Title
Expression of growth factors and oncogenes in normal and tumor-derived human mammary epithelial cells

Permalink
https://escholarship.org/uc/item/5wg3t45x

Authors
Stampfer, MR
Zajchowski, D
Band, V
et al.

Publication Date
2019-07-09

Peer reviewed
Expression of Growth Factors and Oncogenes in Normal and Tumor-derived Human Mammary Epithelial Cells

Deborah Zajchowski, Vimla Band, Nelly Pauzie, Andrew Tager, Martha Stampfer, and Ruth Sager

Division of Cancer Genetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 [D. Z., V. B., N. P., A. T., R. S. J, and Lawrence Berkeley Laboratories, Berkeley, California 94720 [M. S.]

ABSTRACT

The expression of genes which may be involved in the regulation of human mammary epithelial cell growth (transforming growth factors alpha and beta) and tumorigenesis [c-myc, erbB2, epidermal growth factor receptor (EGFR), Ha-ras, pS2] has been compared in similarly cultured normal cell strains and tumor cell lines. We have found that the normal breast cells produce high levels of EGFR mRNA, which are translated into nearly 10^7 low affinity epidermal growth factor-binding molecules/cell. In the estrogen receptor-negative lines examined, the EGFR gene was present at levels comparable to those in the normal cells. In contrast, EGFR and transforming growth factor alpha mRNA were reduced in estrogen receptor-positive tumor lines compared to estrogen receptor-negative lines and normal cells. Steady state mRNA levels for transforming growth factor beta, erbB2, c-myc, and Ha-ras in the normal cells were greater than or comparable to those in all of the breast tumor lines. Furthermore, in the absence of gene amplification, only one of the genes examined (i.e., pS2) was overexpressed in a subset of the tumor cells compared to their normal counterparts. Several reports by other investigators have described overexpression of some of these genes in breast biopsies and in tumor lines in studies lacking normal controls. Thus, our results, in which the same genes were not overexpressed compared to normal cells unless amplified, underscore the importance of including appropriate normal controls in studies aimed at defining aberrant patterns of gene expression in tumor cells.

INTRODUCTION

A characteristic property of tumor cells is the unregulated expression of genes encoding growth factors, their receptors, and/or various intermediates in the complex network of cellular growth control. Aberrant gene expression due to amplification and/or rearrangement of particular protooncogenes has been associated with specific forms of cancer (1, 2).

With the availability of cloned genes to use as hybridization probes, it has become possible to analyze the expression and structure of particular genes by comparing tumor cells with their normal counterparts. We have taken this approach in initiating a study of human breast cancer. A unique feature of this analysis is the use of normal mammary epithelial cells grown in long-term cell culture as controls for comparison with tumor lines in studies lacking normal controls. Thus, our results, in which the same genes were not overexpressed compared to normal cells unless amplified, underscore the importance of including appropriate normal controls in studies aimed at defining aberrant patterns of gene expression in tumor cells.

A second feature of this analysis has been the use of a new medium (9), which supports the growth of both normal and tumor cells. Previous efforts have been devoted to the development of techniques and media which allow the growth of normal human mammary epithelial cells in culture (10-14). In 1984, the first serum-free medium for long-term culture of these cells was developed by Hammond et al. (15). However, since most tumor cell lines do not grow in this medium, we have made modifications which result in long-term growth of normal human mammary epithelial cells as well as the growth of tumor cell lines (9). In this medium (DFCI-1), normal breast epithelial cells from mammaryplasias have been grown at population-doubling times of approximately 20 h for 15-20 passages before senescence. Unlike the immortal HBL-100 milk epithelial cell line frequently used as a normal control (16), these cells are not transformed. The tumor cell lines examined in this report were originally established in media with 10% FCS (Ref. 17; see references therein); they grow for several passages but not indefinitely in DFCI-1 medium. In this paper, we have compared normal cells grown in DFCI-1 medium with tumor cell lines grown in either alpha-MEM plus 10% FCS or DFCI-1 medium.

