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E N G I N E E R I N G

Quantitative cross-species translators of cardiac 
myocyte electrophysiology: Model training, 
experimental validation, and applications
Stefano Morotti1*, Caroline Liu1, Bence Hegyi1, Haibo Ni1, Alex Fogli Iseppe1, Lianguo Wang1, 
Marco Pritoni2, Crystal M. Ripplinger1, Donald M. Bers1, Andrew G. Edwards1, Eleonora Grandi1*

Animal experimentation is key in the evaluation of cardiac efficacy and safety of novel therapeutic compounds. 
However, interspecies differences in the mechanisms regulating excitation-contraction coupling can limit the trans-
lation of experimental findings from animal models to human physiology and undermine the assessment of 
drugs’ efficacy and safety. Here, we built a suite of translators for quantitatively mapping electrophysiological 
responses in ventricular myocytes across species. We trained these statistical operators using a broad dataset 
obtained by simulating populations of our biophysically detailed computational models of action potential and 
Ca2+ transient in mouse, rabbit, and human. We then tested our translators against experimental data describing 
the response to stimuli, such as ion channel block, change in beating rate, and -adrenergic challenge. We demon-
strate that this approach is well suited to predicting the effects of perturbations across different species or exper-
imental conditions and suggest its integration into mechanistic studies and drug development pipelines.

INTRODUCTION
Cardiovascular disease is the leading cause of morbidity and mortality 
worldwide (1). The combined efforts of basic, translational, and 
clinical research have greatly augmented our understanding of dis-
ease mechanisms over recent decades, but many challenges still exist. 
Among these are the problems associated with interpreting in the 
context of human disease preclinical experimentation conducted in 
animals and in various in vitro and animal models of disease (2, 3). 
Physiological species differences present a major intrinsic limitation 
to translating those experimental findings from animals to human. 
Given the wide adoption of animal experimentation in the processes 
involved in the development of therapeutics, implications of inter-
species differences are particularly important in the pharmaceutical 
field, where there are growing concerns about safety and efficacy of 
drugs tested on animals (4, 5).

The species most commonly used for preclinical assessment of 
cardiac electrophysiologic outcomes are small mammals (6, 7), in-
cluding mice (8) and rabbits (9). Despite genetic similarities, differ-
ences in cardiac function among mammals are evident at both 
organ and cellular levels. For example, body and heart weights, as 
well as stroke volume, vary across approximately three orders of 
magnitude, and resting heart rate is about 10-fold higher in mouse 
versus human (~600 bpm versus 60 bpm) (8). To accommodate for 
these quite different working regimes, evolution has led to several dif-
ferences in the ionic mechanisms controlling excitation-contraction 
coupling (ECC) (6, 10). Specifically, varying expression and regula-
tion of ion channels and transporters, notably K+ channels (11–14), 
are mechanistically associated with species-specific action potential 
(AP) properties. It has been shown, for example, that the presence 
of a more prominent “spike and dome” morphology is due to a 
large transient outward current Ito in species like rabbit and human, 

while Ito is virtually absent in the guinea pig, which lacks the AP notch 
(15). A much larger Ito and expression of additional K+ channels are 
responsible for the typical triangular AP shape and shorter AP dura-
tion (APD) in mouse and rat (versus nonrodents) ventricular myo-
cytes (16). A notable implication of these dissimilarities is that the 
same perturbation (e.g., drug administration) can lead to markedly 
different changes in the AP and intracellular Ca2+ transient (CaT) 
properties in different species. This can occur even in species with 
comparable AP profiles, for example, due to selective block of the 
slow delayed rectifying K+ current (IKs), which prolongs AP in guinea 
pig but does not substantially alter rabbit or human APD (17–19). 
Moreover, these differences, even when relatively subtle, can markedly 
alter propensity for arrhythmogenic voltage and Ca2+ instabilities 
(12). Recent research has also highlighted interspecies differences in the 
APD changes leading to optimal inotropic response to -adrenergic 
receptor (-AR) stimulation (20, 21), a well-known mediator of cardiac 
stress responses and major arrhythmia trigger (22). Thus, differences 
in ECC regulation in human versus animal models have important 
implications for the study of arrhythmogenic mechanisms and, con-
sequently, for the development of pharmacological antiarrhythmic 
treatments in patients.

With the recent development and widespread use of experimental 
technologies based on induced pluripotent stem cells (iPSCs), 
human iPSC–derived cardiomyocytes (hiPSC-CMs) have become a 
common alternative to animal models in cardiovascular and pharma-
ceutical research (23). Since hiPSC-CMs retain the genetic informa-
tion of the donors they are derived from, these cells are an ideal tool 
for the investigation of patient-specific physiology and response to 
drugs (24). However, the high degree of variability in electrophysio-
logical properties among different hiPSC-CM lines, and within the 
same culture (25), and the immature phenotype characterized by 
altered expression of ion channels, spontaneous beating activity, and 
impaired contractility, can limit translation of responses in hiPSC-
CMs to adult cardiac myocytes (26). To address this limitation, Gong 
and Sobie (27) recently proposed an approach that combines simu-
lations and statistical analysis to create quantitative “translators” 
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that map electrophysiological responses across different cell types. 
Their work theoretically demonstrated the feasibility of regression-
based operators that take as input experimental data recorded in 
hiPSC-CMs, and directly produce as output the predicted effect in 
adult myocytes (27), and suggested translation across species is also 
achievable using existing models. Here, we coupled the Gong and 
Sobie regression-based approach with our established lineage of 
ventricular myocyte AP and CaT models in mouse (28, 29), rabbit 
(30, 31), and human (32, 33) and constructed a suite of predictors of 
human electrophysiological response from mouse and rabbit data. 
We validated our translators against a broad set of experimental data 
and demonstrated their suitability to predict human response to 
pharmacological perturbation from experiments in animal models, 
suggesting that their systematic integration into the drug develop-
ment pipeline could facilitate the assessment of efficacy and safety 
of novel compounds.

