software platforms, such as QIIME2 (Bolyen et al., 2018) and DADA2 

(Callahan et al., 2016), ultimately allow the translation of sequences to amplicon sequence variants 

(ASVs), the microbial approximation of a species (Callahan et al., 2016). The utilization of curated 

databases can also assign taxonomy to varying degrees of certainty (Nilsson et al., 2019; Yoon et al., 

2017), affording more meaning to community profiles and allowing exploration of functional potential 

(Nguyen et al., 2016). However, due to our limited ability to culture and comprehensively study most soil 

organisms (Overmann et al., 2017), taxonomic assignment is fairly limited. Amplicon sequence data may 

also be used to calculate phylogenetic relatedness within and across samples. 

Numerous studies over the last two decades have utilized these methods to describe microbial 

composition and diversity metrics in the context of comparing primary versus perturbed environments. 

Nonetheless, a more comprehensive community analysis can be achieved by sequencing all community 

DNA, rather than targeting genes of specific microbial groups, a strategy called metagenomics. In most 

cases, metagenomics avoids the issue of potential PCR bias incurred by amplicon-based studies, and 

also allows simultaneous analysis of taxonomic/phylogenetic diversity and function from a single dataset 

(Mendes et al., 2017; New and Brito, 2020). Because no specific gene is being targeted by amplification, 

comparative analyses can be semi-quantitative as well as compositionally descriptive.  

 

Defining Soil Microbial Diversity 

The magnitude of soil microbial diversity has been gradually realized over the past few decades 

(Gans et al., 2005; Torsvik et al., 1990). Still, complete characterization has remained elusive, despite the 



 9 

ability to obtain hundreds of millions of DNA sequences from a single sample. Comparative studies 

among various ecosystems unequivocally show that microbial diversity in soil is the greatest of any 

environment on Earth (Locey and Lennon, 2016). There are an estimated 100–9,000 distinct prokaryotic 

taxa (bacteria and archaea; operationally referred to as ASVs) per cubic centimeter of soil, constituting 

approximately 4–20 billion cells. Fungi are relatively less diverse with approximately 200–235 taxa and 

10,000 individuals per gram soil on average (Bardgett and van der Putten, 2014).  

The diversity of soil microbial communities is comprised of 1) the total number of distinct 

taxa/ASVs (richness) and 2) how proportionally abundant (evenness) they are in the environment (Shade, 

2017). The use of common diversity metrics borrowed from community ecology, such as alpha (within a 

sample) and beta (across samples of an environment) diversity (Whittaker, 1972), allows statistical testing 

of differences in community composition from the local to the landscape scale (Maron et al., 2011). These 

metrics provide a mechanism to account for spatial heterogeneity effects on community structure at 

different scales, and furthermore allows comparison across ecosystems and changing environmental 

conditions. Ultimately, characterization of microbial communities using these metrics is done in an attempt 

to extend theoretical frameworks used for macroscale populations down to the microscale (Shade, 2017). 

Another particularly important aspect of microbial community diversity in soils is the relative 

abundance of identified species within diverse ecosystems (Gaston, 1994). Variation in the prominence of 

organisms over time or space may indicate a differential ecosystem function or suitability. Assessing 

relative changes in the abundance of all organisms across space or environment type provides a metric 

of community dissimilarity. The variation in community dissimilarity with geographical distance is known 

as the distance-decay relationship (Bell, 2010) and it is particularly informative when comparing and 

contrasting environments such as primary forests and pastures. Differences in the distance-decay 

relationship indicate that disturbance affects the turnover of species across space and provides 

information about differential taxa dispersal abilities. For example, taxa capable of a broad distribution 

across soil samples, known as generalists, may be governed by life-history strategies that allow increased 

dispersal, while specialist taxa are restricted to certain environmental conditions and have limited 

dispersal (Barberan et al., 2012; Sriswasdi et al., 2017).  
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Finally, any sound definition of soil microbial diversity requires the understanding of its functional 

diversity, defined as variation in traits between taxa (Escalas et al., 2019). Ecological traits, however, 

encompass a variety of ecosystem-relevant functions, such as biogeochemical processes (e.g., 

methanogenesis, denitrification, biological nitrogen fixation, C utilization, etc.) or cellular regulation 

processes like stress response. Each of these pathways and processes requires traits that vary in 

complexity and require intricate genetic machinery in order to be carried out (Martiny et al., 2015). 

Therefore, assessment of functional profiles, either through gene-targeted sequencing or metagenomics 

is essential for gaining a deeper understanding of biogeochemical shifts, as well as for gauging the 

potential for community resilience or multifunctionality under land-use change. 

 

How Has Land-Use Change Impacted Microbial Communities in the Amazon? 

The following sections will discuss what is known to-date concerning the impacts of land-use 

alteration on the diversity, community composition, and functional potential of soil microbiomes in the 

Amazon Rainforest. Studies discussed have focused on several aspects of the microbial community 

using a variety of analysis techniques across a limited number of established locations (Table 1, Figure 

1-2). This creates continuity of datasets and ease of repeated sampling but imparts regional bias when 

assessing impacts of soil properties, climate, and land management, an important consideration when 

comparing results. 

 

Shifts in Community Diversity 

The first culture-independent study of soil microbial biodiversity in unaltered Amazon Rainforest 

was reported by Borneman and Triplett (1997) with sequencing of 98 bacterial 16S rRNA gene 

sequences from two different forest soils in the Brazilian State of Pará. The authors observed that all 

sequences were unique, and further estimates of species richness concluded that proper assessment of 

diversity would require sampling over 10,000 sequences per sample (Schloss and Handelsman, 2005). 

Contradicting the above results, subsequent investigation suggested that Peruvian Amazon soils contain 

the lowest diversity among soil samples collected across North and South America (Fierer and Jackson, 

2006; Lauber et al., 2009). These previous studies, although important, were limited to a few samples.  
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Early analysis of the effects of deforestation on microorganisms showed that total microbial 

biomass increases with pasture conversion, and that microbial community structure under land-use 

change is significantly different from communities of primary forest (Cenciani et al., 2009). These 

differences were more pronounced in the dry season compared to the wet season. A study using a T-

RFLP fingerprinting approach indicated that within-sample (i.e., local) biodiversity increased in converted 

land-use systems, both in pasture and agricultural plots (da C Jesus et al., 2009). Local-scale response to 

land-use change is therefore seemingly divergent between macro- and microbiota, and this result could 

be interpreted as implying that microbial diversity should be excluded when assessing biodiversity losses 

in tropical systems. However, this is only part of the story.  

In 2009, our group created the Amazon Rainforest Microbial Observatory (ARMO) to expand 

upon the understanding of soil microbial response to forest-to-pasture conversion . Using a nested 

quadrat, we collected soil samples that spanned centimeter to kilometer intervals from primary forests and 

actively grazed pastures in the western Amazon, State of Rondônia, Brazil. The area was selected 

because it represents an extreme case of agricultural development, with higher total deforestation rates 

than any other state in BLA. The spatially-explicit sampling scheme allowed for the assessment of not 

only microbial richness as a measure of alpha diversity, but also community compositional variation and 

turnover as components of beta diversity. Contrary to the hypothesized trends, our research has shown 

that local taxonomic and phylogenetic richness increase with forest-to-pasture conversion. Spatially, 

forest communities turn over (i.e., become more dissimilar) much more rapidly with increasing distance 

between samples, while pasture communities are fairly homogenous, particularly phylogenetically 

(Rodrigues et al., 2013). This process of increasing the similarity of community members over space 

and/or time in the pasture was not the result of taxa invasion (e.g., microorganisms with increased 

dispersal abilities), but was mainly due to losses of endemic taxa from forest communities and increases 

in the range of existing taxa. This pattern of loss also drives overall distinct structural changes in the 

community. A temporal study in Ipiranga do Norte, Mato Grosso, also measured consistently higher alpha 

diversity, but found much greater seasonal variation in community diversity of pastures compared to 

forests, potentially indicating more severe seasonal stressors, such as higher exposure to rain and solar 

effects- in pasture soils (Mendes et al., 2015b). The finding of increased alpha diversity with pasture 
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conversion has been shown elsewhere as well (Mendes et al., 2015a; Navarrete et al., 2015a; Pedrinho 

et al., 2019) but in some cases overall diversity metrics and taxonomic richness show disparate trends 

(Pedrinho et al., 2019), indicating that community evenness may decline. Other studies have found that 

taxonomic richness does not change (Lammel et al., 2015b) or even declines (Melo et al., 2021).  

This pattern of biotic spatial homogenization with forest conversion has been mirrored in other 

studies, including in total bacterial communities of converted pastures across cerrado and rainforest 

biomes (Lammel et al., 2015b), active pastures of Ipiranga do Norte, Mato Grosso (Mendes et al., 2015b), 

and converted no-till cropping systems in Querência municipality, Mato Grosso (Goss-Souza et al., 2019), 

as well as within communities of the phylum Acidobacteria in ARMO pastures (Navarrete et al., 2015b), 

and whole fungal communities in the Mutum-Paraná River Basin (Cerqueira et al., 2018). This trend has 

held across a range of pasture ages, soil types, climates, and locales (see Table 1; Figure 1-2), 

indicating that the conversion of forest to pasture, the common factor in each study, is likely the driving 

factor in spatial diversity shifts. The finding of spatial microbiotic homogenization along with monospecific 

transformation of the aboveground floral community is perhaps unsurprising. However, the functional 

implication of this spatially dependent shift in biodiversity is not clear; taxonomic and phylogenetic 

diversity as metrics offer at-best limited indication of shifts in relevant ecosystem functions including 

greenhouse gas and nutrient cycles. 

 

Shifts in Community Composition 

The shift in community composition across a land-use or disturbance gradient is a distinct 

measurement from diversity change, that is, communities may be just as diverse but experience 

significant shifts in the abundance of some taxa relative to others. Assessing consistency of trends in 

taxonomic shifts across studies (especially conducted at different locations) may identify taxa particularly 

responsive to forest-to-pasture conversion. Figure 1-3 shows a taxonomic network of 16S rRNA gene-

based community member (bacteria and archaea) relative abundances from soils sampled in three 

forests and three pastures in Agropecuaria Nova Vida, Rondônia, Brazil (ARMO; Rodrigues et al., 2013). 

Overall, the majority of taxonomic levels show no significant alteration in abundance across land-use 

types, but more groups are associated with forests compared to pastures, consistent with Rodrigues et al. 
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(2013) findings, which concluded that biotic homogenization in pastures is linked to the loss of endemic 

species from forests. 

In the analysis presented in Figure 1-3, the largest taxonomic group significantly associated with 

pasture soils was the phylum Firmicutes, and specifically the order Bacillales and family Planococcaceae. 

Conversely, Thaumarchaeota, Acidobacteria, Verrucomicorbia, Gemmatimonadetes, Planctomycetes, 

and much of the Proteobacteria were found to be significantly associated with forest soils (Figure 1-3). 

An increase in the proportion of Firmicutes, a functionally-broad phylum, has likewise been shown in 

pastures of the same region sampled several years earlier, implying consistent long-term trends in the 

shifts of community composition (Rodrigues et al., 2013). A significant favoring of Firmicutes was also 

detected in pastures of the Tapajos National Forest (Pará, Brazil) relative to primary forests. While this 

was true year round, differences were particularly pronounced during the wet season (Pedrinho et al., 

2019). Similarly, in active pastures of Ipiranga do Norte, Mato Grosso, Firmicutes increased in relative 

abundance by three to four-fold compared to primary forest (Mendes et al., 2015a; Mendes et al., 2015b). 

A T-RFLP-based survey of compositional changes in Benjamin-Constant (Amazonas State) reflected an 

opposite response, with Firmicutes decreasing significantly in pastures (da C Jesus et al., 2009). Multiple 

16S-based studies have reached the same conclusion concerning a significantly decreased proportion of 

Acidobacteria, a phylum of Gram-negative, nonspore-forming bacteria typically favoring acidic 

environments (Dedysh and Damsté, 2018) within the prokaryotic community following pasture conversion 

(Khan et al., 2019; Navarrete et al., 2015b; Rodrigues et al., 2013). Subgroups 2 and 13 in particular 

showed a consistent trend, and reflected patterns of spatial biotic homogenization noted by whole 

community analysis (Navarrete et al., 2015b; Rodrigues et al., 2013). A survey of the response of 

Verrucomicrobia to land-use change in the same region using phylum-targeted sequencing generally 

showed greater diversity and relative abundance of subgroup 3 in pastures, but also found a significant 

favorability of the class Spartobacteria in forests, consistent with Figure 1-3 (Ranjan et al., 2015; 

Rodrigues et al., 2013). While the comparison of relative abundance in Figure 1-3 suggests favorability of 

Verrucomicrobia in forests, absolute quantification indicates proliferation with pasture conversion (Ranjan 

et al., 2015). Despite differences in sequencing techniques and pasture age, the agreement of findings 

from various studies conducted in the same geographic area builds confidence in its biological reality.  
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Using deeply sequenced metagenomic profiles, Kroeger et al. (2018) found significant abundance 

changes in 13 of 34 dominant phyla across forests and ca. 38-year-old pastures of the ARMO site. 

Gemmatimonadetes, Fusobacteria, Aquificae, Lentisphaerae, and Korarchaeota were among phyla 

identified as being significantly negatively impacted by forest-to-pasture conversion. Additionally, the 

abundance of Thaumarchaeota, an archaeal phylum containing many known ammonia-oxidizers, was 

extremely low in pasture communities, in agreement with Figure 1-3 as well as Hamaoui et al. (2016) and 

Khan et al. (2019). Nitrospirae, a small bacterial phylum containing some lineages of nitrite-oxidizing 

bacteria, was also significantly negatively impacted by pasture conversion (Khan et al., 2019; Kroeger et 

al., 2018; Rodrigues et al., 2013). These results are not surprising since several members of the plant 

genera Brachiaria and Urochloa, common forage grass species in Amazonian pastures, are known to 

secrete a nitrification-inhibiting cyclic diterpene called brachialactone from roots. This compound works by 

blocking ammonia monooxygenase and hydroxylamine oxidoreductase enzymatic pathways, limiting NO2-

/NO3- formation and energy production for these chemolithotrophs (Subbarao et al., 2009). 

Across the studies discussed, differences in the responses of taxonomic abundance (sometimes 

reflecting opposite trends) with respect to land-use differences may be due to variability in locale, 

management, age since conversion, or operational variation such as different sequencing conditions, 

sample replication, and sequence processing. However inconsistent responses among studies may also 

be random, pointing to a poor understanding of microbial ecology. Further, explaining the compositional 

shifts observed is difficult. Thaumarchaeota and Nitrospirae are relatively narrow taxonomic groups with 

high intra-phylum functional similarity. Drawing inference regarding mechanistic controls over shifts in the 

relative abundance of Thaumarchaeota and Nitrospirae in response to land-use change is therefore 

somewhat straightforward. On the other hand, for much larger prokaryotic phyla, such as Proteobacteria, 

Acidobacteria, or Firmicutes, intra-phylum functional and physiological diversity is sufficiently high that few 

generalizations can be made, obscuring any deeper understanding as to why taxonomic groups may 

respond to land-use change in a particular way. Since most compositional analyses across land-use 

gradients in the Amazon have been done via 16S rRNA gene-based amplicon sequencing, inference is 

limited to relative abundance shifts, further conflating which taxonomic changes are true environmental 

responses.  
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Fungal Communities 

Studies discussed thus far have focused primarily on assessing the response of prokaryotic (16S 

rRNA gene-based) or whole microbiotic (metagenome-based) communities to land-use change in the 

Amazon Rainforest. Although fungi are technically included as part of a whole community assessment, 

their proportional sequence abundance is typically dwarfed by bacterial-derived sequences. One meta-

analysis indicated that bacterial rRNA sequences outweigh those of fungi by 20:1 on average and 

enzyme-encoding sequences derived from bacteria outweigh those of fungi by 163:1 on average, 

masking impacts related to important ecosystem functions that fungal communities perform (Bahram et 

al., 2021). Comparatively few studies have focused specifically on the response of fungal functional guilds 

or whole fungal communities to land-use change in the Amazon. Nonetheless, fungi are important 

components of forest and pasture ecosystems alike, with mycorrhizal fungi in particular serving as a 

symbiotic partner to over 90% of terrestrial plant species (Smith and Read, 2010).  

Tropical ecosystems are typically dominated by arbuscular mycorrhizal fungi (AMF)  (Schimann 

et al., 2017). Species richness and diversity of AMF do not appear to be significantly reduced by pasture 

conversion (Leal et al., 2013; Leal et al., 2009). This result is divergent from ecological theory, as well as 

a survey across forests of the western Amazon, which found a positive correlation between richness of 

forest plant communities and AMF from the order Glomerales (Peay et al., 2013; Wardle et al., 2004). 

This likely reflects an important distinction between how trees and forage grasses interact with AMF. 

Tropical host trees have been shown to make relatively small numbers of selective associations with AM 

species, and these associations change depending on the age of the tree (Husband et al., 2002). 

Conversely, forage grasses, like Brachiaria, associate with a wide range of AM species (Rodrigues and 

Dias-Filho, 1996; Teasdale et al., 2019). Despite similar decreases in plant species richness in alternate 

land-use types, including agroforestry and crop systems (in comparison to forest), AM fungal richness and 

diversity may actually increase in some cases (Sturmer and Siqueira, 2011). 

There is also evidence that spore abundance increases with the conversion of primary forest to 

pasture (Leal et al., 2013; Leal et al., 2009; Sturmer and Siqueira, 2011), which is consistent with the 

observation that the forage grass B. decumbens induces high rates of sporulation (Carneiro et al., 1995). 
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This likely has important consequences for above and belowground biomass productivity (Cavagnaro et 

al., 2014), and should be studied further in the future. Despite overall compositional and spore count 

differences between systems, species of the genera Glomus and Acaulospora are abundant and 

cosmopolitan across land-use types (Leal et al., 2013; Sturmer and Siqueira, 2011).  

Fungal communities as a whole play numerous roles in the soil: they may be community-

regulating pathogens, plant symbionts, or important drivers of decomposition-related nutrient cycling 

(Maron et al., 2011; Martinez et al., 2009; Moore et al., 2015; Treseder and Lennon, 2015). Analysis of 

whole fungal community response to land-use conversion from forest to pasture reflects similar patterns 

observed for AMF: communities between land-use types are significantly distinct (Cerqueira et al., 2018; 

Mueller et al., 2014; Mueller et al., 2016). Similar conclusions were also drawn in comparing primary 

forest with converted monospecific- plantation fungal communities (Schimann et al., 2017). Plant 

community composition (but not richness) has been found in some cases to act as a significant driving 

factor in determining fungal composition (Mueller et al., 2014; Schimann et al., 2017). Conversion of 

forest to pasture appears to induce a decrease in the beta-diversity of the fungal community, indicating 

greater spatial homogenization, similar to the response of the prokaryotic community (Cerqueira et al., 

2018; Rodrigues et al., 2013). Pastures also appear to favor colonization by generalist fungi, concomitant 

with decreased species richness and independent of factors such as pasture age (Mueller et al., 2016). 

This may be the result of greater niche competition by fungi able to tolerate extreme conditions.  

Some disagreement in the assessment of fungal response to forest-to-pasture conversion has 

arisen across studies. While Mueller et al. (2016) and Fracetto et al. (2013) found a significant decrease 

in taxa richness with pasture conversion, Cerqueira et al. (2018) observed increased diversity overall. In 

addition, while Mueller et al. (2014) observed a significant reduction of the phylum Basidiomycota in 

pastures, Cerqueira et al. (2018) and (Fracetto et al., 2013) found increased representation of this phyla 

in pastures. Differences across studies may be explained by factors such as regionality or seasonality at 

the time of sampling. Owing to the different functions that soil fungi can provide to an ecosystem, it is 

imperative that we continue to expand our understanding of how soil fungal communities respond to land-

use conversion in the Amazon Rainforest. 
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Genomic Features and Novel Organisms 

Inclusion of all genetic material in the profiling of Amazon microbial communities allows 

evaluation of general shifts in taxonomic and functional composition, but also enables broad assessment 

of genomic features. Metagenomic analysis of soils from forests and pastures in the ARMO site showed 

clear genomic alterations caused by land-use change (Figure 1-4). DNA reads with low GC content (35–

55%) appear significantly depleted in pasture soils. This is a nonspecific genomic feature, and the driving 

force or functional consequence of this pattern across land-use types is not readily apparent. However, 

bacterial GC content, particularly among Gram-negative bacteria, appears positively correlated with 

genome size (Li and Du, 2014). Some studies have further shown environmental selection mechanisms 

on GC content, and specific physiological features, such as aerobiosis, have also been associated with 

high levels of GC (Foerstner et al., 2005; Naya et al., 2002). Further analysis is needed to understand the 

significance, if any, of this large genomic shift.  

Amplification of soil DNA and subsequent attempts to taxonomically annotate sequences typically 

result in high proportions of unidentified taxa (i.e., no culture match from publicly-deposited sequences; 

Bach et al., 2018). In an amplicon-based survey of Verrucomicrobia, nearly half of sequences were 

unidentified, with disproportionate representation in forest soils (Ranjan et al., 2015). While amplicon or 

unassembled metagenomic sequence data can provide detailed profiles of functional and taxonomic 

diversity within a community, sequence data lack information concerning the full genetic potential of 

community members, as well as the ability to describe the genetic potential of novel organisms. However, 

deep metagenomic sequencing data may be utilized to assemble complete or nearly-complete genomes 

from the pool of community sequence reads, known as Metagenome Assembled Genomes (MAGs). 

Employing this technique on soil communities of Amazon forests and pastures produced 28 MAGs, many 

of which were exclusively identified in pasture compared to forest samples; just a few were found in 

exclusively in forest samples (Kroeger et al., 2018). Some MAGs identified within the phylum 

Acidobacteria were placed in lineages containing no currently cultured organisms, and a phylum 

Melainabacteria MAG found only in pasture soils was placed within a new lineage in the candidate order 

Obscuribacter. Additional work exploring MAGs identified very small genomes from the Candidate Phyla 

Radiation (CPR) Patescibacteria in pasture soils, a vast and previously uncultured group (Nascimento 
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Lemos et al., 2020). The ability of MAGs to recover this unusually small genome calls into question 

current paradigms concerning the favorability of large genomes in the soil environment, which are based 

on 16S rRNA gene- or culture-based studies (Nascimento Lemos et al., 2020). Successful recovery of 

MAGs is computationally limiting, and likely for this reason has not been broadly applied to exploration of 

land-use change impact on soil microbial communities. However further integration of MAGs into 

microbial ecology studies could be essential in exploring the unculturable biosphere as well as examining 

the multifunctional genetic potential of microbial community members.  

 

Soil Physicochemical Effects 

 The physical and chemical conditions of the soil environment have clear impacts on the 

composition, diversity, and function of microbial communities. Shifts in these soil-environmental 

conditions associated with land-use change are in large part what cumulatively shapes microbial 

community response. Some variables may be affected more strongly by land-use change (e.g., Diochon 

and Kellman, 2008) or may have a greater impact on microbial communities (Bending et al., 2002; Jones 

et al., 2019). However due to high spatial heterogeneity even within land-use types (Ritter et al., 2019), 

physicochemical conditions can also be a confounding factor that should be accounted for. Many soil 

chemical variables interact with each other: C and N content, for example, have highly constrained ratios 

in biological tissues (Cleveland and Liptzin, 2007). pH affects the availability of several other soil nutrients 

such as phosphorus (P; Penn and Camberato, 2019). Additionally, the chemical or structural composition 

of substrate pools may be an important consideration, even if absolute pool size is unaltered (Ng et al., 

2014).  

Tropical soils require unique regional considerations in determining the impacts of land-use 

change on soil physicochemical conditions, and subsequently soil microbial communities. The most 

common soil types found in the BLA are red-yellow podzols and latosols, equivalent to ultisols and oxisols 

in the United States-based soil taxonomy system (Moraes et al., 1995). These soils are moderately to 

highly weathered, predominated by secondary minerals, including kaolinite, as well as iron and aluminum 

oxides, with soil solution pH typically below 6.0 (Kitagawa and Möller, 1980). Aluminum (Al) saturation 

tends to be high, and cation exchange capacity (CEC) is low, typically less than 10 cmolc kg-1 soil 
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(Bernoux et al., 1998; Dalling et al., 2016). The general paradigm concerning nutrient availability in 

tropical systems, especially lowland forests of the Amazon Basin, is that most nutrients are immobilized in 

biomass rather than soil, and that P specifically is limiting to net primary production (Dalling et al., 2016; 

Vitousek, 1984). N is typically considered more abundant in tropical forests, particularly in comparison to 

temperate systems (Hedin et al., 2009). 

Many studies considering the impact of land-use change on microbial communities in the Amazon 

measure soil environmental variables as covariates, and some consensus has been reached among 

studies as to important land-use change-related physicochemical factors shaping microbial community 

response. Across the studies discussed here, Al content is consistently identified as a significant correlate 

with microbial community metrics. In most cases, Al content varies significantly with overall community 

structure. This has been reported from several study regions, including Benjamin Constant, Amazonas 

(da C Jesus et al., 2009), Ariquemes, Rondônia (ARMO; Cenciani et al., 2009; Khan et al., 2019), 

Querência municipality, Mato Grosso (Goss-Souza et al., 2019), the Tapajós National Forest, Pará 

(Merloti et al., 2019; Pedrinho et al., 2019), and across primary forests, crop systems, and pastures 

ranging from 20–40 years since conversion (see Table 1). In one report, Al content was correlated with 

both community taxonomic and functional structure (Pedrinho et al., 2020). Several diversity metrics have 

also been shown to correlate negatively with Al content (Goss-Souza et al., 2019). Additionally, saturation 

index and total content of Al are among the most universally significant correlation factors with abundance 

of various taxonomic groups across forests and pastures (Mendes et al., 2015a; Navarrete et al., 2015a). 

While the precise importance of Al is unknown in the context of forest-to-pasture conversion, in tropical 

soils a large proportion of exchange sites are likely occupied by acidic cations (H+ and Al3+). Therefore Al 

concentration may be an indicator of CEC or soil fertility rather than a direct control over communities 

(Carvalho et al., 2009). This explanation is supported by a simultaneous correlation of community metrics 

with base saturation, total soil acidity, and CEC (Khan et al., 2019; Mendes et al., 2015a). Under this 

hypothesis, microbial communities may be shaped by plant community response to CEC. Alternatively, 

soil solution exchangeable Al has been shown to correlate negatively with microbial C use efficiency as 

pH declines below 5.5, and therefore may directly influence microbial community structure and diversity 

by selecting for organisms able to tolerate this exogenous stress through detoxification (Auger et al., 
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2013; Jones et al., 2019). Primary forests in the Amazon Basin typically have a soil pH ranging from ~3.8 

to ~5.3 (see references in Table 1, but e.g., Lammel et al., 2015b; Mendes et al., 2015a; Neill, 1995; 

Pedrinho et al., 2019). In land-use transition, slash-and-burn clearing methods typically lead to an 

increase of several tenths to over 1 pH unit (potentially crossing the aforementioned 5.5 transition point), 

with gradual acidification over several decades of use. This may explain community differences both 

across land-use types as well as in various regions of the basin.  

In some reports, pH is also an important factor influencing the attributes of microbial communities 

such as compositional structure and phylum-level taxonomic abundance (da C Jesus et al., 2009; 

Lammel et al., 2015b; Mendes et al., 2015a). The community composition of AMF across a forest-to-

pasture land-use gradient in the same region has also been shown to correlate significantly with pH (Leal 

et al., 2013). Studies across many other ecotypes have similarly shown pH to be an important 

determinant of fungal and bacterial communities, likely because it serves as a control over multiple soil 

conditions including nutrient availability and mobility, exoenzyme activity, and concentration of cellular 

stressors (Jones et al., 2019; Lauber et al., 2009; Puissant et al., 2019; Rousk et al., 2010). 

Mechanistically, moderate ash-induced increases in soil pH following slash-and-burn conversion of forest 

to pasture may be responsible for the frequently observed increase in local community diversity and 

richness (e.g., Rodrigues et al., 2013), since this theoretically allows for greater nutrient availability and 

release from growth constraints (i.e., stressors) imposed by the preexisting acidic conditions in primary 

Amazon Rainforest soils (de Souza Braz et al., 2013). Concentrations of nutrients and enzymatic co-

factors including P, K, S, Ca, Mg, Fe, Mn, B, Cu, Zn, and Mo have pH-dependent availability, with the 

majority of these increasing as pH increases. Availability of these nutrients has also been shown to play a 

role in shaping microbial communities at the phylum level (Mendes et al., 2015a) and across functional 

groups (Pedrinho et al., 2020). Stress response has been identified as a significantly divergent functional 

characteristic across forest and pasture (Pedrinho et al., 2019), but a more in-depth investigation of stress 

tolerance genes related to pH-dependent cellular toxins, such as Al, may provide additional insights into 

the mechanisms driving functional assembly of a community across land-use types.  

Several other factors including soil C and N content have also been identified as meaningful 

correlates across studies at the scale of whole communities, as well as prominent phyla (Cenciani et al., 
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2009; Cerqueira et al., 2018; Navarrete et al., 2015a; Ranjan et al., 2015). This is perhaps unsurprising 

given the impact these nutrients have on microbial metabolism and the control they exert over biomass 

stoichiometry (Cleveland and Liptzin, 2007). Soil water holding capacity has additionally been shown to 

be significantly related to overall nutrient availability and average water content in the soil environment, 

therefore likely influencing community composition through differential preferences and tolerances for soil 

moisture conditions among taxa (Pedrinho et al., 2019; Zhao et al., 2016). The relationship between land-

use disturbance, soil physicochemical conditions, and microbial communities is interactive. The response 

of the microbial community to land-use change is mediated by shifts in the physical and chemical 

conditions of their environment, which are in turn dependent on pre-existing edaphic and climatic 

conditions. Therefore, physical and chemical soil attributes are important considerations to understand 

mechanistic drivers of community change, as well as account for variation in response on the regional 

scale. While many studies have measured these variables and analyzed associations with microbial 

communities across land-use types, our body of knowledge would be greatly improved by hypothesis-

driven and experimentally controlled studies in order to draw causal inference. 

 

Beyond Taxonomy: Functional Diversity and Community Interaction 

Along with obtaining an inventory of taxa altered by ecosystem disturbance, a central goal of 

studying the microbial communities of the Amazon Rainforest is to understand their role in mediating soil 

biological processes. The first comprehensive study of the functional gene diversity of soil microbial 

communities under land-use change in the Amazon was performed at the ARMO site. The study took 

advantage of the GeoChip 4.0, a microarray containing 83,992 probes targeting 410 gene families 

associated with the biogeochemical cycles of C, N, P, and S (Tu et al., 2014). This high-throughput 

microarray approach detected genes for 409 different families, underscoring the general richness of 

genes present in Amazon soils. However, reported losses of total gene richness with conversion of 

primary forest to young pasture (~6 years old) were significant—up to 31.8% (Paula et al., 2014). Genes 

related to C and N cycles, particularly to the processes of methane oxidation, nitrification, and 

denitrification, were significantly associated with forest sites while their abundances were reduced in 

pastures. Such a dramatic negative shift is compelling since local-scale taxonomic diversity increases 
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with pasture conversion (Rodrigues et al., 2013). In contrast, a metagenomic-based study in the Tapajós 

National Forest, Pará, Brazil, found that functional diversity increased significantly in conjunction with 

taxonomic diversity (Pedrinho et al., 2019). 

Further, ARMO metagenomes have revealed that carbohydrate metabolism, sporulation, and cell 

signal regulation functional geness were significantly more common in pasture, while RNA metabolism 

and cofactors, vitamins, and pigments functional groups were more prevalent in forests (Kroeger et al., 

2018). These functional profile shifts with land-use change are consistent with another study conducted in 

the Tapajós National Forest, Pará, Brazil, where the same trends hold true in microbial communities 

across both the wet and dry season (Pedrinho et al., 2019). The consistency of these studies is intriguing, 

but future work is needed to connect these broad community functional shifts to taxonomic representation 

in the context of land-use change, in order elucidate the mechanistic underpinnings that drive community 

response. Using metagenomic profiles, Pedrinho et al. (2020) assessed the ecological response of N-

cycling community members to land-use change and determined structural alterations associate 

significantly with (perhaps unsurprisingly) nitrate (NO3-) and ammonium (NH4+) concentrations. Further, 

pasture communities contained a high proportion of specialists compared to primary forests.  

An aspect of soil microbial ecology that is exceedingly difficult to study through experimentation is 

functional interactions among taxa. Instead, statistical methods are employed to infer interactions based 

on co-occurrence across samples, a potential indication of shared niche habitation between taxa. Forests 

and pastures of Rondônia have distinctly different co-occurrence networks that self-sort by land-use type 

(Khan et al., 2019). Additionally, nodes clustering taxa by the same functional potential suggests shifts in 

soil N cycling with land-use conversion (Khan et al., 2019), which is supported by a network analysis 

performed by Pedrinho et al. (2020). Analysis of rhizosphere versus bulk soil communities in soybean 

fields converted from primary forest suggest directional, niche-based assembly of communities near 

roots, compared to neutral (i.e., randomized) community assembly in bulk soil (Goss-Souza et al., 2020), 

but no such analysis has yet been done to compare forest and converted systems. Functional shifts in 

soil communities with land-use conversion are clear, but more process-based focus is needed to fully 

understand nutrient cycle shifts and explain variation across studies.  
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Microbial Impacts Associated with Carbon Cycling 

The vast expanse of the Amazon rainforest makes it a critical global carbon storage hotspot. 

However, the initiation of forest-to-pasture conversion through biomass burning definitively leads to a net 

loss of C per area of former forest. While aboveground biomass accounts for an estimated 400 Mg C 

stored per hectare of primary forest across the basin (mainly in trees with >10 cm breast-height diameter), 

pastures store less than one-sixth of this, approximately 63 Mg C per hectare (Hughes et al., 2002; 

Nascimento and Laurance, 2002). Taking into account soil class-specific differences in organic matter 

content and distribution across the Amazon Basin, average C density within primaryforest soils has been 

estimated at 98–103 kg C per hectare—on a similar scale as the aforementioned aboveground stocks 

(Batjes, 1999; Moraes et al., 1995). Fifty-two percent of C stocks are estimated to be held in the top 30 

cm of soil, which are most susceptible to disturbance with land-use conversion (Batjes and Dijkshoorn, 

1999). However the net impact of land-use conversion on soil C is far less clear as compared to impacts 

on plant biomass-stored C. Various studies have found that soil C increases (de Moraes, 1996; Durrer et 

al., 2021; Neill et al., 1997a), decreases (Fearnside, 1997; Maia et al., 2010), or does not change 

appreciably (Durigan et al., 2017; Rittl et al., 2017) following land-use conversion. This suggests that the 

impact of land-use change on soil C storage is dependent either on pre-existing conditions, such as initial 

C stocks, soil texture, and nutrient status, or management factors such as the frequency of burns or 

grazing intensity. In addition, aspects of the microbial community, including net carbon use efficiency, 

microbial biomass, and genetic potential for degradations are likely relevant.  

 

Respiration, Microbial Biomass, and C Degradation 

Across pasture chronosequences in Rondônia, Brazil, soil C concentration consistently shows an 

increase with pasture age, and isotopic- d13C values become significantly less negative, indicating gradual 

turnover of forest-derived C and replacement with pasture-derived C (Durrer et al., 2021; Neill et al., 

1996). Yet, the change in d13C value of microbial respiration greatly outpaces that of soil C stocks; in one 

study, for example, pasture-derived C of 3-year-old pastures constituted 17% of soil stocks, but 69% of 

microbial-respired C (Neill et al., 1996). These findings indicate that microbial activity in pastures is driven 

primarily by fresh inputs, including root exudates and root and shoot tissue.  Another study found 
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accumulation of pasture-derived C to be highest in the particulate organic matter fraction (Lisboa et al., 

2009), again indicating that elevated proportions of pasture-derived organic C are either respired or 

converted to biomass before accumulation in smaller fractions. The mechanisms driving retention of 

forest-derived C are unclear, but losses appear to be greatest from the silt-sized soil fraction, suggesting 

soil texture has an interactive role in C storage dynamics under land-use change.  

Microbial activity has also been shown to depend heavily on total soil organic C content and 

pasture age, with metabolic quotients (respiration per unit biomass) highest in young, surface-soil 

pastures (1–2 years old, 0–2 cm in depth) which contain lower total (and presumably) pasture-derived C 

as well as lower microbial biomass (MB) C compared to primary forests or older pastures (Melo et al., 

2012). Older pastures in this study (5–12 years) did not accumulate significant soil C or MB C, but 

metabolic quotients did return to reduced levels similar to forests, indicating shifts in C usage by microbial 

communities over time as soil pools change in their quality and composition. Other studies have found 

that MB C typically increases at depths to 20 cm with pasture conversion and variable pasture age 

(Cenciani et al., 2009; Cruz et al., 2019). Overall, however, concentrations of MB C across pastures may 

vary eight-fold based on season (dry versus wet) and soil type, accounting for differences across studies 

and potentially influencing how microbial communities respond to land-use change (Cerri et al., 2006). 

Community profiles of catabolic metabolism using substrate-induced respiration across forests 

and pastures have confirmed differential activity under varying land-use types, with forest communities 

responding to malonic, malic, and succinic acid, and pasture communities responding to carboxylic and 

amino acids  (Mazzetto et al., 2016). Correspondingly, shifts in the functional profiles related to 

carbohydrate metabolism derived from metagenomes (Kroeger et al., 2018) further indicate that microbial 

communities respond to differential organic-matter profiles across land-use types. Among annotated 

protein-encoding reads of metagenomes, a decrease in lignin-degradation genes, such as superoxide 

dismutase, was observed in pastures compared to forests (Kroeger et al., 2018). Further, the chemical-

structural composition of soil organic matter (i.e., substrate) changes with forest-to-pasture conversion, 

resulting in an increased concentration of hemicellulose and a decreased concentration of lignin in 

pastures compared to primary forest, even if total pool size is unchanged (Lammel et al., 2015b). 

