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ABSTRACT
A technique originating in quantum dynamics is used to derive a trajectory-based, semi-analytical solution for two-phase flow. The partial
differential equation governing the evolution of the aqueous phase is equivalent to a family of ordinary differential equations defined along a
path through the porous medium. The trajectories may be found by solving the differential equations directly or by post-processing the output
of a numerical solution to the full set of governing equations. The trajectories, which differ from conventional streamlines, are found to bend
downward in response to gravitational forces. The curvature is more pronounced as the dip of the porous layer containing the flow increases.
Subtle changes in the relative permeability curve can lead to significant variations in the trajectories. The ordinary differential equation for
the trajectory provides an expression for the travel time along the path. The expression produces a semi-analytical approximation to the
model parameter sensitivities, the partial derivatives of the travel times with respect to changes in the permeability model. The semi-analytical
trajectory-based sensitivities generally agree with those computed using a numerical reservoir simulator and a perturbation approach. The
sensitivities are useful in tomographic imaging algorithms designed to estimate the spatial variation in permeability within a porous medium
using multiphase observations.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0017504., s

I. INTRODUCTION
Multiphase fluid flow in a porous medium is a coupled non-

linear process with important applications in energy extraction and
environmental remediation.1,2 Outside of the laboratory, in natural
settings, porous media hosting fluid flow are typically very hetero-
geneous, with permeabilities that can vary by several orders of mag-
nitude. Due to this complexity, the equations describing fluid flow
are almost always solved numerically.2,3 Well formulated numeri-
cal approaches provide rigorous solutions but limited insight. Ana-
lytic solutions can reveal controlling factors and physical depen-
dencies but are typically restricted to specialized situations, such
as a homogeneous whole space or horizontal layers, or by neglect-
ing effects such as capillarity.4 There is a need for semi-analytical
solutions that are generally valid yet still reveal the physics of mul-
tiphase flow. Trajectory-based asymptotic approaches can provide
more broadly applicable semi-analytical solutions, but they are still
only valid under some limiting condition, such as smoothly vary-
ing heterogeneity or in the limit of high frequency.5,6 However, an

alternative trajectory-based approach, the one that does not rely on
an asymptotic approximation, arose in quantum mechanics through
the work of Bohm.7,8 More recently, this approach has been used to
model the quantum mechanical behavior of larger chemical systems
and diffusive behavior.9–14 Here, I use the technique to develop a
trajectory-based semi-analytical solution for multiphase flow that is
valid under fairly general conditions. These results extend the tracer
transport solution of Vasco et al.15 to the much more complicated
case of multiphase flow.

II. METHODOLOGY
A. Governing equation

The equations governing the flow of two or more fluids in a
porous medium have appeared in many publications. A particularly
clear derivation is presented in the work of Peaceman,3 for exam-
ple. Consider flow in a porous medium containing two fluids, an
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aqueous phase and a non-aqueous phase. In that case, the coupled
equations for fluid saturations and fluid pressures may be reduced
to a single equation for the saturation of one of the fluid phases and
an equation for the average pressure in the two fluids. The govern-
ing equation for the saturation of the aqueous phase is considered
here. The saturation of the aqueous phase is denoted by Sw, while
that of the non-aqueous phase is given by Sn. In general, quanti-
ties associated with the aqueous phase are denoted by a subscript w,
while the non-aqueous phase quantities are denoted by a subscript
n. Because the saturations sum to unity, one may write Sn in terms
of the saturation of the aqueous phase,

Sn = 1 − Sw.

As the compressibility of water is small, it will be assumed that the
density of the aqueous phase is constant within the porous medium
under consideration. In this case, the governing equation for the
saturation, Sw, is given by6

φ
Sw
∂t

+∇ ⋅ fw[q + λn(ρw − ρn)gz] −∇ ⋅ hw∇Sw =
Qw

ρw
, (1)

where φ is the porosity of the medium, q is the total velocity of the
fluid, ρw is the density of the aqueous phase, ρn is the density of
the non-aqueous phase, λn is the phase mobility of the non-aqueous
phase, given by

λn =
krn(Sw)k

μn
, (2)

where krn(Sw) is the relative permeability function for the non-
aqueous phase, k is the absolute permeability, and μn is the viscosity
of the non-aqueous phase; a similar expression holds for the aque-
ous phase. The term Qw on the right-hand-side is the flow rate with
units of mass per unit volume per unit time. Because both sides of
Eq. (1) have been divided by ρw, the units of each term are [T]−1.
The relative permeability functions, plotted in Fig. 1, quantify the
ability of one fluid phase to block the flow of the other. The rela-
tive permeabilities are unit-less fractions, where 0 indicates no flow
at that saturation and 1 indicates the unimpeded flow. The function
f w(Sw) is the fractional flow curve, given by

