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ABSTRACT

We derive analytic covariance matrices for the N -Point Correlation Functions (NPCFs) of galaxies in the Gaussian

limit. Our results are given for arbitrary N and projected onto the isotropic basis functions of Cahn & Slepian

(2020), recently shown to facilitate efficient NPCF estimation. A numerical implementation of the 4PCF covariance

is compared to the sample covariance obtained from a set of lognormal simulations, Quijote dark matter halo

catalogues, and MultiDark-Patchy galaxy mocks, with the latter including realistic survey geometry. The analytic

formalism gives reasonable predictions for the covariances estimated from mock simulations with a periodic-box

geometry. Furthermore, fitting for an effective volume and number density by maximizing a likelihood based on

Kullback-Leibler divergence is shown to partially compensate for the effects of a non-uniform window function.

1 INTRODUCTION

Large-scale structure (LSS) is a powerful observable with which to elucidate cosmic evolution. To characterize its spatial

distribution, various summary statistics have been proposed, of which the most prominent are the two-point statistics, i.e. the

2-Point Correlation Function (2PCF) and its Fourier-space counterpart, the power spectrum (e.g., BOSS Collaboration et al.

2017; eBOSS Collaboration et al. 2021).

Although two-point statistics fully capture information in the early Universe, assuming a standard inflationary model with

adiabatic perturbations, gravitational evolution induces non-linearities in the LSS at late times, spreading information into

higher-order statistics. Furthermore, different mechanisms during inflation can generate distinctive non-Gaussian signatures

(Kofman 1991; Linde & Mukhanov 1997; Komatsu et al. 2003; Chen et al. 2007; Chen 2010). These two effects justify push-

ing beyond the power spectrum or 2PCF. Examples include the 3-Point Correlation Function (3PCF; Peebles 1978; Fry &

Gaztanaga 1993; Slepian & Eisenstein 2015a,b; Slepian et al. 2017; Portillo et al. 2018), the bispectrum (Scoccimarro et al.

1998; Scoccimarro 2000; Pearson & Samushia 2018), skew spectra (Dizgah et al. 2020; Schmittfull & Dizgah 2021), the marked

density field (Philcox et al. 2020a; Massara et al. 2021), and the integrated bispectrum and trispectrum (Sefusatti & Scoc-

cimarro 2005; Chiang et al. 2014). Methods such as BAO reconstruction (Eisenstein et al. 2007; Padmanabhan et al. 2009;

White 2015; Schmittfull et al. 2015, 2017), forward-modeling of the galaxy density field (Jasche & Wandelt 2013; Seljak et al.

2017; Jasche & Lavaux 2019; Schmidt et al. 2019), and machine learning techniques have also been proposed as alternative

but complementary approaches to summary statistics. Previous work has demonstrated that combining two- and higher-point

statistics can break the degeneracy between linear bias and the amplitude of matter fluctuations, tighten constraints on stan-

dard ΛCDM parameters (Agarwal et al. 2021; Gil-Maŕın et al. 2017; Sugiyama et al. 2020b; Gualdi et al. 2021), and provide

further insights into the neutrino mass (Ruggeri et al. 2018; de Belsunce & Senatore 2019; Chudaykin & Ivanov 2019; Hahn

et al. 2020; Kamalinejad & Slepian 2020; Aviles et al. 2021) and modified gravity (Bartolo et al. 2013; Alam et al. 2020).

Gravitational evolution imprints a useful shape on the N -point statistics; Samushia et al. (2021) showed that for N = 3 this

shape can potentially provide complementary information to BAO reconstruction when it is used as standard ruler.

To infer cosmological parameters from the N -Point Correlation Functions (NPCFs) using Bayes theorem with a Gaussian

likelihood, a covariance matrix is required. Usually, this is obtained by sampling independent realizations of the statistic from

simulations. However this approach introduces sampling variance, which then propagates into the parameter estimates (Do-

delson & Schneider 2013; Percival et al. 2014; Taylor & Joachimi 2014; Sellentin & Heavens 2016). To reduce this variance,

the number of mock catalogs must be much larger than the dimension of the NPCFs; if the statistic contains many bins, the

computational cost of this poses a significant challenge.