RESULTS
Sensitivity analysis of multispecies models reveals species 
differences in ECC properties
We updated our established models of ventricular myocytes in 
mouse (28, 29), rabbit (30, 31), and human (32, 33) and created a 

coherent multispecies computational framework for ECC simula-
tions. This suite of models integrates detailed description of mem-
brane electrophysiology, intracellular Ca2+ and Na+ handling, and 
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and -AR 
signaling cascades. It also includes detailed characterization of 
species-specific electrophysiological properties recapitulating well-
known species differences in AP profile and Ca2+ handling (Fig. 1A 
and fig. S1). Following an established approach (34), we created 
populations of 1000 mouse, rabbit, and human myocyte models 
(Fig. 1B) that replicate the natural cell-to-cell variability seen in 
experiments by randomly perturbing baseline model parameters 
(defined in table S1). We then assessed steady-state AP and CaT 
features (defined in Table 1) for each model variant in the three 
populations and performed multivariable linear regression to quan-
tify the sensitivity of such features to changes in perturbed parameters 
(Fig. 1C) (34). This systematic analysis shows that APD and CaT are 
differently regulated in mouse, rabbit, and human ventricular myo-
cytes (Fig. 1D and fig. S2). AP repolarization, similarly in rabbit and 
human, is mostly controlled by Ito, IKs, and the rapid delayed recti-
fying K+ current (IKr). The shorter and more triangular murine AP 
is more sensitive to changes in the inwardly rectifying K+ current 
(IK1) and strongly affected by changes in the mouse-specific ultra
rapidly activating and slowly inactivating (IK,slow) and noninactivating 
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Fig. 1. Interspecies differences in APD and APD sensitivity to changes in model parameters. (A) Simulated AP and CaT traces elicited by stimulating the baseline 
mouse, rabbit, and human models at 1 Hz in control condition. (B) AP and CaT traces obtained in 50 representative variants sampled from mouse, rabbit, and human 
model populations (1-Hz pacing, control). (C) Schematic illustrating the approach adopted to perform parameter sensitivity analysis using the population-level data. The 
matrix X contains the randomly generated scaling factors (represented with circles) used to perturb the values of selected parameters in the baseline mouse, rabbit, and human 
models. In each population, AP and CaT features (squares) are estimated at steady state in each model variant, and their values are collected in the matrix F. Multivariable 
regression analysis between the matrix of scaling factors (X) and the matrix of features (F) is performed to assess the sensitivity of AP and CaT features to changes in 
model parameters in each species (34). The result of this process is the regression matrix BSA, which coefficients (triangles) quantify the sensitivity of model features to 
parameter perturbations. (D) Regression coefficients illustrate the sensitivity of APD90 and APD50 to changes in the maximal conductance of repolarizing K+ channels in 
the three species (1-Hz pacing, control).
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steady-state (Iss) K+ currents. These results demonstrate that a 
similar perturbation (e.g., selective ion channel block) can cause 
APD and CaT changes that are quantitatively different among dif-
ferent species.

Multivariable linear regression is used to build translators 
of ECC properties across species or experimental conditions
Using the approach proposed by Gong and Sobie (27), we built 
populations of models by perturbing only the parameters that are 
common to the mouse, rabbit, and human models and applied multi-
variable linear regression between sets of species-specific AP and 
CaT features to generate a suite of statistical translators (a set of 
regression coefficients) for mapping mouse and rabbit data onto 
human physiologic responses (Fig. 2). Upon validation, these mouse-
to-human and rabbit-to-human translators could be directly applied 
to predict human features from data obtained from experiments in 
animal models.

Examples of cross-species translators are shown in Fig. 3 (A and B). 
Each predictor was built using four simulated features for both input 
and output species, namely, APD at 50 and 90% of repolarization 
(APD50 and APD90), time to 50%, and time constant of CaT decay 
(CaTt50 and CaTtau) from populations of in silico cells. A given output 
feature (e.g., APD90 in human) is calculated by applying a function 
in which each one of four input features in mouse or rabbit is multi-
plied by the corresponding regression coefficient (i.e., the four values 
shown in one row in the matrix) (27). We then tested these transla-
tors using simulated data from independent populations of models, 
i.e., comparing the actual (simulated) to the predicted (translated) 
features (Fig. 3, A and B, scatter plots). Results of validation show 
that human CaT duration (CaTD) measurements could be well re-
produced translating both mouse and rabbit data, while prediction 
of human APD data from mouse is less accurate than starting from 
rabbit data, despite good mouse-to-human translation of all the 
baseline (average) features (fig. S3A).

We investigated the translators’ performance when varying the 
number and composition of input and output features (Fig. 3C). We 
compared the overall performance (estimated as average R2 value) 
and found that prediction from rabbit is always more accurate than 
prediction from mouse. Starting from a full set of 10 AP and CaT 
features (Table 1), we progressively eliminated features to mimic 
more realistic conditions in which experiments offer a less rich dataset. 

As expected, reducing the number of features worsens the accuracy of 
the translation. This effect is especially evident for mouse-to-human 
translation, where impaired APD prediction negatively affects the 
overall performance. Moreover, prediction of human APD values 
(dashed lines in Fig. 3C) from mouse data improves when it relies on 
other input features (other than APD50 and APD90). Performance of 
rabbit-to-human translation is minimally affected by the reduction 
of features, and APD predictions of the “minimal” translator (nf = 2) 
are still comparable with those obtained using the whole dataset.

Cross-species translators predict species-specific simulated 
effects of ion current blockade
To extend the characterization of translators’ performance, we tested 
their ability to translate the effects of simulated drug application. 
AP and CaT values obtained through simulation of selective ion 
channel block in our baseline mouse and rabbit models were trans-
lated into human using the previously described predictors (i.e., 
those developed using control data).

Response to drug is qualitatively similar in rabbit and human 
(Fig. 4A and fig. S3B), and predictions from rabbit match human 
simulated data quite well (Fig. 4, B to F). In general, minimal 
rabbit-to-human translators produce reliable predictions, and in-
creasing nf does not lead to any appreciable improvement. Mouse-
to-human translators lead to less and more variably accurate 

Table 1. Definition of AP and CaT features. 