fw(Sw) =
λw

λw + λn
, (3)

which is the ratio of the water mobility to the total mobility of the
fluid mixture within the pore space. The quantity λw is the phase
mobility of water, analogous to that for the non-aqueous phase given
in Eq. (2). Each fluid has a distinct pressure, and the difference in the
two fluid pressures is known at the capillary pressure, Pc = Pn − Pw.
The capillary pressure is often assumed to be a function of the satu-
ration of one of the phases. The specification of the capillary pressure
as a function of the saturation of water is an important property of
the medium, and it is typically determined from fitting a functional
form to laboratory observations. In Fig. 2, we plot the capillary pres-
sure curve and its derivative with respect to the saturation of a model
of a porous medium published by van Genuchten.16 The coefficient
hw(Sw) in Eq. (1) accounts for the influence of capillary pressure and
takes the following form:

hw(Sw) = −fwλn
dPc
dSw

. (4)

FIG. 1. Relative permeability functions, krw (Sw ) and krn(Sw ), for the flow of an
aqueous phase and a non-aqueous phase in a porous medium. The relative per-
meability model of Stone17 for three fluid phases is used for these calculations.
The third phase has been set to zero.

If I define
gw = fwλn(ρw − ρn)g, (5)

where g is the gravitational attraction, and

Qv =
Qw

ρw
, (6)

FIG. 2. Capillary pressure curve of van Genuchten16 and its derivative for the
porous medium under consideration. The derivative curve has been cut off in order
to retain a vertical scale that displays the variation in capillary pressure, Pc(Sw ).
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then Eq. (1) may be written as

φ
Sw
∂t

+∇ ⋅ [fwq + gwz] −∇ ⋅ hw∇Sw = Qv . (7)

The three functions f w(Sw), gw(Sw), and hw(Sw) constitute important
elements of the equation-of-state for the flow of water in a porous
medium containing a non-aqueous phase. These functions are plot-
ted in Fig. 3 for a model that corresponds to the relative permeability
and capillary pressure curves in Figs. 1 and 2. Note from Eq. (4) that
if the capillary pressure vanishes or is independent of the water sat-
uration, then hw vanishes. Expanding the derivatives in Eq. (7), and
noting that the functions f w, gw, and hw depend upon both the spatial
coordinates x and the saturation, one can write Eq. (7) as

φ
Sw
∂t

+ Υ ⋅ ∇Sw +
dhw
dSw
∇Sw ⋅ ∇Sw + hw∇ ⋅ ∇Sw = Q̂, (8)

where the vector Υ is described below. The right-hand-side Q̂ is
given by

Q̂ = Qv −∇xfw ⋅ q − fw∇ ⋅ q −∇xgw ⋅ z, (9)

with ∇x signifying that the gradient is with respect to the spatial
variables only and Sw is held fixed. Such a gradient with respect to
spatial variables x will vanish if the parameters of the function hw(x,
Sw) are constant in a region of interest. For example, in our illus-
trations below, we consider flow in a layer with constant properties,
and hence,∇xhw vanishes. Equation (8) is a non-linear partial differ-
ential equation for the saturation with coefficients that depend upon
Sw as well as spatial variables x.

The vector Υ is related to the velocity of the water satura-
tion and depends upon the equation-of-state functions and their
derivatives,

Υ = dfw
dSw

q +
dgw
dSw

z +∇xhw . (10)

Note that the vector Υ contains contributions from the flow field,
the gravitational field, and capillary forces. The coefficients of the
vector terms q and z, corresponding to the model of Stone17 are
plotted in Fig. 3 along with hw(Sw). Note how the coefficients grow
in magnitude as the aqueous phase approaches full saturation and
then vanish very close to Sw = 1. For the fractional flow, the faster
velocity associated with higher water saturations means that the
fluid front will compress or sharpen as the higher saturations over-
take the lower saturations. The curve for dgw/dSw suggests that
the gravitational effect is strongest when the water saturation is
large. Furthermore, the force of gravity can either broaden or com-
press a fluid front, depending on its orientation with respect to the
vector z.

B. A trajectory-based solution
It is not possible to find an analytic solution of Eq. (7) unless

significant approximations are invoked. Typically, numerical meth-
ods, such as finite differences or finite volume methods,2,18 are
employed. In this section, we develop a semi-analytical trajectory-
based solution requiring numerical techniques for its construc-
tion. The general foundation of the method is an approach used
in quantum mechanics to treat the time-dependent Schrödinger
equation.10–12,14 There are some advantages associated with such

FIG. 3. Equation-of-state functions corresponding to the formulation of Stone.17

The three functions are (upper panel) the fractional flow of water, as given by
Eq. (3), (middle panel) the influence of gravity on the flow, gw , expressed by Eq. (5),
and (lower panel) the influence of capillary pressure hw (Sw ) presented in Eq. (4).
Both the equation-of-state functions and their derivatives with respect to changes
in water saturation Sw are shown.