We have analyzed the expression of a series of genes known or suspected to be involved in mammary tumorigenesis. The EGF receptor gene was chosen because several studies have indicated an inverse relationship between the number of estrogen receptors and EGFR in breast tumor tissues (18-21). We have also assessed the expression of the estrogen-responsive pS2 gene, which encodes a secreted polypeptide of unknown function (22), since high levels of its mRNA have been detected in approximately 90% of ER-positive breast tumor specimens, only rarely in ER-negative biopsies, and never in normal mammary tissue (23).

Other genes involved in growth regulation, including erbB2 (24-27), c-myc (26, 28-30), and Ha-ras (31-34), are amplified and/or overexpressed in different subsets of breast tumor biopsies and have therefore been included in this study. In addition, we have examined expression of the genes for TGFalpha and TGFbeta2, two peptide growth factors secreted by and probably involved in growth control in breast epithelium (6, 35-37).

MATERIALS AND METHODS

Cells and Culture Conditions. The three normal human mammary epithelial cell strains used in this study were derived from reduction mammaryplasias from different individuals. Strain 30N was developed in this laboratory following published procedures (38). The development and characterization of growth requirements for the 172 and 184 strains have been described (14, 39). For our experimental purposes, the three normal strains were grown in DFCI-1 medium, containing 1% FCS (9). Breast tumor cell lines T47D, MDA-MB231, BT-20, and ZR-75-1 [all from ATCC] and MCF-7 (Michigan Cancer Foundation) and Hs578T [H. Smith (40)] were cultured in alpha-MEM supplemented with 2 mM glutamine, 10 μg/ml insulin, 1 mg/ml dextrose, 0.1 mM minimal essential amino acids, and 10% FCS unless otherwise indicated. Penicillin (100 units/ml) and streptomycin (100 μg/ml) were present in both media. For gene expression studies in DFCI-1 medium, subconfluent tumor cell cultures growing in alpha-MEM + 10% FCS (above) were seeded (at 2 x 10^5 cells/p150 dish) in DFCI-
1 medium. Cells were harvested 3 days later at 60-70% confluence and RNA isolated as described below.

RNA Isolation and Analysis. Cell monolayers approximately 50% confluent were lysed in 4 M guanidinium isothiocyanate and purified by centrifugation through a 5.7 M CsCl cushion (41). Total RNA was denatured and analyzed on a 1.3% agarose-2.2 M formaldehyde gel, and the RNA was electroblotted to Zetabind nylon filters (Bio-Rad). Filters were probed with 2-10 ng/ml of total RNA (denatured in 0.5 M NaCl, 50% formamide, 10% dextran sulfate, 1% SDS, and 250 µg/ml sonicated salmon sperm DNA. Hybridization with 32P-labeled probes (2 x 10^6 dpm/µg DNA (42)) was performed for 24-36 h at 42°C; the filters were washed for 30 min in 2x SSC/0.2% SDS at 25°C and for 1-2 h in 2x SSC-1% SDS at 65°C. Dot blot analysis was performed by spotting 2-fold serial dilutions of total RNA (denatured in 3.75% formaldehyde-4x SSC at 65°C for 15 min) onto Zetaflex nylon filters using a Schleicher & Schuell dot blot manifold. Hybridization conditions were identical to those for the Northern blot analysis.

DNA Isolation and Southern Blot Analysis. High molecular weight DNA was isolated from cultured cells (43). Five µg of DNA were digested with the restriction enzyme BamHI, fractionated on 0.7% agarose gels, and blotted onto nylon filters by the alkaline transfer procedure (44). Hybridization to 32P-labeled probes was for 12-24 h at 65°C in 1 x NaCl, 1% SDS, 10% dextran sulfate, and 250 µg/ml denatured salmon sperm DNA. Filters were washed at 65°C in 2x, SSPE-1% SDS for 30 min and 0.5x SSPE-1% SDS for 30 min-1 h before autoradiography.