AP and CaT features Unit

UV Upstroke velocity mV/ms

MDP Maximum diastolic potential mV

APamp AP amplitude mV

APD90 APD at 90% repolarization ms

APD50 APD at 50% repolarization ms

CaTmin Diastolic Ca2+ concentration nM

CaTamp CaT amplitude nM

CaTttp Time to CaT peak ms

CaTt50 Time to 50% CaT decay ms

CaTtau Time constant of CaT decay ms
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Fig. 2. Overview of the cross-species translation workflow. We created cross-
species translators of electrophysiological response using the methodology pro-
posed by Gong and Sobie (27). Our goal is to translate the drug-induced effects 
experimentally observed in myocytes from an animal model (mouse or rabbit) to 
predict the effects that these perturbations would cause in human. Specifically, given 
an experimental dataset consisting of AP and CaT features (APD90, APD50, and CaTamp) 
assessed before (control) and after drug administration, we seek to predict the 
drug-induced effect on the same features in human myocytes. (A) To build the 
cross-species translator, we first collect the steady-state values of the biomarkers 
of interest (squares) in two populations of nc models of control animal (mouse or 
rabbit) and human myocytes generated applying the same parameters perturbations 
(circles). Then, we generate Bcross by applying multivariable linear regression to the 
matrices of log-transformed animal (mouse or rabbit) and human features (Fanimal 
and Fhuman). (B) Regression coefficients in Bcross (triangles) can be used to predict AP 
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translate across conditions (e.g., changes in pacing rates) within the same species.
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predictions, where best results were obtained for translating the ef-
fects of blocking the fast component of Ito (Itof) and the L-type Ca2+ 
current (ICaL). In these cases, increasing nf improved the prediction, 
especially for CaT measurements. The ability to predict changes in 
APD90 and CaTtau was decreased when translating the effects induced 
by block of IK1 and late Na+ current (INaL), and the worst predictions 
were obtained for IKr block. The latter result is expected because IKr 
plays a major role in shaping AP repolarization in larger mammals 
but minimally affects AP (or CaT) in mice (figs. S2 and S3B). We 
further compared our translator predictions (white bars) with the 
translation of baseline (average) control inputs (fig. S3A), indicated 
with markers. This reveals that since the perturbed current has vir-
tually no effect on mouse APD, the mouse-to-human translation of 
drug response heavily relies on the baseline model translation. Our 
mouse-to-human translators also failed to accurately predict response 
to Na+/Ca2+ exchanger (NCX) block because of the development of 
arrhythmogenic spontaneous Ca2+ release events from the sarco-
plasmic reticulum in mouse simulations (fig. S4). For both mouse-
to-human and rabbit-to-human translations, predicted APD50 and 
CaTt50 values show a trend similar to those of APD90 and CaTtau, 

respectively (fig. S3, C to G). Together, our data show that predic-
tion of human responses from rabbit data is generally accurate even 
when only a few measurements are available. On the other hand, 
prediction from mouse data is more challenging because of intrinsic 
differences in the regulation of ECC mechanisms and different pro-
pensity for development of Ca2+ instabilities.

Translation of measured drug-induced effects demonstrates 
prediction across species
As a next critical step, we sought to validate our translators against 
experimental data. To do so, we collected a set of published mea-
surements describing the effects of ion channel blockers on APD. To 
account for the large degrees of experimental variation in these mea-
sures, we used the experimentally observed drug-induced relative 
changes to scale the APD values produced by our baseline models in 
control condition for both input and output species (see Methods 
and fig. S5 for a detailed explanation). We applied our previously 
described predictors (i.e., those built considering APD90 and APD50 
data in control condition, nf = 2) to the scaled input values and then 
compared the results with the scaled output values for validation. 
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Predictions of human response to the specific INaL blocker GS-967 
from mouse (35) and rabbit data (36) closely reproduced the effect 
seen in human experiments (Fig. 5A) (37). The same was true for 
the translations in the opposite direction (from human to mouse or 
rabbit) and those between mouse and rabbit (fig. S6A). Translation 
of the effect induced by IKr block with administration of E-4031 
(Fig. 5B) (38–40) and Sotalol (Fig. 5C) (41) predicted APD changes 
within the range of experimental variability in human, as also ob-
served when predicting rabbit responses from human data (fig. S6, 
B and C). Translating the effects of selective block of IK1 (38, 42) and 
ICaL (41) also yielded good predictions (fig. S7). These results show 
that translators built using minimal datasets (APD90 and APD50 
data only) can predict human responses from animal data.

Analyzing translation performance allows identification 
of the most informative subset of input features
We demonstrated that translators’ performance depends on the size 
of the group of features included in its construction. In general, 
increasing the number of input features improves the performance 
because of the larger amount of information available in the defini-
tion of the regression model. However, AP and CaT features are not 
independent variables but are potentially correlated with each other, 
and often only a subset of measurements is obtained in experimental 
settings. We assessed the changes in the overall performance of our 
translators with a varying number of input features to identify the 
least and most informative features for the prediction of a certain 
group of AP and CaT properties in another species or experimental 
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the mouse, rabbit, and human models at 1 Hz in control condition or upon selective block (50%) of several ion currents. Quantification of block-induced effects on AP and CaT 
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condition. This information can be useful in prospective studies to limit 
the experimental scope, i.e., the number of required measurements.