AIP Advances 10, 095205 (2020); doi: 10.1063/5.0017504 10, 095205-3

© Author(s) 2020

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

a solution. For example, it requires less computation than a full
numerical treatment and can be used on larger problems.14 The tra-
jectories provide physical insight and are useful for the visualization
of complex fluid transport. In that sense, the solution is similar to
streamline modeling techniques19 though the extended approach is
more general and accounts for cross-streamline processes through
the coupling of adjacent trajectories.14

Following Garashchuk and Vazhappilly,11 consider an expo-
nential representation of the dependent variable,

Sw(x, t) = e−Ω(x,t), (11)

in order to derive the equations defining the solution. Because the
saturation is a fraction and is unit-less, Eq. (11) is dimensionally
correct. The transformation (11) is well defined for a saturation
distribution that is always positive. If the saturation vanishes in a
region, one can modify Eq. (11) to only hold in areas of non-zero
water saturation. Alternatively, a small, non-zero background satu-
ration could be imposed in order to avoid ill-defined situations. The
time derivative transforms as

∂Sw
∂t
= −∂Ω

∂t
e−Ω (12)

and the spatial gradient transforms as

∇Sw = −∇Ωe−Ω (13)

and similarly for higher-order spatial derivatives in the term∇ ⋅∇Sw.
Substituting the representation (11) into the governing equation (8)
and transforming the derivatives gives

φ
∂Ω
∂t

+ (Υ −Hw∇Ω) ⋅ ∇Ω = Q̂eΩ − hw∇ ⋅ ∇Ω, (14)

where

Hw =
dhw
dSw

Sw + hw =
dhw
dSw

e−Ω + hw (15)

is a coefficient that vanishes if capillary pressure effects are not
important, eliminating a highly non-linear term from Eq. (14). From
a plot of this function in Fig. 4, it is clear that the coefficient
Hw is most significant where the water saturation is high and the
saturation of the non-aqueous phase is low.

For a given flow field q, Eq. (14) is a self-contained non-
linear partial differential equation for Ω. This equation serves as an
entry point to approximation techniques based upon the assump-
tions of a smoothly varying medium, similar in spirit to asymp-
totic methods. Specifically, if it is assumed that the medium has
smoothly varying properties, leading to a gradually varying satu-
ration field, then the final curvature term hw∇ ⋅∇Ω in Eq. (14)
may be neglected. The resulting equation is a non-linear, first-
order partial differential equation for Ω, related to a family of
Hamilton–Jacobi equations20 containing the well known eikonal
equation as an example. A derivation of a trajectory-based solution
based upon this approximation is given in the work of Vasco and
Datta-Gupta.6

No such approximation will be made here, rather Eq. (14) is
treated directly, retaining all of its terms. Our approach is motivated
by the work of Garashchuk10 in her study of propagation of a distur-
bance with a momentum-dependent potential. For brevity, one can
define the slowness vector of the water saturation Sw,

FIG. 4. (Solid line) The capillary pressure sensitivity function Hw (Sw ). (Dashed line)
The function Hw (Sw ) divided by Sw , which controls the sensitivity of the trajectory
to the gradient of the saturation field,∇Sw .

pw = ∇Ω, (16)

and the water velocity vector,

vw =
1
φ
(Υ −Hwpw), (17)

and write Eq. (14) as

∂Ω
∂t

+ vw ⋅ ∇Ω = 1
φ
(Q̂eΩ − hw∇ ⋅ pw). (18)

Consider a Lagrangian reference frame that moves along one coor-
dinate axis, described by a trajectory xw(t), with the velocity vector
vw. The total time derivative along the trajectory is given by

dΩ
dt
= ∂Ω

∂t
+ vw ⋅ ∇Ω = ∂Ω

∂t
+
dxw
dt
⋅ ∇Ω. (19)

From the equations given above, it is possible to deduce an equiv-
alent set of ordinary differential equations that may be solved for
Ω(x(t), t), defined along trajectories or paths x(t) through the porous
medium. The first equation defining the trajectory-based solution,
following directly from (19), is given by

dxw
dt
= vw =

1
φ
(Υ −Hwpw), (20)

where we have made use of the definition (17). A second expres-
sion is obtained if we use (19) to substitute for the left-hand-side of
Eq. (18),

dΩ
dt
= 1
φ
(Q̂eΩ − hw∇ ⋅ pw). (21)

A third and final equation for p follows by taking the spatial gradient
of Eq. (21) and using the definition (16) to write

AIP Advances 10, 095205 (2020); doi: 10.1063/5.0017504 10, 095205-4
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dpw
dt
= ∇[ 1

φ
(Q̂eΩ − hw∇ ⋅ pw)]. (22)

The three equations (20)–(22) are equivalent to the partial differen-
tial equation (18) and provide an alternative means for obtaining its
solution.