Source of Hybridization Probes. The DNA probes used in the analysis are as follows: the EcoRI 1.35-kilobase fragment from pSP6Cl7N3 (45) is specific for TGFe; the ClaI/EcoRI 1.4-kilobase fragment from pmycB122 (46) corresponds to the 3rd exon of c-myc; the EcoRI 1.8-kilobase fragment from HER64-1 (47) contains the 5' part of the EGFR cDNA; the 1.6-kilobase EcoRI internal fragment from the cDNA (7) recognizes erbB2; the 1-kilobase EcoRI fragment from pβAS (48) is specific for TGFe; the 600-base pair Smal fragment from pEJ6.6 (49) recognizes Ha-ras; the 570-base pair EcoRl-Sall fragment from p6al (50) detects N-ras mRNA; the 400-base pair EcoRl-Sall fragment from pSP6Cl7N3 (data not shown) recognizes the 3rd exon of c-myc, the 570-base pair EcoRl-Sall fragment from p6al (50) detects N-ras mRNA; the 400-base pair Smal fragment from pEJ6.6 (49) recognizes Ha-ras; the 570-base pair EcoRl-Sall fragment from p6al (50). The analysis of other preparations of MCF-7 RNA using dot blots (Fig. 1B, Lane 4) or Northern hybridization (Table 1) shows that the MCF-7 as well as the ZR-75-1 (Lane 5) and T47D (Lane 7) cell lines, contain quantities of EGFR receptor mRNA approximately 16-fold lower than those found in the three normal strains (Lanes 1-3). By contrast, the ER- MDA-MB231, Hs578T, and BT-20 cell lines (Fig. 1B, Lane 6; Table 1) produced much higher amounts of EGFR mRNA. The highest levels were found in BT-20 cells (Table 1), in which the gene is amplified (53, 54).

High EGFR mRNA Expression Is Not Due to Gross Alteration or Amplification of the Gene in Normal Cells. To determine whether high EGFR mRNA expression in the normal cells was a result of gene amplification, the organization and copy number of the EGFR receptor gene in the normal breast cells was compared with MCF-7, BT-20, and A431 adenocarcinoma cell lines, where amplification of the EGFR gene was first described (47). No gross genomic rearrangements were observed by analysis of EcoRI, MspI- [data not shown], or BamHI-restricted total DNA [Fig. 2] using cDNA probes corresponding to 5' and 3' [data not shown] segments of the mRNA [pHER-A64-1 and A64-2, respectively (47)]. A BamHI restriction fragment length polymorphism (3.9 kilobases) particular to the 184 normal strain was, however, noted (Fig. 2). The EGFR gene dosage in the normal cells is comparable to that detected in the MCF-7 line. The gene is amplified in the BT-20 and A431 lines approximately 7- and 12-fold, respectively, when compared to the 184 strain in DNA dot blot analyses (data not shown), in agreement with other studies (47, 54). Thus, the elevated expression of EGFR mRNA in the normal cells is not the result of a detectable change at the genomic level.

Increase of EGF-binding Capacity of the Normal Cells Relative to the Tumorigenic MCF-7 Cells. To confirm that the high levels of mRNA observed in the normal cells were translated into an active protein, we compared the EGF-binding capacity of the 184 strain with that of the MCF-7 cells, which express 1-3 x 10^3 receptors/cell (4, 5). As indicated in the two experiments shown in Table 2, EGF binding to normal 184 cells is 20- to 40-fold higher than to MCF-7 cells, irrespective of the final cell densities. These measurements were performed under conditions where maximal, saturable binding occurred for both cell types (i.e., 2 h at 37°C) with the EGF concentration determined by saturation binding studies (Fig. 3).