Specifically, we applied a recursive feature elimination routine to 
the prediction of human APD50, APD90, CaTtau, and CaTamp from 
mouse or rabbit data (Fig. 6). Starting from our complete set of 
10 features, this routine progressively eliminates the least informa-
tive input variable. Mouse-to-human prediction shows a first drop 
in overall performance starting at the fourth iteration and a second 
one after reducing the input dataset to three features. Performance 
of rabbit-to-human prediction is mildly altered until reducing the 
input dataset to three features. Both analyses lead to the identifica-
tion of the same optimal four-feature group, including three of the 
four output features of interest (APD90, CaTtau, and CaTamp) and the 
maximum diastolic potential (MDP) that replaces the output feature 
APD50, discarded at earlier iterations in both cases. This suggests 
that MDP data would be more informative than APD50 data for 
the quantitative cross-species prediction of human APD50, APD90, 
CaTtau, and CaTamp (when APD90, CaTtau, and CaTamp animal data 
are available), potentially because APD90 and APD50 are highly cor-
related. The approach presented here might be used to guide the 
design of experiments on animal models, i.e., by identifying variables 
that are critical for accurate translation.

Translation of measured responses to sympathetic 
stimulation demonstrates prediction across species 
and pacing rates
Our translators proved effective in predicting human response to 
ion channel block at a given pacing cycle length from animal data. 
A more challenging application of cross-species translation is in the 
context of sympathetic stimulation. First, -AR stimulation func-
tionally affects many subcellular targets at the same time [via activa-
tion of the protein kinase A (PKA) as shown in fig. S1], thus affecting 
myocyte function in a multifaceted manner rather than with a single-
targeted ion channel blocker. Second, sympathetic stimulation in vivo 
induces concomitant changes in sinoatrial node activity that result 
in increasing stimulation rates for the ventricular myocytes.

To decompose this complex problem, we first tested our predic-
tions across different pacing rates against experimental data describing 
the frequency dependence of rabbit APD50 and APD90 upon selec-
tive block of INaL, Ito, IKr, IKs, IK1 (Fig. 7), and the small conductance 
Ca2+–activated K+ current (IK,Ca; figs. S8 and S9) (38). We generated 
simulated data with our population of rabbit models paced at differ-
ent frequencies in control condition and then built cross-frequency 
translators to predict responses at 0.5, 2, and 3 Hz from observa-
tions at 1 Hz. Cross-frequency translation produced reliable predic-
tions when applied to drugs that substantially affect APD causing 
both shortening (Fig. 7A) or different degrees of prolongation 
(Fig. 7, B to E). Since apamin administration does not appreciably 
alter (undiseased) rabbit ventricular AP, cross-frequency translation 
of IK,Ca block essentially operates on control values, showing opti-
mal results (fig. S8).

Next, we tested our translators against experimental data de-
scribing the effect of isoproterenol (ISO) administration. We first 
applied our cross-frequency translators in rabbit to experimental 
data describing APD responses to ISO at various pacing frequencies 
(Fig. 8A and fig. S9) (38). Prediction of APD effects at 0.5-, 2-, and 
3-Hz pacing rate starting from 1-Hz data fell within the variability 
ranges observed in experiments in the three cases. We then tested 
cross-species prediction of ISO effect using our mouse (43) and rabbit 
(38) observations at 1-Hz pacing (Fig. 8B). We showed that predic-
tion of rabbit response to ISO from mouse using only two APD inputs 
fell outside the ranges of experimental variability (Fig. 8, C and D), 
but outcomes of mouse-to-rabbit translation improved when also 
considering CaT features as inputs. Translation from rabbit to mouse 
shows a similar trend (nf = 2; fig. S10, A and B), with more reliable 
predictions of APD50 versus APD90.

Translators successfully predict cross-species effects 
of sympathetic stimulation in quasi-physiological conditions
In physiological conditions, sympathetic stimulation influences ven-
tricular activity by combined PKA-dependent modulation of ion 
channels and transporter and increased heart rate. To test cross-species 
translation in a condition more relevant for in vivo physiology, we 
used our recently published data describing the effect on APD and 
CaTD recorded in innervated whole-heart mouse and rabbit prepara-
tions during sympathetic nerve stimulation (SNS) for 60 s (Fig. 9A) 
(21). We built cross-species predictors that translate the relative effect 
induced by sympathetic activation using simulated data obtained by 
imposing the increases in stimulation rates seen in experiments 
in mouse and rabbit (fig. S10C). Predicted relative effects induced 
by SNS on rabbit features nicely match experimental observations 
(Fig. 9B), as well as predictions of absolute APD and CaTD values 
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after SNS (obtained scaling control rabbit data; Fig. 9C). Notably, the 
converse rabbit-to-mouse predictions are less accurate for CaTD 
(fig. S10, D and E). These results demonstrate the ability of our pre-
dictors to map complex responses to physiologically relevant stim-
uli across species.

DISCUSSION
We created a suite of regression-based operators to quantitatively 
translate electrophysiological responses across species (27), based on 
our updated models of mouse (28, 29), rabbit (30, 31), and human 
ventricular myocytes (32, 33). We tested our translators against 
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experimental data and demonstrated that these tools are well suited 
for predicting the human electrophysiological changes in response 
to a given stimulus (e.g., ion channel block and sympathetic stimu-
lation) starting from the measured response in animal models. We 
also showed that these regression-based models can be used to 
inform the design of experiments by identifying the set of AP 
and CaT properties to be measured to maximize translatability to 
human physiology.

Computational approaches to investigate implications 
of interspecies differences
Despite the limiting differences with respect to human physiology, 
animal models will remain an essential tool for investigating arrhyth-
mogenic mechanisms and assessing safety and efficacy of new drugs. 
Thus, while pursuing a better characterization of these differences 
is undoubtedly important, a priority for the scientific community is 

to apply the existing knowledge to the development of reliable 
methods for translating findings in animals into human physiology. 
Computational modeling and simulations, now commonly used in 
the drug development pipelines (44), have proven useful for integrat-
ing species-specific experimental data into comprehensive mathe-
matical models of mouse (28, 45), rat (46), guinea pig (47), rabbit 
(48), dog (49), and human ventricular myocytes (32, 50, 51). For 
many years, implications of interspecies differences have been in-
vestigated simulating these models (21, 42, 52), or integrating sim-
ulations into the experimental activity, as in the case of the dynamic 
clamp technique (20, 53).