Additionally, pasture soils contain a significantly higher concentration of permanganate-oxidizable C, 
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which serves as an indicator of easily-catabolized C (Durrer et al., 2021). Several other metagenomic-

based studies reporting bulk annotation of genes related to degradation of aromatic compounds did not 

find differences between land-use types (Mendes et al., 2015b; Pedrinho et al., 2019). Paula et al. (2014) 

found that abundance of C degradation-associated genes was negatively impacted in young (6-year-old) 

but not older (38-year-old) pasture compared to forests. The young pasture sampled in this study 

demonstrative significant overall decline in functional diversity, which may be indicative of an important 

time-dependent response. However, more intermediary-aged pastures between 6 and 38 years old are 

needed to test this theory. In future studies, shifts in gene expression rather than presence may prove 

more useful in characterizing soil microbial processes related to C degradation. 

Overall, understanding how land-use change impacts C degradation and storage in Amazon soils 

is limited by a dearth of hypothesis-driven studies and a poor understanding of the relationship between 

community activity and genetic profiles related to C metabolism. Due to the relatively narrow scope of 

genes and microorganisms involved in its cycling, the impact of land-use change on methane flux in the 

Amazon has garnered far more attention and is better understood in terms of ecosystem-scale 

consequences and functional underpinnings. 

 

Methane Flux 

Methane (CH4) is a climatically-relevant gas with a potency 34 times that of carbon dioxide over 

100 years (Myhre et al., 2013). The impact of forest-to-pasture conversion on methane flux has shown 

consistent trends across the Amazon Basin. Process rate studies in Rondônia (Western Amazon) and 

Pará (Eastern Amazon) have shown steady, annual sink-to-source trends with conversion from forest (-

470 mg CH4 m-2) to pasture (+270 mg CH4 m-2), but no clear trend in emissions has been found with 

respect to time since pasture conversion (Steudler et al., 1996). Another study across a conversion 

chronosequence in Paragominas (Eastern Amazon) found that pastures appear to return to a methane 

sink as they age (Verchot et al., 2000). A previous study has also indicated a consistent sink and source 

status across all seasons in forests and pastures, respectively, and that pastures act as a much stronger 

source in wet seasons (up to +614 mg CH4 m-2 yr-1, or +1682 µg CH4 m-2 d-1) compared to dry (Fernandes 

et al., 2002). Measurements conducted in the same region approximately two decades later confirmed 
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pastures to be a persistent source of methane averaging 3454 + 9482 µg CH4 m-2 d-1 (Meyer et al., 2020). 

However, Meyer et al. (2020) found that forests were also a weak source of methane (9.8 + 120.5 µg CH4 

m-2 d-1). Another investigation in Sinop, Mato Grosso (Southern Brazilian Amazon) found net daily efflux 

rates from a 25-year-old pasture of 1104 µg CH4 m-2 d-1 and low daily uptake rates (-168 µg CH4 m-2 d-1) 

from primary forest (Lammel et al., 2015a).  

An early study focusing on process rates and physicochemical shifts in soil profiles under land-

use change concluded water-filled pore space to be the key factor in sink-to-source transition of 

converted pastures, with ~40% filled pores considered the tipping point (Steudler et al., 1996). Indeed, 

oxygen concentration (inversely related to water-filled pore space) has been demonstrated to be an 

important influence over production (Yang and Chang, 1998). The proposed mechanism of an altered 

methane cycle is that soil bulk density increases with pasture conversion due to cattle movement. This 

causes a decrease in soil porosity and fractures soil aggregates (Reiners et al., 1994), increasing the 

frequency of oxygen-devoid microsites that favor the anaerobic process of methane production 

(Fernandes et al., 2002). However, this physicochemical-focused understanding ignores the direct and 

indirect impacts of forest conversion on methane-cycling soil microbial community members. To fully 

understand the differences in net methane flux with land-use change, the impact on the abundance, 

structure, and activity of soil microbial communities must be considered.  

A net flux of soil CH4 from soils results from a balance between production by methanogenic 

archaea and consumption by methanotrophic bacteria (Conrad, 2007). Under anaerobic conditions, CH4 

is generated through the reduction of C1 carbon compounds such as CO2 and methanol or 

disproportionation of compounds such as acetate (Schäfer, 2013). Methanotrophic bacteria of upland 

soils, meanwhile, mostly rely on aerobic conditions to oxidize methane to methanol using O2 as an 

electron acceptor with either particulate- or soluble methane monooxygenases (Conrad, 2007; Guerrero-

Cruz et al., 2021). Although thought to be important mainly in wetland and marine systems, canonical 

methanotrophic archaea also perform methanotrophy anerobically, though recent work suggests a 

greater importance of these organisms to upland soil CH4 cycling than previously thought (Guerrero-Cruz 

et al., 2021; Ho et al., 2019). Metagenomic sequencing of forest and pasture soil communities has 

indicated that these CH4-consuming communities (methanotrophs) are strongly impacted by land-use 
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conversion, with decreased relative abundance and shifted taxonomic composition of methanotroph 16S 

rRNA genes (Meyer et al., 2017), which confirms a prior GeoChip-based assessment that found a 

significant association of the abundance of methane monooxygenase genes (denoting methanotrophs) 

with forests compared to pastures (Paula et al., 2014). In particular, a significant drop in the relative 

abundance of methanotrophs within the Alphaproteobacteria was detected (Meyer et al., 2017). 

Furthermore, annotation of community metagenomes of Rondônian soils (ARMO) revealed that all 

essential genes encoding methyl coenzyme M reductase (mcr) were significantly enriched in pasture 

soils, and particulate methane monooxyenase (pmo) genes were significantly enriched in forest soils 

(Kroeger et al., 2018). Using a 16S rRNA gene amplicon-based approach confirmed the alteration of 

functional community patterns across two locations in the Amazon in Rondônia and Pará, with significant 

increases in methanogen composition and relative abundance, as well as significant decreases in 

richness and relative abundance of methanotrophs in pastures (Meyer et al., 2020). Similarly, absolute 

gene quantification has shown a significant increase in mcrA (~2.5x) and a significant decrease in pmoA 

(~0.5x) gene copy numbers per gram soil in pastures compared to forests (Lammel et al., 2015a).  

Taking microbial activity into account expands on these findings. In the 16S rRNA gene-based 

analysis discussed above, the flux of CH4 across soil types appeared to be associated with richness and 

relative abundance of methanogenic communities after accounting for sample covariate structure (Meyer 

et al., 2020). Figure 1-5, reproduced with permission from Meyer et al. (2020), reflects a positive 

relationship between both community attributes and CH4 flux (R2 = 0.42 for both) when land-use types are 

considered together, but linear relationships appear particularly driven by pasture communities. In 

another study, an absolute quantitative analysis of CH4 -cycling genes (mcrA and pmoA) did not show a 

significant direct explanatory relationship with flux rates, which did not vary between forest and pasture 

(Lammel et al., 2015a). This finding may speak to the spatial and temporal heterogeneity of the process. 

While 526 taxa were highly associated with methane flux in pasture soils, just 41 taxa were associated 

with flux in primary forest. Moreover, few of these taxa were known methane-cyclers, indicating a wide 

range of organisms associated or co-correlated with the process, but not directly mediating it (Meyer et 

al., 2020). Use of an isotopic tracer (13C) to enrich and identify microorganisms involved in methane 

cycling under a given set of conditions has also indicated an increase in the abundance and diversity of 



 28 

active methanogens in pastures (Kroeger et al., 2021). These results highlight the importance of 

integrating process-based measurements with microbial community profiles to understand their role in 

ecosystem function. It should be noted that while the ecology of CH4 cycling across this large-scale land-

use gradient represents a complex and important area of study in soil microbial ecology, the contribution 

of upland soils only amounts to approximately 5% of the overall CH4 emissions across the Amazon Basin, 

with biomass burning and cattle accounting for the major sources (Steudler et al., 1996).  

 

Microbial Impacts Associated with Nitrogen Cycling 

Nitrogen, an essential nutrient for both plants and soil microorganisms, is tightly linked in its 

cycling with C through both soil organic matter and biomass. Soil N comprises both organic and inorganic 

nutrient pools and is utilized for biomass assimilation as well as dissimilatory energetic reactions (Pajares 

and Bohannan, 2016). A thorough review of N cycling in tropical soils with discussion pertaining to 

climatic and pedological factors unique to this region is provided in Pajares and Bohannan (2016), 

although the focus of the review remains on forest ecosystems generally rather than on land-use 

conversion gradients. Unlike temperate soils which are geologically younger, highly weathered tropical 

soils are high in N, but limited in P and base cations (Hedin et al., 2009). However, disturbance related to 

pasture conversion may alter this pattern. The reality that a high proportion of pastures are eventually 

abandoned (Chazdon et al., 2009) presents a pressing need to better understand how microbial 

communities mediate N cycling across land-use change gradients. This is especially relevant since N 

limitation is a suspected contributor to productivity decline. Similar to C pools, total N has been reported 

to increase (Navarrete et al., 2015b; Neill et al., 1997b), decrease (Lammel et al., 2015a; Neill et al., 

1997b; Pedrinho et al., 2020), or remain stable (Durigan et al., 2017; Melo et al., 2012; Neill et al., 1997a) 

with forest-to-pasture conversion. Regionality, intensity of conversion practices, and pasture 

age/management could account for many of these differences; however, significant shifts have been 

reported in both transformation rates and pool sizes of N in pastures (Neill, 1999).  

Several aspects of land-use conversion to pastures are plausible contributors to the above shifts, 

which are conceptualized in Figure 1-6. Common forage species used throughout pastures in the 

Amazon are known to exude a nitrification inhibiting compound called brachialactone as a strategy for 
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scavenging N (Egenolf et al., 2020; Subbarao et al., 2015). It is not clear how soil N availability scales 

with brachialactone production (e.g., whether exudation is obligate or facultative), but its presence in the 

rhizosphere is likely to impact community structure and activity of N-cycling soil microbial communities. 

The effect of cattle grazing in pastures is additionally a relevant consideration. Cattle grazing exports 

nutrients from the ecosystem through the animal itself, but also through displacement and inefficient 

nutrient recovery following excretion; this may contribute to N loss through NH3 volatilization, leaching, or 

erosion (Dias-Filho et al., 2001). This could cumulatively have a substantial impact on available N supply 

with a net export being estimated up to 20 kg N ha-1 yr-1 (Dias-Filho et al., 2001). Limited reporting on the 

relationship between grazing intensity/rotational practices and soil C and N dynamics in tropical systems 

suggests that soil C and N cycling and storage may be unaffected by light grazing, but depressed under 

medium or heavy stocking rates (Cantarutti et al., 2002; Silva et al., 2008). Since soil microbial functional 

groups mediate key steps in the soil N cycle, such as nitrogen fixation, mineralization, nitrification, and 

denitrification, their response to land-use alteration in the Amazon deserves thorough examination to 

better understand shifts in the N cycle across the region.  

 

Nitrogen Fixation 

Nitrogen fixation, the conversion of atmospherically-derived N2 to a biologically reactive form 

(NH3) is an imperative function for providing new N to terrestrial ecosystems, especially in the early 

stages of succession. Despite the relative abundance of N in tropical forest soils, both symbiotic and 

associative/free-living N2 fixation (SNF and ANF, asymbiotic nitrogen fixation) in soil, leaf litter, and the 

tree canopy are thought to be important processes in response to considerable loss through NO3- 

leaching and denitrification, as well as in order to maintain extracellular phosphatase activity required to 

combat P limitation (Hedin et al., 2009; Pajares and Bohannan, 2016). A key difference in potential 

diazotrophy with forest-to-pasture conversion is that forage grasses sown in pastures are not leguminous, 

and therefore do not engage in symbiotic nodulation or SNF. This is likely to have effects on community 

composition, regardless of N2 fixation rates. Based on the potential loss of pathways associated with 

landscape conversion to grazed pastures, it is reasonable to postulate that associative and free-living 

diazotrophs may have an elevated role in N-cycling (via ANF) following land-use change.  
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SNF- diazotrophs have the benefit of O2-depleted conditions (O2 reversibly inactivates the 

nitrogenase enzyme) and a direct supply of C and energy from root nodules, in exchange for some of the 

N2 they fix. ANF diazotrophs, on the other hand, are subject to more extreme environmental conditions 

and must fund the steep energetic cost of ANF themselves. It is then probable that their activity is almost 

entirely limited to the rhizosphere, where plant root deposits may serve as an easily-utilized C source, 

stimulating microbial activity (Figure 1-6; Bürgmann et al., 2005). The impact of grazing on plant root C 

allocation appears highly dependent on forage species, grazing intensity, and soil nutrients (Dawson et 

al., 2000; Hamilton III and Frank, 2001). However, based on limited data, low cattle stocking rates may 

stimulate belowground C allocation (Dias-Filho et al., 2001; Durigan et al., 2017; Trumbore et al., 1995). 

Due to high energetic costs, ANF may also be heavily regulated by NH3 concentration (Peters et al., 

2013), bringing into question the potential impact of nitrification inhibition by brachialactone. Depending 

on the efficiency with which forage species scavenge available NH3, environmental concentrations may 

be high enough to inhibit ANF. On the other hand, ANF also requires a supply of N (Peters et al., 2013), 

so increased NH3 concentration may stimulate activity in conjunction with C-rich root exudates.   

Lima et al. (2009) performed a valuable survey of viability, diversity, and efficiency of symbiotic 

(nodulating) diazotrophs across primary forests and converted landscapes including pasture. Using a 

promiscuous legume, nodulation rates were highest in agroforestry soils and lowest in primary forests; 

however, the most efficient strains (performing SNF in the presence of high N content) were identified 

from forest soils, whereas pastures were typified by mostly inefficient strains. Given the lack of 

leguminous plant species in pastures, their continued presence suggests alternative ecological roles and 

a strong potential for root colonization in a pasture abandonment/secondary forest succession scenario. A 

free-living, diazotroph-targeted culture-based experiment found that pasture soils yielded the highest cell 

densities when compared to primary forest, agricultural, and agroforestry systems (Silva et al., 2011). 

Subsequent protein profiling identified Burkholderia and Bacillus among pasture-derived isolates. 

Nitrogenase activity was variable across strains within and among land-use types, but the highest 

performing strain was isolated from pasture soils. Due to the inherent limitations of assessing 

environmental biodiversity using culture-based methods, conclusions from these studies should be taken 

with care but serve as a baseline for comparison with molecular-based methods. 
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Assessment of diazotrophs at the ARMO sites was conducted by sequencing gene clones, as 

well as directly amplifying the nifH gene, which encodes an essential subunit of the nitrogenase enzyme 

(Mirza et al., 2020; Mirza et al., 2014). Quantitative analysis first indicated a significant increase in nifH 

gene abundance per gram of pasture soil compared to that in forest soil (Mirza et al., 2014), and 

community structure varied significantly by land-use type, both taxonomically and phylogenetically. 

Analysis of community turnover revealed the same distance-decay pattern observed for total prokaryotic 

communities (Rodrigues et al., 2013), indicating spatial biotic homogenization in pastures compared to 

forests. However, this result was more apparent taxonomically than phylogenetically. Similar to the local 

diversity increase observed in total prokaryotic communities, taxonomic and phylogenetic richness 

increased significantly in pasture soil (Mirza et al., 2020). Compositional comparison of sequenced clones 

have revealed that Deltaproteobacteria, uncultured Spirochaetes, Verrucomicrobia, and Archaea arre 

favored in pastures while Cyanobacteria, several Firmicutes, and an uncultured Archaea were found 

exclusively in forests. While the finding of strong compositional differences is interesting, the inability to 

annotate below the phylum-level in this study limits interpretation (Mirza et al., 2014). Co-occurrence 

networks built from Rondônian forest and pasture microbiomes have further suggested an important role 

of diazotrophic taxa in pasture communities (Khan et al., 2019). A survey conducted in the Tapajós 

National Forest in Pará compared total N fixation-associated gene sequence counts from metagenomes 

across forests and pastures and found a significant association with pasture soils across both the wet and 

dry season, which is in agreement with findings from Rondônia (Pedrinho et al., 2020). This was also 

bolstered by nifH gene amplification via qPCR, which reflected significant increases in pasture. Gene 

abundance has also been measured at significantly higher concentrations in corn/soy cropping systems 

two years following forest conversion, compared to primary forests (Merloti et al., 2019).  

However, quantification of nifH genes by Lammel et al. (2015b) and Paula et al. (2014) via 

GeoChip profiling conversely inferred significantly larger diazotrophic communities in primary forest 

compared to pasture. The cause for disagreement between groups of studies is not readily apparent but 

may be due to regional heterogeneity, the impact of grazing intensity on nutrient status and belowground 

C allocation by forage grass roots, or operational factors such as taxonomic coverage of the primers 

selected. Furthermore, diazotrophy is phylogenetically widespread across prokaryotes (Gaby and 



 32 

Buckley, 2014), and presence of taxa capable of ANF does not imply activity. The future inclusion of rate 

measurements to support molecular data is imperative in order to more conclusively understand 

diazotrophic response to land-use change. 

 

Nitrification, Denitrification, and N Oxide Flux 

Nitrification, a multistep reaction whereby NH4+ is converted to NO3- (Figure 1-6), is crucial in the 

overall N cycle of terrestrial ecosystems. This process impacts N oxide emissions, leaching potential, and 

preferential nutrient availability to plants and microbes (Pajares and Bohannan, 2016). Nitrification is 

mediated by chemolithoautrophic ammonia oxidizers of both the archaeal (AOA) and bacterial (AOB) 

domains, nitrite-oxidizing bacateria, and heterotrophic bacteria and fungi that can utilize organic N as a 

substrate (Zhu et al., 2014). A study of N cycling rates across forest and pasture chronosequences in 

Rondônia, Brazil, measured a decline in NO3- pool sizes with forest-to-pasture conversion, which typically 

coincided with consistently reduced net nitrification rates. Gross rates of nitrification were subsequently 

shown to decline with pasture conversion (Neill et al., 1997b; Neill, 1999). Furthermore, these patterns 

appear stable across both dry and wet seasons.  

More than a decade later, a comprehensive survey of ammonia oxidizers with pasture conversion 

at ARMO sites in Rondônia revealed a significant decrease (more than 10-fold) in Thaumarchaeal amoA 

gene copy numbers, as discussed previously (Hamaoui et al., 2016). This trend was present irrespective 

of pasture age since conversion and the results are consistent with earlier findings at ARMO sites using 

GeoChip 4.0 (Paula et al., 2014). Intriguingly, AOB were not detectable in this study, even with the use of 

several primer sets. This may be due to the low pH in these environments or stronger inhibition of AOB 

communities by brachialactone production (Hamaoui et al., 2016; Hatzenpichler, 2012; Subbarao et al., 

2015). Overall, the community structure of Thaumarchaeal ammonia oxidizers was significantly dissimilar 

between land-use types, and compositional analysis revealed the most drastic shift to be an almost 

complete removal of taxa from the genus Nitrosotalea in pastures. While the driving mechanism of 

Nitrosotalea loss is unknown, it may have important implications for depressed rates of nitrification (Shen 

et al., 2013). In contrast to the above study, a significant increase in absolute abundance of AOA was 

observed in 25-year-old pastures near Sinop, Mato Grosso (Lammel et al., 2015a). However, in Lammel 
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et al. (2015a), AOB were detected in pasture soils, but their abundance was approximately half that 

measured in forest soils. In addition, NO3- pool size was significantly lower in pastures compared to 

forests, consistent with nitrification inhibition by brachialactone and/or overall N limitation. It is possible 

that differential abundance trends in Hamaoui et al. (2016) and Lammel et al. (2015a) are due to variable 

selection pressures across AOA and AOB community members with pasture conversion, but the latter 

study did not measure compositional differences. Earlier analysis of total archaeal amoA gene diversity 

from primary forest and pasture in Benjamin Constant found slight reductions in diversity with pasture 

conversion, but increases in richness (Navarrete et al., 2011). In addition, no reduction in NO3- pool size 

was observed. Forage species present in these pastures were not specified, so it is uncertain whether 

nitrification inhibition occurs in these soils. If pastures are overgrazed, depression in labile subsurface C 

availability may also stimulate nitrification by decreasing N immobilization in microbial biomass (Neill, 

1999). Further, the potential role of heterotrophic nitrification in NO3- production is unknown. 

Nitrous oxide (N2O) is a potent greenhouse gas with 300 times the warming potential of carbon 

dioxide over a 100-year period (Forster et al., 2007; UNEP, 2013). A meta-analysis of N2O flux studies 

throughout the Amazon has revealed a consistent pattern: young pasture soils (<10 years) may increase 

slightly in annual emissions compared to forests (median 2.52 kg N ha-1 versus 2.42 kg N ha-1), but older 

pastures show drastically reduced emissions (median 0.9 kg N ha-1) that in some cases act as a slight 

sink (Meurer et al., 2016). Further, the productivity status of pastures appears to influence N2O flux, with 

degraded pastures emitting less annually than active pastures, likely as a result of ecosystem N depletion 

(Verchot et al., 1999).  

N2O is yielded through the reduction of NO3- or NO2-  (Figure 1-6), which may be performed as an 

incomplete anaerobic respiration reaction by heterotrophic denitrifiers or autotrophic nitrifiers (Bateman 

and Baggs, 2005; Patureau et al., 2000; Wrage et al., 2001). A gene-flux paired study in Mato Grosso 

found that nitrite reductase (nirK) and nitrous oxide reductase (nosZ) absolute gene abundances 

decreased in a 25-year-old pasture compared to a forest. An alternate nitrite reductase gene, nirS, was 

also measured in this study, and conversely showed a two-fold increase in pasture. While there is no 

clear understanding of divergent trends in nirK/nirS abundance given they perform the same function, 

nosZ and nirK counts may agree due to genomic co-occurrence (Jones et al., 2008). N2O flux 
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measurements agreed with the meta-analysis discussed above (Meurer et al., 2016) both in trend and 

rate magnitude; emissions were roughly eight-fold higher in the forest than pasture. Further, the nosZ 

(clade I) gene count was a decent predictor of N2O flux (R= 0.61, p < 0.003). Unsurprisingly, soil water 

content and NO3- concentration were also important physicochemical predictors. Using GeoChip profiling, 

(Paula et al., 2014) found no significant differentiation in nirK or nosZ gene abundance in pastures 

compared to forests, but did identify an overall association of denitrification genes in forest soils. 

Additionally, co-occurrence networks by (Khan et al., 2019) suggested a greater importance of 

denitrification in Rondônian forests compared to pastures.  

In a quantitative analysis of N-cycling communities, Pedrinho et al. (2020) conversely identified 

significant increases in absolute abundance of nirK (~three-fold) and nosZ  (~two to three-fold) genes in 

pastures compared to forests, with consistent wet- and dry-season trends. Metagenomic read annotation 

reflected a significant increase in total denitrification-related genes in pastures during the dry season, but 

no difference during the wet season. The pasture surveyed in this study was approximately 13 years old, 

so although N2O flux was not measured, trends from the meta-analysis suggest that emissions should be 

reduced compared to forests (Meurer et al., 2016). The genetic potential to contribute to denitrification is 

phylogenetically widespread (Chen et al., 2014; Shoun et al., 1992; Wei et al., 2015), so it may be that 

increases in nirK and nosZ genes are co-occurring with microbes that have an increased abundance in 

pastures due to an alternate set of conditions.  

Nitric oxide (NO) is another biotically and abiotically produced gas that impacts ozone 

concentration in the atmosphere. It may be produced as a ‘leaky pipe’ intermediate of nitrification, 

denitrification, or physicochemical processes (Pilegaard, 2013). Data on NO flux in the Amazon are 

limited, but one study found that similar to N2O, annual NO production was considerably higher in primary 

forest (1.5 kg N ha-1 yr-1) compared to pasture (0.6 kg N ha-1 yr-1) (Verchot et al., 1999). nirK/S genes 

catalyze the production of NO, but it is unclear how strong of a predictor their abundance may be for 

emission rates, and to the authors’ knowledge, no studies related to land-use change in the Amazon have 

investigated this. Further molecular work paired with flux measurements is required to understand NO flux 

through the soil and atmosphere in relation to land-use change. Additionally, while Pedrinho et al. (2020) 

reported significant compositional shifts in N-cycling taxa with pasture conversion, no specific analyses 
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have been conducted to explore diversity or compositional changes in communities capable of 

contributing to denitrification processes. This may be a valuable line of inquiry for future studies. 

 

Conversion by Fire 

The cumulative impact of land-use change on the activity, abundance, and community 

composition of soil microbes is likely impacted by the process of land-use conversion itself, most 

commonly through slash-and-burn clearing. This is important for consideration in the Amazon, where 

slash-and-burn practices occur on a range of scales, from large fires for pasture establishment (the 

primary land-use conversion type addressed in this chapter), to smaller-scale subsistence farming 

practices called ‘shifting cultivation’. Forest burn in the BLA corresponds with total rates of deforestation, 

which has likely been intensified by climate change-related warming and drought over the past decades, 

releasing approximately 1600 kg CO2 per ton dry biomass burned on average (Barkhordarian et al., 2017; 

Cochrane and Laurance, 2008; Silva et al., 2021; van Marle et al., 2017). Fire alters above and 

belowground plant communities, and to varying degrees may impact soil textural and structural 

properties, biogeochemical pools, nutrient ratios, soil organic matter quality, and live microbial 

abundance, depending on heat intensity, preexisting organic matter content, or soil texture and bulk 

density (Butler et al., 2017; Cochrane and Laurance, 2008; Mataix-Solera et al., 2009). Within one day to 

several months, direct sterilization may reduce microbial biomass C significantly. Previous studies have 

indicated a biomass reduction of 64% and 74% for soil depths to 5 or 10 cm, respectively, following slash-

and-burn clearing (Luizao, 1992; Prieto-Fernández et al., 1998). Overall, bacteria have typically been 

found to be more resistant to the effects of fire than fungi in both temperate and tropical forests. Fungal 

sensitivity may be attributed to their broad hyphal networks (Aguilar-Fernandez et al., 2009; Barraclough 

and Olsson, 2018; Rashid et al., 1997); however, studies have found that microbial biomass has been 

negatively impacted for several years post-burn (Prieto-Fernández et al., 1998). Also impacted post-burn 

are biomass C (Luizao, 1992), spore diversity, and viability (Aguilar-Fernandez et al., 2009), which 

eventually return to pre-burn values or increase, suggesting the potential for rapid rebound of 

populations.  
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Aside from direct heat effects, communities are likely to be indirectly impacted by the availability 

of easily metabolized C and N compounds. An initial flush of surface layer (0–10 cm) extractable C and N 

compounds immediately following forest burn commonly coincides with microbial biomass losses through 

heat sterilization; in the medium-term (2 months to several years following burn), surface soil 

concentrations of organic matter are typically similar to or lower-than unburned forest stands (Navarrete 

et al., 2015a; Neill, 1999; Prieto-Fernández et al., 1998). Additionally, fire is likely to lower the ratio of 

available C:N (Bomfim et al., 2020; Prieto-Fernández et al., 1998) given the volatility of C compounds. 

This shift in C and N availability may impact the composition and diversity of recovering microbial 

communities, particularly if burns are repeated (Zarin et al., 2005). Organic matter in soil may also be 

changed to a ‘pyromorphic’ humus, negatively impacting its susceptibility to microbial degradation and 

water-holding properties (Gonzalez-Perez et al., 2004). Microbial communities of tropical forest soils may 

also be impacted by post-fire P (a limiting nutrient in tropical forests) availability, which has a high 

volatilization temperature (Butler et al., 2017), meaning it should be enriched in post-fire ash relative to 

pre-fire bulk surface soil. The availability of other crucial cations should also be enhanced given that ash 

increases soil pH (Neill, 1999; Ribeiro Filho et al., 2015). In tropical systems, a large proportion of 

ecosystem nutrients (C, N, P, etc.) are stored in biomass rather than soil pools (Wan et al., 2002). While 

fire may initially release these nutrients, the replacement of biomass-dense forest stands with perennial 

bunchgrass means that a smaller quantity of nutrients can be immobilized as plant biomass per unit area, 

and negatively charged inorganic molecules are particularly at risk of leaching from soil over time, 

especially under heavy rainfall. Specific impacts of these post-burn nutrient shifts on soil microbial 

communities are largely unknown. 

Surprisingly, limited work has been done exploring the short-, medium-, and long-term impacts of 

controlled or uncontrolled forest burns on soil microbial community structure, either in tropical systems or 

otherwise. There appears to be a consensus across several studies that in the short- and medium-term, 

microbial diversity increases or stays the same, and that community composition shifts in association with 

changes in pool size of available soil nutrients, particularly C and/or N (Fontúrbel et al., 2012; Lucas-Borja 

et al., 2019; Navarrete et al., 2015a; Prendergast-Miller et al., 2017). In particular, Navarrete et al. 

(2015a) found that two-to-four months after slash-and-burn deforestation, prokaryotic alpha diversity 
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(measured via Simpson index) increased significantly (~70%) at two of three surveyed sites in Mato 

Grosso, Brazil. Additionally, for copiotrophic taxa, such as Actinomycetales, an increase in richness and 

relative abundance following burn appeared to be related to N availability. The study also found a 

decrease in Planctomycetes, Chlamydiae, and Verrucomicrobia following slash-and burn. The latter 

finding is interesting given that Verrucomicrobia have been shown to increase in diversity once pastures 

are established (Ranjan et al., 2015), suggesting the ecological resilience of this group. Indeed, 

Verrucomicrobia appear to be adapted to a low concentrations of substrate, as would be the case post-

burn (Noll et al., 2005). Shifts in favored taxa have been observed elsewhere as well, such as increased 

abundance of Firmicutes, some of which are capable of endospore formation, a robust survival tactic 

under unfavorable conditions (Ferrenberg et al., 2013; Lucas-Borja et al., 2019; Prendergast-Miller et al., 

2017). This is consistent with many studies previously discussed, which found an increase in Firmicutes 

with pasture conversion (e.g.,Rodrigues et al., 2013). In the northern Amazon region, a 16S rRNA gene-

based community composition study following the fire preparation of a pasture site reflected lower 

species diversity and richness in comparison to surveyed primary forests (Melo et al., 2021); however, the 

functional consequence of this is unknown.  

Shifts in microbial function as a result of slash-and-burn in the Amazon have been indicated in a 

few studies. Just months after fire conversion, genes related to protein metabolism decreased up to 30% 

in burned areas, while genes related to DNA metabolism increased in pasture plots in Mato Grosso 

(Navarrete et al., 2015a). The latter finding may serve as an indication of survival and maintenance of 

genetic material during periods of unfavorable conditions. In the Amazonia-Cerrado transition zone, a 

study on the effects of fire on seasonally-flooded forest soils indicated that rates of a key soil microbial 

process, ANF, were on average 24% lower in burned compared to unburned surface soils (0–10 cm) 

(Bomfim et al., 2020). However, variable frequency of burn does not appear to add significant effect to 

this difference, and rates below 10 cm are unaffected by burning of any frequency. The mechanism of 

control over decreased activity is the shift in ratio of C to other nutrients such as N and P (Bomfim et al., 

2020). This is consistent with previous work, which determined the quantity and characteristics of soil C 

post-burn to be significant determinants of ecosystem function (Gonzalez-Perez et al., 2004; Prieto-

Fernández et al., 1998). The ANF study also found that while activity rates scaled linearly with nutrient 
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ratios in unburned forests, relationships were highly nonlinear in burned forests (Bomfim et al., 2020), 

potentially indicating an additional unmeasured impact of forest fires on diazotrophic soil communities, 

ultimately affecting activity rates. 

Limited knowledge of the role of fire on microbial communities in the Amazon Rainforest and 

along its transitional zones presents a serious gap in knowledge. As previously mentioned, fire in the 

Amazon has been increasing in recent decades and will likely continue to do so for several reasons 

(Cochrane and Laurance, 2008). First, forest-clearing activities, including pasture conversion and shifting 

cultivation practices, present new vulnerabilities for unplanned fires at forest margins (Barlow et al., 2016; 

Cochrane, 2001; Cochrane and Schulze, 1999). Indeed, a recent analysis has spatially linked the 

outbreak of accidental forest fires to ongoing deforestation (MAAP, 2019). Second, forest clearing has a 

positive feedback effect on climate change-related shifts in the hydrologic cycle through the release of C 

to the atmosphere as well as a direct alteration of local and regional scale air moisture circulation patterns 

(Betts et al., 2009). Therefore, understanding soil microbial community response to Amazonian forest 

fires will be crucial in further elucidating the explanatory factors of long-term compositional and metabolic 

shifts of soil microbial communities in response to abrupt disturbance and long-term land-use change.  

 

Secondary Forest Recovery 

This chapter has focused primarily on the conversion of primary forest to cattle pasture in the 

Amazon, as this has been the most widespread cause of land-use change throughout the region. 

However, it is not uncommon for pastures to be abandoned within 5–15 years of establishment due to the 

loss of forage grass productivity (Asner et al., 2004). In the years following abandonment, secondary 

forests begin to form. At present, it is estimated that approximately 30 to 50% of previously converted 

pastureland is in some stage of succession (Chazdon et al., 2009; Pacheco, 2012), a reality that raises 

important questions as to whether microbial communities of these secondary forests rebound to a similar 

state of taxonomic and functional diversity as primary forests. Furthermore, it is unknown what 

implications this has for the biogeochemical cycles that microbial communities in secondary forests 

mediate. Some studies have compared communities of primary forest and pasture to that of secondary 

forests, and many conclude that microbial diversity indices of secondary forest are more similar to primary 
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forests than active pastures. Evidence related to functional recovery is more mixed, with results varying 

by the specific function considered. Table 2 summarizes these findings and includes relevant metadata 

from studies discussed throughout this section. Figure 1-7 correspondingly provides the geographic 

locations of these studies. 

 

Microbial composition and abundance in succession 

Mycorrhizal populations are presumably essential in forest succession. They are crucial in 

successful seedling recruitment by providing vulnerable roots with nutrients, water, and pathogen 

protection (Igwe and Vannette, 2019; Nara, 2006; Ueki et al., 2018; van der Heijden et al., 2016; Van Der 

Heijden, 2004). In a study of AM fungal diversity on the Eastern Amazonia margin, species richness and 

spore abundance were indistinguishable between young, degraded-secondary forests and mature 

rainforests during the rainy season. Intriguingly, spore abundance and diversity were actually significantly 

higher in young secondary forests during the dry season (Reyes et al., 2019). Species composition was 

similarly more affected by seasonality than forest type or age, indicating that AMF are resilient members 

of the soil microbial community despite high levels of historic disturbance. A survey of forests in 

succession across several Brazilian biomes has demonstrated that plant species involved in early 

succession engage in dense rates of AM colonization, likely investing in fungal recruitment to maximize 

capacity for nutrient acquisition (Zangaro et al., 2012); this finding lends mechanistic support to the notion 

that AM fungal communities recover quickly with reforestation. Total fungal communities of secondary 

forests are also more similar to those of primary forests than pastures, but this similarity appears 

dependent on geographic distance from forests, potentially indicating that primary forests can act as 

species reservoirs for the recolonization of secondary forests in succession (Mueller et al., 2016). This 

result also suggests that considering inter-sample distance at scales as large as several kilometers may 

be an important predictor of fungal composition. 

Similarly, prokaryotic communities appear to respond to reforestation over time. Comparison of 

several secondary forests of varying age has shown greater similarity in community structure and 

composition between primary and older secondary forests (~5–30 years) compared to younger secondary 

forests (<5 years), indicating a trajectory to recovery (da C Jesus et al., 2009). This pattern has also been 
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reflected in a narrower community scope: a survey of Verrucomicrobia using phylum-targeted 

amplification and sequencing revealed greater similarity between secondary and primary forest 

community structures compared to pasture, although diversity of taxa within the phylum was higher in 

secondary than primary forests (Ranjan et al., 2015). Additionally, targeting archaeal communities using 

PCR-DGGE has indicated greater similarity of primary forest communities with those of secondary 

forests, compared to pastures and cropping systems (Navarrete et al., 2011). A metagenomic-based 

analysis found greater taxonomic similarity between primary and secondary forest compared to pasture, 

but also discovered that the functional diversity of a ~14 year old secondary forest, similar to pastures, 

was elevated in comparison to primary forest (Pedrinho et al., 2019). Functional profiling using the 

GeoChip 4.0 showed greater similarity of overall functional gene richness and diversity between primary 

and secondary forests compared to pastures, but substantial differences were found in specific gene 

composition (Paula et al., 2014). The results of these studies may indicate that despite vegetational 

succession, legacy effects of pasture on soil conditions, such as nutrient status, may present a lag in the 

recovery of soil functions compared to taxonomic representation.  

 

Microbial function in succession 

Studies comparing microbial-mediated C degradation across primary forest, pasture, and 

secondary forest have been fairly limited and have mixed results. One study across a land-use 

chronosequence at ARMO, State of Rondônia, Brazil, analyzed C dynamics in 13 to18-year-old 

secondary forests that were abandoned after 7–10 years of pasture use. The study found that the organic 

C profiles (quantity and chemical composition) of secondary forest soil closely resemble that of primary 

forests, with concomitant increases in C-cycling enzyme (ß- glucosidase) activity (Durrer et al., 2021); this 

pattern is perhaps intuitive because the plant community and detrital substrate of secondary forest is 

much more similar to original forests than pastures filled with exotic grasses. The interrelationship of CH4-

C emissions and methane-cycling microbial functional groups with forest recovery is of distinct interest. In 

a recent study of methane-cycling communities in Rondônia, the richness and relative abundance of 

methanogens in secondary forest showed a significant decline relative to pasture, while the richness and 

relative abundance of methanotrophs showed a significant increase (Meyer et al., 2020). Active 
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methanotrophic communities of secondary forests are also more structurally comparable to primary 

forests than pastures (Kroeger et al., 2021). These findings are supported by flux measurements that 

identified secondary forest as a weak sink (-10.2 + 35.7 µg CH4 m-2 d-1) compared to pasture, which 

typically acts as a source (Meyer et al., 2020). A similar conclusion was reached in a timeseries land-use 

gradient study, namely, secondary forests (as well as degraded pastures) were found to be a year-round 

weak net sink of methane (Verchot et al., 2000). However, in the latter study, seasonal patterns of 

methane flux differed substantially across all land-use types, indicating some persisting differences in 

methane-cycling microbial communities, and potentially soil physicochemical conditions.  