Scatchard analysis of the EGF binding data for the normal breast epithelial cells demonstrates the existence of =5.8 x 10^6 EGF receptor molecules/cell with a Kd of 0.96 nM (r = 0.97) (Fig. 3, inset). Thus, the high mRNA expression of the EGFR gene in the normal mammary epithelial cells translates into a high level of EGF-binding proteins in these cells. This receptor number is comparable to those reported for some tumor lines which lack estrogen receptors (e.g., BT-20, MDA-MB231) (4, 5).

Equal Expression of erbB2 by Normal and Tumor Cells. The steady state level of erbB2 in the normal cell strains was not significantly different from that in the breast tumor cell lines examined here (Table 1). This contrasts with the observations of Kraus et al. (7) who reported erbB2 overexpression in the ZR-75-1 cell line. In the SK-BR-3 tumor cell line, however, where the gene is amplified approximately 4- to 8-fold, we detect at least 50-fold higher erbB2 mRNA levels than in the normal cell strains in agreement with Kraus et al. (7).

pS2 mRNA Is Detectable Only in ER-positive Tumor Cells

* Unpublished results.
GROWTH FACTORS AND ONCOGENES IN BREAST EPITHELIAL CELLS

Fig. 1. EGF receptor RNA expression in normal and tumor breast epithelial cells. A, Northern blot analysis. Top, 10 μg total cellular RNA from 30–50% confluent 172 (Lane 1), 184 (Lane 2), and MCF-7 (Lane 3) cells were hybridized with an EGF receptor cDNA probe. The 10.5-kilobase EGF receptor transcript is indicated, as are the locations of the 28S and 18S rRNA bands detected by UV fluorescence of the ethidium bromide-stained RNA after transfer to the filters. Bottom, the same filter rehybridized with a chicken β-actin cDNA probe, which detects a 2.1-kilobase mRNA. B, dot blot analysis using serial 2-fold dilutions (from 5 μg) of total RNA from normal cell strains 30N (Lane 1), 172 (Lane 2), and 184 (Lane 3) and established breast tumor cell lines MCF-7 (Lane 4), ZR-75-1 (Lane 5), MDA-MB231 (Lane 6), and T47D (Lane 7). Filters were hybridized with an EGF receptor cDNA probe (top) and a chicken β-actin cDNA probe (bottom). Amounts detected with each probe are indicated relative to the normal 184 cell strain (=1.0).

Table 1 Expression of protooncogenes and growth factors in normal and tumor-derived breast epithelial cells

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>184</th>
<th>172</th>
<th>184Tumor</th>
<th>ER-MDA-MB231</th>
<th>Hs578T</th>
<th>BT-20</th>
<th>ER+ MCF-7</th>
<th>ZR-75-1</th>
<th>T47D</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>UD</td>
<td>10</td>
<td>0 (0.5)</td>
<td><0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>TGFα</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>2 (3)</td>
<td>2 (3)</td>
<td>2</td>
</tr>
<tr>
<td>TGFβ</td>
<td>3</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>3 (3)</td>
<td>10</td>
<td>UD</td>
<td>6 (5)</td>
<td>8 (6)</td>
<td>8</td>
</tr>
<tr>
<td>c-myc</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>UD</td>
<td>UD</td>
<td>12 (13)</td>
<td>12 (13)</td>
<td>12</td>
</tr>
<tr>
<td>erbB2*</td>
<td>UD</td>
<td>UD</td>
<td>UD</td>
<td>UD</td>
<td>5 (5)</td>
<td>5</td>
<td>UD</td>
<td>UD (UD)</td>
<td>UD (UD)</td>
<td>UD</td>
</tr>
<tr>
<td>pS2</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Ha-ras*</td>
<td>15</td>
</tr>
</tbody>
</table>

* Amplified gene.