Recent methodologies have been specifically developed to facili-
tate translation across species or cell types. Tveito and colleagues 
(40, 54, 55) proposed an approach based on the experimentally driven 
automatic identification of drug effects on ion channels and trans-
porters in animal models and simulation of these alterations in a 
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human model. This method demands performing mathematical 
analysis and running a new simulation after each experiment but 
has the advantage of providing direct mechanistic information, e.g., 
regarding the functional effects of drug administration. On the other 
hand, the methodology proposed by Gong and Sobie (27) allows 
direct transformation of measured data. This reproducibility ad-
vantage, due to the fact that the combined use of population of 
models and statistical regression is required only when constructing 
a new translator, makes the methodology we used well suited for a 
straightforward integration into experimental practice. Furthermore, 
analysis of the regression coefficients can help to uncover physio-
logical mechanisms that are similar or differ across species.

Populations of models have been used for over a decade in 
cardiac electrophysiology and led to many novel insights into phys-
iological and pathophysiological variabilities (including in arrhythmia 
mechanisms) (56) and variable responses to drug administration 
(57, 58). Analysis of populations of cardiac AP models has contrib-
uted to our understanding of the relative roles of the underlying 

properties (model parameters) in modulating a given phenotypic 
trait or biomarker (i.e., sensitivity analysis) or revealing association 
of certain parameter ranges or properties with specific outcomes 
(34, 59). Here, we used these methods to quantify interspecies dif-
ferences in the regulation of AP and CaT (fig. S2) and to develop 
direct translators of electrophysiological response. A specific method-
ological strength of our translators is that they are based on a lineage 
of species-specific models (28–33), based on the Shannon et al. (48) 
and the Soltis and Saucerman (60) ventricular rabbit ECC and sig-
naling models, which all share the same assumptions and structure, 
allowing virtually any model parameter in one species to be mapped 
onto another species. While Gong and Sobie (27) showed that an 
improvement in the translation accuracy could be obtained by ex-
tending the “input” simulated datasets, we demonstrate here that 
our regression-based translators can produce reliable predictions 
even when developed and applied to reduced experimental datasets.

We used linear regression techniques in the context of highly 
nonlinear biophysical models. When designing our translators, we 
chose to implement a rather low degree of variability in the bio-
physical model parameters ( = 0.1) to seek a viable compromise 
between validity of the linear approximation, population size (e.g., 
a small variance limits the occurrence of unphysiological behavior 
and number of discarded model instances), and translation per-
formance. The use of a larger  (i.e., 0.26) resulted in larger degree 
of variability in the population outcomes, given more pronounced 
perturbations in model parameters. While this affected the required 
size of the population (see Methods) and the size of the regression 
coefficients, we found that the relative contributions of the features 
and the performances of the translators built with  = 0.26 and 
 = 0.1 are comparable, as shown in fig. S11.

Prediction of human or rabbit response from mouse data
Rabbit is considered a more reliable model than mouse because of 
the more human-like AP profile and APD regulation mechanisms 
(9). Nevertheless, mice are extensively used for studying cardiac 
electrophysiology, investigating arrhythmogenic mechanisms, and 
assessing drugs’ cardiotoxicity (6–8). Here, we showed that rabbit-
to-human translation is generally highly accurate and that our 
translators can produce a reliable prediction of the effects induced 
in human by ion channel block starting from rabbit experiments 
(Fig. 5 and fig. S7). We also showed that prediction of human re-
sponse from mouse data is generally less accurate, especially for 
APD values. These results are expected considering the intrinsic 
differences in the mechanisms regulating the short and triangular 
AP in small rodents versus larger mammals, as also highlighted by 
our sensitivity analysis (Fig. 1D and fig. S2). Moreover, different 
propensity for voltage or Ca2+ instabilities (as shown in fig. S4) 
contributes to making the translation of mouse response even more 
challenging (12). While these observations support the general no-
tion that experiments in rabbit are more informative than those in 
mouse, they also suggest that development of reliable translators of 
electrophysiological response is particularly important for mouse 
data. We found that the main reason for poor mouse-to-human predic-
tion of electrophysiological response is in the different impact of per-
turbing a given parameter on AP and CaT features in the two species. 
The mouse-to-human translation of the consequences of IKr block 
is paradigmatic: Modulating IKr has almost no effect on murine ven-
tricular myocytes and instead markedly affects human AP and CaT 
(see Fig. 4A, fig. S3B, and results of sensitivity analysis in fig. S2). 
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The translation fails in this case because the inputs (murine features 
upon IKr block) are essentially the control values. Similar consider-
ations can be made for mouse-to-human translation of the effect of 
INaL block, which alters human ECC without affecting the murine 
AP. Conversely, mouse-to-human prediction of response to IK1 block 
is challenged by a strong role of IK1 in modulating mouse APD90 in 
mouse with almost no impact on human AP and CaT features. We 
also noted how cross-species translation can fail when sensitivity 
coefficients are similar, as in the case of mouse-to-human transla-
tion of the effect of NCX block (fig. S4). While NCX block modulates 
AP and CaT without disrupting ECC in human, mouse simulations 
reveal development of delayed after depolarizations that deranges 
the translation. Thus, poor predictions can either be due to consid-
erable differences in the regulation of AP and CaT or due to a 
different susceptibility to arrhythmogenic outcomes. On the other 
hand, we note that the rabbit-to-human predictions are overall much 
robust, which goes along with the parameter sensitivities of AP and 
CaT properties and arrhythmia susceptibility being similar between 
the two species. Notably, we showed that our translators of mouse 
data provide reliable predictions of the effects on APD induced by 
block of Itof and ICaL in human (Figs. 4 and 5A) or induced by ISO 
administration in rabbit (Fig. 8, B to D). The latter result is of par-
ticular interest because of the many factors influencing ventricular 
ECC during -AR challenge, when even small differences in AP 
shape have been shown to contribute to a different APD response 
(20). While -AR stimulation directly induces cyclic adenosine 
3′,5′-monophosphate (cAMP)–dependent activation of PKA (which, 
in turn, phosphorylates multiple protein targets within the cell, 
altering their function), at the same time, it also increases CaMKII 
activity via enhanced cytosolic Ca2+ signal, leading to further func-
tional modulation of the targets of CaMKII-dependent phosphoryl
ation (often already affected by PKA, as shown in fig. S1). Last, it is 
important to remark that the regression-based models used in these 
applications were built using “control” data (i.e., not obtained by 
simulating a specific drug action). The random perturbations in the 
biophysical model parameters that are used to build the populations 
explore a range of output configurations that is sufficient to build 
robust translators. An important implication is that these tools could 
be applied to predict the effects of any possible perturbation and 
do not require performing ad hoc simulations when a new drug 
or stimulus is introduced, nor knowing the mechanism of action 
(e.g., the drug targets).