© 2021 The Authors
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2 J. Hou et al.

An alternative approach is to compute the covariances analytically. This has been intensively studied especially for two- and

three-point statistics (Grieb et al. 2016; Li et al. 2019; Scoccimarro et al. 1999; Slepian & Eisenstein 2015a, 2018; O’Connell

et al. 2016; Barreira 2019; O’Connell & Eisenstein 2019; Philcox & Eisenstein 2019; Philcox et al. 2020b; Wadekar et al. 2020;

Sugiyama et al. 2020a). Recent work in Philcox et al. (2021a) developed an efficient algorithm to measure the NPCF for arbitrary

N ; given the high dimensionality of the NPCFS for large N , this poses a further challenge for covariance estimation. Thus far,

few studies have considered the covariance of the NPCFs with N > 3. To address this, we here derive an analytic expression for

the NPCF covariance at arbitrary N . In order to efficiently characterise the NPCF we work with the isotropic basis functions

developed in Cahn & Slepian (2020); these have rotational symmetry in 3D, and may be related to the quantum-mechanical

angular momentum basis states.

An important assumption in our modeling is that the two-point statistics are the dominant contribution to the covariance,

i.e. we ignore contributions from three- and higher-point statistics. To test this assumption, we will use simulations that include

non-Gaussian effects. For the majority of this paper, we will assume the two-point statistics to be isotropic, such that the spatial

distribution of the galaxy pairs is independent of the line of sight (l.o.s). In practice, a galaxy’s peculiar velocity, induced by its

local gravitational environment, can give rise to redshift space distortions (RSD) and thus break isotropy. Although the main

tests in this paper will be focused on the isotropic case, we will show in the Appendix an analytic expression that includes

the effects of RSD, by expanding the anisotropic two-point statistics in multipoles with respect to the l.o.s. Finally, we will

compare the results of our formalism to the covariance estimated from mock catalogues with a realistic survey geometry.

In §2 we briefly review the isotropic basis and its properties, before the NPCF estimator is defined in §3. In §4 we present

our formalism for the theoretical covariance in the Gaussian Random Field (GRF) limit, starting with the basic elements as

building blocks for constructing the Gaussian covariance, then presenting the general formalism for the NPCF covariance, and

ending with explicit expressions for the case of N = 4. In §5 we compare our numerical implementation of the Gaussian NPCF

covariance to a set of lognormal mocks, a set of halo catalogues from N-body simulations using Quijote simulations and

Patchy mocks, where the latter include realistic survey geometry. We summarize our results in §6. Appendices A, B, and D

provide intermediate derivation steps as well as consistency checks, Appendix C discusses the covariance contribution from the

disconnected piece of the NPCF estimators, and Appendix E presents the derivation of the covariance including RSD. The

code for computing the covariance of the connected 4PCFs is publicly available.1

2 REVIEW OF THE ISOTROPIC BASIS FUNCTIONS

In this section we will provide a summary of the isotropic basis functions, including a number of important properties that

will be needed later for the derivation of the theoretical covariance. Further details are presented in Cahn & Slepian (2020).

2.1 Construction of the basis function PΛ

In our notation, the isotropic functions PΛ are sums of products of n spherical harmonics Y`m multiplied by a product of

Clebsch-Gordan coefficients, denoted by CΛ
M. They are constructed so as to be invariant under simultaneous rotation of all n

coordinates:

PΛ(R̂) =
∑

m1...mn

CΛ
MY`1m1(r̂1) · · ·Y`nmn(r̂n), (1)

where R̂ stands for a collection of unit vectors r̂1, ..., r̂n. Each unit vector r̂i is associated with a rotation generator Li, i.e.