In order to complete the system of equations for modeling the
two-phase flow, we need an expression for the total flow velocity q.
As the trajectory calculations will rely on a numerical simulator to
determine critical quantities, as discussed in Subsection II C, this
is not a pressing issue because one can extract q from the simula-
tion results. However, as in streamline simulation,19 it is possible to
compute the pressure field numerically in conjunction with the satu-
ration estimates. Alternatively, one can formulate a trajectory-based
solution of the pressure equation in the case of single-phase flow.21

This technique may be extended to the flow of two or more fluids,
leading to a full set of ordinary differential equations for variations
in both saturation and fluid pressure.

Given a flow field, q, Eqs. (20)–(22) form a system of ordinary
differential equations that may be solved using numerical meth-
ods.23,24 That is, given the appropriate initial and/or boundary con-
ditions, one may integrate the equations numerically to determine
the trajectory xw(t), the vector pw(t), and Ω(t). As noted by Wyatt,14

the presence of the spatial gradients in Eqs. (21) and (22) introduces
off-trajectory components of pw and the medium properties adja-
cent to the trajectory into the calculation of a trajectory. Therefore,
the trajectory computations are coupled and one must introduce
more sophisticated numerical methods, such as the calculation of
families of trajectories, in order to solve the system.14

C. Calculating trajectories with the help
of a numerical simulator

As noted above, the conventional method for solving the
equations governing two-phase flow is by numerical methods that
include finite-volume, finite-difference, and finite-element tech-
niques. Thus, a number of such routines are readily available and
may be used to compute the evolution of Sw(x, t) for a given set of
initial and boundary conditions. For example, the numerical simu-
lator TOUGH218 was used to calculate the pressure and saturation
changes due to the injection of water into an air saturated porous
layer that dips 30○ to the south. The layer permeability (k) is 2.0
× 10−13 m2, and the porosity (φ) is 0.10. The grid blocks adjacent to
the boundary are given extremely large volumes so that their pres-
sure does not change significantly from its initial value, effectively
creating a constant pressure boundary condition. The out-of-plane
top and bottom boundaries of the layer are subject to no-flow con-
ditions, restricting flow to within the layer. The lateral boundaries
are also 1000 m away from the edges of the grid blocks plotted in
Fig. 5 so that the effects of these boundary condition are not visible
in this figure. Water is injected into the air filled layer at a rate of
300.0 kg/s. The results of the simulation after 464 days are plotted in
Fig. 5.

If one is interested in obtaining the trajectories xw(t) for visu-
alizing the movement of the fluid phases, or for use in the inverse
problem,6 then it is possible to take advantage of the existing numer-
ical simulators for the path calculations. Specifically, solving Eq. (11)
for Ω(x, t) gives

FIG. 5. (a) Average fluid pressure change and (b) water saturation after 464 days
of injection in the central well denoted by the filled square. Water is injected in an
air-filled layer that dips 30○ to the south.

Ω(x, t) = − ln Sw(x, t). (23)

Combining this with Eq. (16) provides an expression for pw that may
be substituted into Eq. (20) to give
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FIG. 6. Three primary contributions to
the y-component of the velocity vector,
corresponding to the state of the layer
after 464 days of injection. (Top panel)
The contribution of the y-component flow
field vector q to the velocity vector vw .
(Central panel) The contribution to the
y-component of vw due to the gravita-
tional force in the direction of the vector
z. (Bottom panel) The contribution to the
y-component of the velocity vector due to
the gradient of the saturation field,∇Sw .
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dxw
dt
= 1
φ
(Υ + Hw∇ ln Sw) (24)

or

dxw
dt
= 1
φ
[Υ + (dhw

dSw
+

1
Sw

hw)∇Sw], (25)

an ordinary differential equation for the trajectory that may be inte-
grated directly. Note from Fig. 1 that for low water saturation, Sw, of
less than 5%, the fractional flow function f w(Sw) and, hence, hw(Sw)
defined by Eq. (4) are zero. The quantity in parentheses in Eq. (25)
is Hw/Sw and is plotted as the dashed line in Fig. 4. It is most signifi-
cant for both low and high water saturations, that is, for saturations
less than 0.3 and for those greater than 0.8. From the equation for
the trajectory (25) and the form of the vector Υ, it is evident that
the trajectory depends upon the flow field q, the gravitational force
vector directed along z, and the gradient of the saturation field∇Sw.
Furthermore, if there are spatial variations in the capillary pressure
dependence, there will be an additional∇xhw term in Υ.