Characterizing drug response at different frequencies is funda-
mental for antiarrhythmic agents aiming at exerting maximal effect 
at the fast pacing rates that characterize ventricular tachycardia and 
fibrillation. We showed that our translators can reliably predict 
electrophysiological response across stimulation frequencies for 
both ion channel block and ISO administration (Figs. 7 and 8A) and 
could therefore be applied to assess the rate-dependent effect of new 
compounds limiting the number of wet experiments needed. The 
ability to make reliable predictions across frequencies is also im-
portant for successful mouse-to-rabbit translation of the effects of 
sympathetic stimulation in quasi-physiological conditions (Fig. 9). 
This was a challenging task considering that, besides the direct 
effects of -AR activation on ventricular cells described above, 
changes in the sinoatrial node (positive chronotropy) lead to different 
increases in stimulation rate in the different species (21). These obser-
vations suggest that adoption of our regression-based translators, 
built with our established models of ventricular electrophysiology 

and signaling pathways, could facilitate the development of anti-
arrhythmic strategies based on the use of  blockers (22).

Applications
We extended the hiPSC-CMs to adult myocyte translator originally 
developed by Gong and Sobie (27) to build a suite of predictors that 
can translate measured electrophysiological responses across differ-
ent species or experimental conditions. In compliance with the 3R 
principles (replacement, reduction, and refinement) in animal re-
search (61), adoption of these tools in experimental practice could 
be beneficial in several applications of animal testing. For example, 
we envision a straightforward integration into high throughput 
systems used in the pharmaceutical industry to evaluate efficacy and 
safety of novel drugs. Furthermore, these regression-based models 
could be used to translate response from healthy to diseased condi-
tions, as already proposed for heart failure (27), or across different 
stages of disease-induced remodeling, as seen in the progression of 
atrial fibrillation, or even to map age-related changes in electro(patho)
physiology. Development of pharmacological approaches against atrial 
arrhythmias can also benefit from regional (e.g., atrial-to-ventricular) 
translators to investigate potential adverse effects of compounds 
intended to selectively affect atrial function (62). Last, to overcome 
the negative implications of the vast underrepresentation of female 
sex in both basic research and clinical studies (63), translators of 
electrophysiological response across sexes could facilitate investigat-
ing differences in ECC regulation and arrhythmogenic mechanisms 
in male versus female and improve the assessment of drug cardio-
toxicity in females (64).

Limitations and future directions
Although our baseline models have been developed and tuned in 
the years to reflect average properties observed in multiple studies 
from different groups, the experimental measures are quite variable. 
To account for this, when evaluating our translators against experi-
mental data, we translated the relative changes in the measured AP 
and CaT properties induced by a perturbation rather than the abso-
lute values. For any specific application, baseline models could be 
optimized to reproduce average features of the populations of cells 
used in experiments (sample-specific modeling) before constructing 
the translators (65–67).

While the use one lineage of species-specific models helped im-
proving translation accuracy, we acknowledge as an important im-
plication the fact that these translators may reflect some specificities 
of our model lineage. Thus, future work should extend our approach 
to compare across other (and mixed) modeling lineages treated to a 
similar approach. Ideally, this major benchmarking process should 
be accompanied by the prospective design and collection of a broad 
experimental multispecies pharmacology dataset for assessing 
performance. Another potential extension of our work is to build 
drug-specific translators by perturbing parameters related to known 
drug effects, e.g., by including changes in both ion channel maximal 
conductances and gating kinetics parameters. However, it is im-
portant to note that the translators developed with this methodology 
do not strictly depend on how variability is introduced in the input 
and output datasets (i.e., how many parameters are changed, over 
what ranges), since they are derived from AP and CaT features (and 
not from the model parameter scaling factors).

Discrepancy between highly nonlinear biophysical model re-
sponses and linear approximations increases with the severity of the 
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perturbation and increases prediction uncertainty. Recently, a deep 
learning network approach was demonstrated for translation of im-
mature hiPSC-CM to adult electrophysiology (68). Comparison of 
these methodologies may help to determine what portion of all the 
possible nonlinear electrophysiological mechanisms underlying these 
biophysical models (and actual myocyte responses in vitro) can 
be encoded via linear regression and when nonlinear approaches 
should be used.

Last, our study focuses on ECC properties in the isolated ven-
tricular myocyte. While AP and CaT dysregulations are important 
determinants, arrhythmia development and maintenance also criti-
cally depend on the characteristics of the cardiac tissue (69). Thus, 
important differences in organ dimensions and tissue-level properties 
(conduction velocity, effective refractory period, vulnerability win-
dow, and reentrant wave parameters) should also be taken into ac-
count when translating findings across species (or between healthy 
and diseased conditions) in the next generation of translators.

Conclusions
Here, we used our updated multispecies framework for simulations 
of ventricular ECC to create a suite of cross-species translators of 
electrophysiological response. Our results suggest that integration 
of these regression-based models in both mechanistic studies and 
drug development pipelines will improve translation of findings in 
animal models by (i) identification of more informative ECC fea-
tures to be measured and (ii) direct prediction of the corresponding 
effect in human myocytes from experimental results. Extension of 
this approach to other cell types (such as hiPSC-CMs or atrial cells) or 
settings (health versus disease or male versus female) could facilitate 
characterization of cardiac ECC physio-pathological mechanisms and 
development of safe and effective antiarrhythmic strategies.