the angular momentum operator. The isotropic PΛ function is an eigenfunction of each operator L2
i with eigenvalue `i(`i + 1)

and of the operator (
∑n
i=1 Li)

2 with eigenvalue zero (see also the discussion in Philcox & Slepian 2021 for a generalization

of this to D dimensions). We denote the orbital angular momenta by `i, with mi being its projection onto the z-axis.2 For

n > 3 the combination of a given set of orbital angular momenta, `1, . . . , `n, is not unique: we need to specify intermediate

orbital angular moment. These are constructed from the primary orbital angular momenta, for example, (L1 + L2)2 with

eigenvalue `12(`12 + 1), and analogously for (L1 + L2 + L3)2, et cetera. For brevity, we will hereafter call the `i ‘primary’

angular momenta and the `12, `123, . . . , ‘intermediate’ angular momenta. Further, we use Λ to indicate the collection of angular

momenta {`1, `2, (`12), `3, (`123), . . . , `n}, with intermediate angular momenta in the brackets, and M to represent the collection

of azimuthal angular momentum components {m1,m2, ...,mn}, with each mi = {−`i, . . . , `i}, m12 = {−`12.., . . . , `12..} and∑N−1
i mi = 0. In our convention, the primary angular momenta `1, `2, . . . follow the ordering of the unit vectors: `1 corresponds

to r̂1, `2 corresponds to r̂2, etc.

1 See https://github.com/Moctobers/npcf_cov.git
2 We adopt the language of quantum mechanics to describe the spherical harmonics.

MNRAS 000, 1–31 (2021)
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Analytic Gaussian Covariance Matrices for Galaxy N-Point Correlation Functions 3

The CΛ
M coefficient can be expressed using Wigner 3-j symbols:

CΛ
M = E(Λ)

√
2`12 + 1× · · · ×

√
2`12...n−2 + 1

×
∑
m12...

(−1)κ
(

`1 `2 `12

m1 m2 −m12

)(
`12 `3 `123

m12 m3 −m123

)
· · ·

×

(
`12...n−2 `n−1 `n
m12...n−2 mn−1 mn

)
(2)

where E(Λ) = (−1)
∑

i `i and κ = `12 −m12 + `123 −m123 + · · · + `12...n−2 −m12...n−2. If the sum of the angular momenta is

even, then E(Λ) = 1 and PΛ is real. Otherwise, E(Λ) = −1 and PΛ is imaginary. For n = 2 and n = 3, CΛ
M becomes:

C``
′

mm′ =
(−1)`−m√

2`+ 1
δK
`,`′δ

K
m,−m′ , (3)

C`1`2`3m1m2m3
= (−1)`1+`2+`3

(
`1 `2 `3
m1 m2 m3

)
, (4)

with δK
`i`
′
i

being the Kronecker delta. The result in the second line is non-zero only when `1, `2, and `3 satisfy the triangular

inequality, |`1 − `2| ≤ `3 ≤ `1 + `2. Furthermore, if any of the angular momenta are zero, the second line reduces to the

first (DLMF DLMF, eq. 34.3.1).

The form of the CΛ
M coefficient is chosen to ensure orthonormality of the isotropic basis functions. The orthonormality relation

is: ∫
dR̂PΛ(R̂)P∗Λ′(R̂) = δK

`1`
′
1
δK
`2`
′
2
× · · · × δK

`12`
′
12
× · · · × δK

`n`′n . (5)

Using this, we can expand an arbitrary isotropic function in this basis

ζ(R) =
∑
Λ

ζΛ(R)PΛ(R̂), (6)

with R ≡ {r1, r2, . . . , rn} and R ≡ {r1, r2, . . . , rn}. By invoking the orthonormality relation Eq. (5) we can obtain the expansion

coefficient

ζΛ(R) =

∫
dR̂ ζ(R)P∗Λ(R̂). (7)

In our context, ζ(R) is the N -point correlation function. If we expand the function in the basis PΛ, parity-even correlators will

have real coefficients, but parity-odd correlators will have purely imaginary coefficients.