As discussed previously, pastures may become N limited with age, particularly if land 

management is unsustainable. It stands to reason that following pasture abandonment, recuperation of N 

is likely to be an important aspect of reforestation, particularly in the early stages (Davidson et al., 2007). 

Elucidating shifts in N-cycling microbial community members in secondary forests, compared to primary 

forests and pastures, is likely to improve our understanding of how N flux rates and pool sizes change 

with forest succession. Evidence from multiple studies would suggest that, with secondary forest 

succession, the abundance of diazotrophs decreases in comparison to pasture, contracting toward 

primary forest levels (Mirza et al., 2014; Pedrinho et al., 2020). Community taxonomic and phylogenetic 

diversity at the local scale comparably decreases, but turnover at the landscape scale increases in 

secondary forests (Mirza et al., 2020; Silva et al., 2011), indicating a reversal of the biotic homogenization 

effect of pasture establishment identified by Rodrigues et al. (2013). Additionally, compositional structure 

of diazotrophs is highly similar between primary and secondary forests compared to distinct pasture 

community structure (Mirza et al., 2020). A study that used GeoChip profiling similarly found that the trend 

of nitrogen fixer abundance of secondary forests became more similar to that of primary forests (Paula et 

al., 2014). Interestingly, study of SNF potential suggests this may be an important process as forests 

recover (Lima et al., 2009). A claybox mesocosm experiment in abandoned pastures using a 15N tracer 

revealed that early secondary forest legume species may obtain 75% of biomass N content from SNF-

diazotrophs (Davidson et al., 2000). Survey of legume density in forests of central Amazonia has shown 

that in secondary forests, depression of leaf litter δ15N is positively correlated with higher legume density 

compared to primary forests (Gehring et al., 2005). This suggests higher rates of SNF in secondary 
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forests than in primary forests. The study further concluded that this trend is consistent in successional 

forests spanning multiple decades in age. Taken together, these findings indicate a potentially divergent 

role of associated and free-living versus symbiotic N2 fixers in recovering secondary forests, warranting 

further study. 

Ammonia oxidizers of the Thaumarchaeota, an archaeal phylum, reflect one of the most dramatic 

drop-offs of any group in converted pasture soils. An ARMO-based analysis demonstrated community 

revival with secondary forest succession: the absolute abundance of an amoA marker gene in secondary 

forest soil was akin to that of primary forests and approximately an order of magnitude higher than in 

pastures. While distinct, ammonia-oxidizing archaeal community structure of secondary forests showed 

greater similarity to primary forest than pastures (Hamaoui et al., 2016). Although gross and net rates of N 

mineralization and nitrification were not directly measured in this study, concentrations of NH4+ (~5.5 µg-N 

g-1 soil) and NO3- (~3.7 µg-N g-1 soil) were nearly identical in primary and secondary forests, compared to 

much higher NH4+  (~14 µg-N g-1 soil) and virtually no NO3- present in pastures. These results suggest 

recovery of this microbial functional group is concomitant with restoration of the environmental processes 

they mediate. The results of this study were supported by previous GeoChip profiling, which showed that 

nitrification genes were significantly associated with primary and secondary forest compared to pasture 

(Paula et al., 2014). In contrast, a PCR clone-based study in Benjamin Constant found considerable 

differentiation in archaeal amoA-based community structure between primary and secondary forest types, 

with primary communities more similar to those of pastures (Navarrete et al., 2011). Additionally, richness 

and diversity metrics of amoA communities were appreciably lower in secondary forests compared to 

primary forests or pastures. This variability across studies may be explained in part by large differences in 

trends of inorganic N pool sizes in opposing land-use types. While NH4+ concentrations did increase in 

pastures relative to primary forest, concentrations of NH4+ in secondary forests were significantly lower 

than both. Further, no difference was observed in NO3- concentrations across land-use types. Of course, 

factors like secondary forest age and N limitation status at the time of abandonment certainly play a role 

in the trajectory of N-cycling as forests regrow.  

A comprehensive analysis of all N-cycling microbes as interpreted from metagenomic data 

suggests that taxonomic and functional community structure shifts with pasture abandonment but remains 
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distinct from primary forests (Pedrinho et al., 2020). Patterns of diversity in the N-cycling community 

showed inconsistent trends: taxonomically, primary and secondary forests were similar compared to 

elevated diversity in pastures, but in terms of functional diversity (and abundance of reads relative to 

whole metagenomes), secondary forests were more similar to pastures. It appears that, while secondary 

forest N-cycling communities do trend toward recovery (i.e., a primary forest-like state), initial persistent N 

limitation remains, potentially for several decades. This is reflected in metrics of foliar N, litterfall mass to 

N ratio, NO3- concentration, and N2O production across primary forests, active/degraded pastures, and 

secondary forests (Davidson et al., 2007; Verchot et al., 1999). N2O emissions from secondary forest in 

particular appear to have intermediary rates between primary forests and pastures (Verchot et al., 1999). 

Overall, the recovery of N-cycling microbial groups is likely dependent on the degree of N limitation 

imposed by agricultural use, and secondary forest age is likely an important consideration when 

assessing recovery status related to N cycling.  

More broadly, land-use history and intensity may impact many long-term aspects of reforestation 

such as rate of regrowth, forest density, and soil C stocks (Uhl, 1988; Zarin et al., 2005). Studies 

investigating the response of soil microbial communities to pasture abandonment and reforestation in the 

Amazon are sparse and often lack a process-based measurement. Future research should focus on 

assessing the role of land-use history, including native forest conditions, land management decisions, and 

conversion/abandonment timelines (Fearnside and Guimarães, 1996; Zarin et al., 2005), on shaping the 

composition and function of the soil microbial community in secondary forests. 

 

Conclusions 

 

Considering the future of the Amazon 

Concerns over not only biodiversity loss, but also contributions to climate change-related warming 

with deforestation in the Amazon Rainforest has helped increase public awareness of its global 

importance (Cerri et al., 2018). With climate change, it has become clear that more research is needed to 

understand how the Amazon Rainforest cycles and stores carbon. The complex role microbes play in this 

ecological function is still poorly understood and should be an essential focus of future microbial research 
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in order to increase their representation in ecosystem models. Despite concerns, Amazon Rainforest 

losses have been increasing over the past ~5-6 years (Figure 1-1a; INPE, 2020). While the drivers of 

Amazon Rainforest losses are not yet apparent, clearing of primary forest appears to be 

disproportionately more likely in small forest fragments compared to larger forest fragments (Hansen et 

al., 2020). Conservation efforts should therefore be focused on these larger contiguous fragments of 

forest. Ongoing fragmentation also indicates that further work is needed to understand the impact of 

edge-effects on soil microbial community diversity and function, since at present, this is a severely 

understudied aspect of microbial ecology. Recent analysis of forest loss in the Brazilian Amazon 

concluded that secondary rather than primary forests are now the dominant type being cleared, 

accounting for 72% of total deforestation as of 2014 (Wang et al., 2020), with over 90% of re-cleared land 

again converted to cattle pasture (Tyukavina et al., 2017). It is imperative that future studies—especially 

those focused on young pastures—take into account and assess the effect of complex land-use histories 

that may include multiple forest/pasture cycles. Not only will this likely begin to explain variation in the 

data, but it also presents a unique opportunity to determine the extent to which soil microbiomes recover 

their community assembly when the land use shifts. Additionally, a recent effort towards grazing 

intensification in order to slow new deforestation (Barbosa et al., 2015) brings into question the response 

of soil microbes, both compositionally and functionally, to variable grazing pressures. 

 

The Complexity of Microbial Communities in Response to Land-Use Change 

Attention to microbiomes of tropical forests, particularly the Amazon, has only gathered 

momentum in the past 15 years, fueled by our concerns over continued forest loss and degradation, and 

by a poor understanding of the role microbial diversity and function play in these vital ecosystems. A 

complex interaction of factors shapes soil microbial community response to land-use change in the 

Amazon, as has been discussed throughout this chapter. Figure 1-8 attempts to conceptualize these 

interactions but is by no means exhaustive. Land-use change factors (such as initial slash-and-burn 

clearing, and changes in aboveground vegetation with pasture reseeding), and land management 

(including grazing practices, controlled burns, and abandonment)- impact the microbiome directly and 

indirectly through complex feedbacks on soil physicochemical conditions.  These changing conditions 
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influence several aspects of the soil microbial community including abundance, compositional structure, 

and taxonomic, phylogenetic, and functional diversity.  

This chapter has discussed in detail what is currently known of microbial community response to 

land-use change in the Amazon Rainforest and has put this in the context of shifts in important 

biogeochemical cycles such as C and N. However, there are still vast gaps in the understanding of 

regional variability in microbial community response, how environmental and management conditions 

shape these responses, and how shifts in community composition and structure relate to their 

environmental function and the biogeochemical cycles they mediate. Henceforth, employing 

computational approaches to better utilize the vast quantities of data generated through techniques, such 

as metagenomics, will hopefully impart a greater understanding of the ecological role microbial 

communities assume in tropical soils.  
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ycota in past, 

Zygom
ycota in pfor and crop 

15) 
Fracetto 
et al. 
2013 
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AM
 fungi abund 

-Spore count 
(trap cultures) 
 

-Active past 
-Agrofor 
-C

rop 
N

P 

Af 
25.7° C

 
2562m
m

 

Incept 
 

Benjam
in 

C
onstant, Alto 

Solim
ões, 

Am
azon State, 

BR
 

*trap culture spore counts 
higher in past than pfor 
 

16) Leal et al. 
2009 

AM
 fungi div 

-Spore count 
-Spore tax 
-Plant species 

-Active past 
-Agrofor 
-C

rop 

41yr 
(sugarcan
e prior) 

Af 
25.7° C

 
2562m
m

 

Incept 
 

Benjam
in 

C
onstant, Alto 

Solim
ões, 

Am
azon State, 

BR
 

*Inc in spore count in past 
*Inc in spore div/count in crop/ 
agrofor 

17) Sturm
er 

and Siqueira 
2011 

AM
 fungi div 

-Spore count 
-Spore tax 
-Phys/C

hem
 

prop 
-SO

M
 

-Active past 
41yr 
(sugarcan
e prior) 

Af 
25.7° C

 
2562m
m

 

Incept 
 

Benjanin 
C

onstant, Alto 
Solim

ões, 
Am

azon State, 
BR

 

*Inc spore count in past 
*C

om
m

 com
p diff 

18) Leal et al. 
2013 

Fungal/ plant 
com

m
 

relationship 

-Fungal rD
N

A 
com

p 
-Plant trnL 
com

p 
 

-Active past 
38yr 

Aw
 

25.5° C
 

2200m
m

 

Kand 
(r/y pod-lat) 

Ariquem
es, 

R
ondônia 

(AR
M

O
; 

10°10′5′′S and 
62°49′ 27′′ W

) 

*C
om

p diff w
ith LU

S 
*Basidiom

ycota dec in past 
19) M

ueller et 
al. 2014 

Fungal com
m

/ 
distribution 
patterns across 
LU

S types 

-Fungal rD
N

A 
com

p, 
richness 
 

-Active past 
6yr 
38yr 
99yr 

Aw
 

25.5° C
 

2200m
m

 

Kand 
(r/y pod-lat) 

Ariquem
es, 

R
ondônia 

(AR
M

O
; 

10°10′5′′S and 
62°49′ 27′′ W

) 

-R
ich decreases in past 

*C
om

m
 com

p shifts 
*G

eneralist fungi in pasts, 
regardless of age 
*G

eographical dist from
 pfor is 

strong predictor 

20) M
ueller et 

al. 2016 

Fungal/plant 
com

m
 div 

interaction 

-Fungal rD
N

A 
com

p in litter 
and soil 

-Plantations 
Plantation 
seedlings 
~3yr 

Af 
25.7° C

 
3041m
m

 

Acrisol 

Paracou, 
French 
G

uinana (5° 
18′ N

, 52° 53′ 
W

) 

-N
o variation in richs or 

evenness across plantations 
or pfor. 
*H

igh spatial heterogeneity 

21) Schim
ann 

et al. 2017 
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  Fungal 

com
m

/ 
phytopathoge
n prevalence 

-Fungal rD
N

A 
com

p, div 
 

-Active past 
N

P 
Aw

 
20° C

 
1600-
1900m

m
 

N
P 

M
utum

-
Paraná R

iver, 
R

ondônia, 
BR

 

*C
om

p diff w
ith LU

S 
*D

iv incs in past 
*C

om
m

s m
ore hom

ogenous across past 
*potential phytopathogens inc in past 

22) 
C

erquei
ra et al. 
2018 

 Assem
bly 

processes in 
rhiz com

m
s 

follow
ing 

conversion 

-M
G

 
-G

reenhouse 
rhiz 
-Phys/C

hem
 

prop 
-Enzym

e 
activity 

-C
rop (no-

till) 
1, 10, 
20yr 

Am
 

27° C
 

1400m
m

 
N

P 

Alto Xingú, 
Q

uerência 
m

unicipality, 
M

ato G
rosso, 

BR
 

(12◦22’S; 
52◦15’W

) 

*C
om

m
. assem

bly in soybean bulk soil fit 
neutral assem

bly m
odel 

*C
om

m
 assem

bly in rhiz fit niche-based 
m

odel, leading to a point of perm
anent 

distribution state 

23) 
G

oss-
Souza et 
al. 2020 

Variation in 
m

icrobial 
genom

es 

-M
etagenom

e-
assem

bled 
genom

es 
(M

AG
s) 

-Active past 
38yr 

Aw
 

25.5° C
 

2200m
m

 

Kand 
(r/y pod-
lat) 

Ariquem
es, 

R
ondônia, 

BR
 (AR

M
O

) 

*C
arbohydrate m

etab, cell signaling, 
dorm

ancy genes inc in pasts. R
N

A m
etab 

and cofactor inc in pfor 
*M

ethanogensis genes inc, m
ethanotrophy 

genes dec 
*Thaum

archaeota disappear in past, tax 
profiles vary 
*past com

m
s m

ore tax hom
ogenous 

*28 M
AG

s recovered. Several lineages 
only found in past 
*Som

e M
AG

s from
 lineages containing no 

cultured organism
s 

24) 
Kroeger 
et al. 
2018 

Bact com
m

 
str in relation 
to soil and 
litter 
chem

istry 

-Bact T-R
FLP 

-qPC
R

 nosZ, 
m

crA, pm
oA, 

16S 
-Phys/chem

 
prop 

-Active past 
-C

rop (soy) 
20+yr 

Aw
 

 2000 m
m

 
R

ed O
x 

-Sinop, M
ato 

G
rosso, BR

 

 *Inc’d pH
, nutrient status, O

M
 lability 

*C
om

m
 str shifts in LU

Ss 
-Bact richness does not decrease 

25) 
Lam

m
el 

et al. 
2015a 

R
elation of 

soil 
Phys/C

hem
 

props and 
bact com

m
 

m
etrics 

-Phys/C
hem

 
prop 
-qPC

R
 and T-

R
FLP of 16S 

rR
N

A gene 
-M

G
 

-Ag field 
-D

efor 
-Active past 

5yr 
<1yr 
>10yr 

Am
 

28°C
 

2000m
m

 
O

x 
Ipiranga do 
N

orte, M
ato 

G
rosso, BR

 

*Acidobacteria and C
hlam

ydiae m
ore 

abund in pfor soil 
*Firm

icutes m
ore abund in past 

*N
itrospira, D

einococcus-Therm
us in crop 

system
s 

*Actinobacteria in defor sites 
*Soil chem

 properties shape bact com
m

s 
across LU

S: pH
, C

, N
, N

O
3 -, and K 

*Al, base saturation index, M
g, C

a are 
correlated w

ith m
any phyla 

26) 
M

endes 
et al. 
2015(a) 
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  C
o-occurrence 

patterns of 
prokaryotic 
com

m
s 

-16S rR
N

A seq 
-Active 
past 

38yr 
Aw

 
25.5° C

 
2200m

m
 

Kand 
(r/y pod-
lat) 

Ariquem
es, 

R
ondônia, 

BR
 (AR

M
O

) 

*co-occurrence netw
orks betw

een pfor 
and past are distinct.  
*M

odules of larger netw
orks reflect 

potential shifts in N
 cycling in past  

*Props including tem
p, C

/N
, and H

++Al 3+ 
im

pact com
m

 com
p and netw

ork str 

27) Khan 
et al. 
2019 

C
 cycling activity 

and SO
C

 
characterization 
along a LU

S 
chrono- 
sequence 

- ß- glucosidase 
enzym

e activity 
- Fourier-
transform

 
spectroscopy 
-PO

XC
 

-Active 
past 

100, 
39, 24, 
7yr 

Aw
 

25.5° C
 

2200m
m

 

Kand 
(r/y pod-
lat) 

Ariquem
es, 

R
ondônia, 

BR
 (AR

M
O

)  

*ß- glucosidase activity incs in past soils 
in absolute term

s, but decs w
hen 

norm
alized by C

 content 
*SO

C
 incs w

ith past age, PO
XC

 fraction 
decs w

ith past age 

28) 
D

urrer et 
al. 2021 

M
icrobial activity 

resp, C
 and N

 
cycling 

-M
B, M

R
 

-Phys/C
hem

 
prop 

-Plantation, 
 -silvo-
past  
-Active 
past  

N
R

 

Af 
24-25° C

 
2500-
4000m

m
 

N
R

 

SW
 of 

C
aquetá 

D
epartm

ent, 
C

olum
bia 

*M
B C

 inc in silvopastoral and past 
system

s com
pared to pfor and plantation 

*SO
C

 content is a controlling factor of 
m

icrobial activity 

29) C
ruz 

et al. 
2019 

M
ethano-genic 

and -trophic 
com

m
 div and 

life strategy 
-M

G
 

-Active 
past 

38yr 
Aw

 
25.5° C

 
2200m

m
 

Kand 
(r/y pod-
lat) 

 Ariquem
es, 

R
ondônia, 

BR
 (AR

M
O

) 

*M
ethanotroph taxa and pm

oA genes 
low

er in past vs. pfor., particularly alpha-
Proteobacteria 
*m

cR
A higher in past 

*ruderal life history (disturbance-
specialist) favored in pasts. 

30) 
M

eyer et 
al. 2017 

R
elationship 

betw
een C

H
4  

production and 
m

ethanogen/trop
h com

m
s 

-C
H

4  flux  
-am

plicon seq, 
pm

oA and m
crA 

-Active 
past 

N
P 

-2200m
m

 
(R

ond.) 
-2000m

m
 

(Tapa.) 

-Kand 
(r/y pod-
lat; R

ond.) 
-U

lts, O
xs, 

Incepts 
(Tapa.) 

-Ariquem
es, 

R
ondônia 

-Tapajos 
N

ational 
Forest, Pará 

* C
H

4  flux higher in past, particularly 
R

ondônia 
*M

ethanotrophic rich/relative abund low
er, 

m
ethanogen richness/ relative abund 

higher in past 
*M

ethangen rich and rel. abund correlate 
to flux rate 
*526 past taxa highly assoc w

/flux rate 
com

pared to 41 in pfor. 

31) 
M

eyer et 
al. 2020 
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  Active 
m

ethanotrophic 
com

m
s 

-SIP am
plicon 

seq and M
G

 
(m

ethanogens/tr
ophs) 

-Active past 
N

P 
 

N
P 

 
N

P 
 

-Ariquem
es, 

R
ondônia 

-Tapajos 
N

ational Forest, 
Pará 

*Actively-fixing m
ethanogens 

(particularly acetoclastic types) inc in 
abund and div in past 
*M

any active taxa id’d in past 
com

pared to for 

32) 
Kroeger 
et al. 
2021 

Func potential for 
C

& N
 cycling 

-qPC
R

 of func 
m

arker genes: 
am

oA, nirK, 
nirS, norB, 
nosZ, nifH

, 
m

crA, pm
oA, 

16S, 18SrR
N

A 
-Fluxes of N

O
3 -, 

N
2 O

, C
O

2 , C
H

4  

-C
rop (soy) 

-Active past 

-C
rop: 

2yr, 
25yr 
-past: 
25yr 

Am
 

24.1° C
 

2171m
m

 

R
ed O

x 
w

ith clay 
texture 

-Sinop, M
ato 

G
rosso, BR

 

*C
om

pared to pfor., nifH
, am

oA 
(bacteria), m

crA, pm
oA, nirK, nosZ 

genes dec in past, crop (2yr and 25yr) 
*am

oA (archaea), nirS inc in past, crop 
(2yr and 25yr) 
*past is C

H
4  source, pfor. and crop are 

sink or neutral 
*pfor. is N

2 O
 source, past and crop are 

neutral 
 

33) 
Lam

m
el 

et al. 
2015b 

M
icrobial-

m
ediated C

 and 
N

 cycling across 
past 

-M
B C

 
-Soil C

,N 
m

ineralization/ 
nitrification 
-C

H
4 , N

2 O
, C

O
2  

flux 

-D
egraded 

past (no 
pfor. 
com

parison) 

-19yr 
Am

 
25. 6°C

 
2200m
m

 

O
x, U

lt 
-Fazenda N

ova 
Vida, R

ondônia, 
BR

 

*M
B C

 varied 8x across pasts. based 
on soil type 
*past are either source or sink of C

H
4 , 

typically a source of N
2 O

, and C
O

2  
efflux loosely related to M

B C
 

*H
igh rates of N

 im
m

obilization for M
B 

grow
th 

34) C
erri 

et al. 
2006 

C
hanges in soil 

M
B and activity 

-M
B C

 
-respiration 
 

-Fallow
 past 

-Active past 

-Fallow
: 

9yr 
-past: 
2, 6, 
11yr 

Aw
i 

26°C
 

2082m
m

 

D
ystrophi

c O
x 

Itupiranga , 
Pará, BR

  
 

*Young past contain less C
 and M

B C
 

than pfor and fallow
 past 

*M
etab quotient highest in young 

surface pasts. but decreases in older 
pasts. 

35) M
elo 

et al. 
2012 

Im
pact on N

 
cycling on bact 
com

m
s 

-16S rR
N

A 
am

plicon seq 
- qPC

R
 (nifH

, 
am

oA, am
oB, 

nirK, nosZ, 16S) 
-Phys/C

hem
 

prop 

-C
rop (no-till; 

corn, soy) 

2yr 
8yr 
20yr 

Am
 

26°C
 

2150m
m

 

Typic 
H

aplusto
x (O

x) 

Tapajós 
N

ational Forest 
and  Belterra 
m

unicipality, 
Pará, BR

  

*Inc. bact div, dec archaeal div 
w

/conversion 
*Inc N

 fixation in young ag soils 
*G

reater potential for N
2 O

 reductase 
(N

2 O
 à

 N
2 ) in crop soils over pfor 

*G
reater potential for nitrite reductase 

(N
O

2 - à
 N

O
) in pfors over crop soils 

*C
a, Al, N

H
4 + and total N

 correlated to 
com

m
 str 

36) 
M

erloti et 
al. 2019 
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  N
-cycling com

m
 

str, com
p and 

func. 

-M
G

  
-qPC

R
 of N

-
cycling genes 
(nifH

, nirK, 
nosZ) 
-Phys/C

hem
 

prop 

-Active past  
21yr 

Am
 

26° C
 

2150m
m

 
O

x 

Belterra 
m

unicipality, 
State of 
Pará, BR

 

*Al saturation and N
O

3 - corr w
/ tax and func 

com
m

 str related to N
 cycling 

*pasts m
ore func and taxon rich in N

 cyclers 
*Enriched taxa include Anaerom

yxobacter, 
Bacillus, G

eobacter, Sorangium
, Koribacter, 

Streptosporangium
, and C

onexibacter. 
M

ycobacterium
 decrease 

*nifH
, nirK, nosZ gene counts inc 

*denitrification gene trends differ by season 
*am

m
onia assim

ilation and nitrosative stress 
higher in past 
*nitric oxide synthse low

er in past 
*past soils contain m

ore specialists (unique) 

37) 
Pedrinho 
et al. 
2020 

Isolation of free-
living diazs to 
determ

ine div 

-Isolation of 
culturable free-
living diaz + 
protein 
profiling 
-nitrogenase 
activity 

-Agrofor 
-C

rop 
-Active past 

N
P 

Af 
25.7° C

 
2562m

m
 

N
P 

Benjam
in 

C
onstant, 

Alto 
Solim

ões, 
Am

azon 
State, BR

 

*C
ell densities w

ere highest in past-soil 
derived cultures for tw

o of three m
edias tested 

*Id’d isolates from
 past included Burkholderia 

and Bacillus 
*nitrogenase activity varied, but highest 
perform

er id’d from
 past soil only 

38) Silva 
et al. 
2011 

Viability, div, and 
efficiency of 
sym

biotic 
(nodulating) diaz  

-N
odulation 

density and 
efficiency of 
prom

iscuous 
legum

e 
 

-Agrofor 
-C

rop 
-Active past 

38yr 
Af 
25.7° C

 
2562m

m
 

Incept 

Benjam
in 

C
onstant, 

Alto 
Solim

ões, 
Am

azon 
State, BR

 

*H
ighest nodulation num

ber from
 agrofor and 

crop system
s, follow

ed by past, and pfor w
ith 

low
est num

ber  
*LU

S contain sim
ilar num

ber of ‘efficient’ 
nodule-form

ing strains, but crop and past 
contain highest num

ber of ‘inefficient; strains. 
pfor. contained the m

ost ‘high efficiency’ 
strains 

39) Lim
a 

et al. 
2009 

D
iaz com

m
 div 

-nifH
 clone seq 

-qPC
R

 of nifH
 

gene 
-Active past 

5yr 
Aw

 
25.5° C

 
2200m

m
 

Kand 
(r/y 
pod-
lat) 

Ariquem
es, 

R
ondônia, 

BR
 (AR

M
O

) 

-R
ich and div w

ere not diff 
*past com

m
 str diff taxally and phylo 

*M
ore gene copies in past than pfor 

*D
iaz Firm

icutes enriched in pfor, 
Spirochaetes, delta-proteobacteria, 
Verrucom

icrobia and uncultured favored in 
past 

40) M
irza 

et al. 
2014 
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  D
istance-decay 

relationship of 
diaz com

m
s 

-nifH
 gene 

seq 
-Phys/C

hem
 

prop 

-Active past 
38yr 

Aw
 

25.5° C
 

2200m
m

 

Kand 
(r/y pod-
lat) 

Ariquem
es

, R
ondônia, 

BR
 

(AR
M

O
) 

*Local (alpha) div incs, but com
m

 turnover 
(beta) decs 
*LU

S w
as a stronger determ

inant of com
m

 str 
than geographic dist or Phys/chem

 prop 
*Pfor is particularly dissim

ilar w
/ dist phylo 

41) M
irza 

et al. 
2020 

Im
pact of fire 

frequency 

-N
2  fixation 

rates 
-Soil 
Phys/C

hem
 

prop 

-Pfor stands 
of variable 
fire 
frequency 

N
A 

Aw
 

26° C
 

2000m
m

 
N

P 

Araguaia 
State 
Park, 
M

ato 
G

rosso, 
BR

 

*Fire history decs N
 fixation rate in pfor 

areas, on average 24%
 

-Frequency of fire has no signif effect 
*Positive linear relationship betw

een N
 

fixation rate and C
:N

 ratio and P content in 
unburned For 
- R

elationship betw
een these factors w

as 
nonlinear in burned For. 

42) 
Bom

fim
 

et al. 
2020 

 
 

 
 

 
 

 
 

 
Abbreviations: Aband: Abandoned.Abund: abundance/ abundant. Agrofor: Agroforestry. Al: alum

inum
. AM

: Arbuscular m
ycorrhizal. am

oA: am
m

onia 
m

onooxygenase gene. ARM
O

: Am
azon R

ainforest M
icrobial O

bservatory. Assoc: associated. Bact: bacteria. BR: Brazil. C: carbon. CH
4 : m

ethane. Com
m

: 
com

m
unity. Com

p: com
position. Crop: Agricultural cropping system

. Dec: decrease. Defor: D
eforested. Diaz: diazotrophic. Diff: difference. Dist: distance. 

Div: diversity/diverse. Esp: especially. Func: functional/function. Inc: increase. Incept: Inceptisol. K: potassium
. Kand: Kandiudult. LUS: LU

S system
s. 

m
crA: m

ethyl coenzym
e M

 reductase gene. M
B: m

icrobial biom
ass. M

etab: m
etabolism

/m
etabolic.M

G
: M

etagonom
ic profile (D

N
A-based). M

R: m
icrobial 

respiration. N: nitrogen. NA: N
ot applicable. nifH: nitrogenase reductase. nirK: nitrite reductase gene. nosZ: nitrous oxide reductase gene. NP: N

ot 
provided.O

xisol: O
xisol. Past: pasture. PCR DG

G
E: polym

erase chain reaction denaturation gradient gel electrophoresis. Pfor: prim
ary forest. Phys/Chem

 
prop: Physicochem

ical properties. pm
oA: particulate m

ethane m
onooxygenase. PO

XC: perm
anganate oxidizable carbon. Phylo: phylogenom

ic/phylogenetic. 
Precip: precipitation. Pyroseq: pyrosequencing. qPCR: quantitative Polym

erase C
hain R

eaction. Resp: response.Rhiz: rhizosphere. Rich: richness. r/y pod-
lat: red-yellow

 podzolic latosol. Sfor: secondary forest. Seq: sequencing. Signif: significant. SO
C: soil organic carbon. SIP: Stable Isotope Probe. SO

M
: soil 

organic m
atter. Str: structure/structural. Tax: tax/tax. Tem

p: Tem
perature. T-RLFP: term

inal restriction length fragm
ent polym

orphism
. trnL: chloroplast intron 

gene.  Ult: ultisol.Yr: year/s. 16SrRNA: prokaryotic ribosom
al R

N
A gene (D

N
A-based) 
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  Table 1-2: Sum
m

ary of findings across m
icrobial studies investigating secondary forest recovery follow

ing prim
ary forest to pasture conversion 

and abandonm
ent in the Am

azon. Studies investigate im
pacts on m

icrobial com
m

unity diversity, com
position, function, and activity. Tables 

include relevant m
etadata, including the land use effect investigated, param

eters m
easured, age of secondary forest, clim

ate inform
ation 

including Köppen’s class designation, annual tem
perature, and annual rainfall, soil type, location of study, m

ajor findings, and the article 
referenced. All studies referenced in Table 1-2 are also referenced in Table 1-1. See footnote for list of abbreviations. 

LUS Effect 
M

easured 
Param

eters 
M

easured 
SForest 
Age 

Köppens Class 
Annual Tem

p, 
Precip  

Soil 
Type 
 

Location (s) 
Findings (*=significant) 

Citation 

D
iv of bact and 

com
m

 structural 
controls (soil -
Phys/C

hem
 prop.) 

-T-R
LFP 

cloning/seq of 
bact com

m
 

-Phys/C
hem

 
prop. 

<5 yr 
5-30yr 

Af 
25.7° C

 
2562m

m
 

Incept 
 

Benjam
in 

C
onstant, 

Am
azonas 

State, Brail  

*Sfor becom
e m

ore sim
ilar (str 

and com
p) to pfor w

/succession 
age com

pared to other LU
S 

1) da C
 Jesus 

et al. 2009 

C
om

p and relative 
abund of the phylum

 
Verrucom

icrobia 

-Verrucom
icrobia 

-specific 16S 
gene com

p 
-Phys/C

hem
 

prop. 

10yr 
Aw

 
25.5° C

 
2200m

m
 

Kand 
Fazenda N

ova 
Vida (10◦10′5′′S 
and 62◦ 49′ 27′′ 
W

) 

*Verrucom
icrobia div higher in  

sfor (tax, but not phylo) 
*Absolute abund assoc w

/C
 

content 
*C

om
p str m

ore sim
ilar to pfor 

than past  

2) R
anjan et 

al 2015 

D
iv and com

m
 str of 

archaeal dom
ain 

-PC
R

 D
G

G
E of 

16S rR
N

A gene 
-clone library of 
am

oA gene 
-Phys/C

hem
 

prop. 

2yr 
16yr 

Af 
25.7°C

 
2562m

m
 

Incept 

Benjam
in 

C
onstant, near 

Solim
ões R

iver, 
Am

azonas 
state, BR

 

*Archaeal com
m

s m
ore sim

ilar in 
pfor and sfor than past or crop 
*D

iv of N
H

3 - oxidizing archaea 
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Figure 1-1: Patterns of deforestation in the Brazilian Legal Am
azon from

 1988-2020. (A) Annual rates of deforestation in square kilom
eters 

(dark gray bars, left axis) overlaid w
ith cum

ulative forest loss (red line, right axis). D
ata obtained from

 Brazil’s N
ational Institute for Space 

R
esearch (IN

PE) D
ETER

 satellite im
agery (B) C

auses of deforestation, show
n as relative percent of total, norm

alized to exclude general ‘fire’ 
category using Tyukavina et al. (2017) data. Large-scale agriculture includes agro-industrial crop production such as soy as w

ell as 
plantations, w

hereas sm
all-scale agriculture refers to both subsistence farm

ing and sm
all com

m
ercial operations. The ‘other’ category m

ay 
include m

ining, construction of roads and urban areas, dam
s, and m

ore. Photo used for ‘pasture’ segm
ent courtesy Jorge R

odrigues. 
Logging, sm

all- and large-scale agriculture photos obtained from
 U

nsplash.com
. 
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Figure 1-2: G
eographical distribution of studies presented in Table 1-1. Labels correspond to num

ber in ‘C
itation’ colum

n. 
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Figure 1-3: H
ierarchical taxonom

ic netw
ork of prokaryotes (bacteria and archaea) identified in forest and pastures in R

ondônia, Brazil 
based on 16S rR

N
A sequencing. Three forests and pastures each w

ere sam
pled at 0-10cm

 in depth (n=42). Taxonom
y included in 

analysis w
ere subset based on presence in > 50%

 of sam
ples, and overall abundance > 0.01%

 of sequences. Text and node size scale 
w

ith total abundance across sam
ples, and edge length is arbitrary. At each taxonom

ic level, a tw
o-sam

ple Bayesian test w
as used to 

determ
ine w

hether abundance differed significantly (p-value adjusted) betw
een forest and pasture. 
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Figure 1-4: C
overage of reads at varying G

C
 (guanine and cytosine) content w

ithin m
etagenom

es of forest (n=5) and pasture (n=5) of 
R

ondônia, Brazil. Blue dots represent individual reads passing quality filter check. Pasture sam
ples show

 drastic loss in G
C

 content betw
een 

30%
 and 50%

, reflecting strong taxonom
ic changes. (From

 R
odrigues, unpublished data). 
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Figure 1-5: R
eproduced w

ith perm
ission from

 M
eyer et al. (2020) and C

reative C
om

m
ons License. Significant relationships betw

een (A) 
m

ethanogen richness and (B) m
ethanogen relative abundance and log-transform

ed m
ethane flux rate, taken from

 forest, pasture, and 
secondary forest in tw

o Am
azon states: R

ondônia and Pará, Brazil. The R
2 values show

n represent the proportion of variance in logarithm
ic 

m
ethane flux explained by m

ethanogen richness or relative abundance using a linear m
odel approach. D

otted lines represent a flux rate of 
0 ug C

H
4  m

-2 d
-1 since a m

inim
um

 value is added to data (+162). 
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Figure 1-6: Conceptual diagram depicting crucial shifts in the nitrogen (N) cycle with conversion of 
primary tropical forest to pasture in the Amazon. Evidence from studies compiled so far suggest N is 
lost from the system upon conversion, and is further lost through cattle grazing, by export of biomass, 
and potentially inefficient reuptake of animal waste. Additionally, forage grasses such as those within 
the genera Brachiaria and Urochloa release a nitrification inhibitor called brachialactone from roots 
which inactivates enzymes catalyzing the oxidation of ammonia (NH4+) to nitrate (NO3-). This shifts the 
inorganic N pool from NO3- - to- NH4+- dominated, impacting availability of N for plants and microbes 
(both for biomass assimilation and redox reactions). Grazing impacts the physical soil environment by 
increasing bulk density and subsequently decreasing soil aeration and porosity. The shift in plant 
community has an inconsistent effect on total soil organic matter (SOM) storage across the Amazon. 
In the decades following conversion, SOM gradually shifts from forest-to-pasture derived, but the 
fraction actively metabolized by soil microbes is heavily pasture-derived even in very young pastures. 
pH increases by ash fertilization following forest conversion, potentially releasing microbial and plant 
communities from nutrient limitations including phosphorus (P). These factors are likely contributors to 
an observed increase in asymbiotic nitrogen fixers in the rhizosphere, in response to greater N 
limitation and favorable conditions. Decreased nitrification may also negatively impact nitrous oxide 
(N2O) flux via denitrification, though results are mixed on the impacts of land use change on the 
abundance and diversity of denitrifying microbes. 
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Figure 1-7: G
eographical distribution of studies presented in Table 1-2. Labels correspond to num

ber in ‘C
itation’ colum

n. 