METHODS
Updated multispecies framework for ECC simulations 
in ventricular myocytes
All the simulations presented in this investigation were performed 
with our updated framework for simulating ECC in mouse, rabbit, 
and human ventricular myocytes (fig. S1). Although their parameter-
izations differ to reflect species-specific observations, the three models 
share most components and have the same structure. Membrane 
electrophysiology and intracellular Ca2+ and Na+ handling are modeled 
according to the geometry proposed for rabbit by Shannon et al. (48) 
subsequently tuned to reproduce human- (32) and mouse-specific 
properties (28). The common framework also includes detailed de-
scriptions of CaMKII and -AR/cAMP/PKA signaling pathways based 
on the work of Saucerman and colleagues (60, 70–72). Changes to our 
previously published models are summarized below and in table S2.
Baseline mouse model
We updated the CaMKII- and PKA-dependent signaling cascades 
in our model of the mouse ventricular myocyte (28, 29). Namely, we 
included dynamic CaMKII-dependent regulation of INaL (73), ad-
justed the dynamics and functional effect of PKA-dependent IK,slow 
phosphorylation based on our previous observations (21, 74), and 
added PKA-induced gain of function of the fast Na+ current (INa) 
(45) and loss of function of Itof and IK1 (75, 76).
Baseline rabbit model
Our model of the rabbit ventricular myocyte (30, 31) was modified 
to include CaMKII-dependent dynamic functional modulation of 

INaL, as previously shown (73). As done in the initial development of 
our mouse model (28), the module describing -AR activation and 
signaling cascade was transformed from a system combining algebraic 
and ordinary differential equations (ODEs) into a system with only 
ODEs. Modest adjustments to other model parameters were required 
to maintain the overall effect of sympathetic stimulation on AP and 
CaT (table S2). PKA-dependent effects on INa, Itof, and IK1 were in-
cluded as well (45, 75, 76).
Baseline human model
We modified our published model of the human ventricular myocyte 
(32, 33) by replacing the original IKs formulation with our updated 
version (31) and reducing its maximal conductance to maintain 
similar contribution to APD regulation. We also removed the cAMP-
dependent (or cystic fibrosis transmembrane conductance regulator) 
Cl− current (ICFTR) (77). As done for rabbit, the -AR signaling 
cascade is now computed only with ODEs, and its functional effects 
are extended to INa, Itof, and IK1 (45, 75, 76). Last, we added the 
dynamic CaMKII-dependent regulation of INaL (73).

Parameter sensitivity analysis
Parameter sensitivity analysis was performed with an established 
methodology based on the “populations-of-models” approach (34). 
We created species-specific populations of 1000 models by randomly 
scaling the value of maximal conductance and transport rate of all 
ion currents and transporters (listed in table S1) in each of our 
updated baseline (average) mouse, rabbit, and human models. For 
each model variant in the populations, the baseline value of each 
parameter was independently varied within a log-normal distribu-
tion (with  = 0.1). As previously described (58, 78), choice of vari-
ance and population size were such to ensure convergence of the 
sensitivity coefficients resulting from this analysis. AP and CaT 
properties (defined in Table 1) during 1-Hz pacing were assessed at 
steady state in each model of the population. While we did not 
perform a strict experimentally based calibration of our parameter 
samples (79), variants showing inability of producing an AP, im-
paired repolarization, or alternans (2 models in the mouse popula-
tion and 54 in the rabbit population) were excluded from further 
analysis. Multivariable regression analysis was performed to assess 
the influence of small variations in perturbed model parameters on 
AP and CaT features (Fig. 1C) (34). The result of this process is the 
regression matrix BSA that ensures X * BSA ≈ F, where X and F are 
log-transformed parameter scaling factors and log-transformed AP 
and CaT properties, respectively. The matrix BSA can be used to 
quantify the change in AP and CaT features upon perturbation in 
one or more model parameters (34).

Predictors of electrophysiological response
Generation and validation of the cross-species translators
To create and validate the translators, we built three additional pop-
ulations of models by randomly varying only the value of parameters 
common to the three species. Specifically, we did not alter (i) IKs and 
the slow component of Ito (Itos), which are not expressed in mouse; 
(ii) mouse-specific IK,slow and Iss; and (iii) ICFTR, present only in the 
rabbit model (fig. S1 and table S1). In this way, parameters in each 
model variant were varied according to the same matrix of scaling 
factors (27), as shown in Fig. 2A.

Population size was increased to 1500 variants here to create two 
groups to be separately used for creating and validating the translators. 
To determine the final size of the population, we take the following 
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factors into consideration: (i) We seek to ensure convergence of the 
regression model, i.e., the regression coefficients are not affected by 
an increase in the population size [as seen above for the sensitivity 
analysis (58, 78) and in fig. S12] and (ii) we expect that some model 
variants will be excluded at the calibration stage, thus reducing the 
population size available for data analysis. Here, we built popula-
tions of models using  = 0.1, as also done in previous investigations 
(34, 59, 78). On the basis of these previous studies and the consider-
ations above, we developed our translators performing regression 
on groups of ~1000 to 1100 model variants (6 mouse and 72 rabbit 
models were excluded from the analysis because of AP abnormalities 
at 1-Hz pacing) and then tested their performance in the remaining 
and independent group of 400 in silico cells (see below). We also 
developed translators based on populations characterized by a larger 
variability ( = 0.26) and adjusted the population size accordingly 
to 3000 variants (mouse-to-human: 2204 for building the regression 
model, 400 for validation, and 396 rejected; rabbit-to-human: 1833 for 
building the regression model, 400 for validation, and 767 rejected).