From the TOUGH2 simulation results in Fig. 5, one observes
that the velocity field q is roughly parallel to the vector field due
to the saturation gradient ∇Sw. The component of the gravitational
vector z within the dipping layer is a uniform vector field directed
toward the southern edge of the layer. Because the capillary prop-
erties of the layer are constant, the spatial gradient term ∇xhw in Υ
vanishes. Thus, there are three main contributions to the right-hand-
side of Eq. (25): a term describing the contribution of the flow field,
a term describing the contribution of the gravitational force, and a
term representing capillary effects that described the sensitivity to
the existing saturation distribution, in particular to the gradient of
the water saturation. The y-component of each of the three contri-
butions to the velocity vector vw is plotted in Fig. 6. I focus on the
y-component because that is the direction along which the gravita-
tional force acts; hence, it displays all of the major contributions to
the velocity vector vw. The vector contributions are for a snapshot
at 464 days, corresponding to the saturations and pressures shown
in Fig. 5. Note that the dominant contribution is associated with the
flow field q and it provides motion away from the injection point.
The vector component associated with the gravitational force is the
second largest contribution, and it is in the downward or southern
(negative) direction due to the dip of the layer. The capillary force
associated with Hw(Sw) is the smallest contribution, roughly two
orders of magnitude smaller than that of the flow field. As with the
contribution due to the flow field, the movement is outward from the
source at the outer margin of the saturation front shown in Fig. 5, but
there is a component in the reverse direction on the inward side of
the saturation front, suggesting that the capillary force is spreading
the front.

As indicated in Eq. (25), the velocity vector vw associated with
the water flowing from the injection point is the sum of the three
contributions that are plotted in Fig. 6. Given the flow field, we
can integrate the three equations (20)–(22) to obtain the trajecto-
ries. Alternatively, given the results from a numerical simulation
of the two-phase flow, we can use the simulation history to inte-
grate Eq. (25) for the path xw(t). In Fig. 7, we plot twelve trajecto-
ries describing the flow from the injection well to the edge of the
model. As indicated by the contributions plotted in Fig. 6, the flow
is primarily outward from the injection point, with a downward

FIG. 7. Trajectories associated with fluid flow due to injection into a porous
layer that is dipping 30○ to the south. The paths are obtained by integrating the
differential equation (25) from the injection point to the edge of the model.

contribution from the gravitational force. Note that the trajectories
are not normal to the saturation front, or to the pressure contours
shown in Fig. 5, due to the influence of gravity on the fluid flow.
That is, from the relative sizes of the contributions to the vector field
plotted in Fig. 6, one observes that the flow (q) and gravity (z) com-
ponents are of the same order, while the component due to capillary
effects (∇Sw) is two orders of magnitude smaller.

III. ILLUSTRATIONS AND APPLICATIONS
In this section, I calculate the extended trajectories and illus-

trate their variation due to differences in the dip of a layer, leading
to changes in the gravitational force. In addition, there is an exam-
ple documenting how variations in the relative permeability func-
tions can change the trajectories. Finally, the approach is applied
to the calculation of model parameter sensitivities. In this case, I
consider the sensitivity of the arrival time of the saturation front to
perturbations in the permeability at points along the trajectory.

A. The influence of gravity
Gravitational forces, coupled with density variations between

the fluids and density changes due to a time-varying pressure field,
can lead to complicated flow in a porous medium. While it is pos-
sible to model the flow using the differential equations (20)–(22),
in conjunction with an equation for the time-varying pressure field,
for this illustration, the TOUGH2 numerical simulator is used to
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FIG. 8. The color scale indicates the saturation distribution after 464 days in each
panel, for layers of varying dip in the north-source (y) direction. The trajectories
indicate the flow paths resulting from the competing effects of the flow field q,
the force of gravity in the z directions, and the capillary forces, which are in the
direction∇Sw in this homogeneous layer.

solve the governing equations. The resulting saturation and pres-
sure fields are post-processed in order to calculate the trajectories
using Eq. (25). The gravitational force is varied by changing the
dip of the layer. Initially, the layer is horizontal, that is, the dip to
the south is 0.0○ leading to radial trajectories extending from the
injection well to the outer edges of the model (Fig. 8). As the dip
increases to 20○ and then 40○, the trajectories increasingly bend to
the south in response to the increased influence of gravity on the
flow.