Table 1: Expression of protooncogenes and growth factors in normal and tumor-derived breast epithelial cells. Northern blots were hybridized with the indicated probes (see Figs. 1 and 2) and specific bands were quantitated by densitometric scanning. Values are expressed relative to the amounts detected in normal 184 cells (=10) and are the average of results from 3 or more RNA preparations. Data for DFCI-1 medium growth conditions, given in parentheses, are averages from at least two separate experiments. Equivalent RNA loading was verified by reprobing the blots with β-actin and rare corrections (less than 2-fold) are reflected in the values given. Standard errors were within 10–20%.

Lines. Analysis of the normal and tumor cell lines for expression of the estrogen-inducible pS2 gene revealed hybridizable mRNA in only two cell lines: MCF-7 cells, where its presence was initially detected (55); and in ZR-75-1 cells. None of the other established lines, including the ER+ T47D cells, or the normal epithelial strains produced this mRNA (Fig. 4, pS2 probe).

mRNAs for Transforming Growth Factors α and β Are Produced by Normal Mammary Epithelial Cell Strains. TGFα mediates its growth-promoting effects through the EGF receptor (56). Its production by breast carcinoma cell lines has been documented (6) and led us to investigate the relative expression of the gene in normal and tumor cells. In the MDA-MB231 cells (Fig. 4, TGFα probe, Lane 7; Table 1) mRNA levels were close to those in the three normal strains (Lanes 1–3), whereas in Hs578T cells (Lane 8) no TGFα mRNA was detected. Lower amounts of TGFα mRNA were quantitated in the ER+ tumor lines, MCF-7, ZR-75-1, and T47D (Lanes 4–6).

In contrast to the results with TGFα, no significant differences in TGFβ mRNA expression were observed between the normal cell strains and most of the tumor lines (Fig. 4, TGFβ probe; Table 1). The sole exception is the T47D line, which does not produce detectable amounts of TGFβ mRNA (Lane 7).
Fig. 2. Southern analysis of the EGFR gene in normal and tumor breast epithelial cells. Five µg of DNA from normal 184 (Lane 1) and tumor MCF-7 (Lane 2), BT-20 (Lane 3), and A431 (Lane 4) cells were digested with BamHI and analyzed by Southern blotting as described (“Materials and Methods”). Hybridization with the EGFR cDNA probe is shown. Markers are a 32P-labeled λ HindIII digest (Lane 5). Arrow, BamHI restriction fragment length polymorphism at ≈3.9 kilobases observed in the 184 strain.

Table 2. EGF binding to 184 normal and MCF-7 tumor cells

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Cell type</th>
<th>Cells/35 mm</th>
<th>Specific 125I-EGF binding (fmol/10⁶ cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>184</td>
<td>1.6 × 10⁶</td>
<td>99.7</td>
</tr>
<tr>
<td></td>
<td>MCF-7</td>
<td>1.2 × 10⁶</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>184</td>
<td>5.6 × 10⁵</td>
<td>95.6</td>
</tr>
<tr>
<td></td>
<td>MCF-7</td>
<td>3.4 × 10⁵</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>MCF-7</td>
<td>1.2 × 10⁴</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>MCF-7</td>
<td>1.8 × 10⁴</td>
<td>5.0</td>
</tr>
</tbody>
</table>

In contrast, Ha-ras mRNA levels are nearly identical in the normal strains and in the tumor lines (Table 1).

Expression of c-myc Is Lower in Tumor Cell Lines than in Normal Cells. Fig. 4 (myc probe) shows that c-myc steady state mRNA levels are somewhat higher in the normal strains (Lanes 1–3) than in the tumor lines (Lanes 4–8), and a similar result is shown quantitatively in Table 1. Thus, contrary to the overexpression of c-myc that is associated with gene amplification in biopsy samples (26, 28, 29), we have found that c-myc mRNA levels are generally lower than normal in the tumor lines examined here.