2.2 Useful properties

We define some useful quantities derived from the isotropic basis that will be of use later. Consider a product of n spherical

harmonics. If we represent integration over the rotations, R, by dR with
∫
dR = 1 then, as shown in the previous work (Cahn

& Slepian 2020), averaging over the rotation group projects out the isotropic components:∫
dR

n∏
j=1

Y`jmj (Rr̂j) =
∑
Λ

CΛ
MPΛ(R̂). (8)

The result is non-zero only if
∑
jmj = 0 and the `i satisfy a generalized triangular inequality, namely that they can be

combined to make a state of zero total angular momentum. The sum over Λ includes all possibilities that can be constructed

from the given primary `j .

A useful consequence is the identity

∫
dR

n∏
j=1

∑
mj

Y`jmj (Rr̂j)Y ∗`jmj
(k̂j) =

∑
Λ

∑
mj

CΛ
MY
∗
`jmj

(k̂j)PΛ(R̂) =
∑
Λ

PΛ(R̂)P∗Λ(K̂), (9)

where K̂ = {k̂1, ..., k̂n}, and the sum is over all Λ that can be constructed from the primary `j .

The rotational average of a product of n spherical harmonics with a common argument is determined in a similar fashion:∫
dR

n∏
j=1

Y`jmj (Rr̂) = (4π)−n/2
n∏
j=1

√
2`j + 1

∑
Λ

CΛ
MCΛ

0

= (4π)−n/2
∑
Λ

DP
ΛCΛ

0 CΛ
M, (10)

where M stands for all the mj and the subscript 0 ≡ {0, 0, ...}, and the sum is over all Λ consistent with the given `i (by the

MNRAS 000, 1–31 (2021)



4 J. Hou et al.

introduction of intermediate `12, etc.). We have defined the following coefficient involving the primary angular momenta:

DP
Λ =

n∏
j=1

√
2`j + 1. (11)

The superscript P stands for “primary”. Since we will use it often, we write out DP
Λ for n = 3 explicitly:

DP
`i`
′
i`
′′
i

=
√

(2`i + 1)(2`′i + 1)(2`′′i + 1). (12)

When calculating the covariance matrix, we will encounter pairs of galaxy n-tuplets involving directional vectors {ri} and

{r′i} with origins separated by a vector s. Hence it is practical to consider a product of n isotropic P functions of three

arguments
n∏
i=1

P`i`′i`′′i (r̂i, r̂
′
i, ŝ) =

n∏
i=1

∑
mi,m

′
im
′′
i

C`i`
′
i`
′′
i

mim
′
im
′′
i
Y`imi(r̂i)Y`′im′i(r̂

′
i)Y`′′i m′′i (ŝ). (13)

Since the isotropic basis does not encode the absolute orientation of each galaxy n-tuplet, we can average over orientation of

the r̂i, r̂
′
i, and ŝ via Eq. (8) with the relative orientations of directional vectors within each galaxy n-tuplets fixed. Following

this, we find ∫
dR dR′ dS

n∏
i=1

P`i`′i`′′i (r̂i, r̂
′
i, ŝ)

= (4π)−n/2
∑

ΛΛ′Λ′′
QΛΛ′Λ′′DP

Λ′′CΛ′′
0 PΛ(R̂)PΛ′(R̂

′). (14)

where the Λ, Λ′, and Λ′′ are formed from the primary components `i, `
′
i, and `′′i respectively. We introduce the quantity

QΛΛ′Λ′′ =

n∏
i=1

∑
mi,m

′
i,m
′′
i

C`i`
′
i`
′′
i

mim
′
im
′′
i
CΛ

MCΛ′
M′CΛ′′

M′′ , (15)

where the subscripts M, M′, M′′ stand for collections of {mi}, {m′i}, and {m′′i }. Since C`i`
′
i`
′′
i

mim
′
im
′′
i

has a mixture of angular

momenta we write out its components explicitly.