B. An alternative relative permeability model
Given the direct dependence of the functions f w(Sw), gw(Sw),

and hw(Sw) on the fractional flow of water, it appears that the tra-
jectories will depend strongly on the relative permeabilities of the
aqueous and non-aqueous phases. The preceding results were based
upon the relative permeability model of Stone.17 However, there are
a wide array of relative permeability functions and any specification
of one of a family of such functions will depend upon laboratory
observations calibrated to a particular material.24 In order to illus-
trate the variability that arises from the use of a different relative
permeability function, we consider one alternative model, which was
proposed by Parker et al.25 These particular relative permeability
curves are plotted in Fig. 9. Although the relative permeability curves
of Stone17 and Parker et al.25 are generally similar, they differ in a few
details. The most significant difference is the decrease in the aqueous
relative permeability to values near zero at a saturation Sw of around
30%. Thus, the fluid is not mobile until a relatively high fraction of
the pore space is occupied by the aqueous phase. Even small features,
such as the fact that non-aqueous phase relative permeability goes to
zero just before a value of Sw that is less than 1 in the Stone17 model,

FIG. 9. Relative permeability functions proposed by Parker et al.,25 based upon
the capillary pressure function of van Genuchten.16
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while it does not in the Parker et al.25 model, can lead to differences
in the trajectories.

For comparison, consider the homogeneous layer dipping at
30○ to the south, which was discussed above, with the same values
for porosity, φ, and absolute permeability, k. The north–south asym-
metry, visible in the saturation distribution in Fig. 7, is not evident in
the results from the Parker et al.25 model (Fig. 10). The roughly sym-
metric movement of the aqueous fluid is evident in Fig. 10, where the
saturation field after 464 days of injection is shown. In addition, the
two-phase front plotted in Fig. 10 is broader than the front associ-
ated with the Stone17 model plotted in Fig. 7. The trajectories that
result from integrating the defining equation (25) are also plotted in
Fig. 10. The paths are nearly radial despite that the layer dips 30○

to the south. This contrasts with the results corresponding to the
Stone17 model, as shown in Fig. 7, where the trajectories bend to
the south in response due to gravitational forces. Thus, it appears
that subtle differences in the relative permeability curves may lead
to significant deviations in the trajectories, most likely due to the
nonlinearity of the governing equations.

C. Sensitivity computations
Now, consider an application of the methodology to the calcu-

lation of model parameter sensitivities. Sensitivities are often used
in iterative approaches for solving the inverse problem and for esti-
mating flow properties in a porous medium.6 Sensitivities are the
coefficients in a linearized relationship between a perturbation in a

FIG. 10. Results associated with two-phase fluid flow governed by the relative
permeability curves of Parker et al.25 The solid lines denote trajectories corre-
sponding to the movement of water away from an injection point denoted by the
filled square. The color scale indicated the water saturation within the porous layer
after 464 days of injection.

model parameter, such as a grid block permeability in a model of a
porous medium, and the resulting deviation in an observed quan-
tity. Here, I consider the arrival time of a jump in the saturation
at a given observation point as the basic datum. One can use the
trajectories, and expression (25) for the velocity of the saturation
along the trajectory, to calculate semi-analytical approximations for
the sensitivities. In order to see this, consider the equation written
out in full, for the case in which hw does not vary with x, so that
∇xhw vanishes,

dxw
dt
= 1
φ
[ dfw
dSw

q +
dgw
dSw

z + (dhw
dSw

+
1
Sw

hw)∇Sw]. (26)

Making use of Darcy’s law1 for a medium containing two phases,
one can write the total flow velocity vector q as

q = qw + qn = k(
krw
μw
∇Pw +

krn
μn
∇Pn), (27)

where qw and qn are the velocities of the aqueous and non-aqueous
phases, respectively. The quantity in brackets contains contributions
from Pw(x, t), the fluid pressure associated with the aqueous phase,
and the fluid pressure in the non-aqueous phase weighted by the
phase mobilities. Alternatively, one can write the total flow veloc-
ity vector in terms of the weighted contributions of the pressure
gradients, which is designated as w,

q = kw = k(krw
μw
∇Pw +

krn
μn
∇Pn). (28)

As an illustration, and a means to compare the trajectory-based
sensitivities to those obtained by conventional numerical differenc-
ing, we can consider a well configuration that is sometimes used in
industrial applications. The five-spot, a pattern containing a cen-
tral well surrounded by four corner wells, is used for both enhanced
oil recovery and environmental remediation. The central well may
undergo fluid injection or production, depending on the application,
while the corner wells are subject to the opposite operation. This pat-
tern is scalable in that one can add wells to make groups of five-spots.
No flow boundary conditions can best represent the situation at the
edges of a five-spot that lies within such a group. The quarter five-
spot, plotted in Fig. 11, represents the corner of the pattern with an
injector at the lower-right and a producing well at the upper-left. The
steady-state pressure field associated with the injection and produc-
tion is also plotted in this figure. The porous medium used in this
simulation consists of a single, horizontal, homogeneous layer with
a porosity of 1% and a permeability of 105 mD. The well at the lower-
right corner injects water into a layer containing 65% water and 35%
oil. In this example, we will assume that capillary effects are not sig-
nificant and that we can consider the pressure in the aqueous and
non-aqueous phases to be equal.