Effect of Different Growth Media on Gene Expression. In order to ascertain whether the differential gene expression observed in the comparisons of normal and tumor cells was due simply to the different culture media in which the cells were grown, mRNA levels were examined in cells grown in the low serum-containing DFCI-1 medium. The MCF-7 cell line can be successfully cultured in DFCI-1 medium for periods of 1 to 2 weeks at population-doubling times (≈25 h) similar to those in the standard medium containing 10% FCS (9). The differential expression of EGF receptor, TGFβ, and pS2 genes observed when MCF-7 cells were cultured in the standard medium was maintained when these tumor cells were grown for 2–3 population doublings in DFCI-1 medium (Table 1). Thus, constituents in the DFCI-1 medium did not alter the expression of these genes under short-term culture conditions. Similar results were obtained in comparisons of the growth of the ZR-75-1, BT-20, and MDA-MB231 lines in DFCI-1 medium (Table 1). However, growth in DFCI-1 medium increased the amount of EGF receptor mRNA in the MCF-7 cells to detectable levels and augmented c-myc expression in BT-20 cells. The components of DFCI-1 medium responsible for this effect are being investigated.
GROWTH FACTORS AND ONCOGENES IN BREAST EPITHELIAL CELLS

Fig. 4. Expression of TGFα, TGFβ, c-myc, N-ras, and pS2 in normal and tumor-derived breast epithelial cells. Thirty μg total cellular RNA from normal cell strains 30N (Lane 1), 172 (Lane 2), 184 (Lane 3), and established breast tumor cell lines MCF-7 (Lane 4), ZR-75-1 (Lane 5), T47D (Lane 6), MDA-MB231 (Lane 7), and Hs578T (Lane 8) were analyzed by Northern blotting with the indicated probes. Specific band sizes are indicated in the panels for each of the transcripts analyzed. Some cross-hybridization to either the 28S or 18S rRNA was observed for the TGFβ and N-ras probes, respectively.

DISCUSSION

We have compared normal and tumor-derived human breast epithelial cells for their expression of several genes, whose altered structure or expression has been associated with the initiation and/or progression of breast cancer. Although some studies of gene expression in tumor cell lines have already been reported (8, 59–61), this is the first in which ER+ and ER− breast tumor lines have been compared with normal breast epithelial cells growing in long-term cell culture and under the same culture conditions.

Normal Cells Synthesize High Levels of the mRNAs for the EGF Receptor and TGFα. We have found that the expression of the mRNA for the EGFR is much lower in the ER+ tumor cell lines than in ER− tumor cells. This result is consistent with previous EGF-binding studies which quantitated the number of EGF receptors in breast tumor cell lines (4, 5). In addition, our data show that the production of EGFR mRNA and its encoded protein in normal cells is quantitatively similar to that in ER− tumor cells. Scatchard analysis of EGF binding in the normal cells indicated the presence of approximately 6 × 10⁴ receptors/cell, with a dissociation constant of 1 nM. This is the lower of the two affinity forms of the EGF receptor measurable in breast tumor epithelial cells (4, 5, 62). According to the report of Roos et al. (62), this form is generally observed in cells with high total receptor number (e.g., MDA-MB231, BT-20); therefore its predominance in the normal cells may be correlated with the high total binding in these cells. Since the normal cells studied here do not have detectable quantities of estrogen receptors,4 our results suggest that high EGFR expression in the absence of gene amplification may be more related to ER−negative status than to tumorigenicity.

The tumor growth factor TGFα is produced by normal (63) as well as tumor cell populations (64) and acts by binding to the EGF receptor (56). The normal breast cells analyzed here produce higher levels of TGFα mRNA than the tumor cell lines. Activity measurements on some of the same tumor cells by Dickson et al. (6) correlate well with the relative amounts of TGFα mRNA detected in our study, with the exception of estrogen-stimulated MCF-7 cells, where the activity was comparable to that found in the MDA-MB231 line (6). In agreement with our results, Peres et al. (8) have recently shown that levels of TGFα mRNA in the MDA-MB231 cell line are greater than those detected in the MCF-7, T47D, and ZR-75-1 cells. Our results that normal breast cells produce higher levels of TGFα mRNA than most of the tumor lines analyzed, regardless of ER status suggest that no direct relationship exists between TGFα production and tumorigenicity. Similar conclusions have...
been drawn by Perroteau et al. (65) who quantitated the levels of immunoreactive TGFα present in breast tissue extracts and found no significant correlation with the pathological state of the tissue.