 
 



 80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-8: C
onceptual D

iagram
 of interactive forest-to-pasture land use disturbance in the Am

azon. C
hanges in the plant com

m
unity, 

use of fire for conversion and m
aintenance of pasture, and m

anagem
ent vs. abandonm

ent/reforestation influence a com
plex array of 

interactions betw
een the soil environm

ent, soil m
icrobial com

m
unities, and ecosystem

 function. Interactions are direct, indirect, and m
ay 

be tw
o-w

ay. Arrow
s included are based on causative or associative studies discussed throughout the chapter, but the diagram

 is not an 
exhaustive depiction of all ecological interactions. Arrow

 style is determ
ined by the causative factor: Fire conversion- gray dashed; 

Vegetation com
m

unity change- black double line; Land m
anagem

ent- orange dots; Soil physicochem
ical conditions- brow

n dash/dot; Soil 
m

icrobial com
m

unity- blue solid; Ecosystem
 function- purple square dot. 
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Abstract 

Asymbiotic diazotrophs replenish soil nitrogen (N) to natural terrestrial ecosystems through the 

fixation of atmospheric dinitrogen in the absence of obligate plant symbiosis. However, the relative 

importance of asymbiotic nitrogen fixation (ANF), as well as its environmental controls, are poorly 

understood in most ecosystems. This is especially true of the Amazon Basin, where more than 250,000 

km2 of tropical forest have been converted to cattle pasture. ANF has rarely been directly measured in 

primary forests in this region and has never been directly measured in active pastures, despite studies 

showing major shifts to the N cycle with land use (LU) conversion. We aimed to close this considerable 

knowledge gap by assessing how ANF activity rates, along with potential diazotrophic community 

abundance and soil physicochemical conditions, change across this LU dichotomy. Using 15N2 -based 

ANF assays applied to surface soils (0-10 cm) of each LU, we revealed that significant augmentation of 

the potential soil diazotroph community abundance was concomitant with elevated rates of ANF in 

pastures, whereas measured rates were consistently at or near zero in forests. The abundance of nifH 

genes, however, did not help to explain process rates, and the two did not exhibit similar relationships 

with any physicochemical parameters. Increased ANF with LU change was modestly associated with a 

drastic decline in nitrate concentration. When pasture soils were considered alone, ANF rates were 

significantly associated with the ratio of soil-solution extractable organic carbon to nitrogen content, and 

to a lesser degree, with the ratio of total N to soil- solution extractable organic N. Since these factors were 

not related to forest ANF rates, it is likely that the entire range of N availability across surveyed forest soils 

was sufficiently replete so that low molecular weight N and C sources have no stimulatory effects on ANF. 

Additionally, metagenomic profiles revealed that the genetic potential for ANF is one of the most 

drastically augmented microbial functions across the entire soil microbial community. Protein subunit and 

cofactor biosynthesis genes were strongly correlated with other pasture-enriched genes, including those 

aiding in disaccharide C acquisition and dissimilatory reduction of inorganic N and sulfur compounds. The 

totality of this research has provided new insights into an important aspect of N cycling shifts associated 

with ongoing LU change in the Amazon Rainforest.  
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Introduction 

 

Biological nitrogen fixation (BNF), the microbiological reduction of inert atmospheric N2 to reactive 

ammonia (NH3), is crucial in fueling primary productivity across Earth’s ecosystems due to the relative 

scarcity of lithospheric N (Cleveland et al., 1999; Houlton et al., 2008). This functional trait, known as 

diazotrophy, is phylogenetically widespread amongst prokaryotes (referred to as diazotrophs), and is 

performed in terrestrial systems under a myriad of life strategies (Gaby and Buckley, 2012; Kaschuk and 

Hungria, 2017). The most well-known of these is the symbiosis occurring between select bacterial and 

plant species within special root structures called nodules. However, BNF is also performed by 

cyanobacterial diazotrophs in symbiosis with fungi (i.e., lichens), by endophytes in shoot or root tissue, 

and independently on soil surface detritus, the rhizosphere, and within bulk soil (Hedin et al., 2009; 

James et al., 2000). These ‘independent’ diazotrophs, often collectively referred to as free-living or 

asymbiotic, face the greatest barriers to activity, given the irreversible inactivation of the reaction-

catalyzing nitrogenase enzyme in response to oxygen (O2) exposure, and the steep energetic cost 

associated with breaking dinitrogen’s (N2) triple bond- at least 16 mol ATP per mol N2 (Smercina et al., 

2019; Soumare et al., 2020). Constrained modeling of N cycling has suggested its contribution to 

ecosystem-scale N inputs may outpace that of symbiotic BNF (Cleveland et al., 2009). Yet, this group of 

diazotrophs remains poorly understood, both in terms of genetic diversity, and response to environmental 

conditions. 

In tropical systems such as the Amazon Rainforest, the role of BNF (collectively including 

symbiotic and asymbiotic) has been postulated as potentially significant in order to balance high rates of 

nitrate (NO3-) leaching (Hedin et al., 2009). However, extensive deforestation for the establishment of 

cattle pasture throughout the region has claimed upwards of 250,000 km2 of historic forest area 

(Tyukavina et al., 2017). Such an immense land-use (LU) transformation has spurred investigation into its 

impact on nutrient cycling as well microbial communities that mediate these cycles (see Danielson and 

Mazza Rodrigues, 2022). While depth-integrated C stocks tend to increase in active pasture soils- 

potentially accounting for 50% of the aboveground C lost by forest conversion- N stocks do not appear to 

accumulate to the same degree (Neill et al., 1997a). Further, several studies have measured a multi-
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magnitude decline in gross mineralization and nitrification rates (Neill et al., 1997b; Piccolo et al., 1994), 

as well as decreased emissions of N2O and NO in pastures more than five years old (Neill et al., 2005). 

These observations collectively indicate that N cycling in pastures becomes decoupled from that of C, 

cycling more tightly within the ecosystem (i.e., minimizing loss pathways). Forests are generally converted 

to pasture through prescribed burning, resulting in ecosystem-scale N loss through volatilization and 

debris-leaching (Sharma et al., 2021). However, pasture management also plays a sustained role in N 

displacement, presumably intensifying with increased stocking rate (Dias-Filho et al., 2001). Due to 

economic constraints, it is uncommon for ranchers to apply fertilizer in order to combat potential N 

limitations on forage crops (Jank et al., 2014). The loss pathways imposed by pasture conversion as well 

as the removal of potentially N-fixing plant species such as legumes and canopy lichens raises the 

question of whether asymbiotic N2 fixation (ANF) plays a role in microbial replenishment of soil N in 

grazed pastures. 

Although ANF is a crucial segment of terrestrial N cycling, few studies have investigated process 

rates across this forest-pasture dichotomy in the Amazon. Surprisingly, just a handful of studies have 

utilized proxy measurements including 15N dilution, acetylene reduction, and model-based mass balance 

to approximate or constrain rates in primary forest soils (e.g., Cleveland et al., 2009; Moreira et al., 2021; 

Salati et al., 1982; Wong et al., 2021; Wong et al., 2019). Other studies conducted throughout the 

Amazon region have assessed the impact of LU change on ANF potential, but indirectly through 

diazotroph marker gene abundance, with one study concluding a decreased abundance while another 

two demonstrating that active pastures foster a higher absolute quantity of diazotrophs (Lammel et al., 

2015; Mirza et al., 2014; Pedrinho et al., 2020). However, given the reaction’s energy demand, O2 

sensitivity, and widespread genetic incidence (Robson and Postgate, 1980; Smercina et al., 2019; Yan et 

al., 2022), quantification of a single marker gene cannot be relied upon to explicitly indicate an elevated 

influx of N via ANF in pasture soils, and to our knowledge, ANF rate has only been investigated in an 

abandoned and degraded tract using a 15N dilution approach (Davidson et al., 2018). We aimed to 

address this crucial knowledge gap by simultaneously measuring two diazotrophic response variables 

(DRVs) across the LU dichotomy- potential diazotrophic community size, and ANF process rates, testing 

our hypothesis that augmentation of the soil diazotrophic community scales with increased ANF process 
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rates in active pastures compared to primary forests. To address this question, we employed high-

sensitivity 15N2 gas-based isotopic labeling rather than proxy measurements. Next, we profiled soil 

physicochemistry (including pools of C, N, macro- and micronutrients, pH, and soil texture) as well as 

untargeted soil metabolomics across the LU dichotomy, aiming to determine whether these environmental 

variables are associated with shifts in ANF rate and community size. In doing so, we hypothesized that 

augmentation of DRVs is related to greater availability of low molecular weight (LMW) C sources as well 

as decreased availability of inorganic N sources. Finally, we utilized a novel two-pronged analysis of the 

soil metagenome, aiming to characterize diazotrophs within their broader microbial communities, to 

quantify a suite of diazotrophic genes, assess how shifts in the functional potential for diazotrophy 

compares to total community functional potential, and identify potential biogeochemical interactions with 

diazotrophy through identification of correlated gene co-occurrence. 

 

 

Materials and Methods 

 

Site description and sample collection 

Soil samples were collected in late March and early April of 2017 (end of the wet season) from 

sites at or near Agropecuaria Nova Vida, approximately 35 km southeast of Ariquemes, Rondônia, Brazil 

(10° 9’ 52.2” S, 62° 49’ 42.6” W). The Köppen’s classification for this region is Am (tropical monsoon), 

with an annual average precipitation of 2200- 2500 mm (Alvares et al., 2013). Soils have previously been 

classified as red-yellow podzolic latosols in this region (Neill et al., 1997a), with soils in this study mainly 

falling into sandy loam, loam, and clay loam textural classes. We sampled from three tracts of primary 

forest and pasture each. Pasture sites were selected to control for time since conversion at approximately 

45 years. At each site, seven samples were collected within a 100 m2 quadrat, at each corner point as 

well as three additional samples along the north-facing transect at 10 cm, 1 m and 10 m from the origin 

point. At each sampling point, any surface debris was removed, and four, 2.5 cm diameter cores were 

extracted with a sterilized corer from 0 – 10 cm and kept cool (~4-5° C) until homogenization and 

processing. A subsample was frozen for inorganic N measurements. Volumetric soil water content was 
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measured ten times at 5 and 10 cm depth and averaged, and three additional core replicates were 

extracted for field estimation of gravimetric water content. 

 

Isotopic labeling experiment  

To establish rate assays, soils were homogenized, sieved to 2 mm, and cleared of root fragments 

or plant debris. To establish ANF activity rate, 5 g dry weight-adjusted soil was added to 15 mL glass vials 

fitted with rubber septa and crimped to make them airtight. For each of the 42 samples, five replicate 

incubations were prepared, totaling 210 vials. Isotopic enrichment was performed by using a three-way 

syringe valve which allows accurate pulling of the desired volume of headspace and immediately 

replacing it with labeled gas mixtures enriched to 52 + 0.01% of total headspace (normalized based on 

soil volume, gravimetric water content, and later adjusted for particle density). Gas mixtures added were 

80% 14N2 (control, n=2) or 15N2 (enriched, n=3, Cambridge Isotope Laboratories, Cambridge, MA, USA) 

and 20% O2 (Ultrapure; Airgas, Sacramento, CA, USA). Samples were kept in the dark at 30 °C for 14 

days (temperature was chosen based on mean ambient temperature across sampling dates), then frozen 

to -80 °C until downstream processing. Enriched and natural abundance experimental samples as well as 

field-preserved ‘baseline’ soils were measured for total isotopic enrichment. ANF rate calculations were 

performed as previously described in Bomfim et al. (2018). 

 

Soil DNA extraction and molecular analyses 

Soil DNA was extracted with the DNeasy PowerLyzer Powersoil Kit (Qiagen Inc., Germantown, 

MD, USA) in triplicate from each sampling point using 0.3 g wet-weight soil per extraction. Quantitative 

polymerase chain reaction (qPCR) targeting an essential nitrogenase subunit-encoding gene (nifH) was 

used as a proxy of diazotroph abundance. The nifH gene was targeted using the PolF/PolR (Poly et al., 

2001) primer set, since a previous assessment has shown this primer pair produces the most consistent 

quantification across species and variable PCR conditions (Gaby and Buckley, 2017). Extracted total soil 

DNA was also used for PCR-free metagenomic sequencing at the Department of Energy - Joint Genome 

Institute (Berkeley, CA). For metagenomic sequencing, a starting quantity of1.82 ng sample DNA was 
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sheared to 471bp then size-selected, end-repaired and ligated with Illumina adaptors. Samples were 

sequenced on a NovoSeq S4 2x151bp paired end with XP V1.5 reagent kit. 

 

Soil physicochemical and metabolite profiling 

The soil chemical factors measured in this study were meant to capture indicators of plant and 

microbial nutrient availability and were used to determine environmental factors important to diazotrophic 

abundance and activity. Physical metrics included soil texture, while soil chemical and nutrient status 

metrics included pH, CEC, and soil acidity, as well as total C (TC), N (TN), P, K, Ca, and Mg. The reactive 

N pool measurements included extractable organic N (EON), NH4+, and NO3-, and in combination, total 

extractable N (TE; Hood-Nowotny et al., 2010; Qiu et al., 1987). Proxies of ‘microbial-accessible’ C 

included loss-on-ignition organic matter (OM; Schulte and Hoskins, 1995), permanganate oxidizable C 

(POXC; Culman et al., 2012), and potassium sulfate-extractable C (EOC; Boyle et al., 2008). Soil δ15N 

natural abundance and δ13C were measured via dry combustion mass spectrometry at the UC Davis 

Stable Isotope Facility. Values were used as indicators of overall N cycling, and to estimate the derivation 

of soil C from forest or pasture sources, respectively. The use of untargeted soil metabolomics was used 

as an additional proxy for low molecular weight C compounds (Swenson et al., 2015). This approach has 

the added benefit of indicating the availability of organic N and P. Briefly, 1g field-preserved soil was 

submitted to the West Coast Metabolomics Center at UC Davis, and samples were processed using gas 

chromatography- time of flight mass spectrometry. Emissions peaks were used to identify approximately 

half of the metabolites found across samples. The remaining metabolites are identified by BinBase 

number, which can be queried at binvestigate.fiehnlab.ucdavis.edu/#/ for further information. Finally, 

additional metal pools including Fe, Mo, and V were quantified using ICPMS (Supplementary [Supp.]. 

Methods), as these elements are vital to the nitrogenase enzyme.  

 

Metagenomic sequence processing 

Metagenomic data was processed using two custom pipelines in order to address different and 

specific questions by targeting diazotrophic genes of interest (DIGs). First, a read assembly (RA) 

approach was used. The goal of this approach was to achieve a robust diazotroph profile within the 
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context of the whole soil community metagenome. A second gene-targeted alignment (GTA) based 

approach was devised to compensate for some limitations of the above-described RA approach. Owing to 

the complexity of soil communities, the average assembly length in this study was approximately 540 bp, 

meaning longer genes were less likely to achieve annotation using an RA approach. In fact, only 19 of the 

32 DIGs were identified using this method, and those not identified tended to be longer genes. 

Additionally, the RA method does not provide any taxonomic information associated with gene counts. 

Although this annotation pipeline was a custom development for this study, a similar approach has 

previously been described and applied with success (Brown et al., 2019).  

 

Statistical analysis 

Both parametric and non-parametric approaches were used to address the effects of LU change 

on diazotrophic response variables (DRVs; ANF rate and qPCR nifH copy number). A Kruskall-Wallis 

(KW) rank-sum test paired with Dunn’s post-hoc analysis (non-parametric approach) was first used on 

untransformed DRVs to determine significant differences and groupings within and across LU types, 

applying a Benjamini-Hochberg p-value (pval) correction. When parametric methods were used (with the 

assumption of a linear response), DRVs were first natural-log [ln()] transformed. To robustly account for 

spatial heterogeneity of sampling locations before testing for LU significance, we employed variance 

component analysis (varComp package; Qu and Qu, 2017) and linear mixed-model regression using 

geospatial data as a random effect in a Matérn function (spaMM package; Rousset, 2017). Environmental 

pools including C, N, P, Mo, V, Fe, pH, textural class, and metabolites were tested across LUs using non-

parametric KW tests as described above. To determine if physicochemical and metabolite profiles differed 

by LU, distance-based redundancy analysis was performed with log-transformed data. PERMANOVAs 

tested for the explanatory value of LUs, and a constrained correspondence permutation tested for 

groupwise (beta-) dispersion. Metabolites were screened individually for association with DRVs with 

correlation tests (Pearson's r parametric and Spearman’s ⍴ non-parametric) for each LU separately.  

To better understand associations between DRVs and soil physicochemical conditions, we 

applied interaction-based Lasso variable selection with multiple linear regression on natural log-

transformed DRVs. Potential explanatory variables included the physicochemical parameters we 
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measured (see Supp. Methods). To account for the spatially heterogeneous sampling scheme, average 

values across the 0 m and 10 cm sampling points were calculated for each variable at each site, reducing 

the total sample size from 42 to 36. Correlation plots between DRVs, and physicochemistry were 

inspected, using the full data set as well as LU-specific data, to detect meaningful relationships visually, 

and to check collinearity amongst variables. Models were first built using the full dataset for each DRV 

based on Lasso selection using ‘glinternet’ in R (Lim and Hastie, 2015). Candidate models were manually 

refined based on variable significance and compared using ANOVAs, visual fit, and prioritizing reduced 

variable inclusion. Based on poor unifying fit (especially forest samples), we also built models separately 

for each LU (on non-transformed values) using AIC-based ordinary least squares model selection (due to 

small sample size). LU-specific variable selection was performed two ways: with physicochemical 

variables only, and with the inclusion of the most highly correlated metabolites (positive and negative, 

based on mean Pearson-Spearman estimates [mPSe]) for each response -LU combination. Best-fit 

models were again selected using the procedure detailed above, and physicochemical-only and 

metabolite-included models were compared using the Akaike information criterion (AIC). 

Quasi-likelihood negative binomial generalized log-linear models were fit to metagenomic count 

data for both RA and GTA approaches. Genes with total gene counts within each LU of <10 were 

excluded from testing. Data were normalized for total library size, and negative binomial and Bayes 

tagwise dispersion (edgeR package; Robinson et al., 2010) before testing for significant log2 fold-changes 

(FC). To identify significant correlations among nitrogenase-encoding genes and the metagenome as a 

whole stemming from the RA approach, Spearman correlation analysis was run between 13 nif genes 

and all other metagenome genes. The nif genes were selected based on consistent FC response, and 

their essential role in BNF (core subunits and cofactors) to minimize mis-annotation bias. Genome-wide 

associations were considered meaningful if correlation estimates >|0.72| for at least 7 of the 13 nif genes, 

with p-values (p-vals) < 0.05 after Bonferroni correction. Using data from the GTA approach, read count 

abundance was tested by taxonomic annotation (aggregated at the class level) between LUs using the 

edgeR approach above. nifH reads were used for count comparison, but only after filtering read count 

taxa for additional annotation of nifD and nifK.  
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Supplemental information and data availability statement 

For more detail on ANF experimental methods and rate calculations, quantitative PCR (qPCR) 

conditions, soil physicochemical and metabolomic protocols, specification of physicochemical parameters 

considered for full profiling and Lasso variable selection, metagenomic bioinformatic pipelines, the list of 

DIGs targeted, and spatial statistical analysis, see Supp. Methods.  Raw and processed metagenomic 

sequences along with additional information regarding sample processing can be accessed at 

genome.jgi.doe.gov using GOLD Project IDs Gp0507946- Gp0507987. 

 

 

Results 

 

DRVs across forest and pasture 

Bulk soil 15N2-enriched incubations reflected a significant increase in ANF process rates between 

forest and pasture. Within forest samples, the mean rate was close to zero, at 0.031 + 0.45 ng N g soil-1 

day-1 (based on a 14-day incubation period). Pasture soils exhibited considerably higher rates (47.1x), 

with a mean value of 1.46 + 0.34 ng N g soil-1 day-1. A KW rank-sum test indicated significant differences 

in measured rates across the six sites (χ2 = 22; p-val = 5.6*10-4). Post-hoc analysis showed grouping by 

LU- except for sites F2 and P1 (Figure 2-1a), and pre-and post-incubation controls showed minimal 

experimental drift (Supp. Figure 2-1a). After controlling for geographic spatial distance of sample points, 

LU type was still a significant predictor of rates, based on variance component analysis (F-value [F-val] = 

35; p-value [p-val] = 6.4*10-7; Table 2-1) and spatial mixed-linear modeling (likelihood ratio χ2 =10.1; p-val 

= 1.2*10-3). As expected, the abundance of the nifH marker gene was significantly higher in pastures 

(1.2*109 + 1.5*108)  compared to forest (6.7*107 + 1.5*107 copies g-1 soil), amounting to an 18-fold 

difference (χ2 = 31.4; p-val = 1.6*10-5; Figure 2-1b). This was also true on a per ng DNA basis (Supp. 

Figure 2-1b). Variance components analysis revealed that spatial distance (both within and across sites) 

accounted for 19% of the explanatory power of LU change on nifH copy numbers, but that LU was still a 

significant factor (F-val = 19; p-val = 1.4*10-4; Table 2-1). Spatial mixed modeling supported this 

(likelihood ratio χ2 =14.9; p-val = 1.1*10-4). While both DRVs coincidently increased in pastures compared 
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to forest, correlation analysis revealed no relationship between the two for either LU (mPSe = 0.05 for 

forests and mPSe =0.03 for pastures; Figure 2-1c).  

 

Soil chemistry and metabolomic profiles 

Of the 18 soil physicochemical parameters (C, and N pools, P, metal cofactors, pH, and texture) 

we hypothesized to play an important role in diazotrophy, all varied significantly by site (p-val < 1*10-2) but 

five did so in an ecologically meaningful way (i.e., grouped within or nearly within LUs in post-hoc 

analysis; Table 2-2), and four of these reflected declines in pasture. These included the percent of soil C 

derived from forest (Cdf; χ2 = 33.2; p-val = 3.4*10-6), the natural abundance of 15N (χ2 = 34.8; p-val = 

2.3*10-5), soil solution NO3- concentration (χ2 = 34.6; p-value = 2.3*10-5), and surprisingly, total Mo (KW χ2 

= 26.4; p-val = 2*10-4). Meanwhile, NH4+ concentration increased significantly (KW χ2 = 28.9; p-val = 10-4). 

pH also tended to increase with LU change, but Dunn’s grouping by LU was not as clear as the above 

parameters (χ2 = 30.5; p-val = 6*10-5). The remaining pools we measured, including total C, POXC, EOC, 

loss-on-ignition OM, total N, EON, P, V, Fe, as well as clay, silt and sand content, all varied significantly 

by site (KW χ2 > 13.5; p-val < 10-3), but none grouped by LU in post-hoc testing. Overall soil 

physicochemical profiles, however, varied significantly by LU (F-statistic [F-stat] = 31; p-val = 10-3; Figure 

2-2a; Supp. Table 2-1). 

A total of 180 unique metabolites were identified from bulk soil. Of these, 91 were known 

compounds, and just 11 out of 180 grouped statistically by LU (eight of which were unidentified; Supp. 

Table 2-1). The three identified compounds included phytol and nonadecanoic acid (lower in pastures), 

as well as 3-(4-hydroxyphenyl) propionic acid (higher in pastures). Overall metabolome profiles varied by 

LUs, and more so when unidentified compounds were included (F-stat = 11.2; p-val = 10-3; Figure 2-2b). 

Profiles including just identifiable compounds exhibited more modest, but still significant differences 

across LUs (F-stat = 20; p-val = 1*10-3; Figure 2-2c). When known compounds were correlated against 

the two DRVs, we found drastic differences in the metabolites which correlated significantly within forest 

and pasture samples, and no overlap with those compounds found to differ across LUs. For example, for 

forest ANF rates, the most positively correlated metabolite, succinic acid (mPSe= 0.47) was one of the 

metabolites most negatively correlated with pasture ANF rates (mPSe = -0.53) as well as pasture nifH 
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copy numbers (mPSe = -0.46; Supp. Table 2-2). We also did not observe any discernible trends in 

positively vs. negatively correlated compounds when grouped by molecular class (i.e., the structure of 

potential C and N sources) within and across LUs. 

 

Diazotroph-environmental associations: multiple linear regression 

For ln(nifH copy number), the best-fit full model (adjusted [adj.] R2 = 0.86; F-stat = 73; p-val= 

2.0*10-14) included a large LU effect (pos. eff. [positive effect]; F-val = 206; p-val= 1.8*10-15), a small 

positive effect (pos. eff.) of clay content (F-val = 8.4; p-val= 6.6*10-3) as well as an interaction between LU 

and POXC (LU:POXC; pos. eff.; F-val = 4.7; p-val= 3.6*10-2; (Table 2-3). The model fit was extremely 

poor for forest samples (Figure 2-3; Supp. Figure 2-2). For the ln(ANF rate) full model (adj. R2 = 0.56; F-

stat = 15.9; p-val= 1.6*10-6), significant best-fit variables again included a significant LU term (negative 

[neg.] eff.; F-val= 36.6; p-val = 9.4*10-7), an interaction between LU and the ratio of EOC to EON (pos. 

eff.; F-val = 9.6; p-val = 4*10-3), and natural log-transformed NO3-  (neg. eff; F-val = 6.0; p-val = .03). 

Similar to the full nifH copies model, the ANF model fit was incongruous between forest and pasture 

samples, with forest again exhibiting trivial fit.  

Based on variable selection and goodness of fit for unifying models, we further considered 

regression on forest and pasture samples separately for each response variable. Crucially, we found that 

the best models predicting forest nifH copies and ANF rate were non-significant (adj. R2= 0.1 and 0.08, 

respectively; Supp. Table 2-2), while pasture-only models for both nifH copies (adj. R2= 0.66; F-stat= 

11.9; p-val= 4*10-4) and ANF (adj. R2= 0.26; F-stat= 4.0; p-val= .04; Table 2-4a, Figure 2-4a) were 

significant – albeit modestly significant for ANF. nifH copies within pasture soils were predicted by Cdf 

(pos. effect; F-val= 16.3; p-val= 1.2*10-3), POXC (pos. effect; F-val= 15.5; p-val= 1.5*10-3), and total Mo 

(F-val= 3.8; p-val= 0.07), which surprisingly had a negative effect estimate. The pasture nifH copy model 

fit considerably better than the pasture ANF rate model (Supp. Figure 2-3), which included as predictive 

variables the ratio of EOC to EON (pos. effect; F-val= 5.4; p-val= 0.03) as well as the ratio of TN to EON 

(pos. effect; F-val= 2.5; p-val= 0.057).  

To determine the potential utility of metabolite data in predicting DRVs, the most positively and 

negatively correlated metabolites for each DRV -LU combination were included in variable selection 
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procedures, improving the best-fit forest nifH copy model (adj. R2= 0.81; F-stat = 24.9; p-val = 4*10-7): 

Combined clay and silt content (pos. effect; F-val= .12.1; pval= 1*10-3), as well as TC (neg. effect; F-val= 

4.3; p-val= 0.05) together contributed a minor amount of explanatory value compared to the metabolite β-

sitosterol (pos. effect; F-val= 58.5; p-val= 2.9*10-6), a ring carbon (Table 2-4b; Figure 2-4b). In contrast, 

inclusion of top-correlating metabolites did not add significant explanatory value to the best-fit pasture 

nifH copies model. The fit and significance of the pasture ANF model were improved substantially (AIC = 

57 vs. 62.8 as compared with physicochemical parameters alone; adj. R2= 0.70; F-stat= 14.2; p-val= 

1.6*10-4) by including the effect by erythrose, a positively correlated monosaccharide (F-val= 25.2; p-val= 

1.8*10-4) and uridine diphosphate-N-acetylglucosamine (UDP-NAG), a negatively correlated nucleotide 

sugar (F-val= 6.9; p-val=0.02), along with the physicochemical ratio TN/EON (F-val= 10.4 p-val= 6*10-3; 

Supp. Figure 2-3). Including metabolites in variable selection still failed to produce a significant forest 

ANF model. 

 

Quantifying diazotrophs in the soil metagenome: RA and GTA methods 

On average, sample libraries produced 49 + 2 M quality-filtered reads each, of which 15 + 0.5% 

were annotated by the KEGG database, and a total of 5,152 genes were identified using the RA 

approach. Of these, 8.5% were enriched in forests, 12.7% were enriched in pastures, 54.3% showed no 

difference, and 24.5% fell below the abundance threshold for statistical testing. Of targeted DIGs, 19 out 

of the 32 were identified, averaging 24.8 + 1.23 counts per million (CPM). Of these, 13 were highly 

enriched in pastures. When these genes were ranked by log2fold change (FC), all but nifJ (FC = 2.3 p-val 

= 2.9*10-13) fell in the top 60 (i.e., top 7%), and nifE (FC = 9.8; p-val = 1.3*10-7), nifD (FC = 9.3; p-val = 

1.3*10-7), and nifN (FC = 9.1; p-val = 1.1*10-6) fell in the top 10 (Figure 2-5a). The regulatory and 

transferase genes nifA and nifS did not shift in abundance. Notably, nod genes (indicating symbiotic 

diazotrophs) also showed no difference across LUs, and genes encoding alternative nitrogenases (anf, 

vnf) were not identified. Increased genetic potential for ANF in pastures was coincident (but not 

necessarily correlated) with shifts in other N cycling genes, including a decrease in ammonia 

monooxygenase (amoA) and nitrate reductase (napA), as well as increased hydroxylamine reductase 

(hcp) and nitrite reductase (nirS/nirK) protein subunits (Supp. Figure 2-4). 
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Quantifying genes using the GTA method identified all 32 DIGs queried and produced largely 

consistent results in terms of the directionality of significant FCs (Figure 2-5b; Supp. Table 2-4), with a 

few exceptions. First, nifV, did not reflect pasture enrichment, in contrast to the RA method. Additionally, 

GTA quantification indicated an increase in nodC (FC = 3.65; p-val =1.3*10-2), a plant-targeting nodulation 

signal, and that two vnf (i.e., vanadium-based metallocluster subunit) genes, vnfD (FC = 3.8; p-val = 

1.6*10-2) and vnfH (FC = 2.4; p-val = 1.6*10-2) increased in pastures, but counts (.03 +.008 CPM) were 

much lower as compared to nif (9.1 +.9 CPM) subunits. Additionally, using taxonomic annotations of nifH 

reads (nifHDK positive taxa only), we found 22 of 25 (88%) identified taxonomic classes increased 

significantly in pasture, with the greatest FC observed in Desulfobacteria (FC = 5.6; p-val = 2*10-8; Supp. 

Figure 2-5).  

 

Soil diazotrophs and co-occurring functions 

Across metagenomes, 78 genes were found to be significantly correlated with nif genes in terms 

of read counts (Supp. Table 2-5), all of which exhibited positive relationships, and were largely driven by 

pasture metagenomes. Several of these genes or gene sets were of notable function (Figure 2-6). For 

example, maltose 6’ phosphate phosphatase (mapP) was the metagenome-gene most highly correlated 

with nif genes (driven by pasture metagenomes), with a median Spearman estimate (mSe) coefficient of 

0.90 across the 13 nif protein subunit and cofactor genes tested. The mapP gene was also found to 

exhibit the greatest FC in pasture soils of all 5,152 genes identified (FC = 10.3; p-val =9.5*10-15). NAD+ 

N2 reductase ribosyltransferase (draT), involved in post-transcriptional regulation of the nitrogenase 

enzyme, was also highly correlated (mSe = 0.88) and in the top 10 most enriched pasture genes (FC = 

9.36; p-val = 7.9*10-13). Additional highly correlated genes associated with dissimilatory environmental 

nutrient cycling included nitrite reductase (nirF, mSe = .83; nirS, mSe = 0.78; nirC, mSe =0.75), anaerobic 

sulfite reductase (asrB, mSe = 0.76; dsrC, mSe = 0.74; hydD, mSe = 0.83), and anaerobic CO 

dehydrogenase (cooF; mSe =0 .83). An additional 12 highly-correlated metagenome genes (such as 

cheD; mSe = 0.83) were associated with chemotaxis and flagellation. Three genes encoding choline 

transport (CTR; mSe = 0.77), and two N, N’-diacetylchitobiose transport permease proteins (dasA and 
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dasB; mSe = 0.74 and 0.72, respectively) were the only correlating genes not found in diazotroph 

genomes which are currently available in the KEGG database (Supp. Table 2-5). 

 

 

Discussion 

 

Nitrogen inputs to pasture soils through ANF and relationship with community size 

The primary aim of this study was to establish whether soil ANF rates increase in pastures of 

Rondônia, Brazil, based on previous observations of drastic increases in the potential diazotroph 

community size (Mirza et al., 2014). Isotopically labeled soil incubations revealed near-zero rates (0.031 + 

0.45 ng N g soil-1 day-1) of ANF in forest soils compared to an average of 1.46 + 0.34 ng N g soil-1 day-1 in 

pastures (Figure 2-1a). Tropical forest soils are considered replete with N, and the role of ANF in 

sustaining these high inorganic N concentrations, given considerable NO3- leaching, has been an 

important line of inquiry (Hedin et al., 2009). Utilizing a constrained mass-balance approach, Cleveland et 

al. (2009) estimated total BNF inputs range from 1-8 kg N ha-1 yr-1 in Rondônian primary forests as a 

combination of tree canopy, litter layer, root nodule, and surface soil inputs. Although derived from one 

timepoint, our assay measurements, in conjunction with gene abundances and read counts, suggest 

surface soil ANF contributes minimally or infrequently to forest N inputs. Indeed, a recent study in the 

state of Pará (Moreira et al., 2021) found that tree canopy nitrogen fixation (via acetylene reduction) was 

more than 10-fold that of soil (0.3 vs. 0.03 kg N ha-1 yr-1). Another study in the Southeastern Amazon also 

measured extremely low activity, particularly in the dry season (Wong et al., 2019). In contrast, an LU-

change study in Brazil’s Atlantic forest reported appreciable ANF rates in forest soils (median 1.25 ng N g 

soil-1 h-1), with no overall difference between forest and pasture (Bomfim et al., 2018). Regional variation 

(e.g., soil morphology) between the two basins may explain this discrepancy. 

The 47x increase in ANF and 18x increase in nifH copy number we observed in active cattle 

pastures of Rondônia indicate a major shift in the pathways of N inputs with LU change. Assuming a soil 

bulk density of 1.31 g cm-3 (Neill et al., 1995), annual N inputs via ANF may average 0.69 kg N ha-1, with 

a maximum estimate around 3.3 kg N ha-1 (based on the maximum rate). We used a 14-day incubation 
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period (Buckley et al., 2007) to ensure sufficient labeling, but it is plausible that the majority of activity 

occurred in as little as the first 24 h, implying our average rate corresponds to a potential of 9.75 kg N ha-1 

yr-1. Despite this uncertainty, our range of annualized values generally agrees with grassland rates 

reported elsewhere. For example, a meta-analysis by Reed et al. (2011) estimated annual average inputs 

of 4.7 kg N ha-1 across temperate grasslands. Keuter et al. (2014; via acetylene reduction), using a 

temporally robust sampling scheme, calculated a range of 1.7-5.7 kg N ha-1 yr-1, depending on the effects 

of fertilization, seasonality, and mowing frequency (analogous to pasture grazing) in a grassland of Lower 

Saxony, Germany. This latter study, along with others (e.g., Moreira et al., 2021; Smercina et al., 2021), 

highlights the significance of seasonality in dictating ANF rates due to fluctuations in moisture, 

temperature, and productivity (Smercina et al., 2019). Temperature and day length have minimal 

seasonality in Rondônia (~-10°S), but precipitation varies considerably; therefore, to robustly quantify N 

inputs from ANF, more temporal sampling, particularly during the peak wet and dry seasons, is needed.  

While we have demonstrated the occurrence of ANF in lightly stocked active cattle pastures 

approximately 45 years in age, the reality of the region is that a high proportion of pastures are 

abandoned on the order of years rather than decades, due to major declines in grass productivity as a 

result of N limitation (Davidson et al., 2012). In contrast to our findings within an active pasture, a clay-box 

mesocosm experiment in Pará, Brazil estimated ANF- N inputs in a degraded pasture compared to an 

adjacent secondary forest (Davidson et al., 2018), and concluded that little, if any, ANF was occurring in 

the abandoned pasture, an observation potentially rooted in grazing pressure. In support of this, a study 

of N status in a mixed clover - U. brizantha pasture under variable stocking rates identified a threshold 

whereby legume inputs could not sustain forage productivity (Cantarutti et al., 2002), perhaps related to 

disproportionate increases in animal excretion- related N losses with increased stocking density (Boddey 

et al., 2004). On the other hand, the mowing study discussed above (Keuter et al., 2014) indicated that in 

the absence of fertilizer, low-intensity vegetation removal resulted in the highest annualized ANF 

estimates, possibly driving a flush of below-ground C allocation (Holland et al., 1996). As such, a balance 

between ANF inhibition by overgrazing, and stimulation by low levels of herbivory may influence grazing 

sustainability in the absence of fertilizer inputs.  
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LU shift in ANF linked to nitrate, but DRVs are poorly explained in forests 

Another aim of this study was to identify credible causative associations between soil 

physicochemistry and the drastic shifts observed in DRVs across the LU dichotomy. We initially expected 

that changes to C, N, and micronutrient pools would help explain these observations. However, just a few 

measurements reflected significant LU alteration, including declines in Cdf, δ15N, total inorganic N, and its 

partitioning (from NO3- to NH4+- dominated), but not TN or EON (Table 2-2). Through variable selection 

and model comparison, we found the strongest explanatory variable for both DRVs to be a categorical LU 

effect (0.81 and 0.43 of the explanatory power for ln(nifH copies) and ln(ANF), respectively; Table 2-3) 

which is largely indicative of complex physicochemical interactions that we did not identify. For LU-wise 

increases in ln(nifH copies), the only non-interactive physicochemical variable selected was clay, which 

offered extremely low explanatory power (0.02). We also found that ln(NO3-) was selected as a negative 

predictor (though again, with small unique explanatory power: 0.06) of the increase in ln(ANF rate) with 

LU change, suggesting that indeed, drastic reduction in the availability of inorganic N (the bulk of which 

was NO3- in forests) stimulates ANF activity in these pastures (Piccolo et al., 1994). The fact that 

increased NH4+ content did not add a significant negative effect likely relates to active N2 fixing 

diazotrophs contributing to NH4+ pools as well as drawing from them (Chapin et al., 2002). Additionally, 

the forage species predominantly planted throughout Amazonian pastures (e.g. Urochloa), which are 

adapted to low-N soils, exude biological nitrification inhibitors from their roots (Subbarao et al., 2009), 

effectively preserving a large proportion of total inorganic N as NH4+ in pastures. In turn, these forage 

grasses may scavenge NH4+ more efficiently than soil microbial communities.  