In order to determine the trajectory, we must integrate the
defining equation (26), an ordinary differential equation for the
path. Because every term in the equation contains the absolute
permeability, k, we can factor it out to write the differential
equation as

dxw
dt
= vw =

k
φ
[Ww + H∇Sw + Gz]. (29)
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FIG. 11. A quarter five-spot well configuration, consisting of two corner wells, indi-
cated by the black filled squares, with no flow boundary conditions at the edges
of the rectangle defined by the wells. The color scale indicates the steady-state
pressure field between the two wells.

Even though the explicit dependence upon k has been factored out,
both w(x, t) and Sw(x, t) still have an implicit dependence upon k(x).
The coefficients are given by

W(x, t; Sw) =
dfw
dSw

, (30)

H(x, t; Sw) =
dĥw
dSw

+
1
Sw

ĥw , (31)

where ĥw(x, Sw) is given by hw(Sw) with k(x) factored out,

ĥw(Sw) = −fw
krn
μn

dPc
dSw

, (32)

see Eqs. (2) and (4), and finally,

G(x, t; Sw) = fw
krn
μn
(ρw − ρn)g. (33)

In our example problem, both the capillary and gravitational forces
can be neglected and the vector field defined by Eq. (29) is deter-
mined by the pressure field, plotted in Fig. 11, and the fractional
flow properties of the medium. Because we are assuming a steady-
state flow field, the pressure field is time invariant because there are
no density or capillary effects. We can integrate Eq. (29) by starting
at the injection well and marching down the pressure gradient to the
producing well. The trajectories are distinguished by their take-off
angle as they leave the location of the injection well. Thus, we can

integrate Eq. (29) using a numerical shooting method23 or, in this
case, using streamline methods.19 In Fig. 12, we plot the paths con-
necting the injector and producer for 20 different take-off angles. As
in the previous case, the trajectories are not normal to the saturation
fronts.

FIG. 12. (Top panel) Saturation distributions after 100 days of injection from the
well in the lower-right corner of the quarter five-spot well configuration. (Bottom
panel) Saturation distribution after 200 days of injection. The color scale indicates
the fractional water saturation within the pore space of the porous layer. The black
solid lines are the trajectories obtained by integrating the differential equation (29).
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In order to produce an expression for the travel time along the
trajectory, one can integrate along the path x(s), where s signifies the
distance or position along the curve. The variable s may represent
arc-length or travel time, but it can be left as a general parameter for
now. Because vw is the tangent vector to the path xw(s), the integral
for the travel time from the injection point to the point at location s
on the trajectory, T(s), is given by

T(s) = ∫
xw

dr
∣vw ∣

, (34)

where r is the distance along the trajectory. In Fig. 13, the travel
times are plotted for the component of Sw that is just above the
background water saturation in the porous medium before water
injection. The water travels fastest along the diagonal connecting
the wells, which is also the shortest path. Water traveling near the
boundaries of the rectangular area approaches stagnation points in
the upper-right and lower-left corners of the region that are associ-
ated with lower flow velocities resulting in greater travel times. We
partition the velocity vector vw, factoring out the explicit φ and k
dependence, which is given by

vw =
k
φ
uw , (35)

where uw is the vector field determined by the contributing vectors
w,∇Sw, and z, given by Eq. (28),

uw =Ww + H∇Sw + Gz. (36)

The integral (34) can now be written as

FIG. 13. Travel time field for the saturation component Sw that is 1% higher than
the background or the initial water saturation.

T(s) = ∫
xw

φ
k

dr
∣uw ∣

, (37)

which contains both an explicit dependence upon k and an implicit
dependence through the influence of permeability on the pressure
and the saturation.

In order to compute the sensitivity of the arrival time to a
perturbation in the permeability, consider an initial or background
permeability field ko(x) and an associated travel time for the satura-
tion to reach a point xr upon propagating through the background
medium, denoted by To(xr). If the permeability is perturbed to a new
field k(x) = ko(x) + δk(x), there will be a corresponding change in the
arrival time to T(xr) = To(xr) + δT(xr). Substituting in for k(x) and
T(xr) in the integral (38) gives

T(s) = To(s) + δT(s) = ∫
xw

φ
(ko + δk)

dr
∣uw ∣

. (38)

The perturbation will influence both the trajectory itself, xw, as well
as the pressure and saturation fields, and, hence, uw. However, it has
been noted in earlier studies6,26 that the perturbations in both the
path and the saturation and pressure fields appear to be of second
order in δT and do not change the sensitivities substantially in com-
parison with the direct perturbation in ko(x). For simplicity, I shall
assume that such behavior also holds for this more general case. Val-
idation and a more detailed examination will be saved for a later
study. Expanding the denominator of (38) in a Taylor series in δk
with the retention of first-order terms gives the linearized relation-
ship between a perturbation in permeability and a perturbation in
the travel time of the saturation front,