Our goal in this work is to study the covariance matrix, which by definition involves products of spherical harmonics. For

this reason, it is of use to explore products of isotropic functions and their corresponding identities. Since the PΛ is a complete

basis, it is possible to write products of two isotropic basis function with the same argument as a sum of isotropic basis function

weighted by a coupling coefficient

PΛ(R̂)PΛ′(R̂) =
∑
Λ′′
E(Λ′′)GΛΛ′Λ′′PΛ′′(R̂), (16)

where the phase in the coefficient arises due to the conjugation property of the isotropic function P∗Λ′′(R̂) = E(Λ′′)PΛ′′(R̂)

and we define GΛΛ′Λ′′ as the generalized Gaunt integral (Cahn & Slepian 2020):

GΛΛ′Λ′′ ≡
∫
dR̂PΛ(R̂)PΛ′(R̂)PΛ′′(R̂)

= (4π)−n/2
[
n∏
i=1

DP
`i`
′
i`
′′
i
C`i`

′
i`
′′
i

000

]
QΛΛ′Λ′′ . (17)

From its definition we see that GΛΛ′Λ′′ is symmetric in Λ,Λ′,Λ′′; we include its explicit evaluation for n = 2, 3 and 4 in

Appendix A.

The isotropic function is expressed with arguments r̂1, ..., r̂n with the canonical ordering i = 1, . . . , n (index sorted from

small to large in ri). When we later consider the covariance, the contraction of the overdensity fields may be permuted such

that the canonical ordering of the indices is no longer guaranteed. The isotropic functions with permuted arguments can be

expanded in terms of the canonically ordered ones (since these latter form a complete basis) as:

PΛ(R̂G) =
∑
Λ′
BG
−1

Λ,Λ′PΛ′(R̂
′), (18)

where G denotes the permutation of the set {1, 2, . . . , n}. The reordering coefficient of the inverse permutation, BG
−1

Λ,Λ′ , can be

obtained by applying the orthogonality relation

BG
−1

Λ,Λ′ ≡
∫
dR̂PΛ(R̂G)P∗Λ′(R̂′)

=
∑
M

C`1`2`12...`nm1m2m12...mn
C`G1`G2`

′
12...`Gn

mG1mG2m
′
12...mGn

n∏
i=1

δK
`′i`Gi−1

, (19)

where G−1 denotes the inverse permutation of G. Here, products of Kronecker deltas ensure that Λ and Λ′ have the same

primary angular momenta; however, they may still differ in intermediate angular momenta.

MNRAS 000, 1–31 (2021)



Analytic Gaussian Covariance Matrices for Galaxy N-Point Correlation Functions 5

3 N-POINT CORRELATION FUNCTIONS

The N -point correlation function (NPCF) is defined as

ζ(r1, r2, ..., rN−1) ≡ 〈δ(x)δ(x + r1)δ(x + r2) · · · δ(x + rN−1)〉 , (20)

where the galaxy overdensity is given by δ(x) = n(x)/n̄ − 1, with n(x) the galaxy number density with mean n̄ and 〈δ〉 = 0.

The angle bracket denotes the ensemble average of the overdensity field.

The expectation value in Eq. (20) can be expanded as a sum of combinations of overdensity fields at different spatial positions.

In the N = 4 case, the full 4PCF reads

ζ(r1, r2, r3) = ξ(r1)ξ(r2 − r3) + ξ(r2)ξ(r1 − r3) + ξ(r3)ξ(r1 − r2) + ζc(r1, r2, r3)

≡ ζdc(r1, r2, r3) + ζc(r1, r2, r3), (21)

which consists of two parts. The connected four-point function ζc(r1, r2, r3) captures the non-Gaussian part of the signal. We

denote the other terms, composed of the products of two-point correlation functions, as the disconnected part, ζdc(r1, r2, r3).