In graphing the two DRV regressions, we found forests were poorly predicted (Figure 2-3a, b), 

with trivial model fit (Supp. Figure 2-2). Attempting to identify variables explaining DRVs in forest soils 

only did not produce significant models (gray shading, Figure 2-4a, Supp. Table 2-3), with a 

parsimonious explanation being that we simply did not measure the variables driving forest DRVs 

(consistent with the large LU effect). Yet, additional factors may be in play. Potential diazotrophs assume 

many trophic strategies (Le Boulch et al., 2019), so community size in forests may not be driven by 

conditions favoring diazotrophs specifically. Also, forest ANF rates remained close to zero, hence activity 
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could be frequently suppressed by a large reactive N pool (Neill et al., 1997b), in turn fed by more 

efficient avenues of BNF such as canopy lichens (Hedin et al., 2009; Moreira et al., 2021). 

 

Pasture DRVs are associated with physical, chemical, and isotopic properties 

Potential diazotroph community abundance: First, we found that POXC commanded 

substantial explanatory effect (.29) over nifH copies in pastures (Table 2-4a). POXC is generally 

considered a proxy for C that can be readily utilized by microbes (Huang et al., 2021), consistent with our 

initial expectation that LMW C is key in fueling ANF. It was somewhat curious that this association was 

not observed in forest soils as well, independent of whether nifH-positive taxa perform ANF. On closer 

inspection, however, the lack of relationship appeared to be driven by three points strongly disagreeing 

with an overall positive trend.  

Additionally, while the full nifH copy model fit most optimally with clay content, the pasture-only 

model selected for Cdf, with a somewhat unexpected positive effect. We also found that these two 

parameters were moderately correlated (mPSe = 0.66), so they may synergistically influence nifH 

communities. An increase in clay content is positively associated with the volume of hypoxic or anoxic 

microsites (Keiluweit et al., 2018), and since most diazotrophs require extremely low exogenous O2 for 

BNF (Khadem et al., 2010), inhabiting frequently O2- depleted textural sites would be beneficial, 

especially for taxa genetically equipped for anaerobic respiration (e.g., sulfite/sulfate reducers; Le Boulch 

et al., 2019). The positive association between pasture nifH copies and Cdf may be driven by the fact that 

endurance of Cdf mainly occurs in the clay-sized fraction after LU change, since physical isolation and 

anaerobic microsites presumably provide some buffer against SOM turnover (Keiluweit and Fendorf, 

2016). This seems contradictory to the equivalent explanatory effect of POXC (0.3 vs 0.29), but could be 

because clay also stores the greatest share of pasture-derived C (Desjardins et al., 2004), and 

association with clay does not explicitly imply recalcitrance (Kleber et al., 2011). Another interpretation is 

that both C indicators benefit populations in different soil compartments. We did not measure nifH 

abundance in rhizosphere vs. bulk soil, but the dense, shallow root system of Urochloa (Guenni et al., 

2004) suggests sampling from 0-10 cm could capture both. Therefore, a positive association with POXC 
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may benefit rhizosphere diazotrophs, while Cdf could represent greater access to C amongst clay-

associated communities. 

Soil Mo concentration also added a modest (0.07) explanatory effect to the prediction of pasture 

nifH copies. It is a key micronutrient due to its role in metallocluster formation (Reed et al., 2011), but it is 

disputed whether it limits diazotrophs in the Amazon (Moreira et al., 2021; Wong et al., 2021). We found 

that Mo largely decreased in pastures (Table 2-2), and its effect on nifH copies was actually negative. 

The total pool we measured may underrepresent the bioavailable fraction given a slight rise in pasture 

pH, but the explicitly negative effect we observed is unclear, potentially pointing to unknown collinear 

parameters. 

Asymbiotic nitrogen fixation: Pasture ANF was best explained by a model with just two 

physicochemical parameters. First, the EOC:EON ratio served as a positive predictor, agreeing with our 

hypothesis regarding drivers of activity rates (Table 2-4a). It is noteworthy that EOC, presumably 

representing a fraction (42% ± 20%) of POXC based on extraction protocols, is only a relevant predictor 

of ANF rate when ratioed against EON. While EON does not explicitly proxy potentially mineralizable N in 

a monoculture, its concentration likely scales with inorganic and LMW N sources for microbial 

assimilation. To boot, diazotrophs prioritize the uptake of these N forms before investing in the 

nitrogenase enzyme (Norman and Friesen, 2017). The inverse impact of the proportion of total N in the 

dissolved organic form suggests that pools of potentially mineralizable, as well as directly utilizable 

reactive N stimulate the enzymatic investment in this energy-intensive reaction. Additionally, the 

importance of the soil solution EOC to EON ratio points to an incentive to execute ANF by means of 

ample energetic resources and limited alternative N. We found one corroborating marine-based study 

observing the same association (Hanson and Gundersen, 1977), and curiously found that Mirza et al. 

(2014) identified this ratio to be highly associated with nifH abundance. Overall, however, the explanatory 

value of these variables was modest. The large proportion of variation left unexplained is perhaps 

attributable to microsite conditions during the assay incubation period, such as oxygen concentration and 

distribution of dissolved nutrients. 
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Potential for the predictive power of metabolites 

The role of plant metabolites in moderating microbial community structure and activity is 

increasingly being investigated (e.g., Guyonnet et al., 2017; Jacoby et al., 2020). Here, we asked whether 

these LMW compounds could serve as indicators of DRVs across LUs. Although metabolomic profiles 

changed drastically across LUs (Figure 2-2a; Supp Table 2-1), they did not predict DRVs (not shown). 

By directly correlating individual (known) metabolites with DRVs, we found a limited number of candidates 

for model variable selection (top correlates in Supp Table 2-2). In some cases, such as for forest nifH 

copies and pasture ANF, the inclusion of highly correlated metabolites did improve model R2 (Table 2-4b, 

Figure 2-4b). The model of pasture ANF in particular was substantially improved by inclusion of 

erythrose, a LMW (120 g mol-1) monosaccharide which could plausibly serve as an easily-utilized source 

of C, as well as UDP-NAG (651 g mol-1), a potential source of organic N which could be prioritized over 

atmospherically- reduced N (Norman and Friesen, 2017). However, we cannot speak to the temporal 

stability of these associations. At least one study has utilized soil metabolomics for identifying selective 

pathways of community structure (RoyChowdhury et al., 2022), but based on our original aim, we 

concluded its application is hindered by a high proportion of unidentified compounds, and likely requires 

dense temporal sampling (Withers et al., 2020). 

 

Diazotrophic genes are more abundant in the soil metagenome  

Our final major aim was to robustly profile potential diazotrophs within the broader soil community 

across the LU dichotomy. Querying a full suite of DIGs across metagenomes using both RA and GTA 

analyses bolstered our conclusions regarding consistent and significant enrichment of diazotrophic soil 

microbes, agreeing with the qPCR results discussed above, as well as those presented previously (Mirza 

et al., 2014). RA analysis contextualizes this enrichment against all other metagenome genes, revealing 

that nitrogenase metallocluster subunits and cofactor biosynthesis-encoding genes (n=13), most of which 

are essential for nitrogen fixation (Dos Santos et al., 2012), fall in the top 7% of differentially-enriched 

pasture genes based on FC ranking (Figure 2-5a, 2-6). The inclusion of DIGs such as those encoding 

nod factors provided additional insight regarding shifts in diazotrophic life strategies with LU conversion. 

We expected that nodulation-initiation genes would decline in pastures, given the loss of symbiotic plant 
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hosts, yet nod genes were found in low abundance (i.e., no LU effect) in both annotation pipelines, except 

for nodC (encidong a plant targeting signal) in GTA analysis (Figure 2-5b; Supp. Table 2-4). Previous 

survey of viable symbiotic diazotrophs across the LU dichotomy demonstrated pasture isolates readily 

colonize host plants (Lima et al., 2009), suggesting they sustain an alternative ecological niche under LU 

change.  

Multi-gene correlation analysis presents a unique method of identifying genes and microbial 

functions which co-occur significantly with DIGs, either within diazotrophic genomes themselves, or in 

closely associated organisms. The metagenome-gene with the highest median correlation (and largest 

overall FC change in pasture) was mapP (Figure 2-6), which encodes the novel intracellular enzyme 

maltose 6’-P phosphatase. This enzyme plays a role in maltose (and some other disaccharide) 

metabolism, cleaving alpha linkages into two glucose molecules as part of ATP production (Mokhtari et 

al., 2013). Therefore, it may play an important role in supporting the energy demands of biogeochemical 

processes such as ANF in pastures (as it was not identified in forests; Mokhtari et al., 2013). Another 

strongly correlated gene was draT, encoding a ribosyltransferase that reversibly regulates nitrogenase 

post-translationally (Huergo et al., 2012). Its general prevalence amongst diazotrophic genomes is poorly 

understood (Huergo et al., 2012), but we identified it to be present in 16% of those diazotrophic genomes 

available in the KEGG database. With the sixth highest ranking by FC, draT enrichment and correlation 

with nif genes adds further support to the magnitude of diazotrophic enrichment in pastures. It may also 

indicate a specific favoring of diazotrophic taxa known to employ this regulatory system, such as 

Azospirillium, Rhodopseudomonas, Geobacter, and Methylobacter (Huergo et al., 2012). Genes 

associated with flagellation and chemotaxis (e.g., cheD) comprised an additional 15% of the 78 total 

nitrogenase-correlating genes (Supp. Table 2-5). The ability to translocate in response to exogenous 

cues such as O2 or nutrient concentration is crucial to diazotrophs of all life strategies (Mandimba et al., 

1986; Scharf et al., 2016), and while nearly 60% of diazotrophic genomes in the KEGG database bear the 

cheD gene, just 23% of all organisms with the cheD gene are also diazotrophic (Aramaki et al., 2020). 

This could suggest co-occurrence of nitrogen fixation and chemotaxis in the rhizosphere, enabling 

movement towards energy-rich exudates (Scharf et al., 2016). Multiple genes encoding dissimilatory 

nitrite (nirS,C,F) and sulfite reductase (asrB, dsrC) were also correlated. These genes are moderately 
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common among diazotrophic genomes (20-45%), and strong co-occurrence of these gene sets suggests 

a link between ANF, denitrification, and/or sulfur cycling through anaerobic energy conservation (Lukat et 

al., 2008; Shirodkar et al., 2011). 

 

Conclusions 

Our finding that active cattle pastures in Rondônia, Brazil exhibit significant increases in soil 

asymbiotic N2 fixation, coupled with the insight that this biogeochemical pathway is one of the most, if not 

the most enriched microbial functions with LU change, speaks to an immense pressure for N 

replenishment under cattle grazing without fertilizer inputs. Yet, the rate of ANF within LUs was 

completely independent of potential diazotroph community abundance, likely related to the variation in 

trophic strategies and nano-scale soil conditions driving the metabolic activity of diazotrophs. While a 

reduction in the available pool of NO3- across LUs accounted for minor predictive power over ANF rate 

changes with pasture conversion, our general inability to identify variables ‘bridging the gap’ in N2 activity 

across these LU types likely indicates unaccounted-for measurements like fluxes in N and LMW C cycles, 

complex physicochemical interactions, or ‘tipping points’ in nutrient concentration whereby 

biogeochemical cycling shifts dramatically. Within pastures however, we found that ANF rate, was 

positively associated with an increasing ratio of microbially-available C to N in soil solution. This is worthy 

of further investigation, given that a sizeable proportion of pastures in the Amazon quickly lose 

productivity, and may be abandoned for further deforestation, in many cases likely a result of N limitation. 

Gaining further insight to the interaction between forage grass rhizosphere activity, land management 

practices like grazing pressure, and ANF may aid in a better understanding how natural N fertilization 

may be stimulated in these agricultural systems. 
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Tables and Figures 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2-1: Spatial heterogeneity between replicate LU sites accounted for using two modeling 
methods (a) Variance component modeling parses the variance from spatial distance (b) Spatial 
mixed modeling using a Matérn function on geospatial coordinates. Data normality was controlled for 
through natural-log transformation of DRVs 

a. Variance component effects 
 Fixed Effect Est. [CI]        F-val (p-val) Var. from spatial distance 

interaction [error] 
ln(ANF rate) Intercept -0.55 [+0.264] 18.73 (9.73E-05)  
 LU 

 
1.07 [+0.37] 34.85 (6.42E-07) 0.00 [.34] 

ln(nifH copies) Intercept 18.11 [+0.56] 4359 (4.9E-38)  
 LU 

 
2.2 [+1.02] 18.97 (1.35E-04) 0.19 [0.49] 

 

b. Spatial mixed model with Matérn function partitioning 
 Est. Effect (t-value) Likelihood Ratio 

χ2 (p-val) 
Bootstrap χ2 (p-value) 

ln(ANF rate) Intercept -0.52 (-3.85)   
 LU 

 
1.07 (5.3) 10.06 (1.15*10-3) 5.05 (0.024) 

ln(nifH copies) Intercept 17.76 (95.4)   
 LU 

 
2.997 (11.4) 14.88 (1.14*10-4) 3.63 (0.05) 
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Table 2-2: Soil param
eters expected to im

pact diazotrophic activity rates. Values represent m
ean + standard error for each site. Kruskall-

W
allis rank sum

 tests perform
ed across sites, w

ith test statistics reported as χ
2. P-values are adjusted for m

ultiple com
parisons using a 

Benjam
ini- H

ochberg correction. Letters next to each m
ean indicate significant site grouping. Variables in bold are those w

hich grouped by 
LU

. * indicates variables w
ith overall significant difference betw

een forest and pasture (ignoring site effect).  
 

 
Forest 

Pasture 
 

 
 

 
F1 

F2 
F3 

P1 
P2 

P3 
χ

2 
p-value 

Carbon  

TC
  

43.1+10.7 a 
22.9+1.4 ab 

17.3+1.8 b 
18.4+0.7 b 

17.6+1.2 b 
34.2+1.9 a 

21.10 
9.2*10

-4 
EO

C
 

0.52+0.07 ab 
0.59+0.05 a 

0.32+0.03 c 
0.31+0.02 c 

0.36+0.02 bc 
0.53+0.05 a 

22.92 
5.1*10

-4 
PO

XC
 

2.16+0.57 ab 
0.9+0.06 a 

0.89+0.18 a 
0.8+0.05 a 

0.87+0.1 a 
2.16+0.1 ab 

16.13 
6.5*10

-3 
O

M
 

6.7+1.34 a 
4.1+0.19 ab 

2.8+0.29 c 
3.1+0.19 bc 

2.6+0.15 c 
6.2+0.24 a 

26.68 
1.9*10

-4 
C

df  
94.7+1.14 a 

96.1+0.73 a 
93.3+0.9 a 

15.47+3.17 b 
17.8+1.8 b 

25.16+2.05 b 
33.18 

3.5*10
-6 

 
 

 
 

 
 

 
 

 
 

Nitrogen  

TN 
3.5+0.71 a 

1.9+0.08 ab 
1.6+0.12 bc 

1.5+0.07 bc 
1.4+0.09 c 

2.9+0.19 a 
24.33 

3.2*10
-4 

EO
N

 
0.21+0.01 a 

0.2+0.01 a 
0.14+0.02 b 

0.18+0.01 ab 
0.19+0.01 ab 

0.3+0.03 c 
20.77 

9.7*10
-4 

*N
H

4 + 
5.5+1.0 ab 

1.4+0.8 a 
1.6+1.1 a 

10.5+1.6 bc 
8.3+2.6 bc 

11.6+1.1 c 
28.87 

1.1*10
-4 

NO
3 - 

106+6.6 a 
55+4.1 a 

54+7.4 a 
2.57+1.8 b 

2.54+0.97 b 
0.74+0.36 b 

34.62 
2.3*10

-5 
15N 

8.9+0.24 a 
10.6+0.3 a 

9.8+0.2 a 
7.2+0.2 b 

6.8+0.1 b 
7.1+0.3 b 

34.79 
2.3*10

-5 
 

 
 

 
 

 
 

 
 

Cofactors 

P 
5.1+0.4 ab 

6.9+0.34 a 
3.6+0.3 bc 

4.4+1.15 bc 
6.3+1.85 ab 

2.6+0.43 c 
22.32 

1.6*10
-6 

 
 

 
 

 
 

 
 

 
*M

o 
2.35+0.35 a 

1.1+0.03 ab 
1.09+0.17 a 

0.51+0.12 bc 
0.64+0.22 bc 

0.36+0.06 c 
26.39 

1.9*10
-4 

V 
88.7+17.7 a 

68.6+2.9 a 
39.9+5.6 b 

54.6+10.2 ab 
56.9+23.6 b 

236.1+22.4 c 
24.70 

3.2*10
-4 

Fe 
44.8+5.3 ab 

41.8+1.5 ab 
30.1+2.5 ac 

25.6+3.2 c 
28.2+9.2 c 

69.6+5.6 b 
24.21 

3.2*10
-4 

Phys-chem 

 
 

 
 

 
 

 
 

 
*pH

 
5.5+0.1 ab 

4.7+0.04 a 
5.7+0.1 bc 

5.8+0.11 bc 
6.1+0.06 cd 

6.3+0.2 d 
30.53 

5.9*10
-5 

C
lay 

17.6+1.8 ab 
35.9+1.2 c 

21.9+1.2ac 
13.77+1.3 b 

12.1+0.9 b 
20.6+1.82 a 

29.99 
1.5*10

-5 
Silt 

28.33+1.5 a 
28.6+1.1 a 

31+1.09 ab 
28.04+1.52 a 

28.81+0.87 a 
35.7+1.37 b 

13.48 
1.9*10

-2 
Sand 

54.1+2.6 ab 
35.4+1.9 c 

47.0 +1.6 a 
58.2 +2.7 b 

59.1+1.5 b 
43.7+3.1 ac 

29.07 
2.2*10

-5 
A

bbreviations: TC
 (Total C

arbon): m
g C

 g
-1 soil; EO

C
 (Extractable O

rganic C
arbon): m

g C
 g

-1 soil; PO
XC

 (Perm
anganate-oxidizable C

arbon): m
g C

 g
-1 soil; O

M
 (Loss-on-

ignition O
rganic M

atter): percent m
ass; C

df plant (forest-derived soil carbon):percent m
ass soil C

; TN
 (Total N

itrogen): m
g N

 g
-1 soil; EO

N
 (Extractable O

rganic N
itrogen): m

g N
 g

-

1 soil; N
H

4 + (Am
m

onium
): μg N

 g
-1 soil; N

O
3 - (N

itrate): μg N
 g

-1 soil; M
o (M

olybdenum
): μg M

o g
-1 soil; V (Vanadium

): μg V g
-1 soil; Fe (Iron): m

g Fe g
-1 soil; P

 (M
ehlich-3 

extractable orthophosphate P
): μg P

 g
-1 soil. 
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Table 2-3: R
esults of AN

O
VAs based on best unifying m

odels (across LU
s) for nifH

 copy num
ber and AN

F rate. 
Variables w

ere selected using interaction lasso variable selection and m
anual m

odel refining. M
odel residual values 

form
atted as S

um
 of S

quares; m
ean S

quares. *indicates adjusted R
2 

ln(nifH copies) Full 
Variable Stats 

M
odel Stats 

 
Estim

ate 
Std. Err. 

SS 
Fval 

pval 
F-Stat 

pval 
RM

SE 
R

2 
(Intercept) 

17.0 
0.43 

 
 

 
72.9 

2.1*10
-14 

0.64 
.87 

LU
 

2.7 
044 

82.9 
205.6 

1.8*10
-15 

 
*** 

 
*.86 

Clay 
3.4*10

-2 
1.6*10

-2 
3.39 

8.4 
6.6*10

-3 
 

 
 

 
LU:PO

XC
 

5.3*10
-4 

2.4*10
-4 

1.93 
4.7 

3.6*10
-2 

 
 

 
 

R
esidual 

 
 

12.9;  0.4 
 

 
 

 
 

 
 

 
 

 
 

 
ln(ANF) Full 

  Variable Stats 
               M

odel Stats 
 

Estim
ate 

Std. Err. 
SS 

Fval 
pval 

F-Stat 
pval 

RM
SE 

R
2 

(Intercept) 
-.03 

0.34 
 

 
 

15.9 
1.6*10

-6 
0.5 

.6 
LU

 
-.8 

0.57 
9.32 

36.6 
9.4*10

-7 
 

*** 
 

*.56 
LU:(EO

C/EO
N) 

0.71 
0.29 

1.6 
9.6 

0.02 
 

 
 

 
ln(NO

3 -) 
-0.11 

0.08 
1.27 

6.0 
0.03 

 
 

 
 

R
esidual 

 
 

8.1;  0.25 
 

 
 

 
 Abbreviations: ln(AN

F) = natural-log transform
ed asym

biotic nitrogen fixation rate (ng N
 g

-1 soil day
-1); C

lay (%
 com

position); EO
C

= Extractable 
organic carbon (μg g

-1 soil); EO
N

 = Extractable organic nitrogen (μg g
-1 soil); F-stat = F statistic; Fval = F-value; LU

 = Land use; ln(N
O

3 -)  = natural-
log transform

ed nitrate (μg g
-1 soil); PO

XC
 = P

erm
anganate oxidizable C

 (μg g
-1 soil); Pval = p-value; R

M
SE = R

oot m
ean squared error; TN

 = Total 
nitrogen (μg g

-1 soil). 
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Table 2-4: R
esults of AN

O
VAs based on best m

odels built separately w
ith forest and pasture sam

ples for nifH
 copy 

num
ber and AN

F rate. Variables selected from
 (a) physicochem

ical param
eters, or (b) w

ith the m
ost highly 

correlated m
etabolites for each response variable- LU

 com
bination. N

on-significant m
odels not included.  

a 
Physicochem

ical param
eters only 

Variable Stats 
M

odel Stats 

nifH Past. 

 
Estim

ate 
Std. Err. 

SS 
F-val 

p-val 
F-Stat 

p-val 
RM

SE 
*R

2 
(Intercept) 

2.7*10
8 

3.3*10
8 

 
 

 
11.9 

4*10
-4 

4*10
8 

.71 
C

df  
2.3*10

7 
1.9E*10

7 
2.8*10

18 
16.3 

1.2*10
-3 

 
*** 

 
*.66 

PO
XC 

6.2*10
5 

2.0E*10
5 

2.7*10
18 

15.5 
1.5*10

-3 
 

 
 

 
M

o 
-5.5*10

8 
2.6E*10

8 
6.7*10

17 
3.8 

0.07 
 

 
 

 
R

esidual 
 

 
2.48*10

18; 1.77*10
17 

 
 

 
 

ANF Past. 

 
Estim

ate 
Std. Err. 

SS 
F-val 

p-val 
F-Stat 

p-val 
RM

SE 
*R

2 
(Intercept) 

-2.79 
1.78 

 
 

 
3.96 

0.42 
1.4 

.35 
EO

C/EO
N 

1.54 
0.80 

10.89 
5.42 

0.03 
 

* 
 

*.26 
TN/EO

N 
.23 

0.15 
4.88 

2.5 
0.057 

 
 

 
 

R
esidual 

 
 

   22.18; 1.48 
 

 
 

 
 

b 
Physicochem

ical and M
etabolites 

Variable Stats 
M

odel Stats 

nifH For. 

 
Estim

ate 
Std. Err. 

SS 
F-val 

p-val 
F-Stat 

p-val 
RM

SE 
*R

2 
(Intercept) 

-1.4*10
8 

6*10
7 

 
 

 
24.9 

7*10
-7 

3.7*10
7 

.84 
Clay+Silt 

2.6*10
6 

9.5*10
5 

1.2*10
16 

12.1 
1*10

-3 
 

*** 
 

*.81 
TC 

-1.3*10
3 

6.2*10
2 

4.2*10
15 

4.3 
0.05 

 
 

 
 

β-sitosterol 
8.6*10

8  
1*10

3 
5.8*10

16 
58.5 

2.9*10
-6 

 
 

 
 

R
esidual 

 
 

1.34*10
16;  9.92*10

14 
 

 
 

 

ANF Past. 

 
Estim

ate 
Std. Err. 

SS
 

F-val 
p-val 

F-Stat 
p-val 

RM
SE 

*R
2 

(Intercept) 
-1.2 

1.06 
 

 
 

14.2 
1.6*10

-4 
0.9 

.75 
TN/EO

N 
-0.25 

9.2*10
-2 

8.48 
10.43 

6.1*10
-3 

 
*** 

 
*.70 

erythrose 
1.8*10

-3 
4.4*10

-4 
20.5 

25.3 
1.8*10

-4 
 

 
 

 
UDP-NAG

 
-8.2*10

-4 
3.2*10

-4 
5.6 

6.88 
0.02 

 
 

 
 

R
esidual 

 
 

    11.4;  0.81 
 

 
 

 
Abbreviations: AN

F= asym
biotic nitrogen fixation rate (ng N

 g
-1 soil day

-1); β- sitosterol (peak value);C
df (%

 C
 forest-derived); C

lay/S
ilt (%

 
com

position); EO
C

= Extractable organic C
 (μg g

-1 soil); EO
N

 = Extractable organic N
 (μg g

-1 soil); erythrose  (peak values); For. = Forest; Fval = 
F-value; F-stat = F statistic; M

etabolites (peak values); M
o= M

olybdenum
 (μg g

-1 soil); P
ast. = P

asture; PO
XC

 = perm
anganate oxidizable C

 (μg g
-

1 soil); Pval = p-value; R
M

SE
 = R

oot m
ean squared error; S

td. Err. = Standard error; SS = S
um

 of squares; TN
/EO

N
 = Total: extractable organic N

 
(organic + inorganic; μg g

-1 soil); U
D

P
-N

AG
 = uridine diphosphate-N

-acetylglucosam
ine (peak values) 
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Figure 2-1: Asym
biotic nitrogen fixation rate (AN

F) and nifH
 gene abundance. H

orizontal lines represent m
ean m

easurem
ents of each 

LU
. Letters denote grouping by post-hoc D

unn’s tests, based on nonparam
etric Kruskall-W

allis rank-sum
 tests (top right). (a) AN

F rates 
calculated from

 15N
2  labeled soil incubations. (b) Abundance of nifH

 m
arker genes derived from

 qPC
R

, (copies per gram
s soil -1). Baseline 

15N
2  and copies calculated per ng

-1 D
N

A in Supp. Figure 2-1. (c) C
orrelation betw

een nifH
 copy num

ber and AN
F rate for forest (green) 

and pasture (brow
n), w

ith dotted lines representing linear regression sm
oothing. 
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Figure 2-2: U
nconstrained redundancy analysis plots for soil profiles, including (a) soil physicochem

ical profiles (including variables in 
Table 2-2), (b) all m

etabolites, including identified and unidentified com
pounds (n=180), and (c) identified m

etabolites only (n=91). Forest 
sam

ples are represented by green squares and pasture sam
ples are represented by brow

n circles. Ellipses represent 90%
 confidence 

intervals for land use grouping. C
orresponding statistics are presented in Supp. Table 2-1. *** on italicized m
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Figure 2-3: Best unifying models (across LUs) for (a) ln(nifH copy number) and (b) ln(ANF). 
Dashed lines linear regression smoothing function, with gray shading representing a 90% 
confidence interval. Formula on x-axis represents the best fit equation. Correlation between 
prediction and response are in the lower right, with goodness of model fit in upper left. 
Corresponding statistics in Table 2-3. Goodness of fit plots are shown in Supp. Figure 2-2. 

 
Abbreviations: ln(ANF) = natural-log transformed asymbiotic nitrogen fixation rate (ng N g-1 soil day-1); Clay (% 
composition); EOC= Extractable organic carbon (μg g-1 soil); EON = Extractable organic nitrogen (μg g-1 soil); LU = 
Land use; ln(NO3

-) = natural logarithm-transformed nitrate (μg g-1 soil); POXC = Permanganate oxidizable C (μg g-1 
soil); p-val = p-value; TN = Total nitrogen (μg g-1 soil). 
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  Figure 2-4: Best models built separately for forests and pastures. Best variables were selected with 
(a) physicochemical parameters only, and with (b) the highest correlated metabolites for each 
response variable- LU combination (bottom). Figures shaded in gray were non-significant. The missing 
nifH pasture plot indicates that inclusion of metabolites in variable selection did not improve model fit. 
Corresponding statistics in Table 2-4. Goodness of fit plots in Supp. Figure 2-3. 

 
Abbreviations: AIC = Akaike Information Criterion; ANF = asymbiotic nitrogen fixation rate (ng N g-1 soil day-1); β- sitosterol 
(peak value); Cdf (% C forest-derived); Clay+Silt (% composition); EOC= Extractable organic carbon (μg g-1 soil); EON = 
Extractable organic nitrogen (μg g-1 soil); erythrose (peak value); Mo= Molybdenum (μg g-1 soil); POXC = Permanganate 
oxidizable carbon (μg g-1 soil); p-val = p-value; succinic acid (peak value); TC = Total carbon (μg g-1 soil); TE = Total extractable 
(organic + inorganic N; μg g-1 soil); TN = Total nitrogen (μg g-1 soil); UDP-NAG = uridine diphosphate N-acetylglucosamine 
(peak value); δ15N= delta value of 15N (‰). 
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Figure 2-6: Using the RA approach, nif genes (rows) were correlated against community-wide genes, 
identifying 78 significant correlations. A subset of functionally or biogeochemically- relevant genes are 
shown here (columns). Results for all genes available in Supp. Table 2-5. Any Spearman correlation 
coefficients below 0.59 are considered non-significant based on a Bonferroni multiple comparisons 
adjustment. Differential count rank represents log2-fold enrichment level in pastures. Community-wide 
genes were cross-referenced with nitrogenase genes in KEGG database to calculate the percent 
overlap (see values in gray) 
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Supplementary Methods 

 

Field-estimation of gravimetric water content 

To calculate dry-weight adjusted soil mass, three replicate cylindrical sections of the preserved 

field cores (wet) approximately 3 cm in length were cut and weighed, and gravimetric water content was 

estimated by multiplying the inverse of the core section bulk density by field-measured volumetric water 

content and averaged across replicates. Although this provides a rough approximation, a sufficient level 

of precision was achieved: dry mass per incubation averaged 4.98 + 0.21 g (mean + standard deviation). 

 

Isotopic measurements 

Soils were allowed to thaw and to air dry under ambient laboratory conditions, then any remaining 

rock fragments were removed before grinding soils to a fine powder using 1/4 and 1/8 -inch stainless 

steel agitator balls loaded onto a shaking apparatus running at 300 rpm for 30 minutes. Tin-encapsulated 

samples were analyzed for isotopic enrichment using an Elementary Vario EL Cube (Elementar 

Analysensysteme GmbH, Hanau, Germany) equipped with a PDZ Europa 20-20 isotope ratio mass 

spectrometer (Serco Ltd., Cheshire, UK) at the UC Davis Stable Isotope Facility (Davis, CA, USA). Both 

15N and 13C data were obtained from these measurements. 

 

Nitrogen fixation rate calculations 

𝐻𝑒𝑎𝑑𝑠𝑝𝑎𝑐𝑒	𝑉𝑜𝑙𝑢𝑚𝑒 = 𝑉𝑖𝑎𝑙	𝑣𝑜𝑙𝑢𝑚𝑒 −	
(𝑊𝑒𝑡	𝑠𝑜𝑖𝑙 ∗ (1 − 𝑔𝑟𝑎𝑣. 𝑤𝑎𝑡𝑒𝑟	𝑝𝑒𝑟𝑐𝑒𝑛𝑡)

𝑠𝑜𝑖𝑙	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒	𝑑𝑒𝑛𝑠𝑖𝑡𝑦 −	
𝑊𝑎𝑡𝑒𝑟	𝑚𝑎𝑠𝑠
𝑤𝑎𝑡𝑒𝑟	𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

𝐺𝑎𝑠	𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡	% = 	
(%	15𝑁	𝑖𝑛	𝑎𝑑𝑑𝑒𝑑	𝑔𝑎𝑠 ∗ 𝑚𝐿	𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑑) + (%	15𝑁	𝑁𝑎𝑡𝑢𝑟𝑎𝑙	𝐴𝑏𝑢𝑛𝑑 ∗ 𝑚𝐿	𝑎𝑚𝑏𝑖𝑒𝑛𝑡)

𝐻𝑒𝑎𝑑𝑠𝑝𝑎𝑐𝑒	𝑣𝑜𝑙𝑢𝑚𝑒  

%	𝑒𝑥𝑐𝑒𝑠𝑠	𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 	𝑚𝑒𝑎𝑛	15𝑁	𝑖𝑛𝑐𝑢𝑏𝑎𝑡𝑖𝑜𝑛	𝑎𝑡𝑜𝑚	% − 𝑚𝑒𝑎𝑛	14𝑁	𝑐𝑜𝑛𝑡𝑟𝑜𝑙	𝑎𝑡𝑜𝑚	% 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑇𝑜𝑡𝑎𝑙	𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 = 	
%	𝑒𝑥𝑐𝑒𝑠𝑠	𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒

%	𝑔𝑎𝑠	𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡	𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 

𝑚𝑎𝑠𝑠	𝑁	𝑓𝑟𝑜𝑚	𝑖𝑛𝑐𝑢𝑏𝑎𝑡𝑖𝑜𝑛 = 	𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑇𝑜𝑡𝑎𝑙	𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 ∗ 𝑡𝑜𝑡𝑎𝑙	𝑁 

 

Soil DNA extraction 

All steps were completed using manufacturer-provided instructions, apart from the physical 

disruption step, for which a VWR homogenizer bead mill (VWR, Radnor, PA, USA) was used for five 
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cycles of 1 minute at a speed of 5.0 m s-1, and the elution step, where two elution cycles using half the 

recommended elutant volumes each were used. Extractions were purified using the Genomic DNA 

Cleanup and Concentrator-10 kit (Zymo Research, Irvine, CA, USA) according to manufacturer 

instructions, except for a two-step elution modification as described above. DNA yield was quantified 

using a Qubit dsDNA High Sensitivity assay kit (Thermo Fisher Scientific, Waltham, MA, USA).  

 

nifH qPCR 

Template DNA was diluted to 2 ng ul-1 across samples and used in triplicate with 20 μl reactions 

with the following reactants: 1 μl PolF and PolR primer each (500 nM in reaction), 10 μl SsoAdvanced 

Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA), 4 μl DNA template, and 4 μl PCR-grade 

water. Samples were run against a standard curve on a CFX Connect Real-time thermocycler (Bio-Rad, 

Hercules, CA, USA). The following cycling conditions were used: 98°C for 2 m, followed by 35 cycles of 

98°C for 15 s, 68.5°C for 15 s and 72°C for 30 s, followed by a final extension of 72°C for 5 m.  

Standards were created using a high-fidelity blunt-end TOPO cloning kit (Thermo Fisher 

Scientific, Waltham, MA, USA) with a nifH gene amplified from Herbaspirillum seropedicae (Baldani et al., 

1986; ATCC Z 152). Samples were randomized across two reaction plates (94% and 97% efficiency; 

R2=0.99) and run against a standard curve on a CFX Connect Real-time thermocycler (Bio-Rad, 

Hercules, CA, USA). Copy number was calculated on a basis of per ng DNA and per g dry soil.  

 

Soil chemical analysis 

Soil texture was calculated by using 0.5 g air-dried and sieved soil suspended in 10 ml of 5% 

sodium metaphosphate, shaken for 12 hours at 160 rpm. Measurements were made using a particle size 

laser analyzer in sonication mode. Resulting particle size distributions were aggregated using a modified 

maximum diameter cut-off of 6.15 μm for clay particles (i.e., ‘light-scatter equivalent’; Faé et al., 2019). 

Soil pH was measured using a 2:1 soil slurry with deionized water. Exchangeable soil acidity was 

calculated using the Mehlich buffer method (Mehlich, 1976). Total carbon and nitrogen content were 

measured by dry-combustion and calculated against a casein standard. Total soil Al, Fe, Mo, and V were 

quantified by the UC Davis Center for Inductively-Coupled Plasma (ICP-MS) Mass Spectrometry on dried, 
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ground, soil which was microwave-digested with HNO3. Elemental analysis of plant nutrients including K, 

Ca, Mg, and orthophosphate P were assessed by Mehlich 3 extracted ICP-MS (Wolf and Beegle, 1995). 

NO3-, NH4+, total EOC and total EON were quantified through the extraction of a 10 g 

homogenized subsample of field-preserved soil using 0.05 M K2SO4 and shaking for 1 hour at 160 rpm. 

Samples were then filtered and frozen until processed. Inorganic N assays were performed using a 96-

well plate format with 4 technical replicates per sample. Methods were adapted from Qiu et al. (1987) for 

NH4+ and Hood-Nowotny et al. (2010) for NO3-. Total EON was calculated by first combining 1 ml extract 

with 0.2 ml of reagent containing 3% (g ml-1) H3BO3, 7.6% 5 M (ml ml-1) NaOH, and 5% (g ml-1) K2S2O4, 

and digesting in water baths for 2 hours (Valderrama, 1981). The resulting digestate was assayed using 

NO3- analysis methods described above at a 1:3 dilution. Total EOC was quantified by running extracts on 

a Shimadzu TOC analyzer (Kyoto, Japan) and calculating concentrations against a standard curve. 

Apart from EOC, three additional methods were used to proxy ‘microbial accessible’ C. First, total 

organic matter was quantified using the loss on ignition procedure (Schulte and Hoskins, 1995). Next, 

permanganate-oxidizable carbon (POXC) was quantified using methods described by Culman et al. 