ER+ Tumor Cell Lines Express pS2 but Do Not Overproduce Ha-ras mRNAs. The estrogen-responsive pS2 gene expression in cultured cells correlates well with the results from immunocytochemical analyses, which demonstrated pS2 expression in 88% of ER+ breast tumors and failed to detect the pS2 product in normal breast tissue (23). As predicted from these studies, we have found that pS2 mRNA is absent in the normal as well as in the hormone-independent tumor cell lines analyzed but is very high in two of the estrogen-dependent lines.

Contrary to the indications of De Borgi et al. (33), who quantitated 10-fold higher amounts of Ha-ras p21 protein in breast tumors (70% were ER+) than in normal breast tissue, we have observed no significant differences in the mRNA levels produced by normal and ER+ tumor cells in culture. Only slight increases in Ha-ras expression in the ER— tumor lines were detected. Our results are consistent with those of Ohuchi et al. (66), who concluded that enhanced ras expression is probably not involved in the maintenance of the transformed phenotype of breast tumor tissues.

Overexpression of EGFR, erbB2, and N-ras Occurs Concomitant with Gene Amplification in These Tumor Cell Lines. Increased EGFR gene expression relative to the normal cell strains was observed only in the BT-20 tumor cell line, in which the gene copy number is 7-fold amplified. Similarly, overexpression of the N-ras gene correlates with its overexpression in two of the ER+ tumor lines studied here. However, the significance of N-ras amplification for the tumorigenic progression of breast cancer has been questioned, since no tumor biopsy specimens have yet been reported with amplified N-ras sequences (34, 58).

A role for erbB2 in breast cancer was proposed in view of studies that correlated erbB2 gene amplification (25) and high protein levels (27) with a poor clinical prognosis. Expression of the erbB2/HER-2/neu oncogene is elevated in approximately 30% of breast cancer biopsies (24, 26–28). In cell culture, we have seen that normal cells express as much erbB2 mRNA as the tumor cell lines (Table 1), none of which have an amplified erbB2 gene (7). Thus, the tumorigenic phenotype of the cell lines analyzed here is not dependent upon high erbB2 expression.

This comparison of normal and tumor-derived mammary epithelial cells grown in culture has revealed no consistent differences between the EGFR, TGFα, TGFβ, erbB2, and N-ras mRNA levels of ER— tumorigenic and normal cells except when the corresponding genes were amplified. In the ER+ tumor lines, however, expression of EGFR receptor and TGFα mRNAs was markedly lower than in the normal cells, and pS2 was expressed. The molecular basis for differences between ER+ and ER— cells is a fundamental problem in breast cancer research. This study emphasizes the importance of comparative studies of normal and tumor cells under similar growth conditions for future investigations. Ideally such analyses should be carried out with primary tumor cells grown in culture. Work directed toward this goal is in progress in our laboratory.

ACKNOWLEDGMENTS

We thank John Moffett, Douglas Trask, and Paul Yaswen for critical reading and Stephanie Budd and Dorothy Marden for preparation of the manuscript. We gratefully acknowledge R. Derynk, P. Leder, A. Ullrich, M. Kraus, R. Weinberg, M. Wigler, P. Chambon, and D. Cleveland for gifts of probes.

REFERENCES

GROWTH FACTORS AND ONCOGENES IN BREAST EPITHELIAL CELLS

Expression of Growth Factors and Oncogenes in Normal and Tumor-derived Human Mammary Epithelial Cells

Deborah Zajchowski, Vimla Band, Nelly Pauzie, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/48/24_Part_1/7041

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/48/24_Part_1/7041. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.