For N = 4 the disconnected terms coincides with the 2PCF that sourced by Gaussian statistics. For N > 4 however, the

disconnected piece can also receive non-Gaussian contributions, such as 2PCF+3PCF for the 5PCF. Our interest here is the

non-Gaussianity induced by the higher order statistics. For this purpose, we employ a connected-only estimator that subtracts

all the disconnected pieces at the estimator level (for details regarding the connected-only estimator, see our companion

paper Philcox et al. 2021b).

In the limit of large volumes, V , we can replace the ensemble average by a spatial integral by invoking ergodicity. This

motivates the general NPCF estimator

ζ̂(r1, r2, . . . , rN−1) =

∫
dx

V
δ(x)δ(x + r1)δ(x + r2) · · · δ(x + rN−1), (22)

which is unbiased. Using orthonormality to project this onto the isotropic basis PΛ (using n = N−1) for given primary angular

momenta Λ ≡ {`1, `2, (`12), ..., `N−1} as in Eq. (7), we obtain the estimator

ζ̂Λ(r1, r2, ..., rN−1) =

∫
d3x

V
δ(x)

N−1∏
i=1

∫
dr̂iδ(x + ri)P∗Λ(r̂1, r̂2, ..., r̂N−1). (23)

Explicitly, for the 4PCF, we find:

ζ̂Λ(r1, r2, r3) =

∫
d3x

V
δ(x)

∫
dr̂1dr̂2dr̂3 δ(x + r1)δ(x + r2)δ(x + r3)P∗`1`2`3(r̂1, r̂2, r̂3). (24)

Throughout this paper we make two important assumptions. First, we work in the Gaussian limit for the covariance calcu-

lation. Even though the gravitationally-induced higher-order statistics entering the covariance in principle do not vanish, we

assume they are suppressed compared to the two-point statistics. This assumption greatly simplifies the derivation below as we

will only need to consider the contractions between two overdensity fields, and thus may express results entirely in terms of the

2PCF or the power spectrum. This assumption will be addressed below by comparing the Gaussian covariance to that obtained

from N-body simulations. Second, we assume the 2PCF, and likewise the power spectrum, are isotropic. The majority of the

paper is based on this assumption, however, §5 includes a comparison between the theoretical isotropic Gaussian covariance

numerical simulations including RSD, which breaks rotational invariance.

We use the following conventions for Fourier transforms:

δ̃(k) =

∫
d3r e−ik·rδ(r), δ(r) =

∫
k

eik·r δ̃(k), (25)

where we define
∫
k
≡ (2π)−3

∫
d3k. The 2PCF ξ(r) and power spectrum P (k) are related by

〈δ(ri)δ(rj)〉 = ξ(|ri − rj |) =

∫
k

P (k) eik·(ri−rj). (26)

Hereafter, we assume isotropy, and thus assume P (k) ≡ P (k), with k = |k|, and ξ(r) ≡ ξ(r). In Appendix E we will discuss

how to go beyond the assumption of an isotropic power spectrum.

4 DERIVATION OF THE GAUSSIAN NPCF COVARIANCE MATRICES

The covariance matrix for the NPCF is defined as

MNRAS 000, 1–31 (2021)



6 J. Hou et al.

Cov(ζ̂(R), ζ̂(R′)) ≡
〈
ζ̂(R)ζ̂∗(R′)

〉
−
〈
ζ̂(R)

〉〈
ζ̂∗(R′)

〉
=

∫
d3x

V

d3x′

V

〈
N−1∏
i=0

δ(x + ri)δ(x
′ + r′i)

〉
−
〈
ζ̂(R)

〉〈
ζ̂∗(R′)

〉
=

∫
d3s

V

〈
N−1∏
i=0

δ(x + ri)δ(x + r′i + s)

〉
−
〈
ζ̂(R)

〉〈
ζ̂∗(R′)

〉
, (27)

where ζ̂(R) is the NPCF estimator with coordinates R = {r1, r2, ..., rN−1}, with an analogous definition for R′. Going from the

second to the third line we have defined the separation vector between the primary galaxies of the two N -plets as s ≡ x′−x, and

dropped the spatial integral over x, assuming statistical homogeneity.3 We label the vertices containing r0 and r′0 as primary

vertices (with r0 = r′0 = 0) and label the (N − 1) points with separations r1, r2, . . . , rN−1 relative to the primary as endpoints.