(2012) with triplicate samples of field-preserved, air-dried soil. Isotopic analysis of soil provided δ13C 

natural abundance values, which were used in conjunction with known end-member values of pasture 

and forest species (de Moraes, 1996) to estimate the percent carbon derived from C3 plants, assumed to 

be from forest (Cdf , forest-derived C). Isotopic analysis of soil also provided δ15N natural abundance 

Finally, the use of untargeted soil metabolomics was used as an alternative proxy for low molecular 

weight C compounds (Swenson et al., 2015). This approach has the added benefit of indicating the 

availability of organic N and P.  

 

Lasso variable selection correlation pre-screening 

For Lasso variable selection, the physicochemical parameters listed above in the section 

‘Physicochemical profiling’, as well as rational ratio terms were considered in the initial screening for 

meaningful relationships with diazotrophic response variable. Aside from those variables listed in the 

previous section, ratios considered included: total to extractable N (inorganic + organic; TN:TE), total to 
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extractable organic N (TN:EON), total to inorganic N (TN:In), extractable organic C to N (EOC:EON), 

POXC to extractable organic N (POXC:EON), and POXC to inorganic N (POXC:In) 

 

Parametric tests and accounting for geospatial heterogeneity: univariate tests and multiple linear 

regression 

Before performing parametric tests, because ANF rate data contained several slightly negative 

calculated values, all values were adjusted using a constant-additive transformation, calculated as the 

minimum value plus 0.1 (an arbitrary, small value) before applying a natural log transformation.  

The spatial sampling pattern used was selected to potentially explore distance-decay patterns as 

shown in Rodrigues et al. (2013) and Mirza et al. (2020). However, it was assessed early in data analysis 

that spatial patterns are not relevant to the activity, chemical, or community measurements in this study at 

the 100 m scale- with the exception of 0 and 10cm points for some measurements. Some statistical tests, 

including univariate mixed-model linear regression considered geographic distances between sampling 

locations, including within- and among sites. Mixed random effects models were checked for adherence 

to the assumptions, and the significance of LU was tested using a likelihood ratio test with 100 

bootstraps.  

For Lasso variable selection and multiple linear regression, to avoid 0 and 10cm points adding 

bias to data linearity, measurements from these two sampling locations were averaged and used as a 

single data point for each site. After model building for diazotrophic response variables (ANF rate and 

nifH copies), the best model was fit to a generalized linear mixed-model Using LU-nested site grouping as 

a random effect, in order to check for potential bias associated with significant differences in data spread 

across site-LU combinations.  

 

Metagenome analysis: assembly-based approach (RA) 

Paired-end reads were first trimmed for adaptors and filtered using Cutadapt v.3.5 (Martin, 2011). 

BBduk (Bushnell, 2014) was further used to trim low-quality sequences. Filtering parameters discarded 

sequences shorter than 100 bp and with an error rate exceeding 0.1, and 20 was used as a sliding mean 

quality score cutoff. The FastQC module (Andrews, 2017) was used to compare raw and filtered reads. 
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MEGAHIT (Li et al., 2015) was used for read assembly with a minimum multiplicity for filtering of 1 and a 

k-mer size range of 27 to 127, increasing by intervals of 10. Prodigal v.2.6.3 (Hyatt et al., 2010) was used 

for open reading frames (run in normal mode), and nucleotide to protein translation. Reads were mapped 

back to assembled contigs using Bowtie2 (Langmead and Salzberg, 2012) in order to calculate read 

counts. SAMtools (Li et al., 2009) was subsequently used to reconfigure Bowtie2’s output to a bam file, 

followed by HtSeq (htseq-count; Anders et al., 2015) to obtain gene counts from assemblies. Kofamscan 

(Aramaki et al., 2020), which applies a Hidden Markov Model approach to annotation, was then used in 

conjunction with the Kyoto Encyclopedia of Genes and Genomes (KEGG) database to functionally 

annotate open reading frames identified by Prodigal, and annotation significance cutoffs were made 

based on best-matches exceeding threshold minimum scores. Annotations were standardized and 

aggregated by KO terms, and all sample data were merged to generate a gene abundance table. 

 

Metagenome analysis: gene-targeted approach (GTA) 

For this method, annotation was again performed using the KEGG database. A set of 32 

‘diazotrophic indicator genes’ (DIGs), including those encoding Mo- (nif), Fe- (anf), and V- (vnf) containing 

nitrogenase metalloclusters, transcriptional regulators, and co-factors, as well as nodulation (nod) factors 

were selected to assess both free-living and symbiotic diazotrophic community members. A database was 

constructed using annotated sequences for each gene available in the KEGG database. To control for 

genes with a high degree of homology across prokaryotes (for example, nifA, a transcriptional regulator), 

non-diazotrophic organisms were filtered from gene-specific databases by cross-referencing with 

organisms occurring in the nifH database. Then, quality-filtered, but unassembled read pairs were aligned 

to the constructed database using Bowtie2. A custom script was then used to reformat alignment outputs 

into a gene/organism count table. Read counts were removed if: (1) it was a singleton organism/gene 

count, (2) the count-associated organism had less than two gene hits in the database, and (3) the count 

occurred in only a single sample. An important caveat of this method is that if read alignment scores were 

equal for multiple organisms, annotation is randomly assigned to one. In conjunction with the more 

conservative assembly-based approach however, this process serves as a liberal upper bound in gene 

counts and is additionally fast and computationally-light to perform. 
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To study taxa-based community structure, count data was Hellinger-transformed, then ordinated 

using nonmetric multidimensional scaling with the bray distance metric and a maximum of five 

dimensions. This was performed for taxa based on the inclusion of nifH, nifK, and nifD hits across the 

data set.  

 

Diazotrophic indicator genes  

32 genes were selected as indicators of diazotrophs, that is, genes expected to be present in 

organisms capable of fixing N2 gas: The below genes are listed by functional category. Asterisks are next 

to genes considered the ‘minimal core genes’ necessary for active fixation based on (Wang et al., 2013) 

 

 

 

 

 

 

 

 

 

 

 

  

Functional group Gene Functional group Gene 

Sensory/Regulation 
 

fixK Flavodoxin nifJ 
nifA nifF 
nifL Nitrogenase Stabilization nifW 
nifHD1 

Alternative Nitrogenase 
metallocluster formation 

vnfD 
nifHD2 vnfG 

Nitrogenase 
Metallocluster 
formation 

nifD* vnfH 
nifK* vnfK 
nifH* anfG 
nifU nod Sensory/ Regulation nodD 
nifS Plant-targeted Mitotic 

signal 
nodA 

Nitrogenase Cofactor 
Biosynthesis 

nifN* nodB 
nifB* Plant-targeted Nodulation 

signal 
nodC 

nifE* nodE 
nifZ nodF 
nifQ   
nifV*   
nifX*   
nifT   
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Supplementary Tables and Figures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Supp. Table 2-1: Non-parametric statistics for individual metabolites (external xlsx): (a) Results of 
PERMANOVAs testing the significance of LU in explaining physicochemical as well as full metabolite 
and identified metabolite only profiles. Mean centroid, groupwise dispersion within LUs was also 
tested using constrained correspondence permutation tests. (b) Results of Kruskall-Wallis non-
parametric multiple comparisons tests across sites using a Dunn’s post-hoc to test for grouping by LU 
type. Metabolites are ordered by greatest to lowest chi-squared value, including both unknown and 
known compounds. Values presented for each site (n=7) represents the mean +/- standard error, with 
Dunn's grouping represented by letters. P-values were adjusted using a Benjamini- Hochberg 
correction. Those metabolites with strong LU differences are bolded. Red line separates significant 
from non-significant test statistics. 
‡BinBase ID's represent unidentified compounds. More information corresponding to IDs can be found 
at https://binvestigate.fiehnlab.ucdavis.edu/#/ 
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Supp. Table 2-2: Metabolite peak value correlations with Pasture ANF, ordered by the most 
significantly negative overall correlation (averaging Pearson and Spearman estimates [both shown]). 
Any metabolite with average estimates below |0.44| is in gray 
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Supp. Table 2-2, contd.: Metabolite peak value correlations with Pasture ANF, ordered from least to 
most significantly positive overall correlation (averaging Pearson and Spearman estimates [both 
shown]). Any metabolite with average estimates below |0.44| is in gray 
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Supp. Table 2-2, contd.: Metabolite peak value correlations with Forest ANF, ordered by the most 
significantly negative overall correlation (averaging Pearson and Spearman estimates [both shown]). 
Any metabolite with average estimates below |0.44| is in gray 
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Supp. Table 2-2, contd.: Metabolite peak value correlations with Forest ANF, ordered from least to 
most significantly positive overall correlation (averaging Pearson and Spearman estimates [both 
shown]). Any metabolite with average estimates below |0.44| is in gray. 

 



 132 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Supp. Table 2-2, contd.: Metabolite peak value correlations with Pasture nifH copies, ordered by the 
most significantly negative overall correlation (averaging Pearson and Spearman estimates [both 
shown]). Any metabolite with average estimates below |0.44| is in gray 
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Supp. Table 2-2, contd.: Metabolite peak value correlations with Pasture nifH copies, ordered from 
least to most significantly positive overall correlation (averaging Pearson and Spearman estimates 
[both shown]). Any metabolite with average estimates below |0.44| is in gray 
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  Supp. Table 2-2, contd.: Metabolite peak value correlations with Forest nifH copies, ordered by the 
most significantly negative overall correlation (averaging Pearson and Spearman estimates [both 
shown]). Any metabolite with average estimates below |0.44| is in gray 
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Supp. Table 2-2, contd.: Metabolite peak value correlations with Forest nifH copies, ordered from 
least to most significantly positive overall correlation (averaging Pearson and Spearman estimates 
[both shown]). Any metabolite with average estimates below |0.44| is in gray 
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Supp. Table 2-3: Results of ANOVAs of non-significant forest models for nifH copies and ANF rate 
as response variables. Variable selection was performed with (a) physicochemical parameters only 
and (b) metabolites as well as physicochemical parameters. 
a Physicochemical parameters only 

Variable Stats Model Stats 

ni
fH

 F
or

.  Estimate Std. Err. F-val p-val F-Stat p-val RMSE *R2 
(Intercept) 2.9E+08 1.7E+08   2.0 0.17 7E+07 .1 
Clay +Silt 5.3E+06 3.0E+06 0.22 9.3E-02     
δ15N -5.2E+07 2.7E+07 3.75 7.2E-02     
         

AN
F 

Fo
r.  Estimate Std. Err. F-val p-val F-Stat p-val RMSE *R2 

(Intercept) 0.812 0.113   2.5 0.14 0.2 .08 
TN/EON -0.013 0.008 2.45 0.137     
         

 
b Physicochemical and Metabolites 

Variable Stats Model Stats 

A
N

F 
Fo

r.  Estimate Std. Err. F-val p-val F-Stat p-val RMSE *R2 
(Intercept) 4.9E-01 1.98E-01   3.2 0.07 0.16 0.2 
TN/EON -1.2E-02 7.7E-03 2.84 0.11  *   
Succinic acid 7.1E-05 3.8E-05 3.50 0.08     
         

Abbreviations: ANF = asymbiotic nitrogen fixation rate (ng N g-1 soil day-1); Clay/Silt (% composition); EOC= Extractable 
organic C (μg g-1 soil); EON = Extractable organic N (μg g-1 soil); Fval = F-value; F-stat = F statistic; Metabolites (peak 
values); Pval = p-value; RMSE = Root mean squared error; Std. Err. = Standard error; TN/EON = Total: extractable organic N 
(organic + inorganic; μg g-1 soil) 
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Supp. Table 2-4: G
ene counts, norm

alized as counts per m
illion for each D

IG
, using G

TA m
etagenom

ic annotation, organized by nitrogen 
fixation-related function. FC

 com
pare forest and pasture replicates using a genew

ise negative binom
ial likelihood test. p-values are false 

discovery rate corrected using the Benjam
ini-H

ochberg m
ethod. Bold text represents genes w

ith log
2 -fold change greater than 1 and p < 0.05.  

 
 

Forest 
Pasture 

 
 

Functional group 
G

ene 
1 

2 
3 

1 
2 

3 
Log

2 FC 
*p-value 

Sensory/ Regulation 
 

fixK 
5.05+0.35 

7.45+0.34 
5.91+0.4 

5.9+0.45 
4.88+0.30 

5.17+0.47 
0.22 

2.1E-01 
nifA 

232.7+11.9 
187.1+1.9 

329.3+12. 
329.4+16.6 

286.2+10.3 
341.9+9.1 

0.50 
6.3E-08 

nifL 
0.36+0.07 

0.25+0.04 
0.31+0.04 

0.63+0.10 
0.44+0.05 

0.67+0.07 
0.82 

1.0E-02 
nifH

D
1 

0.12+0.03 
0.07+0.02 

0.19+0.03 
0.32+0.04 

0.29+0.04 
0.19+0.03 

1.45 
1.2E-03 

nifH
D

2 
0.08+0.01 

0.25+0.03 
0.075+0.02 

0.26+0.02 
0.12+0.01 

0.18+0.04 
1.72 

2.0E-04 
Nitrogenase 
M

etallocluster 
form

ation 

nifD 
0.70+0.22 

0.76+0.08 
1.17+0.23 

20.1+1.6 
16.7+1.6 

18.9+0.95 
4.81 

3.7E-17 
nifK 

0.60+0.16 
0.81+0.1 

0.98+0.20 
19.8+1.5 

15.6+1.50 
17.8+1.3 

4.99 
2.9E-17 

nifH 
1.94+0.11 

2.42+0.11 
2.02+0.28 

15.80+0.9 
13.89+1.3 

14.8+0.8 
3.03 

3.8E-18 

Nitrogenase Cofactor 
Biosynthesis 

nifU 
1.1+0.07 

0.9+0.05 
1.4+0.08 

3.02+0.26 
2.3+0.2 

2.5+0.18 
1.48 

1.8E-11 
nifS 

56.7+1.7 
48.4+1.0 

68.9+1.85 
80.3+2.1 

75.4+1.7 
83.3+2.1 

0.50 
1.6E-09 

nifN 
0.8+0.11 

0.8+0.07 
0.7+0.07 

7.1+0.4 
5.2+0.4 

4.9+0.6 
3.17 

1.4E-17 
nifB 

0.7+0.2 
1.05+0.1 

1.1+0.2 
14.5+1.2 

12.01+0.86 
12.9+1.1 

4.27 
1.1E-15 

nifE 
0.91+0.35 

1.08+0.13 
1.4+0.11 

20.8+1.28 
17.57+1.8 

22.3+1.2 
4.48 

4.0E-17 
nifZ 

0.05+0.02 
0.1+0.05 

0.12+0.03 
1.7+0.2 

1.18+0.12 
1.4+0.1 

4.99 
1.6E-13 

nifQ
 

0.06+0.02 
0.18+0.05 

0.11+0.018 
1.1+0.131 

0.64+0.1 
0.8+0.16 

4.14 
2.9E-12 

nifV 
12.4+0.44 

8.84+0.2 
11.7+0.23 

16.8+0.42 
14.7+0.5 

17.5+0.4 
0.45 

2.6E-03 
nifX 

0.71+0.05 
0.8+0.06 

1.4+0.17 
2.9+0.22 

2.15+0.22 
2.5+0.24 

2.06 
3.1E-13 

nifT 
0.08+0.02 

0.11+0.02 
0.14+0.02 

0.83+0.10 
0.61+0.08 

0.95+0.14 
3.32 

1.8E-11 
Nitrogenase 
Stabilization 

nifW
 

.044+0.02 
0.03+0.02 

0.11+0.05 
0.6+0.10 

0.5+0.08 
0.63+0.11 

3.60 
6.2E-08 

Flavodoxin 
nifJ 

38.3+2.5 
42.44+0.8 

65.9+2.8 
163.3+4.5 

147.6+5.5 
144.8+3.8 

2.10 
8.8E-27 

nifF 
0.13+0.03 

0.06+0.01 
0.14+0.03 

0.29+0.08 
0.2+0.045 

0.28+0.08 
1.17 

1.3E-02 
 Alternative 

Nitrogenase 
m

etallocluster 
form

ation 

vnfD
 

0.004+0.004 
0.02+0.01 

0+0 
0.10+0.04 

0.11+0.03 
0.10+0.03 

3.83 
1.3E-03 

vnfG
 

0.14+0.041 
0.12+0.03 

0.12+0.019 
0.15+0.021 

0.22+0.032 
0.11+0.01 

0.11 
7.8E-01 

vnfH
 

0.003+0.003 
0.003+0.003 

0.004+0.004 
0.024+0.01 

0.012+0.01 
0.002+0.002 

2.42 
1.6E-02 

vnfK 
0.14+0.02 

0.21+0.02 
0.09+0.01 

0.16+0.03 
0.18+0.03 

0.28+0.09 
0.27 

5.4E-01 
anfG

 
0.003+0.003 

0+0 
0.01+0.007 

0+0 
0+0 

0.01+0.006 
-1.09 

3.3E-01 
nod Sensory/ 
Regulation 

nodD
 

0.25+0.04 
0.22+0.05 

0.12+0.06 
0.32+0.04 

0.21+0.03 
0.46+0.03 

0.41 
3.3E-01 

Plant-targeted 
m

itotic signal 
nodA 

0+0 
0+0 

0+0 
0.004+0.004 

0.01+0.013 
0+0 

1.12 
3.7E-01 

nodB 
0.016+0.007 

0.006+0.004 
0.002+0.002 

0.01+0.007 
0.012+0.016 

0.02+0.007 
-0.46 

6.3E-01 

Plant-targeted 
Nodulation signal 

nodC 
0+0 

0.003+0.003 
0+0 

0.026+0.02 
0.01+0.006 

0.024+0.012 
3.65 

1.3E-02 
nodE 

4.01+0.37 
2.66+0.08 

4.12+0.17 
4.36+0.08 

3.8+0.3 
4.7+0.22 

0.12 
4.1E-01 

nodF 
0.06+0.02 

0.04+0.02 
0.04+0.01 

0.12+0.04 
0.09+0.03 

0.09+0.02 
0.93 

1.8E-01 
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Supp. Table 2-5: Results from Spearman correlation analysis between identified nif genes and all 
other genes from RA metagenomic analysis, cross referencing genomic occurrence within 
diazotrophic genomes (external .xlsx).  
ªp-values were adjusted with a Bonferroni control for multiple comparisons, based on 5,152 
comparisons performed. 
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Supp. Figure 2-1: 15N
 natural abundance from

 incubations and copy num
bers on D

N
A basis. Boxplots represent data for each forest and 

pasture site sam
pled, w

ith overlayed individual m
easurem

ents represented by black points. (a) D
ifference in pre- and post-incubation natural 

abundance of 15N
 (i.e., field collected soil versus experim

ental controls). Perm
ille values in reference to atm

ospheric standard. H
orizontal 

dashed line indicates no change. Kruskall-W
allis rank sum

 test and D
unn’s post-hoc test indicates no significant difference across site groups. 

(b) nifH
 gene copy num

bers derived from
 quantitative polym

erase chain reaction, norm
alized by ng com

m
unity D

N
A. Letters above each bar 

represent D
unn’s post-hoc grouping. 
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Supp. Figure 2-2: Goodness of fit figures for LU unifying models presented in Figure 2-3. Solid lines 
represent a perfect fit (e.g., model R2 = 1.0). Plots are overlaid with a dashed linear regression 
smoothing function as seen in Figure 2-3. For detail, each model is shown together as well as faceted 
across LUs 
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Supp. Figure 2-3: Goodness of fit figures models built separately for each LU, with and without 
metabolites. Solid lines represent a perfect fit (e.g., model R2 = 1.0). Plots are overlaid with a dashed 
linear regression smoothing function as seen in Figure 2-4. The missing nifH pasture plot indicates 
inclusion of metabolites in variable selection did not improve model fit 
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Supp. Figure 2-4: KEG
G

 N
itrogen M

etabolism
 pathw

ays overlaid 
w

ith genew
ise negative binom

ial likelihood log
2  fold-change 

statistics, derived from
 assem

bly-based m
etagenom

ic annotation. 

Supp. Figure 2-5: Taxonom
ic com

position of G
TA-based 

read counts, filtering for nifH
D

K – positive taxa. Taxonom
ic 

assignm
ents of reads are aggregated at the class level. 

C
olored boxes to the right indicate FD

R
-adjusted p-values 

based on quasi-likelihood negative binom
ial tests.  
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Abstract 

Biological nitrogen fixation is crucial in determining the nitrogen status of many natural and 

unmanaged landscapes, but it is a highly regulated reaction, given the steep energy input required. In the 

Amazon Basin of Brazil, the establishment of cattle pasture is a dominant driver of primary forest loss. 

This land use (LU) change stimulates the augmentation of diazotrophic community abundance and 

significantly increases soil asymbiotic nitrogen fixation (ANF). While major shifts in the community 

structure of potential diazotrophs (i.e., DNA-based profiles) have also been shown to occur with forest-to-

pasture LU change, it is not clear how this functional group response corresponds to the soil prokaryotic 

community response overall. It is also unknown how the community structure of potential diazotrophs 

compares to that of metabolically active diazotrophs undergoing nitrogenase-subunit transcription (RNA-

based profiles) both within and across LUs. To address these knowledge gaps, we co-extracted RNA and 

DNA from soils of pastures and primary forests and characterized the total prokaryotic and diazotrophic 

communities via high-throughput amplicon sequencing. We found that, in comparison to the significant 

increase in alpha-diversity (via Shannon index) observed for nifH-D communities in association with 

pasture conversion, prokaryotic community alpha-diversity did not change. In contrast, both community 

profiles exhibited a significant decline in group dispersion (i.e., spatial homogenization) in pastures 

compared to forests, and both exhibited significant alterations in community composition. 

Physicochemical conditions associated with compositional shifts were similar for both DNA communities, 

including pH, clay, sulfur, and inorganic N content. Metrics of community structure across the LU 

dichotomy differed substantially for nifH-R compared to nifH-D communities: alpha-diversity was similar in 

pastures and forests, group dispersion increased in pastures, and community composition showed 

minimal differentiation between the two. The OTU-specific profiles of active diazotrophs were surprisingly 

much more similar across LUs than they were to their paired nifH-D profiles from the same soil sample. In 

contrast to nifH-D, compositional shifts across nifH-R communities were strongly correlated with ANF 

rates (Pearson’s r = 0.88). Further, the relative abundance of 17 out of 882 unique OTUs (dominated by 

Bradyrhizobium and Enterobacteriaceae) within the nifH-R community served as a significant indicator of 

ANF rates. We concluded that while actively nifH-transcribing communities showed a surprisingly limited 
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response to LU change, their community composition was more closely related to functional group activity 

than potential soil diazotrophs. 

 

Importance 

Land use change in the Amazon Basin has profound implications for ecosystem-scale nutrient 

cycling. In the heavily deforested Amazon state of Rondônia, stimulation of biological nitrogen fixation by 

free-living diazotrophs is one of largest such biogeochemical impacts of forest conversion to cattle 

pasture. The magnitude of this effect likely depends on factors including the intensity of management 

practices and soil physicochemical conditions, given that some pastures remain productive without 

fertilizers for decades, while others degrade in just a few years. Understanding the interaction of soil 

diazotrophic communities, their environment, and rates of nitrogen fixation in mature, active pastures is a 

foundational step in assessing how natural populations of soil diazotrophs may be utilized for sustainable 

nutrient management in rangeland agriculture. Further, this study evaluates both potential and active 

asymbiotic diazotrophic communities, an approach that is exceedingly rare in soil systems. This 

represents a crucial expansion in our understanding of the ecology of this poorly studied functional group. 

 

Keywords: Free-living diazotroph, Asymbiotic diazotroph, Asymbiotic nitrogen fixation, nifH community, 

soil RNA, Brazilian Amazon, land-use change, cattle pasture 

 

Abbreviations: ANF: asymbiotic nitrogen fixation; BH: Benjamini-Hochberg; CT: community type; F: 

forest; FC: log2fold-change; GD: geographic distance; IT: indicator taxa; KW: Kruskall-Wallis; LU: land 

use; nifH-D: present diazotroph community; nifH-R: nitrogenase-transcribing diazotroph community; P: 

pasture; PC: principal coordinates; Supp: Supplementary; VE: variation explained 
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Introduction 

Land-use (LU) change for the establishment of cattle pasture in the Amazon Basin is common 

and ongoing, having claimed an estimated 230,000-275,000 km2 of primary forest thus far (Tyukavina et 

al., 2017). This large-scale ecosystem transition has consequences for biodiversity as well as hydrologic, 

energy, and nutrient cycling both for pastures themselves, as well as for remaining forests in the region 

(Longo et al., 2020). The N cycle in particular shifts drastically with forest-to-pasture conversion, as 

evidenced by large declines in rates of mineralization, nitrification, and denitrification, especially as 

pastures age (Neill et al., 1997; Piccolo et al., 1994a; Piccolo et al., 1994b; Verchot et al., 1999). In 

aggregate, this suggests LU change to pasture imposes N limitations for both plant and soil microbial 

community metabolisms (both assimilatory and dissimilatory), as compared to their primary forest 

counterparts (Dias-Filho et al., 2001). In conjunction with this tightening of the N cycle, biological nitrogen 

fixation- a microbial process that is crucial in providing new N to natural or unfertilized systems- appears 

to be upregulated in mature, active pastures, as evidenced by significant increases in soil diazotroph 

population size (10-30x; Mirza et al., 2014; Chapter 2) and asymbiotic (free-living and root-associated) 

nitrogen fixation (ANF) rate (47x; Chapter 2; Figure 2-1a,b).  

It has also been shown, based on DNA-derived nifH gene amplicon sequencing, that pasture 

conversion drives augmentation of potential diazotroph alpha-diversity, as well as significant 

compositional shifts (Mirza et al., 2020). We refer to these as ‘potential’ diazotrophs for several reasons: 

First, because nitrogenase-encoding genes are remarkably widespread across the prokaryotic 

phylogenetic tree due to extensive horizontal gene transfer (Koirala and Brozel, 2021; Zehr and Turner, 

2001), and genomes containing vestigial nitrogenase marker genes (e.g., nifH) do not always contain the 

minimal gene set required for nitrogen fixation activity (Aramaki et al., 2020; Wang et al., 2013). Second, 

because those taxa which are genetically capable of N fixation also assume a variety of trophic 

strategies, whereby acquiring N through ANF may be of variable priority based on environmental 

conditions and exogenous nutrient concentrations (Le Boulch et al., 2019; Smercina et al., 2019). 

Therefore, it is not clear whether the substantial changes in the community structure of potential 

diazotrophs (i.e., nifH-D) with LU change (and its associated shifts in physicochemical conditions such as 
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inorganic N pool size) are unique to this functional group, or are a reflection of how total prokaryotic 

communities respond. 

Further, it is unknown how representative nifH-D communities are of those which are not just 

metabolically active, but also actively transcribing nitrogenase enzyme subunits in preparation for 

catalyzing the dinitrogen reductase reaction across this LU dichotomy (i.e., nifH-R communities). Aside 

from the reality that just a small fraction of the total microbial soil community is assumed to be 

metabolically-active at any given time (Kuzyakov and Blagodatskaya, 2015), physiological variation 

amongst potential diazotrophs may greatly impact the structure of active diazotrophs. For example, active 

diazotrophs are sensitive to exogenous O2 concentrations given that the molecule irreversibly inactivates 

the nitrogenase enzyme (Robson and Postgate, 1980)- but depending on an organism’s trophic strategy, 

O2 can be an important metabolic electron acceptor (Blagodatskaya and Kuzyakov, 2013). Pure culture 

studies have shown there to be substantial variation in the O2 concentration for optimal nitrogenase 

activity (Khadem et al., 2010; Okon et al., 1976; Volpon et al., 1981) amongst diazotrophic taxa. 

Additionally, active soil-dwelling diazotrophs are likely to prioritize the uptake of available inorganic and 

low-molecular-weight organic N sources before investing in the energetically expensive process of ANF 

(Norman and Friesen, 2017; Smercina et al., 2019). For instance, taxa have been shown to vary in their 

capacity to fix N2 in the presence of environmental NH3 (Dekaezemacker and Bonnet, 2011; Silva et al., 

2011), and may be capable of taking up organic sources of N directly (Geisseler et al., 2009). Diazotrophs 

even exhibit differential tolerance to physicochemical conditions like free aluminum concentration and soil 

acidity when fixing N2, an observation particularly relevant to tropical soils (Avelar Ferreira et al., 2012). 

These conditions impacting nitrogen fixation capacity disproportionately across potential diazotrophs can 

also shift rapidly at nanoscale soil structures, indicating transient and complex selection mechanisms for 

active asymbiotic diazotrophs in particular. Taken together, this suggests nifH-R profiles may vary 

significantly from their nifH-D reservoir communities within LUs, and that, in consideration of the dramatic 

soil physicochemical changes observed with forest-to-pasture conversion (Chapter 2, Figure 2-2), nifH-R 

communities could exhibit more drastic LU impacts than nifH-D communities. 

Understanding how diazotrophic community and environmental dynamics impact ANF- derived N 

inputs to active pastures is of crucial importance: Fertilizer amendments are uncommon in the region due 
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to economic constraints, and an appreciable loss of N (or alternatively, a replenishment deficit) from 

pasture systems ultimately leads to a decline in forage grass productivity, landscape degradation, and 

potentially abandonment in favor of newly-established pastures (Asner et al., 2004). Given the 

sensitivities of potential asymbiotic diazotrophs to external conditions as described above, it is of interest 

to determine whether the community structures of nifH-D and nifH-R communities are related to functional 

group activity, particularly because previous work has shown that while an increase in the absolute 

abundance of nifH-D communities (i.e., copies per gram soil) with pasture conversion occurs 

concomitantly with elevated ANF rates, the two metrics show no meaningful relationship of scale within 

LUs (Chapter 2, Figure 2-1c).  

This study aimed to assess the relationships between total present and active communities 

across a primary forest-pasture LU dichotomy. Our first aim was to directly compare nifH-D to the total 

present prokaryotic (based on 16S rRNA) community structure across LUs, hypothesizing that nifH-D 

community diversity and structure shifts independently of the 16S community as a whole, in association 

with soil physicochemical conditions favorable to diazotrophic communities in pastures. Our second aim 

was to explore how nifH-D community structure compares to that of nifH-R communities at the time of 

sampling both within (as paired samples) and across LUs, expecting substantial differences between the 

two profiles within samples of the two respective LUs. We also expected a more pronounced 

differentiation in nifH-R community structure as compared to nifH-D across LUs, based on the significantly 

higher rates of ANF measured in pastures compared to primary forests. Finally, we sought to ascertain 

whether nifH-D or nifH-R community metrics relate to ANF rates, hypothesizing nifH-R metrics to serve as 

stronger indicators of activity. 

 

Materials and Methods 

 

Site Description and Sample Preservation 

Soil samples were collected in March and April of 2017 (at the end of the rainy season) near 

Ariquemes, Rondônia, Brazil. For thorough site descriptions, see Chapter 2 ‘Materials and Methods’. 

Briefly, six sites, three primary forests (F) and three pastures (P; converted in or around 1972) were 
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sampled within an established 100 m2 quadrat. Nucleic acid samples were collected at each corner point 

of the quadrat (n=24). This sample number was calculated based on US regulatory limitations of live soil 

transport in a liquid medium. At each sampling location, surface debris was removed and four soil cores 

2.5 cm in diameter were extracted (as a block) from 0-10 cm. For RNA preservation, cores were placed in 

a sterile, RNase-free bag immediately after extraction and homogenized mechanically for 30 s. Two 

subsamples of 2.5 g were transferred to tubes containing 5 ml LifeGuard Soil Preservation solution 

(Qiagen, Hilden, Germany), gently shaken, and kept frozen at -20° C. The remaining soil was kept cool 

(~4-5° C), then sieved to 2 mm (with rocks and roots removed) and either frozen within 24 h or used in 

ANF rate incubations using 15N2- labeled assays (described in Chapter 2, Supplementary [Supp.] 

Methods). Additional protocols pertaining to soil physicochemical analyses are also described in Chapter 

2. Physical measurements included textural size classification. Chemical measurements included C and 

N pools (combustion-derived), potassium sulfate extractable organic C and N as well as inorganic N 

(NH4+ and NO3-), permanganate oxidizable C, loss-on-ignition organic matter, pH, extractable acidity, 

cation exchange capacity (CEC), 15N and 13C natural abundance, Mehlich-3 extractable acidity, Ca, Mg, 

K, Cu, Zn, S, and orthophosphate P, as well as nitric acid- digested Al, Fe, Mo, and V. 

 

DNA and RNA isolation and processing 

RNA and DNA were co-extracted from four 1.25 g replicate aliquots of LifeGuard-preserved soil 

using the Qiagen (Hilden, Germany) RNeasy PowerSoil Total RNA and DNA elution kits, respectively. 

Following elution, community DNA and RNA were quantified using Qubit dsDNA and RNA High-sensitivity 

assays, respectively (Invitrogen, Waltham, MA), and replicate DNA extractions were pooled unless yields 

were unusually low (i.e., less than 20% of average yield). DNA was then purified using a Genomic DNA 

Cleanup and Concentrator-10 kit (Zymo Research, Irvine, CA, USA).  

For RNA, trace genomic DNA was removed using the TURBO DNA-free kit (Invitrogen), then 

samples were purified and concentrated using the Qiagen MinElute Cleanup kit using a modified two-step 

elution at 55% the total recommended elutant volume each. A NanoDrop Spectrophotometer 

(ThermoFisher, Waltham, MA) was used to verify the RNA quality using 260/280 and 260/230 ratios. After 

quality was checked, concentrations were standardized, and reverse transcription of 200 ng RNA was 
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performed in 20 μL reactions using SuperScript IV single-strand reverse transcriptase (Invitrogen) 

following manufacturer instructions, with the following gene-specific conditions: The nifH3 primer (5’ 

ATRTTRTTNGCNGCRTA 3’; Zani et al., 2000) was used for gene-specific reverse transcription at a 

concentration of 150 nM in reaction and an incubation temperature of 52.5 °C, as previously described by 

Calderoli et al. (2017). cDNA synthesis failed for one pasture sample due to insufficient quantity and 

quality of RNA, so 23 rather than 24 samples were utilized for downstream processing and analysis. 

Negative control reactions were run to ensure the absence of DNA. Both the 16S and nifH genes were 

quantified via qPCR using gene-specific primers but unfortunately, attempts to amplify nifH transcripts 

from cDNA using the qPCR-specific master mix resulted in a degree of primer dimer formation which 

interfered with accurate quantification. 

Amplicon sequencing of the nifH gene was performed for both community DNA and cDNA. The 

gene was targeted using nifH1 (5’-TGYGAYCCNAARGCNGA-3’) and nifH2 (5’-

ADNGCCATCATYTCNCC-3’ ; Zehr and McReynolds, 1989) primers. nifH1 included an inline 12 bp 

barcode on the 5’ end, specific to each sample. PCR reactions were performed in triplicate in 40 μl 

volumes, including 4.5 μl cDNA template (or 4 μl DNA template at 2 ng μl-1), 20 μl HotStarTaq mastermix, 

4 μl each of forward and reverse primer (1.0 μM in reaction), and 7.5 μl PCR-grade water (7 μl for DNA 

reactions). The thermocycler was run in accordance with HotStarTaq recommendations: 95°C for 15 min, 

40 cycles of 94°C for 0:45 s, 61°C for 1:00, and 72°C for 1:00, followed by a final extension at 72°C for 10 

min. The pooled library was submitted to the UC Davis DNA Technologies Core facility (Davis, CA) for 

PippinHT size selection (Sage Science, Beverly, MA), Illumina (San Diego, CA) sequence adapter 

ligation, and final sequencing on an Illumina MiSeq 250 bp paired-end run. The 16S rRNA sequence 

library was prepared using Illumina-specific primers as described in Caporaso et al. (2011) and run on a 

separate MiSeq lane. 

 

High-throughput sequencing and bioinformatic pipeline 

Sequence processing for DNA- (nifH-D) and RNA- (nifH-R) based communities was performed 

using a modified version of the pipeline described in Gaby et al. (2018). Modifications included using 

DADA2 (Callahan et al., 2016) for sequence denoising, and utilizing a Hidden Markov Model built with 
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nifH sequences to perform frameshift correction and to filter non-nifH protein sequences, as described in 

Angel et al. (2018a). Sequences were clustered at 95% similarity with dual-strand search, and clusters 

with five or fewer sequences were removed. A custom script was used to configure a final taxonomic 

table using percent ID cutoffs specified in Gaby et al. (2018): 91.9% for species, 88.1% for genus, and 

75% for family. 16S sequence processing was conducted entirely in DADA2 using the same settings 

described for the nifH pipeline. 16S-D ASVs were annotated taxonomically in DADA2 using the 

silva_nr99_v138.1_train_set.fa reference database. Additional procedural detail concerning DNA/RNA 

isolation and processing, reverse-transcription, qPCR, and amplicon library preparation and sequence 

processing are available in Supp. Methods. 

 

Statistical Procedures 

Shannon diversity was calculated for 16S-D (DNA), nifH-D and nifH-R (RNA) sequence profiles  

using the ‘vegan’ package (Oksanen et al., 2013) in R. Although sequences were processed differently 

for 16S and nifH-D communities, comparisons of 16S clusters vs ASVs have shown both are sensitive to 

differences in alpha- and beta- diversity across environments (Chiarello et al., 2022). Since the goal of 

diversity metric measurements in this study was to compare relative differences across LUs rather than 

absolute value differences between community profiles, the use of differential taxa definitions should not 

impact the conclusions of the analysis made. Differences across sites and LUs were tested using a 

Kruskall-Wallis (KW) rank sum test with a Dunn’s post-hoc to test for LU grouping, and a Benjamini- 

Hochberg (BH) correction for multiple comparisons. Diversity was then correlated with physicochemical 

variables (with natural-log transformation [ln] for variables with 10x or greater LU differences) as well as 

prokaryotic and diazotrophic indicators (gene copies in ng-1 DNA and ANF rate). A significant Pearson’s r 

cutoff of |0.55| was established using BH p-value correction, but relationships were further scrutinized 

using a simultaneous Spearman’s ⍴ cutoff > |0.45| to account for potential outlier effects driving Pearson 

values, as well as visual trend inspection.	 