δT(s) = ∫
xo

1
ko

δk
∣uo∣

dr, (39)

where xo signifies the trajectory in the background model and uo
denotes the vector uw in the background model. The semi-analytical
expression for the model parameter sensitivity for a change in
permeability is given by

∂T
∂k
= 1
ko

1
∣uo∣

(40)

and may be computed using a single numerical simulation of the
flow in the reservoir for each iterative update of the permeability
model. This formulation allows for a tomographic approach for the
inversion of two-phase arrival time data. In particular, given an ini-
tial or current reservoir model, one reservoir simulation allows for
the calculation of all quantities necessary for calculating sensitivities
associated with a single experiment or injection from a given source
well.

In order to verify that the semi-analytical expression (40) pro-
vides a reasonable approximation to the actual permeability sen-
sitivities, we compare it to a purely numerical estimate (Fig. 14).
The numerical estimate is obtained using a perturbation approach
in which a grid block permeability in a reservoir model is per-
turbed, and the new travel time of the saturation change to the
producing well is calculated using a numerical reservoir simulator.
The travel time perturbation is calculated by subtracting the travel
time for the unperturbed model. Dividing the travel time pertur-
bation by the permeability deviation in the grid block produces the
model parameter sensitivity. This approach requires N + 1 reservoir

AIP Advances 10, 095205 (2020); doi: 10.1063/5.0017504 10, 095205-11

© Author(s) 2020

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 14. (Left panel) Model parameter
sensitivities computed using a numer-
ical reservoir simulator and a pertur-
bation approach. (Right panel) Model
parameter sensitivities computed using
the trajectory-based semi-analytical esti-
mates given by Eq. (40).

simulations, where N is the number of grid blocks in the reservoir
model. In this example, N equals 961, but it is typically much larger,
in the hundreds of thousands to millions. There is overall agreement
with the sensitivities, with peak sensitivities associated with the grid
blocks that are close to the diagonal where the fastest propagation
occurs.

IV. CONCLUSIONS
The work described here is just a first step in the development of

trajectory-based modeling for multiphase flow. The primary objec-
tive of this study was to extend the approach, derived for the linear
equations of quantum dynamics, to the case of two-phase flow, a
process governed by non-linear partial differential equations. Thus,
in the case of multiphase fluid flow, the saturation front velocity
depends upon the saturation amplitude. In order to calculate the
trajectories themselves, the simplest and most reliable procedure
was adopted, based upon the output of a well-established numeri-
cal reservoir simulator TOUGH2. This methodology takes an eas-
ier off-the-shelf approach for calculating the paths, but if the work
in quantum mechanical modeling is any indication, it is certainly
not the most efficient computational technique.14 The direct solu-
tion of the ordinary differential equations governing the trajectories
should be far more efficient. For this reason, I have not conducted
detailed comparisons of computer central processing unit (CPU)
times for the extended trajectories with results from a purely numer-
ical simulation. Such a comparison will be saved for a later study
in which the direct trajectory calculations will be presented. A sec-
ondary objective of this work was an illustration of the trajectories
and their changes in response to variations in the influence of grav-
ity, and to variations in the relative permeability properties of the
medium. The paths themselves were found to be very sensitive to
the relative permeability properties of the medium, likely due to the
non-linearity of the governing equations. The trajectories do indeed
curve in response to the influence of gravitational forces, but that
curvature appears to have a strong dependence on the two-phase
properties of the medium.

The semi-analytical expressions that were derived offer some
computational advantages in the calculation of sensitivities for the
inverse problem, associated with imaging a medium using remotely
gathered observations. In particular, a single numerical simulation
of the complete set of component experiments is required in order
to calculate all of the quantities needed for an update to a calculated
image. The sensitivities follow from the semi-analytical expressions
for the trajectories and the travel times and do not require the exten-
sive computation of a perturbation approach nor the complexity
of an adjoint formulation. The former methodology requires N +
1 complete numerical simulations in order to construct the needed
sensitivities, where N is the number of parameters, which is typically
of the order of the number of grid blocks in a reservoir simulation.
The latter approach is based upon the development and solution
of the adjoint problem, which can be complicated for applications
involving multiphase fluid flow. The sensitivities derived here are
approximate, but they are in general agreement with those provided
by a numerical perturbation approach. An obvious application that
needs to be explored is the use of the methodology for aquifer char-
acterization and for the tomographic imaging of flow properties in
the subsurface. Finally, this treatment of non-linear governing equa-
tions with spatially varying coefficients is also applicable to other
models of fluid flow, such as multicomponent-multiphase flow, flow
with coupled fluid momentum terms,27,28 and the phase-field model
described in the work of Cueto-Felgueroso and Juanes.29
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