In the Gaussian limit we only need to calculate contractions between pairs of overdensity fields. The NPCF covariance has 2N

overdensity fields and thus forms N pairs of contractions.

Whereas the definition of the covariance matrix given in Eq. (27) (evaluated under the assumption of Gaussianity) includes

all possible contractions of 2N density fields, in this section we consider only pairs that are contractions between unprimed and

primed families, i.e. between ri and r′j . We term these contractions (and the corresponding covariance matrix contribution)

“fully-coupled”, as they fully couple the unprimed and primed families. Any self-contraction (i.e. that involving contraction

of two density fields within the same family, i.e. between ri and rj with i 6= j) arises from the disconnected contributions

to the NPCF. We term any covariance contribution that includes at least one self-contraction “partially-coupled”. All such

contributions vanish in the covariance of the connected-only estimator (Philcox et al. 2021b). This fact allows us to focus on

the fully-coupled covariance terms.4

Below, we derive a general expression for the fully-coupled NPCF covariance matrix under the assumption that the density

fields are Gaussian distributed. In order to offer a more intuitive understanding of the coupling structure, we also present a

diagrammatic approach to the calculation.

4.1 Basic elements for the covariance

We first consider the coupling between two endpoints: specifically, δ(x + ri) from the unprimed family and δ(x + s + r′j) from

the primed family, with i and j between 0 and N − 1. Such a contraction is represented by the tripolar structure in Fig. 1. The

primary vertices, r0 and r′0, are indexed as a convenience for keeping track of the permutations of unprimed and primed density

fields; we will need such permutations later in the calculation. However, once we have computed our desired contractions in the

isotropic basis, we may evaluate the result at r0 = 0 and r′0 = 0, since we place the primary vertices at x and x′ respectively.

We display this approach in Fig. 1.

Expanding the contraction 〈δ(x + ri)δ(x + s + r′j)〉 in the isotropic basis, we find

〈δ(x + ri)δ(x + s + r′j)〉 ≡ ξ(|r′j + s− ri|)

= (4π)3/2
∑
`i`
′
jL

i−`i+`
′
j+Lf`i`′jL(ri, r

′
j , s) DP

`i`
′
jL
C`i`

′
jL

000 P`i`′jL(r̂i, r̂
′
j , ŝ). (28)

A detailed derivation of this is in Appendix B. The highlighted radial part corresponds to Fig. 1 diagram (4). To simplify

what follows, we introduce the f -integral:

f`1`2`3(r1, r2, r3) ≡
∫
k2dk

2π2
P (k)j`1(kr1)j`2(kr2)j`3(kr3), (29)

following equation (64) in Slepian & Eisenstein (2015a). In practice, this is computed in radial bins, wherein we average each

spherical Bessel function (sBF) over ri with weight r2
i (cf. Eq. D2).5

We now consider the forms of equation (28) when i and j assume different values. There are three distinct cases. First, we

have a primary-to-primary coupling (the highlighted radial part corresponds to Fig. 1, diagram (1)):〈
δ(x + r0)δ(x + s + r′0)

〉
|r0=r′0=0 = ξ(|r′0 + s− r0|)|r0=r′0=0 = (4π)3/2f000(0, 0, s) P000(0, 0, ŝ), (30)

3 Strictly, we first need to apply a Poisson average to discrete tracers, giving rise to the shot noise term. Here we use abbreviated notation
and replace P (k)→ P (k) + n̄−1, for number density n̄−1, when we later compare our analytic results to those from the simulations.
4 With the introduction of the connected-only estimator implies that the disconnected terms can be isolated and that calculation of their
associated partially-coupled covariance is not strictly needed, we provide its derivation in Appendix. C1 for completeness.
5 Importantly, the bin average commutes with the integral and can be done prior to the k integration, which avoids performing the

integral over fine radial bins.
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(1)