For community-level compositional analysis, dissimilarity was calculated by repeatedly (n=100) 

rarefying sample profiles to an even depth and applying a Hellinger transformation as well as a Bray-

Curtis distance metric. Samples were ordinated using unconstrained principal coordinates (PC) and 
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partial-constrained distance-based redundancy analysis (using the capscale function in ‘vegan’). The first 

two PC- based ordinal axes were plotted to assess sample variation across LUs for each community. To 

statistically test for the degree of in-group variation, multivariate dispersion, a measure of beta-diversity 

(Anderson et al., 2006) was calculated for each community with respect to site and LU. Permutation and 

Kruskall-Wallis rank sum (plus Dunn’s post-hoc) tests were used to determine significance. 

PERMANOVAs (using function adonis2 in ‘vegan’) were used to test for the effect of LU change on 

community composition by first accounting for the potentially confounding effect of variation in geographic 

distance (GD) amongst sampling locations within and across LUs. Total, shared, and non-redundant 

variation explained (VE) was then calculated. Physicochemical variables were tested for non-redundant 

VE by first accounting for LU and GD, and the ‘vegan’ function envfit was used to assess correlations with 

community structure. The DNA- and RNA-based nifH communities were also considered together (nifH 

Total) for community- level composition testing to determine whether community type (CT; nifH-D vs. 

nifH-R communities) had a larger or smaller effect as compared to LU. Similar analyses as those 

described above were performed for nifH Total profiles, including beta-dispersion, environmental 

correlation, and PERMANOVA group testing, with the added test of CT effect, as well as quantifying 

pairwise distance across LU and CT groupings. 

The remaining analyses focused on just the nifH-based communities. Initial nifH-specific 

comparisons were made at the OTU level. Two effects and four total comparisons were tested: To assess 

LU effect, differences between F and P communities were tested for (1) DNA (F-DNA and P-DNA) and (2) 

RNA- based communities (F-RNA and P-RNA), respectively. To test for pairwise (i.e., within sample) CT 

effect, differences within DNA- and RNA- based communities were assessed for (3) F (F-DNA and F-

RNA) and (4) P (P-DNA and P-RNA), respectively. For each comparison, 'co-occurring’ (i.e., testable) 

OTUs were determined based on their presence in two or more samples in each treatment, and presence 

in ca. 1/3 of samples across treatments. This largely eliminated rare OTUs, retaining on average 

91+0.05% of OTU abundance across samples. Differential abundance was tested using negative quasi-

likelihood binomial tests as implemented in the R package ‘edgeR’ (Robinson et al., 2010), accounting for 

sitewise replicate nesting. P-values were adjusted using a BH correction. Within each pair of effect tests 

(LU or CT), OTUs common to both comparisons were assessed for agreement or disagreement in 
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significance and trend, based on p- values and directionality of log2-fold change (FC) values. Total OTUs 

were aggregated to the family level (most conservative classification based on percent identity in 

annotation procedure) and were assessed statistically if they were present in ca. 1/3 of samples and 

accounted for at least 1000 total sequences in the data set. The same four differential abundance tests 

were made as previously performed at the OTU level, using an adjusted p-value cutoff of < 0.05 and an 

FC cutoff of > |0.5|.  

Finally, indicator analysis was performed to identify any OTUs significantly associated with ANF 

rate in the nifH-R community (based on previous findings from community-level composition). Methods 

were adapted from those described in Smercina et al. (2021). First, samples were binned into rate 

categories (ng N fixed g soil-1 day-1) including ND (no detection; 0 or negative rates measured; n=3), X-

Low (x<0.1; n=5), Low (0.1<=x<0.3; n=6), Medium (0.3<=x<1.5; n=5), and High (x>=1.5; n=4). Bins were 

set based on natural break points as assessed by a rate-index plot (Supp. Figure 3-1) while attempting 

to balance the number of samples in each bin. The analysis was performed using the ‘indicspecies’ 

package function multipatt (De Caceres et al., 2016) with 10,000 permutations and a maximum of 3 rate-

bin associations allowed. Significant indicator OTUs (IT) were selected based on the following association 

combinations: High, Medium, High + Medium, and High + Medium + Low. ITs were then assessed for 

their impact on community structure, their overall relative abundance by rate group, and their aggregate 

relative abundance relationship with ANF process rates.  

 

Results 

 

Community diversity and compositional patterns across prokaryotes and diazotrophs  

Shannon diversity indices differed significantly across sites for nifH-D (KW χ2= 19.8; p-value [p-

val] = 0.001) and marginally for 16S-D (KW χ2= 9.4; p-val = 0.09), but only nifH-D reflected a meaningful 

LU effect in these differences, with mean (+ standard error) values of 2.5 + 0.24 for forest (F) compared 

to 4.4 + 0.11 for pasture (P) soils, respectively (Figure 3-1a). This difference in LU trend between nifH-D 

and 16S-D communities is also reflected by absolute qPCR-derived quantification of the two genes 

across LUs (Supp. Figure 3-2). In contrast, to nifH-D, nifH-R communities did not exhibit a significant site 
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effect, nor an appreciable difference in F (3.2 + 0.09) and P (3.6 + 0.15) mean values. Additional metrics 

including Chao1, evenness, and inverse Simpson index reflected similar trends for nifH-D and nifH-R 

communities (Supp. Figure 3-3). Of the 26 physicochemical parameters and diazotrophic indicators 

(gene copy numbers and ANF measurements) correlated against Shannon diversity, a total of 9 showed 

a significant correlation with nifH-D communities (Pearson and Spearman values > |0.5|; Supp. Table 3-

1a,b). Physicochemical variables including NH4+ and pH correlated positively with nifH-D diversity, while 

ln(NO3-), inorganic: total N (In:TN), S, clay, and δ15N correlated negatively (Figure 3-1b). Some of these 

correlations showed no clear scaling within LUs (e.g., NH4+, ln(NO3-), In:TN), while others were driven 

mainly by the diversity of F communities (e.g., pH, clay). Diazotrophic indicators including ln(nifH copies); 

(Pearson’s r = 0.8) and ANF rate (r = 0.57) both correlated positively with nifH-D diversity, but without 

clear linear scaling within LUs. nifH-R communities reflected similar but non-significant (e.g., Pearson’s r 

< 0.55, Spearman’s ⍴ < 0.45) trends with several of the nifH-D - correlated variables, but contrastingly, 

16S-D community diversity did not display correlation coefficients greater than |.25| for any of the above 

variables, nor did it display any other significant associations. Diversity did not correlate significantly 

between any of the three community profiles surveyed (16S, nifH-D and nifH-R; Supp. Table 3-1a,b).  

For both DNA-based communities, approximately half of the total community compositional 

variation explained (VE) could be visualized on the first two principal coordinate (PC) axes (45.9% for 16S 

and 47% for nifH; Figure 3-2a, b), and both communities reflected a high degree of separation between 

LUs along the first axis. Surprisingly, the VE by geographic distance (GD) and LU for community 

composition of 16S-D and nifH-D communities were nearly identical: Together they accounted for ca. 

45% of the compositional variation, with LU contributing significantly after partitioning GD and shared 

variance (approximately 12%; F-stat = 4.17; p-val < 0.002; Table 3-1). Dispersion of 16S-D communities 

was modestly higher among F compared to P soils (constrained correspondence permutation F-stat = 

7.6; p-val= 0.01). At the site level, however, 16S-D dispersion did not group significantly by LU. 

Dispersion of nifH-D communities with respect to LU reflected a similar trend of dissimilarity-based 

homogenization across LUs (F-stat = 52.1; p-val= 1*10-4; Table 3-2). However, in contrast to total 

prokaryotes, nifH-D community dispersion at the site level largely grouped by LU, with lower within-site 

dispersion among P replicates (F-stat = 16.08; p-val= 1*10-4;) 
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The first two PCs of the nifH-R compositional ordination accounted for a notably lower proportion 

of total community variation as compared to nifH-D (30.8% vs 47%). Separation of nifH-R samples by LU 

was also much less pronounced (Figure 3-2c): GD and LU together accounted for 18.5% of community 

compositional variation, and LU (unique + shared) offered one-quarter the VE of nifH-D communities 

(5.9% F-stat = 1.37; p-val =0.08; Table 3-1). In stark contrast to nifH-D, which exhibited a major decline in 

LU-based group dispersion (0.43+.011 for F samples compared to 0.31+.014 for P samples), nifH-R 

communities were more dissimilar among P samples (0.36+.015) than F samples (0.28+.01; F-stat = 

19.5; p-val = 4*10-4; Table 3-2). Site-wise dispersion varied significantly (F-stat = 6.5; p-val = 2.4*10-3) but 

was not strictly grouped by LUs. When nifH-D and nifH-R communities were ordinated together, 

separation along the first PC (31.1%) was driven mainly by DNA/RNA community type (CT) rather than 

LU (Figure 3-2d). Overall, GD and LU had limited VE over community composition (10.8%), while nifH-D 

vs nifH-R CT played a larger role (28.4%; F-stat = 19.2; p-val = 0.001; Table 3-1). Dispersion was higher 

overall for F soils (0.47+0.02 vs. 0.41+0.014; F-stat = 10.22; p-val = 2.6*10-3), with group variance driven 

by F- DNA (F-stat = 29.03; p-val = 1*10-4; Table 3-2). P- RNA communities were the second most 

dissimilar, higher than P- DNA and F- RNA. On a pairwise basis, dissimilarity was significantly higher 

between RNA-based communities and F-DNA compared to P-DNA (KW χ2 =213; p <0.001; Figure 3-2e).  

DNA-based (16S and nifH) community composition reflected significant correlation and VE (envfit 

r > 0.5; PERMANOVA p<0.1) with a similar subset of physicochemical and microbial indicator variables, 

including pH, In:TN, NO3-, nifH -D Shannon diversity, S, and clay content (with the latter two showing 

nearly identical directionality, and opposite directionality with pH (Figure 3-2 a,b; Supp. Table 3-2). The 

16S-based communities additionally reflected a modest relationship (envfit r > 0.3; PERMANOVA p<0.1) 

with Al, Mg, and K, while nifH-D community composition showed a modest association with organic N 

(ON). In contrast, no physicochemical conditions correlated with nifH-R structure (Figure 3-2c). However, 

a key functional group indicator, ANF rate, showed a strong and significant correlation (r = 0.82) with nifH-

R community structure (Supp. Table 3-2). This observation motivated subsequent analysis of RNA 

community composition in relation to diazotrophic activity, to be discussed below. 
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Diazotrophic compositional shifts in potential and active communities 

Approximately 69% of co-occurring nifH-D OTUs (n= 393 of 2,374 total) showed no significant 

difference in relative abundance between LUs, whereas 27% were enriched in P soils and just 4% were 

enriched in F soils, with log2-fold changes (FCs) ranging from 2.5-15 (Figure 3-3a; for full statistics, see 

Supp. Table 3-3). RNA communities exhibited far fewer significantly differing OTUs between LUs with 

just 8.7% and 2.5% of co-occurring OTUs (n = 161 of 882 total) being enriched in P and F, respectively 

(Figure 3-3b). Of those OTUs co-occurring across LUs within DNA and RNA profiles (n=129), just six 

were commonly enriched in P soils, but no OTUs were found commonly enriched in DNA and RNA 

communities of F soils (Supp Figure 3-4a). When paired F samples were considered between 

community types (CTs), approximately even proportions of OTUs (~15.8%) were enriched in DNA and 

RNA, respectively, out of 152 co-occurring OTUs (Figure 3-3c). Paired pasture CT profiles showed a 

much greater proportion of DNA enrichment, 46.5%, compared to 4% for RNA- but those enriched in P-

RNA tended to exhibit greater FCs and more significant p-values (Figure 3-3d). Of the OTUs common to 

both F and P CT comparisons (n=140), 11 were similarly enriched in RNA for both F and P diazotrophic 

communities, accounting for nearly all (85%) OTUs enriched in the latter comparison (Supp Figure 3-4b). 

OTUs commonly enriched in DNA (or alternatively, depleted in RNA; n=12) accounted for approximately 

half of those in F soils, but just a handful of those enriched in P-DNA.  

Aggregating the relative abundance of OTUs annotated to the same taxonomic family revealed 

that virtually all communities (both nifH-D and nifH-R) were dominated by Nitrobacteraceae (on average 

51.4 + 2.8% of sequence abundance; Figure 3-4). The only two families exhibiting a significant difference 

between LUs in nifH-R communities (both enriched in P soils) were Leptolyngbaceae (n=10 OTUs) and 

Ectothiorhodospiraceae (n=16 OTUs, both represented by orange squares). In contrast, 14 families 

exhibited a significant LU effect in nifH-D (represented by orange circles), with just two groups 

(Clostridaceae FC = 4.9 and Spirochaetaceae FC = 2.2) enriched in F soils (green border). Statistically- 

robust P enrichment was observed in the high-abundance family Methylobacteriaceae (FC = 4.1; Supp. 

Table 3-4). Paired differential abundance within LUs and across CTs yielded very similar trends among 

families (represented by triangles), but CT effects were more prolific among taxa in P soils (brown fill). 

Higher-abundance families tended to be enriched in nifH-RNA of paired samples, while lower-abundance 
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families tended to be depleted in nifH-RNA, irrespective of LU. The largest relative abundance difference 

across CTs was observed within the family Aphanizomenonaceae, which exhibited a relative abundance 

enrichment in nifH-R of more than 100x compared to nifH-D. Methylobacteriaceae, Rhodocyclaceae, and 

Rhodobacteraceae were also significantly enriched in nifH-R by more than 10x across both LUs (Supp. 

Table 3-4). Meanwhile, the most abundant group depleted in nifH-R of both F and P soils was the 

unclassified OTUs (~20x depletion). 

 

ANF process rate indicators 

The strong correlation between nifH-R community composition and ANF (Figure 3-2c) prompted 

indicator analysis of nifH-R OTUs across binned ANF rates. This procedure identified 34 indicator OTUs 

significantly associated with one, two, or three rate bins. Twelve were associated specifically with high 

rates (H), while another five were associated with high and medium (H+M), high medium and low 

(H+M+L), or medium (M) rates (total IT n=17). Across IT, the proportion of total community abundance 

ranged from 13.3 + 5% among high-rate-associated samples to 2.1 + 1.2% among no-detection-

associated samples (Figure 3-5a). These 17 IT impacted community compositional dissimilarity with 

directional correspondence to increasing ANF rate across samples (Figure 3-5b), and their total 

aggregated relative abundance showed a robust linear correlation with ANF rate (Pearson’s r = 0.88; 

Figure 3-5c). On individual bases, the nifH-R relative abundance of twelve IT showed significant positive 

linear correlations (r > 0.5) with ANF rate (Supp. Figure 3-5). One IT, annotated to the genus 

Bradyrhizobium, ranked in the top 3 OTUs by relative abundance across nifH-R (as well as nifH-D) P soil 

communities, scaling particularly well with rate (r = 0.75). An additional four IT ranked in the top 60 most 

abundant taxa (considered common) and exerted a strong effect on nifH-R community dissimilarity across 

P samples (see vector length in Figure 3-5b). The remaining were considered rare (rank > 100 of 882 

OTUs; Supp. Table 3-5). At the family level, taxonomic composition of IT included (in order of mean 

abundance) Nitrospiraceae (n=4), Enterobacteriaceae, Azospriliaceae (n=3), Methylobacteriaceae (n=2), 

Chromatiaceae, Sphingomonadaceae, Rhizobiaceae, Desulfovibrinaceae (n=2), Frankiaceae, and 

Ectothiorhodospiraceae. 
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Discussion 

 

Differential diversity, but similar compositional response to LU change in potential diazotrophs 

and total prokaryotes 

In comparing potential diazotrophic (nifH-D) to total prokaryotic (16S-D) community profiles, we 

identified a disparity in community diversity trends across LUs (Figure 3-1a). The substantial increase in 

the nifH-D Shannon index we observed among P soils is consistent with a previous study conducted in 

the same region of Rondônia (Mirza et al., 2020). Targeting the total prokaryotic profile from the same 

DNA-based community (i.e., soil extraction) indicated that alpha- diversity of the broader community does 

not change with LU conversion. 16S-based analyses across the Amazon have produced mixed results 

concerning the LU effect on prokaryotic community diversity. Several studies have concluded an increase 

in diversity with pasture (Cerqueira et al., 2018; da C Jesus et al., 2009; Mendes et al., 2015; Navarrete 

et al., 2015; Ranjan et al., 2015; Rodrigues et al., 2013) while a handful of others, in agreement with this 

study, observed no overall change (Melo et al., 2021; Pedrinho et al., 2019), likely indicating that a high 

degree of spatial variability is influencing this metric. Further, while nifH-D diversity was linearly 

associated with several physicochemical parameters, prokaryotic diversity was not related to any 

environmental measures. Together this suggests that the soil conditions imparted by P conversion selects 

for diazotroph diversification rather than overall prokaryotic diversification. In this respect, both 

environments likely provide sufficient resources and dynamic conditions to support similar levels of local 

prokaryotic diversity (Taylor et al., 2014).  

In contrast to their disparate alpha-diversity response, both community profiles exhibited distinct 

and significant alterations in community composition with LU change- explaining approximately 25.6% 

and 33.9% of community dissimilarity for 16S-D and nifH-D communities, respectively after partitioning 

GD effect (Table 3-1). This is perhaps unsurprising given that studies throughout the Amazon have 

observed significant compositional dissimilarity across LUs for virtually every microbial group or subgroup 

probed (see references within Danielson and Mazza Rodrigues, 2022). On the other hand, it was 

somewhat unexpected that the dissimilarity across samples of both DNA-based communities were 

associated with a similar subset of physicochemical parameters. pH, clay, and S content (which do not 
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differ significantly overall between LUs) were associated with both communities, contributing to 

differentiation within LUs. Notably, this subset of conditions was also linearly predictive of nifH-D diversity 

(Figure 3-1b). Given the collinearity of vector magnitude and direction in unconstrained ordinal plots, it is 

not possible to establish the most plausible driving force. pH, for example, can exert selection on 

prokaryotic communities particularly at lower pHs (Blagodatskaya and Anderson, 1998), but also 

influences clay surface (in this case, iron and aluminum oxides) charge, in turn impacting nutrient and 

organic matter adsorption (Sumner, 1963). One such nutrient whose adsorption (and speciation) it 

impacts is S (Gharmakher et al., 2009), which exhibited the most intra-LU linear correlation with nifH-D 

diversity. S concentration may be related to community composition and diversity through S metabolism: 

For example, in previous metagenomic profiling of diazotrophic communities across the LU dichotomy, we 

observed a strong correlation (driven by P soils) between nitrogenase subunit and dissimilatory sulfite 

reductase genes, indicating S metabolism may serve as an energy conservation mechanism for potential 

soil diazotrophs (Simon and Kroneck, 2013). Clay content may directly impact prokaryotic composition 

and potential diazotrophs through several mechanisms as well. First, it is strongly correlated with anoxic 

soil pore space volume within microaggregate structures, supporting microorganisms carrying out 

anaerobic metabolisms (Keiluweit et al., 2018). Second, nitrogen fixation potential has shown stimulatory 

response to iron (oxyhy)droxide clay content, which may form free-radicals and increase the 

bioavailability of molybdenum, a key metalloid co-factor of the most common nitrogenase enzyme isoform 

(Yu et al., 2021). 

The ratio of inorganic to total N was the most strongly correlated condition separating 

communities directly by LU type, retaining marginally significant explanatory value after accounting for LU 

effect (Supp. Table 3-2). Considering the substantial shifts to the N cycle imparted by LU change (e.g., 

Neill, 1995), this is not surprising and indicates the entire prokaryotic community rather than just 

dissimilatory N cycling functional groups are influenced by shifts in reactive N pools. nifH-D community 

structure was also modestly associated with organic N content, potentially reflecting the variation in the 

preferential hierarchy of N source (Norman and Friesen, 2017). Prokaryotic community structure was 

uniquely associated with Mg and K content, potentially indicating sensitivity to plant nutrient status 

(Carvalho et al., 2009). The association we identified between 16S-D composition and soil Al content is a 
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common observation amongst Amazon-focused studies, which may represent a gradient of sensitivity to 

Al toxicity or exchange site occupation amongst taxa in association with pH (Auger et al., 2013; Carvalho 

et al., 2009). 

Finally, we also found that both community profiles exhibited a decline in groupwise dispersion 

among P samples, despite greater average GD among P as compared to F replicates. This biotic 

homogenization effect on prokaryotic communities has been shown previously (Mirza et al., 2020; 

Rodrigues et al., 2013), and we demonstrate here that this trend is more pronounced in nifH-D 

communities, occurring at both the LU and the site level. This effect is presumably borne out of 

landscape-scale homogenization of the plant community in monoculture pastures compared to florally 

diverse primary forests (Rodrigues et al., 2013), leading to a homogenization of detrital resources and 

root architecture (Bacq-Labreuil et al., 2019). This presumption is also supported by reduced dispersion 

among P-derived untargeted soil metabolomic profiles (Chapter 2, Figure 2-2b,c). The elevated effect 

observed in nifH-D compared to prokaryotic communities may be related to the relatively narrower range 

of trophic strategies (Le Boulch et al., 2019) amongst potential diazotrophs which are promoted by P 

conditions. Overall, while nifH-D diversity reflects a strong and specific favoring of diazotrophs, 

community composition responds in a remarkably similar manner across DNA communities. 

 

LU effect is diminished in active compared to potential diazotrophs 

Given that DNA-based profiling can capture the community structure of dead, inactive, and active 

microorganisms (Blagodatskaya and Kuzyakov, 2013; Kuzyakov and Blagodatskaya, 2015), the 

phylogenetic breadth of trophic strategies encompassed by nifH-based survey (Koirala and Brozel, 2021; 

Le Boulch et al., 2019; Yan et al., 2022), and in light of the elevated rates of ANF measured from our 

survey of P soils (Chapter 2), we expected that community profiles of nifH-transcribing microorganisms 

would reflect similar or greater differentiation between LUs as compared to nifH-D. Instead, we found that 

nifH-R communities showed minimal distinction with respect to LU. First, there was no augmentation of 

the diversity index and there was no apparent relationship between nifH-R and nifH-D diversity. The LU 

dichotomy we studied imparted large disparities in edaphic conditions like inorganic N pools, 

micronutrient concentrations, as well as pH across LU types, and nifH-D community diversity and 
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composition reflected several significant associations with these conditions, in line with other DNA-based 

studies of soil communities (Han et al., 2019; Hu et al., 2021; Liao et al., 2017; Wang et al., 2017). 

Although some variables including NH4+ and pH did reflect a similar (but non-significant) trend with nifH-R 

diversity (Figure 3-1b), none of the variables we measured offered appreciable VE to nifH-R. Taken 

together, this suggests that the nitrogenase-transcribing communities we surveyed across LU types were 

subject to different selective pressures than respective reservoir communities of potential diazotrophs.  

Very few studies assessing the community composition of potential and active diazotrophs are 

focused on upland soils, narrowing our ability to compare our results in a broader context. One study 

investigating soil diazotrophic communities cultivated with different plant species (somewhat analogous to 

the LU context of the present study) found transcript quantity and nifH-R composition were actually more 

strongly shaped by plant type (the latter finding based on community clustering) than were potential 

communities (Bouffaud et al., 2016). Another study along a revegetation gradient found significant 

differentiation among both nifH-D and nifH-R communities with revegetated ecosystem age and plant 

community assemblage, indicating both community types were shaped by the differentiation of 

environmental factors across the gradient (Wang et al., 2016). The lack of clear environmental 

relationships with the nifH-R communities characterized in the present study suggests elevated 

importance of parameters that we did not, or could not measure, such as microsite conditions including 

temperature and O2 concentration (e.g., Keiluweit et al., 2018; Kuzyakov and Blagodatskaya, 2015). 

These conditions may be greatly impacted by regional-scale seasonality (e.g., temperature and moisture 

regimes), owing an explanation to the relative similarity of CTs across the LU replicates we sampled (ca. 

15 km range). Across the literature, while the importance of environmental O2 content on active 

diazotroph assemblage has been acknowledged (Brown and Jenkins, 2014), C concentration and quality 

as well as inorganic N have more commonly been identified as key controls, in contrast with findings here 

(Bürgmann et al., 2005; Gonzalez Perez et al., 2014; Hu et al., 2021; Severin et al., 2015; Wakelin et al., 

2010). It is also possible that nutrient flux rather than pool size may provide a greater indication of active 

communities. 

Mirroring compositional patterns, the relative abundance LU shifts of specific OTUs and family-

level aggregated taxonomic groups of nifH-R communities were minimal compared to nifH-D 
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communities. At the family level, the only consistent trend was P enrichment in Leptolyngbyaceae, a 

photoautotrophic, cyanobacterial group (Shimura et al., 2015) which presumably colonizes the surface of 

P soils where solar exposure is elevated compared to F soils. This highlights the importance of future 

study into the contribution of surface-dwelling and detrital communities to ANF, particularly in the context 

of variable grazing intensity in P systems, since animal density impacts surface trampling and detrital 

distribution as well as solar exposure (Nunes et al., 2019; Rauber et al., 2021). The only other family 

displaying differential abundance across F and P soils of nifH-R communities (and not reflected in nifH-D 

community profile shifts) was Ectothiorhodospiraceae (enriched in P), a group typified by anoxygenic, 

phototrophic purple sulfur bacteria (Imhoff, 2015).  

In nifH-D communities, notable enrichments not mirrored in nifH-R communities included the 

families Methylobacteriaceae and Methylococcaceae, which are known for metabolizing C1- carbons 

including methane and methanol (Zhang et al., 2014), and Methylobacteriaceae in particular has 

oreviously been identified as an important constituent of grassland rhizospheres (Bahulikar et al., 2014). 

This is interesting given that previous research has revealed an increase in methane efflux concomitant 

with a decline in the community proportion and relative richness of total methanotrophs in P compared to 

F soils (Meyer et al., 2017; Meyer et al., 2020). P-DNA was also enriched in Desulfovibrionaceae 

(anaerobic sulfate-reducers; Galushko et al., 2020)- and Halorhodospiraceae, composed mainly of purple 

sulfur bacteria (Imhoff et al., 2022). In combination with the P-RNA enrichment of 

Ectothiorhodospiraceae, this adds more evidence to a potential interaction of S cycling and ANF in P 

systems.  

 

Dissimilarity between active and potential communities within environments is stronger than LU 

effect 

Active communities of each LU varied significantly from their respective potential diazotroph 

profiles, but differences were somewhat greater in F communities, where F-RNA composition was 

actually more similar to P-DNA than F-DNA (Figure 3-2d,e). Additionally, while community evenness was 

similar between P-DNA (0.66 + 0.01), P-RNA (0.70 + 0.02), and F-RNA (0.65 + 0.02), it was substantially 

lower for F-DNA (0.43 + 0.04). A possible explanation for this is that F-DNA communities may contain a 
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higher proportion of rare organisms bearing nifH genes, but either do not transcribe fixation genes under 

the conditions during which we sampled, or lack the full minimal gene set to actually perform nitrogen 

fixation (Dos Santos et al., 2012). Despite this difference in the extent of dissimilarity between present 

and active profiles within LUs, RNA-based profiles were overall much more like each other than they were 

to present communities of respective LUs. In a study comparing present and active diazotrophic 

communities in association with variable plant species, Bouffaud et al. (2016) similarly found that RNA-

based community structure across plant species clustered more closely with each other than their 

respective potential, DNA-based communities. Another study of active and present diazotrophic 

communities along fertilization and seasonal gradients in Brazilian eucalyptus plantations similarly found 

that RNA -based community profiles were consistently more similar to each other across tested conditions 

compared to their paired DNA-based profiles (da Silva et al., 2016). In contrast, active communities along 

a revegetation chronosequence in the Tengger Desert showed greater similarity to corresponding 

potential communities rather than other active communities along the gradient (Wang et al., 2016).  

The most drastic shift we observed between potential and active nifH-based communities was the 

100x enrichment of a single OTU annotated within the family Aphanizomenonaceae, a group of 

photoautotrophic cyanobacteria (Figure 3-4). Like the Leptolyngbyaceae enriched across P communities, 

this is presumably accounted for by cells dwelling at or near the soil surface as crusts (Alteio et al., 2020). 

Its dominance in the transcriptionally active fraction of diazotrophic communities may indicate an outsized 

importance of free-living photosynthetic diazotrophs to atmospheric N inputs within these environments. 

Owing to the ability of these filamentous microorganisms to function in high-O2 environments by 

relegating nitrogen fixation to specialized cells (Rascio and La Rocca, 2013) as well as their 

independence from plant-derived C compounds as an energy source, it is perhaps unsurprising that 

cyanobacteria in general would account for a major portion of active diazotrophs (Bae et al., 2018; 

Belnap, 2001). This may in part explain the near-zero rates of ANF measured across F samples: Since 

rate assay incubations performed on our soils were conducted in the dark, any contributions made by 

photoautotrophs were missed entirely. Therefore, future investigations would benefit from assays 

performed under light and dark conditions.   
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nifH communities in relation to ANF rates: nifH-R indicators 

Although the correlation between the nifH-D Shannon Diversity Index and ANF rate was 

technically significant (r = 0.57), this was likely due to collinearity across LUs, since meaningful scaling 

was not clear within LUs (Figure 3-1b). Beyond this, no nifH-D structural metrics were found to be 

associated with activity rates. In contrast, Hsu and Buckley (2009) found diazotroph community structure 

to be an important factor in driving ANF rates, as compared to land management practices under 

continuous maize cropping. Another study conducted in a switchgrass agricultural system conversely 

found a weakly significant relationship between ANF rate and nifH-D community composition (Smercina 

et al., 2021). This may indicate regional variation regarding the explanatory power of DNA-based profiles 

to process rates. On the other hand, we found that despite the low degree of dissimilarity across nifH-R 

communities of the two LUs, composition reflected a striking positive (Pearson’s r=0.82) association with 

ANF rate (Figure 3-2c). In fact, this seemed to be the only measurement made in this study that reflected 

any meaningful relationship at all with nifH-R. These findings indicate that a large proportion of 

nitrogenase-transcribing, but not necessarily nitrogenase-expressing diazotrophs are common across 

soils of both LUs (for reasons unknown), and that taxa driving community differentiation may also be 

driving process rates.  

Based on the above observations, we identified 17 taxa (IT) whose presence was significantly 

associated with soils boasting medium and high ANF rates, and whose aggregate relative abundance 

was highly associated with increasing activity (Figure 3-5). The most abundant IT was the fourth most 

abundant nifH-R OTU overall (third in P-RNA, eighth in F-RNA), on average comprising 9% of high-rate 

communities, and 2.1% of ND (‘no detection’) communities (overall 4.4%). On an individual basis, its 

relative abundance correlated strongly with ANF rate (Pearson’s r = 0.75; Supp. Figure 3-5), and it had a 

substantial impact on community differentiation across nifH-R samples. The best-match annotation was 

made at the genus level within Bradyrhizobium (Supp. Table 3-5), and a blastN against GenBank 

matched (99.3% identity) to an environmental sequence previously identified in acidic peatlands of Third 

Plateau, Parana state, Brazil (Accession KX718944; Etto et al., 2022). Although generally assumed to be 

obligately symbiotic diazotrophs, evidence is mounting to indicate a prevalence of environmentally-fit, 

free-living Bradyrhizobium species (Sachs et al., 2011; Tao et al., 2021). In fact, several studies have 
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observed that taxa annotated as Bradyrhizobium act as key predictors of community activity as well as a 

large abundance component of grassland- based potential diazotrophic communities (Bahulikar et al., 

2014; Dai et al., 2021; Roley et al., 2018; Smercina et al., 2020). The second most abundant rate IT, 

annotated to the family Enterobacteriaceae, made up 2.2% of high-rate communities and was absent 

from ND communities (ranked 31st most abundant overall in nifH-R, and 20th in P-RNA). The 

Enterobacteriaceae indicator had the strongest correlation with ANF rate on an individual basis (r=0.83; 

Supp. Figure 3-5), and a near-identical directionality of association as ANF rate with nifH-R community 

composition (Figure 3-5b). Diazotrophic Enterobacteriaceae have been recognized for their ability to fix 

nitrogen both in the presence and absence of oxygen, and members of the family are known to tolerate 

stressful environmental conditions and produce a variety of extracellular enzymes including phosphatases 

(Barraquio et al., 2000). The aggregate abundance of nifH-R IT in the potential community also showed a 

moderate linear association with ANF process rate (Pearson’s r = 0.59), as did several IT on an individual 

basis (Supp. Figure 3-6). For example, the Bradyrhizobium sp. discussed above was also the third-most 

abundant nifH-D taxa in pastures and had a nifH-D abundance-ANF rate Pearson correlation coefficient 

of 0.53. However, these potentially important taxonomic signals are lost in the noise of the taxa-rich DNA-

based profile at the community compositional level. In turn, this substantiates the value of RNA-based 

profiling to better understand process rates. 

Both general and functional group-specific microbial process rates have been shown to be more 

strongly linked to the structure and diversity of active compared to present communities (Barnard et al., 

2015; Bissett et al., 2013). This makes sense given that microbes can respond functionally to favorable 

conditions on the order of hours (Placella and Firestone, 2013). Although the statistical approach we 

employed to identify significant taxa does not provide the direct evidence of activity afforded by tracing 

methods, it revealed that just a handful of taxa may ultimately be driving process rates. Studies utilizing 

such tracing techniques such as 15N stable isotope probing of RNA (Angel et al., 2018b) and NanoSIMS 

(Masuda et al., 2020; Woebken et al., 2012) have reached similar conclusions regarding a small active 

community fraction significantly affecting ANF activity. This may be explained physiologically in part by 

the fact that transcription of the nitrogenase enzyme does not directly infer active nitrogen fixation. In 

addition to pre-transcription genetic safeguards, post-translational regulatory strategies including ADP-
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ribosylation and PII signal transduction are key to efficient metabolism (Huergo et al., 2012). For example, 

the DraT-DraG regulatory system activates in response to an increase in the concentration of 

environmental NH4+, depletion of cellular energy levels, or changes to light intensity (in some phototropic 

organisms), and functions through reversible ribosylation of nifH, effectively pausing nitrogen fixation until 

further notice (Huergo et al., 2012; Masepohl et al., 2002). This stasis may explain the surprising 

compositional similarity in F and P nifH-R communities, despite a general disparity in ANF activity rate. 

Mechanistically, this suggests that the majority of transcriptionally-active community members may have 

sensitivity to external N through a high transporter affinity (Darnajoux et al., 2022). The limited number of 

taxa actively contributing to ANF may have greater NH4+ tolerances (Dekaezemacker and Bonnet, 2011), 

or may be under advantageous microsite conditions (Parkin, 1993) that cannot be directly parsed by bulk 

soil extraction. Greater temporal resolution and direct probing of the active diazotrophic community are 

crucial to elucidate this further. 

 

Conclusion 

This study surveyed the response of both potential and transcriptionally active asymbiotic soil 

diazotrophs to LU change in the Brazilian Amazon. We found that the diversity of potential communities 

increased with cattle pasture conversion, independently of total prokaryotic communities, but that 

potential community composition was not related to measured diazotroph activity. In contrast, while the 

diversity of nitrogenase-transcribing diazotrophic communities exhibited no response to LU change, their 

modest alteration in community composition was highly associated with high vs. low ANF activity rate. A 

high proportion of cyanobacterial taxa in active community profiles of both LUs suggests a potentially 

significant contribution of surface-dwelling phototropic diazotrophs to fixed nitrogen inputs across both LU 

types, which was not accounted for by rate assays incubated in the dark. Future studies should 

investigate the contribution of this diazotrophic subgroup, particularly in response to variable grazing 

intensity, since this may have a dramatic impact on soil surface conditions, and the long-term 

sustainability of pastures. 
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Tables and Figures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Table 3-1: PERMANOVA testing of LU effect after accounting for GD for 16S, nifH-D, nifH-R, and total 
nifH communities to determine the variation explained (VE). Community type (CT: DNA vs RNA) effect 
was also tested within the total nifH community. 
Total VE     LU + GD LU | GD 
 Total Shared VE F-statistic p-value 
16S-D 0.44 0.136 0.122 4.17 0.001*** 
nifH-D 0.46 0.221 0.118 4.18 0.002*** 
nifH-R 0.185 0.028 0.059 1.37 0.08* 
nifH 
Total 

0.108 -0.004 0.035 1.67 ns 

Total VE     CT + LU + GD CT | GD+LU 
 Total Shared VE F-statistic p-value 
nifH 
Total 

.393 0.00 0.284 19.19 0.001*** 
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Table 3-2: G
roup dispersion calculated based on m
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, and nifH
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 Total’). Values presented represent m

ean (+ 
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Figure 3-1: Shannon alpha diversity indices for (a) D
N

A-based 16S (16S-D
), D

N
A-based nifH

 (nifH
-D

) and R
N

A-based nifH
 (nifH

-R
) 

com
m

unity profiles. KW
 χ2 values represents Kruskall-W

allis R
ank sum

 test statistics (***p-value < 0.001). Letters represent D
unn’s post-

hoc grouping to determ
ine LU

 significance. (b) Shannon diversity m
etrics correlated against physicochem

ical variables and m
icrobial 

indicators (right of dotted line). Variables w
hich did not m

eet significance cutoffs w
ith any diversity m

etric are not show
n (n=17). Pearson r 

values are show
n in either gray (below

 significance) or blue (above significance). Full Pearson and Spearm
an values are available in 

Supplem
entary Table 3-1a,b. 