For each model variant, AP and CaT features were assessed while 
pacing at different frequencies at steady state in control condition 
or after 60 s of 100 nM ISO administration. Following the method-
ology recently proposed by Song and Sobie (27), we created a group 
of predictors of electrophysiological response by applying multi-
variable linear regression on simulated log-transformed AP and 
CaT features using a nonlinear iterative partial least squares algo-
rithm (Fig. 2B) (80). This process returns a regression matrix Bcross 
that ensures that Finput * Bcross ≈ Foutput, where Finput and Foutput are 
log-transformed AP and CaT features obtained simulating different 
species (or experimental conditions). The matrix Bcross can be used 
to predict the value of AP and CaT features in the “output” species 
(or experimental condition) given the value of AP and CaT features 
in the input species (or experimental condition). Specifically, each 
output feature can be calculated by applying a function in which 
each input feature is multiplied by its corresponding regression co-
efficient (27). We repeated the same process between different spe-
cies, and between different experimental conditions (i.e., different 
pacing rates), varying the number of features (nf) was considered.

To validate the translator, for each AP or CaT feature of interest, we 
compared the predicted values (obtained by applying Bcross to the data 
resulting from simulation of the input species/condition) and the ac-
tual values (obtained from simulation of the output species/condition) 
and calculated the coefficient of determination (R2) of the distribution 
of predicted versus actual data. As an overall performance index, we 
averaged the R2 values obtained for each feature.

We built a broad set of predictors by varying the composition of 
the groups of AP and CaT features considered in input and output. 
The rationale for reducing the number of features is that often only 
a subset of parameters is available from experiments, and we are 
interested in assessing the applicability of our translators to real data. 
We assessed the overall performance of translators using all 10 AP 
and CaT features (nf = 10) for both input and output (Table 1) and 
built on three subsets of features. As shown in the schematic in 
Fig. 3C, the minimal subset contained APD measurements only 
(APD90 and APD50, nf = 2). In addition, intermediate subsets in-
cluded measurements of CaTD (CaTt50 and CaTtau, nf = 4) and 
cytosolic Ca2+ concentration (CaTmin and CaTamp, nf = 6).

Consequences of 50% block of Itof, IKr, IK1, ICaL, INaL, and NCX 
current on AP and CaT features were assessed at steady state in our 
baseline mouse, rabbit, and human models during 1-Hz pacing. 

The values of AP and CaT features assessed after ion channel block 
in mouse or rabbit were used as input for the prediction of AP and 
CaT features after ion channel block in human. We then compared 
predicted human values to actual values from human simulations for 
validation. This process was repeated using translators built with a 
variable number of features nf, as described above.
Experimental validation of the cross-species translators
An important validation aspect is to ensure that our translators can 
map experimental data measured in one species into data collected 
in another species. We mined the literature and used own experi-
mental data to evaluate the ability of the translators to predict the 
effects of common perturbations on cardiac ECC, namely, (i) selec-
tive ion channel blockade, (ii) changes in pacing frequency, and (iii) 
effects of -AR activation (ISO), which involve (i) and (ii).

Given the large degree of experimental variability, we could not 
directly apply our translators to the measured biomarker values. 
Thus, we used the relative perturbation-induced changes estimated 
from the experiments to scale the AP and CaT features predicted 
simulating the same species/condition with the corresponding base-
line models in control condition (e.g., in the absence of ion channel 
block or ISO) for both input and output species/conditions (fig. S5). 
The “scaled” input features were translated to the output species/
condition using the predictors (e.g., mouse to human at 1 Hz or 
rabbit at 1 to 3 Hz) built using control data obtained simulating the 
input species/condition (e.g., mouse at 1 Hz or rabbit at 1 Hz) and 
the output species/condition (e.g., human at 1 Hz or rabbit at 3 Hz). 
The resulting predicted values were then compared to the scaled 
output features for validation. Ranges corresponding to variability in 
scaled results (SD) were estimated from experimental studies as well.

To perform experimental validation using our data describing the 
effects of SNS on APD and CaTD in innervated whole-heart mouse 
and rabbit preparations (21), we created a SNS-specific cross-species 
translators of the relative effect induced by sympathetic activation 
in mouse and rabbit (fig. S10C). Note that a new translator is needed 
in this case because SNS varies both the ventricular response and 
the pacing rate, but the translators built previously were obtained by 
simulating a fixed pacing frequency. To mimic the chronotropic 
effects seen in experiments, we simulated acute 100 nM ISO admin-
istration for 60 s while increasing the pacing rate from 4.8 to 6.2 Hz 
and from 2 to 3.5 Hz for mouse and rabbit, respectively. For each 
element in the mouse and rabbit populations, we determined the 
relative changes in the duration of AP and CaT and then performed 
regression analysis between the two population matrices of relative 
changes. The resulting matrix Bcross can predict the relative SNS-
induced change in the output species given the relative change in 
the input species. APD and CaTD values experimentally measured 
in the output species in control can then be scaled by the pre-
dicted amount and compared to the values measured during SNS 
for validation.
Performance analysis with recursive feature elimination
A recursive feature elimination routine was implemented to identify 
the more informative input features (among all 10 of them) for 
the prediction of a fixed group of output features (APD90, APD50, 
CaTamp, and CaTtau). At each iteration, given a number nf of avail-
able input features, this routine determines the overall performance 
(average R2) of the nf predictors built ignoring one of the nf input 
features at the time and then discards the feature which elimination 
allowed for the best average R2. The routine stops when only one 
input feature remains.
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Code availability
All the codes used to perform simulations and data analysis were 
generated in MATLAB (MathWorks, Natick, MA, USA), version 
R2018a. Population-level simulations were performed with a com-
puting cluster with Intel Xeon CPU E5-2690 v4 at 2.60 GHz 
28 CPUs (56 threads) + 132 GB, and a standard laptop was used for 
data analysis. All our source codes (and related documentation) and 
all simulated data used in this study are available for download at 
elegrandi.wixsite.com/grandilab/downloads and github.com/drgrandilab.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abg0927

View/request a protocol for this paper from Bio-protocol.
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