 
U

nits and abbreviations: N
H

4 + and N
O

3 - in
 μg N

 g
-1 soil; S in ppm

; C
lay in %

; 15N
 in perm

ille; cop = copy num
ber in ng

-1 D
N

A. In:TN
: inorganic to total N

. AN
F R

ate = Asym
biotic 

N
2  fixation rate in ng N

 g
-1 soil day

-1. ln() =natural-log transform
ation.  
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Figure 3-2: C
om

m
unity com

position represented by the first tw
o ordinal axes of unconstrained redundancy analysis for (a) 16S- D

N
A 

profiles (b) nifH
- D

N
A profiles, and (c) nifH

-R
N

A profiles. Plots are overlayed w
ith vectors of significantly correlated physicochem

ical or 
diazotrophic indicator m

easurem
ents (dashed, blue line) after accounting for the variation explained by LU

 effect, separate from
 

com
m

unity com
position. Variables w

ith 0.35< r <0.5 are in reduced font size. Asterisks correspond to significance of VE (*p<0.1;**p<0.01; 
***p<0.005) (d) nifH

-D
 and nifH

-R
 ordinated together (‘Total’), overlayed w

ith 90%
 confidence ellipses for each LU

/C
T grouping. (e) 

Pairw
ise dissim

ilarity betw
een nifH

-D
 and nifH

-R
 com

m
unity profiles for each group com

bination.  

  
Abbreviations: In:TN

 = inorganic to total N
 ratio; div = S

hannon diversity index; AN
F rate = asym

biotic nitrogen fixation rate; Al= Alum
inum

 content; S = total sulfur content. 
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Figure 3-3: Differential abundance analysis at the OTU level showing mean relative abundance 
compared to log2-fold change for 4 comparisons. Point size corresponds to BH- corrected p-values: 
(a) LU effect on F (green circles) vs. P (brown circles) nifH-D communities and (b) LU effect on F 
vs pasture nifH-R communities. Comparison of significant trends was also made within (c) paired 
CT effect for forest nifH-D (filled green squares) vs nifH-R (open green squares), and (d) paired CT 
effect for pasture nifH-D (filled brown) vs nifH-R (open brown). Symbol size corresponds to 
increasingly significant p-value, and OTUs with no significant change are in gray. 

 
 

0.001

0.01

0.1

1.0

20

-15 -10 -5 0 5 10 15

-15 -10 -5 0 5 10 15

0.001

0.01

0.1

1.0

20

M
ea

n 
R

el
at

iv
e 

A
bu

nd
an

ce
 (%

)

Log2-Fold Change

a

c

n=23
n=25

Total=152

Total=393

n=17

n=107

Forest Pasture

DNA RNA

-15 -10 -5 0 5 10 15

-15 -10 -5 0 5 10 15

0.001

0.01

0.1

1.0

20

0.001

0.01

0.1

1.0

20

b

d

Total=314

n=146

n=13

Total=161

n=4

n=14

Forest Pasture

DNA RNA

0.1
0.02
4.5 e-5
9.5 e-14

p-value

0.1
0.02
4.5 e-5
9.5 e-14

P-value

Paired CT effect

LU effectDNA RNA

Forest Pasture



 179 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 3-4: Relative abundance of taxa aggregated at the family level for nifH-D (closed circles) and 
nifH-R (open squares) across F (green) and P (brown) samples. Symbols to the right indicate the 
significance of tests for LU effect on nifH-D and nifH-R communities (orange circle/ box with trend 
denoted by border color), and CT effect for F and P based on paired sample profiles (green/brown 
triangle, with direction indicating enrichment (upward, red border) or depletion (downward, blue 
border) in nifH-R communities. 
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Figure 3-5: IT (derived from nifH-R communities) associated with increasing rates of ANF. Taxa 
significantly associated with High (H; n=12), Medium (M; n=1), High and Medium (H+M; n=2), and 
High, Medium, and Low (H+M+L; n=2) were included. (a) Relative abundance of each IT in each rate 
group. (b) bi-plot vectors of IT in community ordination (blue) compared to direction of envfit-derived 
ANF rate correlation (red dashed). Letters correspond to the taxa legend in (a), and letter sizes 
correspond with level of increasing significance. (c) Summed relative abundance of IT against ANF 
rate, fit with a linear model trendline and 90% confidence interval. 
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Supplementary Methods 

 

Site spacing 

Decimal degrees represent location of quadrat origin points

 

DNA and RNA isolation and processing 

Nucleic acid extraction was performed according to manufacturer instructions. Steps were 

performed with user-provided biotechnology grade phenol: chloroform: isoamyl alcohol (25:24:1). We 

made a modification to the elution step, whereby elutant was added to spin columns twice at 55% of the 

recommended volume each in order to increase yield. Average DNA yield from replicate extractions was 

55.5 + 3.5 ng μl-1 (100 μl total), while average RNA yield was 8.8 ng μl-1 (100 μl total). While processing 

RNA using the Qiagen MinElute Cleanup kit, we again added elutant to spin columns twice at 55% of the 

recommended volume each in order to increase yield. NanoDrop was used to verify RNA quality using 

260/280 and 260/230 ratios, ensuring peak values were sufficiently high as compared to spectral noise. 

 

SuperScript IV nifH-targeted reverse-transcription 

All work areas were thoroughly cleaned with RNAse Zap, and all consumables including tips and 

tubes were certified RNAse-free throughout the steps. A second set of reactions was prepared with water 

rather than transcriptase enzyme to serve as a negative control. Quantitative PCR using 16S primers was 

performed on negative controls to ensure samples were DNA-free. qPCR reactions were 20 ul in volume 

containing 1 μl 515F (5’-GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’-

GGACTACHVGGGTWTCTAAT-3’) 16S primers each (250 nM in reaction; Caporaso et al., 2011), 10 μl 

SsoAdvanced Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA), 2 μl RT-derived cDNA 

template (negative controls), and 6 μl PCR-grade water. Reactions were run against positive controls 

(16S standard curve) on a CFX Connect Real-time thermocycler (Bio-Rad, Hercules, CA, USA). The 

following cycling conditions were used: 95°C for 3 m, followed by 32 cycles of 95°C for 15 s, 52°C for 20 s 

 F1 F2 F3 P1 P2 P3 
Latitude -10.1405830 -10.1335190 -10.1424440 -10.1703610 -10.1630000 -10.2043970 

Longitude -62.9000000 -62.8882140 -62.8819440 -62.8326110 -62.8363890 -62.7741315 
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and 72°C for 30 s, followed by a final extension of 72°C for 5 m. Samples with critical threshold values 

above 29 (water-control value) were considered DNA-free. 

Reverse transcriptase primer nifH3: 5’- ATRTTRTTNGCNGCRTA -3’ position:494-478 nifH 

coverage:100% (Zani et al., 2000)  

 

Quantitative PCR 

Template DNA was diluted to 2 ng ul-1 and was used in triplicate 20 μl reactions for 16S and nifH 

gene quantification, using SsoAdvanced Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA). 

See the table below for reaction specifications and primers used:  

Gene Primer set Primer 
reference 

Primer Vol 
each (conc.) 

Vol 
Sso  

Vol 
DNA 

Vol PCR- 
H2O 

nifH PolF: 
TGCGAYCCSAARGCBGACTC  
PolR: 
ATSGCCATCATYTCRCCGGA  

(Poly et al., 
2001) 

1 μl (500nM) 10 μl 4 μl 4 μl 

16S 515F: 
GTGCCAGCMGCCGCGGTAA 
806R: 
GGACTACHVGGGTWTCTAAT 

(Caporaso et 
al., 2011) 

1 μl (250nM) 10 μl 1 μl 7 μl 

 

qPCR was performed using a CFX Connect Real-time thermocycler (Bio-Rad, Hercules, CA, 

USA) using the following protocols: 

Gene Start Cycle no. Denature Anneal Extend Final Extend 
nifH-D 98°C, 2m 35 98°C, 15s 68.5°C, 15s 72°C, 30s 72°C, 5m 
16S-D 98°C, 2m 32 98°C, 10s 52°C, 10s 72°C, 15s 72°C, 5m 

 

Standards were created using a high-fidelity blunt-end TOPO cloning kit (Thermo Fisher 

Scientific, Waltham, MA, USA) with 16S and nifH genes amplified from Herbaspirillum seropedicae 

(Baldani et al., 1986; ATCC Z 152). Samples and standards for each gene were run on a 96-well reaction 

plate (90% and 95% efficiency for nifH and 16S, respectively; R2=0.99) and run against standard curves. 

Copy number was calculated on a basis of per ng DNA.  
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Amplicon sequencing 

Following amplification, nifH amplicon samples were inspected visually with gel electrophoresis 

for correct amplification before combining replicates, followed by quantification of each sample using the 

Qubit DNA High-sensitivity assay (Invitrogen, Waltham, MA). Samples were then pooled to 50 ng each, 

and purified across 4 replicate Qiaquick PCR Purification (Qiagen Inc., Valencia, CA, USA) cleanups and 

re-pooled. The purified libraries were re-quantified and imaged using gel electrophoresis to ensure high 

product-to-non-specific amplification ratio. PippinHT size selection (Sage Science, Beverly, MA, USA) 

removed all amplicons outside the 280-500 bp range. 

Primer 
name 

sequence position nifH 
coverage 

reference 

ZM1 TGYGAYCCNAARGCNGA 115-131 95% (Zehr and McReynolds, 1989) 
ZM2 ADNGCCATCATYTCNCC 460-476 94% (Zehr and McReynolds, 1989) 

 

16S-D was amplified using the 515F/806R primer pair, with 12bp Golay barcodes inserted in the 

reverse primer. Reactions were run using 20 μl, including 10 μl Phusion High-Fidelity PCR Master Mix 

(New England Biolabs, Ipswich, MA, USA), 1 μl each forward and reverse primer (500 μl in reaction), 2 μl 

template DNA (2ng μl-1 concentration) and 6 μl PCR-grade water. Reactions were run in triplicate under 

the following thermocycler reaction: 98°C for 30 s, 27 cycled of 98°C for 10 s, 50°C for 30 s, 72°C for 15 

s, and a final extension at 72°C for 7 min. Downstream preparation of the 16S library followed the same 

methods as described above for the nifH library. 

Primer name sequence Barcoded? reference 
515F 5’-GTGCCAGCMGCCGCGGTAA-3’ No (Gilbert et al., 2014) 
806R 5’-GGACTACHVGGGTWTCTAAT-3’ Yes (Gilbert et al., 2014) 

 

Sequence processing 

All sequence processing steps were run on a machine with 196 GB RAM and 64 processing 

cores. Sequencing of the nifH gene yielded 8.2 million reads across 46 samples. Quality filtering and 

trimming were performed on paired reads using sickle, with a quality score cutoff of 25 and a minimum 

length cutoff of 125 bp. This step removed 11.6% of reads. Since adapter ligation prior to sequencing 

results in approximately 50% of amplicons in the wrong sequencing orientation, demultiplexing needed to 

be performed twice. Demultiplexing was performed using sabre (https://github.com/najoshi/sabre), with 
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barcodes targeted in the forward and reverse reads separately, and 1 mismatch of the 12 bp barcode 

allowed. Across the two attempts at demultiplexing, 75.1% of sequences were retained. Since reads were 

unmerged at this stage, this resulted in two read-pair libraries per sample. To consolidate these, 

sequences with barcodes identified in the read 2 sequences were relabeled and joined with sequences 

with barcodes identified in read 1 sequences. The converse was performed from unbarcoded reads, 

making sure to retain read order in consolidated read-pair files. Since the primers used were highly 

degenerate to maximize the sequence diversity captured, a custom script was used to identify and 

remove forward and reverse primer sequences, taking all possible primer sequences into account, and 

discarding sequences lacking a possible primer configuration. On average, 94.5% of remaining 

sequences met this requirement.  

The next sequence processing steps mainly followed the protocol described by Gaby et al. 

(2018), with the inclusion of elements from Angel et al. (2018), and an added step to denoise sequencing 

errors. Following this initial reformatting phase, denoising was accomplished using DADA2 (Callahan et 

al., 2016). Samples were trimmed to 200 bp in read 1 and 180 bp in read 2, merged with a maximum 

mismatch set to 10, and screened for chimeric sequences. Approximately 63% of sequences were 

successfully processed.  

The below table shows the percent of sequences removed by each successive DADA2 step, and 

the absolute percent of sequences remaining at the end of processing. 

 Filter and 
Trim 

Denoising Merging Chimera 
Removal 

Percent Left 
(absolute) 

Average 28% 1.31% 1.48% 2.47% 62.9% 
SE 0.94% 0.06% 0.11% 0.55% 1.56% 

The resulting amplicon sequence variant (ASV) table from this step was reformatted to a fasta file 

and hmmsearch (http://hmmer.org/) was used with the option -domtblout and an e-value threshold of 

0.001 against the reference model hmm_nuc_1160_nifH.hmm (Angel et al., 2018) to filter non-nifH 

sequences. This identified 72 erroneous ASVs out of 47,487, which were subsequently removed. 

Framebot (Wang et al., 2013) was used to perform frameshift correction using the reference database 

nifH_prot_ref.fasta (Angel et al., 2018). 

Finally, sequences were clustered to OTUs using vsearch (Rognes et al.) using the option -

cluster_fast, with an identification cutoff of 95% and dual-strand consideration (Gaby et al., 2018). All 
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clusters with 4 or fewer counts were removed, resulting in 2,374 OTU clusters. A nucleotide-based local 

BLAST was performed using seqDatabase.fasta (Gaby et al., 2018) as the reference database with an e-

value cutoff of 0.01. A custom script was used to configure a final taxonomic table using percent ID 

cutoffs specified in Gaby et al. (2018): 91.9% for species, 88.1% for genus, and 75% for family. 

16S data was processed through the DADA2 pipeline utilizing the R environment with default 

settings, aside from the following modifications: During filter and trim, forward and reverse reads were 

truncated at 200 and 150 bp, respectively, and a maximum error value of 2 was used. During the merge 

step, a maximum mismatch of 10 was allowed.  

The below table shows the percent of sequences removed by each successive DADA2 step, and 

the absolute percent of sequences remaining at the end of processing. 

 Filter and Trim Denoising Merging Chimera 
Removal 

Percent Left 
(absolute) 

Average 7.42% 6.52% 40.1% 15.6% 42.9% 
SE 0.2% 0.13% 0.44% 0.69% 0.3% 
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Supplementary Tables and Figures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Supp. Table 3-1: Full correlation of m
easured environm

ental variables, activity and com
m

unity size, and Shannon diversity indices 
across 23 F and P sam

ples. Values represent (a) Pearson's r and (b) Spearm
an's ⍴ estim
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n in Figure 3-1b w

ere selected 
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-adjusted p-values < 0.05, w

hich correspond to r and ⍴ cutoffs of > 0.55 and > 0.45, respectively. 
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Supp. Table 3-1, contd.:  
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Supp. Table 3-2: Environmental variables tested against community composition (left) results from 
PERMANOVAs run to test the variation in community composition explained by physicochemical 
variables after accounting for independent effects of LU and GD on physicochemical variables. (right) 
Results of envfit tests of each variable. Both tests were used to select meaningful variables. 
 
16S-D Community 
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Supp. Table 3-2, contd.: 
 
nifH-D community 
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Supp. Table 3-2, contd.: 
 
nifH-R community 
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Supp. Table 3-3: Output results from OTU-level edgeR differential abundance testing (external 
.xlsx) for the four comparisons made: (1) LU DNA: F vs P, (2) LU RNA F vs P, (3) Paired F DNA vs 
RNA, and (4) Paired P DNA vs RNA. P-value are adjusted for multiple comparisons using the BH 
method. OTUs tested for each comparison were present in at least 2 samples of each treatment, and 
8 (~1/3) samples overall. Significance determined at p.adjusted < 0.05. 
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Supp. Table 3-4: edgeR output results for family-level community abundance changes, corresponding 
to annotations in Figure 3-4. The sign of LU log2-fold change indicates P enrichment if positive and F 
enrichment if negative.  The sign in paired-sample comparisons indicates RNA enrichment if positive 
and RNA depletion if negative. CPM = counts per million. p-value are BH-adjusted for multiple 
comparisons. 
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Supp. Table 3-4, contd.:  
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Supp. Table 3-4, contd.:  
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Supp. Table 3-4, contd.:  
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Supp. Table 3-5: Sequence and statistical output of AN
F rate IT derived from

 the nifH
-R

 com
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unity. Significance values are derived from
 

m
ultipatt testing (R

 package’ indicspecies’). are ordered from
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TC

G
AG

G
AG

AAC
G

G
C

G
C

G
TA

C
G

AC
G

AC
G

TG
G

AC
TA

C
G

T
C

TC
G

TATG
AC

G
TC

C
TC

G
G

AG
A

C
G

TC
G

TC
TG

C
G

G
C

G
G

C
TTC

G
C

G
ATG

C
C

G
ATC

C
G

C
G

AG
AAC

AAG
G

C
C

C
AG

G
A

G
ATC

TA
C

ATC
G

TC
ATG

TC
C

 
 5 

1.10E-01 
251 

59 
cluster I 

M
ethylobacterium

 sp.1 
0.97 

5.00E-04 
TC

C
A

C
TC

G
C

C
TG

ATC
C

TC
C

A
C

TC
C

AAG
G

C
G

C
AG

G
A

C
AC

C
G

TG
C

TC
A

G
C

C
TC

G
C

C
G

C
C

G
C

C
G

C
C

G
G

C
TC

G
G

TC
G

AAG
A

C
C

TC
G

AG
C

TC
G

AAG
AC

G
TG

C
TC

AAG
G

TC
G

G
C

TAC
AAG

G
G

C
ATC

C
G

C
TG

C
G

TC
G

AATC
A

G
G

C
G

G
TC

C
C

G
AG

C
C

G
G

G
C

G
TC

G
G

TTG
C

G
C

AG
G

C
C

G
C

G
G

C
G

TC
ATC

AC
G

TC
G

ATC
AAC

TTC
C

TC
G

AG
G

AAAAC
G

G
C

G
C

C
TA

C
G

AC
G

AC
G

TC
G

A
C

TAC
G

TC
TC

G
TAC

G
AC

G
TC

C
TC

G
G

C
G

AC
G

TG
G

TC
TG

C
G

G
C

G
G

C
TTC

G
C

C
ATG

C
C

C
ATTC

G
C

G
AAAAC

AAG
G

C
C

C
AG

G
AAATC

TATATC
G

TC
ATG

TC
C

 
 6 

4.00E-02 
243 

137 
cluster I 

C
hrom

atiaceae sp. 
0.80 

1.11E-02 
TC

G
AC

G
C

G
C

C
TG

ATG
C

TTC
AC

G
AAAAG

G
C

C
C

AG
AAC

A
C

C
ATC

ATG
C

AC
C

TG
G

C
C

G
C

TG
AAG

C
C

G
G

C
G

G
C

G
TTG

AAG
A

C
C

TG
G

AG
C

TC
G

AAG
AC

G
TG

ATG
AAG

G
TC

G
G

C
TATG

G
C

AG
C

AC
C

AAATG
C

G
TG

G
A

G
TC

C
G

G
C

G
G

AC
C

TG
AAC

C
C

G
G

C
G

TC
G

G
C

TG
TG

C
G

G
G

C
C

G
G

G
G

C
G

TC
ATC

A
C

C
G

C
C

ATC
AAC

TTC
C

TC
G

AAG
AG

G
AA

G
G

C
G

C
TTA

C
G

AC
AAAG

A
C

TTG
AAC

TTC
G

TG
TTC

TATG
AC

G
TTC

TG
G

G
TG

ATG
TC

G
TG

TG
C

G
G

C
G

G
C

TTC
G

C
C

ATG
C

C
G

ATTC
G

C
G

AAAAG
AAAG

C
C

C
AAG

AAATC
TAC

ATC
G

TC
G

TC
TC

C
 

 7 
2.50E-02 

559 
148 

cluster I 
Sphingom

onadaceae sp. 
1.00 

2.00E-04 
TC

G
AC

C
C

G
TC

TC
C

TC
C

TC
G

G
C

G
G

G
C

TTTC
AC

AAAAG
AC

C
G

TC
C

TC
G

ATAC
G

C
TC

AG
G

AG
TG

AG
G

G
TG

AG
G

A
C

C
TC

G
A

C
C

TC
G

ATG
A

C
G

TAATG
AAG

ATAG
G

TTTC
C

AG
G

G
TAC

G
C

G
G

T
G

C
G

TC
G

AATC
G

G
G

A
G

G
TC

C
C

G
AG

C
C

G
G

G
C

G
TTG

G
C

TG
C

G
C

G
G

G
C

AG
G

G
G

AATC
ATC

AC
C

TC
G

ATC
AA

C
C

TTC
TG

G
AG

C
A

G
C

TC
G

G
C

G
C

TTA
C

TC
C

G
AG

AG
C

ATC
G

G
C

C
TC

G
ATTA

C
G

C
C

TTTTA
C

G
A

C
G

TG
C

TC
G

G
C

G
AC

G
TC

G
TC

TG
TG

G
TG

G
C

TTC
G

C
C

ATG
C

C
G

ATC
C

G
G

G
AC

G
G

C
AAG

G
C

C
AAG

G
AG

ATC
TATATC

G
TC

G
TTTC

C
 

 8 
1.30E-02 

578 
223 

cluster I 
Frankiaceae sp. 

0.82 
7.80E-03 

TC
G

AC
G

C
G

G
C

TG
ATC

C
TC

C
ATTC

C
AAG

G
C

C
C

AG
A

C
G

TC
G

G
TG

C
TC

G
C

C
A

C
TG

C
G

G
C

C
G

AG
C

G
C

G
G

C
TC

C
G

TG
G

A
G

G
AC

G
TC

G
AG

C
TG

G
AG

G
AC

G
TG

C
TG

C
TG

AC
C

AG
C

C
AG

TC
G

G
G

C
ATC

C
G

TTG
C

G
TC

G
AATC

AG
G

C
G

G
C

C
C

C
G

AAC
C

C
G

G
C

G
TC

G
G

TTG
C

G
C

C
G

G
G

C
G

C
G

G
C

G
TG

ATC
AC

C
G

C
G

ATC
A

C
G

TATC
TC

G
AG

G
AG

AA
C

G
G

C
G

C
C

TA
C

G
AG

G
ATC

TC
G

AC
TA

C
G

C
G

TG
C

TAC
G

AC
G

TC
C

TC
G

G
G

G
A

C
G

TC
G

TC
TG

C
G

G
C

G
G

G
TTC

G
C

G
ATG

C
C

G
ATC

C
G

G
C

AG
G

G
C

AAG
G

C
C

C
AG

G
AG

ATC
TAC

ATC
G

TG
A

C
C

TC
G

 
Abbreviations: %

 Abund = average abundance across nifH
-R

 sam
ples; rank = ordered abundance rank; Tax annotation= taxonom

ic best-hit from
 local blastn 
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Supp. Table 3-5 contd. 
No. 

%
 Abund 

F rank 
P rank 

Cluster 
Tax Annotation 

Indicator statistic 
Indicator pvalue 

9 
1.00E-02 

595 
261 

cluster I/IA 
N

itrobacteraceae sp.1 
0.75 

2.78E-02 
TC

C
A

C
C

C
G

TC
TG

ATC
C

TG
C

A
C

G
C

C
AAG

G
C

C
C

AG
G

C
AAC

G
G

TC
ATG

G
AC

C
TG

G
TG

C
G

C
G

AG
C

G
C

G
G

C
AC

C
G

TC
G

AG
G

A
C

C
TG

G
AG

C
TAG

AAG
ATG

TG
C

TC
AAG

G
TC

G
G

TTAC
G

G
C

G
A

C
G

TG
C

G
C

TG
C

G
TG

G
AG

TC
C

G
G

C
G

G
A

C
C

C
G

AG
C

C
G

G
G

TG
TG

G
G

C
TG

C
G

C
C

G
G

C
C

G
C

G
G

C
G

TC
ATC

G
C

C
G

C
C

ATC
AAC

TTTC
C

G
G

AG
G

AAAA
C

G
G

TG
C

C
TAC

A
C

C
C

C
TG

AC
C

TG
G

ATTT
TG

TG
TTC

TAC
G

A
C

G
TA

C
TG

G
G

G
G

A
C

G
TTG

TC
TG

C
G

G
C

G
G

G
TTC

G
C

C
ATG

C
C

G
ATC

C
G

C
G

AG
AAC

AAG
G

C
C

G
AG

G
A

G
ATC

TATATC
G

TC
TG

TTC
C

 
 10 

8.30E-03 
602 

281 
cluster III 

D
esulfovibrionaceae sp. 

0.77 
2.67E-02 

TC
C

A
C

G
C

G
AC

TG
C

TC
C

TC
G

G
G

G
G

AC
TG

G
C

G
C

AG
AAG

AG
C

G
TG

C
TG

G
ATAC

G
C

TG
C

G
C

G
AAG

AG
G

G
C

G
AG

G
AC

G
TG

G
ATC

TG
G

AG
G

AC
ATTC

G
C

TC
C

C
AAG

G
G

TTC
G

G
C

AAG
AC

C
C

T
C

TG
C

G
TG

G
AATC

G
G

G
TG

G
TC

C
G

G
AG

C
C

C
G

G
C

G
TAG

G
C

TG
C

G
C

C
G

G
C

C
G

TG
G

C
ATC

ATC
AC

C
AG

C
ATC

AAC
C

TG
C

TC
G

AG
C

AG
C

TTG
G

C
G

C
C

TAC
G

AC
G

AG
G

AC
AATG

C
C

C
TG

G
AC

TA
C

G
TC

TTC
TA

C
G

AC
G

TG
C

TG
G

G
C

G
ATG

TC
G

TC
TG

C
G

G
C

G
G

G
TTC

G
C

C
ATG

C
C

G
ATTC

G
C

G
A

G
G

G
C

AAG
G

C
C

G
AAG

A
G

ATC
TA

C
ATTG

TC
TG

C
TC

C
 

 11 
8.20E-03 

396 
298 

cluster I 
R

hizobiaceae sp. 
0.71 

3.47E-02 
TC

C
A

C
C

C
G

C
C

TG
ATC

C
TG

AAC
G

C
C

AAG
G

C
AC

AG
G

A
C

AC
G

G
TG

C
TG

A
G

C
C

TC
G

C
C

G
C

G
G

AG
G

C
TG

G
TTC

G
G

TTG
AG

G
ATC

TG
G

AG
ATC

G
AG

G
ATG

TG
C

TG
AAG

G
TTG

G
C

TA
C

AAG
AAC

ATC
AAATG

C
G

TTG
AG

TC
C

G
G

C
G

G
AC

C
G

G
AA

C
C

G
G

G
C

G
TG

G
G

C
TG

C
G

C
G

G
G

TC
G

G
G

G
C

G
TC

ATC
AC

G
TC

C
ATC

AATTTC
C

TG
G

AAG
AG

AAC
G

G
C

G
C

G
TATG

A
C

G
ATG

TC
G

ATTA
C

G
TC

TC
C

TATG
AC

G
TTC

TTG
G

C
G

AC
G

TC
G

TC
TG

C
G

G
C

G
G

G
TTC

G
C

G
ATG

C
C

G
ATC

C
G

TG
AG

AAC
AAG

G
C

G
C

AG
G

AAATC
TATATTG

TG
ATG

TC
C

 
 12 

3.50E-03 
647 

384 
cluster I 

Azospirillaceaee sp. 
0.82 

6.20E-03 
TC

C
A

C
C

C
G

TC
TG

ATC
C

TG
AAC

G
C

G
AAAG

C
C

C
A

G
G

AC
A

C
G

G
TG

TTG
A

G
C

TTG
G

C
G

G
C

G
G

C
C

G
C

C
G

G
C

TC
G

G
TC

G
AG

G
ATC

TC
G

AG
C

TC
G

ATA
TG

G
TG

C
TC

AAG
A

C
C

G
G

C
TAC

AAG
G

G
G

ATC
AAG

TG
C

G
TC

G
AG

TC
G

G
G

A
G

G
C

C
C

G
G

AG
C

C
C

G
G

C
G

TG
G

G
C

TG
C

G
C

C
G

G
C

C
G

C
G

G
C

G
TC

ATC
AC

TTC
G

ATC
AAC

TTC
C

TG
G

AAG
AG

AAC
G

G
C

G
C

C
TATG

AG
G

AC
ATC

G
A

C
TAC

G
TG

TC
C

TA
C

G
AC

G
TG

C
TC

G
G

C
G

AC
G

TC
G

TC
TG

C
G

G
C

G
G

TTTTG
C

G
ATG

C
C

G
ATC

C
G

C
G

AG
AAC

AAG
G

C
G

C
AG

G
AG

ATC
TA

C
ATC

G
TC

ATG
TC

C
 

 13 
3.00E-03 

656 
398 

cluster I/IA 
Bradyrhizobium

 sp. 
0.71 

3.64E-02 
TC

C
A

C
C

C
G

TC
TG

ATTC
TTC

ATG
C

C
AAG

G
C

C
C

AG
G

C
AAC

G
G

TC
ATG

G
ATATG

G
TG

C
G

C
G

AG
C

TG
G

G
C

AC
G

G
TC

G
AG

G
A

C
C

TG
G

AG
C

TG
AC

TG
ATG

TG
C

TC
AAG

G
TAG

G
C

TA
C

G
G

C
G

AT
G

TG
AAATG

C
G

TAG
AG

TC
G

G
G

TG
G

G
C

C
TG

AG
C

C
G

G
G

C
G

TC
G

G
C

TG
TG

C
C

G
G

C
C

G
C

G
G

C
G

TC
ATC

G
C

C
G

C
C

ATC
AAC

TTC
C

TG
AAG

G
AG

AA
C

G
G

C
G

C
C

TAC
AC

C
C

C
C

G
ATC

TG
G

ATTTC
G

TC
TTC

TATG
AC

G
TTC

TC
G

G
C

G
AC

G
TTG

TC
TG

C
G

G
C

G
G

G
TTC

G
C

C
ATG

C
C

G
ATC

C
G

C
G

AG
G

A
C

AAG
G

C
C

G
ATG

AG
ATC

TAC
ATC

G
TC

TG
C

TC
C

 
 14 

1.40E-03 
704 

496 
cluster III 

D
esulfovibrionaceae sp.1 

0.71 
3.64E-02 

TC
G

AC
G

C
G

G
C

TG
C

TG
C

TG
G

G
C

G
G

C
C

TG
G

C
C

C
AG

AG
G

AC
AG

TG
C

TG
G

AC
AC

G
C

TG
C

G
G

G
AG

G
AAG

G
C

G
A

G
G

AG
G

TG
G

ATC
TTTG

C
G

AC
ATC

C
G

C
C

G
C

C
A

G
G

G
C

TTC
G

G
C

AG
C

A
C

G
C

TTTG
C

A
C

C
G

A
G

AG
C

G
G

C
G

G
C

C
C

C
G

AG
C

C
TG

G
C

G
TC

G
G

C
TG

C
G

C
C

G
G

AC
G

C
G

G
C

ATC
ATTA

C
C

TC
C

ATC
AAC

C
TG

C
TG

G
A

G
C

AG
TTG

G
G

G
G

C
TTATG

AC
G

TG
A

G
C

G
AG

AATATC
G

ATT
AC

G
TC

TTC
TA

C
G

AC
G

TG
C

TG
G

G
C

G
A

C
G

TG
G

TC
TG

C
G

G
C

G
G

G
TTTG

C
C

ATG
C

C
C

ATC
C

G
C

G
AC

G
G

TAAG
G

C
G

C
AG

G
AG

ATATAC
ATC

G
TC

TG
TAG

C
 

 15 
1.10E-03 

722 
528 

cluster I 
Ectothiorhodospiraceae sp. 

0.71 
3.27E-02 

TC
G

AC
G

C
G

G
C

TG
ATG

C
TC

C
AC

G
AG

AAG
G

C
G

C
A

G
AAC

AC
G

ATC
ATG

C
AC

C
TG

G
C

G
G

C
C

G
AG

G
C

C
G

G
C

G
G

C
G

TC
G

A
G

G
AC

C
TC

G
AAC

TC
G

ATC
AAG

TG
C

TC
AAG

G
TC

G
G

C
TAC

G
G

C
G

C
G

G
TTAAG

TG
C

G
TC

G
AG

TC
C

G
G

C
G

G
C

C
C

C
G

AG
C

C
G

G
G

C
G

TC
G

G
C

TG
C

G
C

C
G

G
C

C
G

C
G

G
TG

TC
ATC

AC
G

G
C

G
ATC

AAC
TTC

C
TC

G
AG

G
AAG

AA
G

G
C

G
C

C
TAC

G
AAG

A
G

G
AC

C
TG

AAC
T

AC
G

TC
TTC

TA
C

G
AC

G
TG

C
TG

G
G

TG
AC

G
TC

G
TC

TG
C

G
G

C
G

G
G

TTC
G

C
C

ATG
C

C
G

ATC
C

G
C

G
A

G
AAG

AAG
G

C
C

C
AG

G
AG

ATC
TAC

ATC
G

TG
G

TC
TC

C
 

 16 
5.10E-03 

782 
618 

cluster I 
Azospirillum

 sp. 
0.85 

3.80E-03 
TC

G
AC

C
C

G
C

C
TG

ATC
C

TG
AAC

G
C

G
AAAG

C
TC

AG
G

AC
AC

G
G

TG
C

TG
A

G
C

C
TC

G
C

C
G

C
G

G
C

C
TC

G
G

G
C

TC
G

G
TC

G
A

G
G

ATC
TG

G
AG

C
TC

G
AG

A
TG

G
TC

C
TC

AAG
AC

C
G

G
TTA

C
AAG

G
G

G
ATC

AAG
TG

C
G

TC
G

AG
TC

G
G

G
C

G
G

C
C

C
G

G
AG

C
C

G
G

G
C

G
TC

G
G

TTG
C

G
C

C
G

G
C

C
G

C
G

G
C

G
TC

ATC
AC

C
TC

G
ATC

AAC
TTC

C
TC

G
AAG

AG
AAC

G
G

C
G

C
G

TA
C

G
AG

G
A

C
ATC

G
ATTA

C
G

T
G

TC
C

TATG
AC

G
TG

C
TG

G
G

C
G

A
C

G
TG

G
TG

TG
C

G
G

C
G

G
C

TTC
G

C
G

ATG
C

C
G

ATC
C

G
TG

A
G

AAC
AAG

G
C

C
C

AG
G

AAATTTAC
ATC

G
TC

ATG
TC

C
 

 17 
2.90E-04 

834 
684 

cluster I 
N

itrobacteraceae sp. 
0.71 

3.47E-02 
TC

G
AC

C
C

G
C

C
TG

ATC
C

TG
C

A
C

G
C

TAAG
G

C
AC

AG
G

ATA
C

C
ATC

C
TG

A
G

C
C

TG
G

C
AG

C
G

C
AG

AAAG
G

C
TC

C
G

TTG
AG

G
AC

C
TG

G
AAATTG

AAG
A

G
G

TC
ATG

AAG
C

AC
G

G
C

TAC
AAAAC
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Supp. Figure 3-1: Scheme of rate binning for nifH-R-rate indicator species analysis 
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Supp. Figure 3-2: Absolute gene quantification via qPCR for 16S-D and nifH-D communities 
(natural log scale). Statistics to the right represent non-parametric KW tests on differences 
among sites, with a Dunn’s post-hoc to test for grouping by LU. 
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Supp. Figure 3-3: Alternate diversity metrics including Chao1, Evenness, and Inverse Simpson for 
the three community profiles surveyed. 

 

0.70
0.75
0.80
0.85
0.90
0.95

F1 F2 F3 P1 P2 P3
Site

0.3
0.4
0.5
0.6
0.7
0.8

F1 F2 F3 P1 P2 P3
Site

0.5

0.6

0.7

0.8

0.9

F1 F2 F3 P1 P2 P3
Site

Ev
en

ne
ss

 : 
ni
fH
-R

Type
Forest
Pasture

Ev
en

ne
ss

 : 
16

S-
D

25

50

75

100

125

F1 F2 F3 P1 P2 P3
Site

0

10

20

30

40

F1 F2 F3 P1 P2 P3
Site

10

20

30

F1 F2 F3 P1 P2 P3
Site

In
vS

im
ps

on
: n
ifH
-R
Type

Forest
Pasture

In
vS

im
ps

on
: 1

6S
-D

200

300
400

500

600

F1 F2 F3 P1 P2 P3
Site

200

400

600

800

1000

F1 F2 F3 P1 P2 P3
Site

100

200

300

400

500

F1 F2 F3 P1 P2 P3
Site

S.
ch

ao
1 

: n
ifH
-R

Type
Forest
Pasture

S.
ch

ao
1 

: 1
6S

-D

S.
ch

ao
1 

: n
ifH
-D

Ev
en

ne
ss

: n
ifH
-D

In
vS

im
ps

on
: n
ifH
-D



 201 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supp. Figure 3-4: C
om

paring O
TU

 enrichm
ent trends across (a) LU

 effects (D
N

A com
pared to R

N
A-based com

m
unities) and 

(b) C
T effects (Forest com

pared to Pasture paired D
N

A and R
N

A com
m

unities). N
on-significant O

TU
s are shaded in gray (p-

value > 0.05). 
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Supp. Figure 3-5: ANF rate bin IT identified from nifH-R communities correlated individually 
against rate. Red letters in upper right represent the bin IT are associated with (H= high, M = 
medium, L=low, see Supp. Figure 3-1), and blue values in the lower left represent the Pearson 
correlation estimate.  
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Supp. Figure 3-6: Individual correlations of nifH-R-derived IT relative abundance within nifH-D 
communities, against ANF rate. Blue values in the lower left represent the Pearson correlation 
estimate. The larger bottom figure shows aggregated relative abundance of nifH-R IT within the 
nifH-D community against ANF rate. 
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