(4)

(5)

(3)

(2)

x    

s    
ri    

rj’    

<latexit sha1_base64="rQnyOLaGHXN3hb5IDpgsgETXLmo="></latexit>

⇠(|s|) = (4⇡)3/2f000(0, 0, s)P000(0, 0, ŝ)

<latexit sha1_base64="1cBIHY8bjJCvtB9u9hOvdsiLBjU="></latexit>

(4⇡)�2
X

⇤⇤0⇤00

Q⇤⇤0⇤00DP
⇤00C⇤00

0 P⇤(R̂)P⇤0(R̂0)

<latexit sha1_base64="FX9INGwsUmAE7rLE7oCazrGW6i0="></latexit>

(4⇡)3/2
X

`

f`0` (ri, 0, s) DP
`0`C`0`

000P`0` (r̂i, 0, ŝ)

<latexit sha1_base64="b4uZYe0eRnGvupTt9iLMrIiURik="></latexit>

(4⇡)3/2
X

`i`0jL

i`i�`0j�Lf`i`0jL (r, r0, s) DP
`i`0jLC`i`

0
jL

000
<latexit sha1_base64="qtqwTt+ibrQ0HsZpru7CV7zgEs8="></latexit>

(4⇡)3/2
X

`0

(�1)`
0
f0`0`0

�
0, r0j , s

�
DP

0`0`0C0`0`0
000

Figure 1. A diagrammatic representation of the basic elements used as building blocks for the fully-coupled (i.e. connected) covariance.

Coupling between the overdensity fields across the unprimed and primed family (corresponding to density fields from the first and second

NPCFs in Eq. 27) is represented by a tripolar structure (diagrams (1)-(4), cf. Eqs. 28-31). Each tripolar structure depends on three
vectors: ri, r

′
j , and s. We use dotted lines to represent the separation vector s. Dashed lines depict primary vertices for r0 or r′0 and solid

lines are for endpoints with i or j non-zero. Diagram (5) is the coupling kernel arising from the rotational average over the unit vectors

r, r′, and s (cf. second line in Eq. 34). In the N = 4 case the coupling kernel has four legs. The lower left diagram (with the cartoon
telescope) shows our coordinate convention. x denotes the absolute coordinate; ri and r′j are the relative coordinates for respectively the

unprimed and primed families. s is the separation vector between the two families.

Second, we have a primary-to-endpoint coupling. These couplings can be obtained by taking one of r0 or r′0 and their associated

angular momenta to zero. In the first line below, the primary is unprimed and the endpoint is primed. In the second line, we

give the alternate choice, easily obtained by symmetry. Below, the highlighted radial parts correspond to Fig. 1, diagrams

(2) and (3). We have:

〈
δ(x + r0)δ(x + s + r′j)

〉
|r0=0 = ξ(|r′j + s− r0|)|r0=0 = (4π)3/2

∑
`′

(−1)`
′
f0`′`′(0, r

′
j , s)DP

0`′`′C0`′`′
000 P0`′`′(0, r̂

′
j , ŝ) (31)

〈
δ(x + ri)δ(x + r′0 + s)

〉
|r′0=0 = ξ(|s + r′0 − ri|)|r′0=0 = (4π)3/2

∑
`

f`0`(ri, 0, s)DP
`0`C`0`000 P`0`(r̂i, 0, ŝ). (32)

Finally, we have an endpoint-to-endpoint coupling , which is already given by Eq. (28).

4.2 Fully-coupled Gaussian covariance

4.2.1 General formalism for fully-coupled Gaussian NPCF covariance

The covariance defined in Eq. (27) can be expanded into the isotropic basis. Using Eq. (28), each pair contraction can be

written as a Fourier transform of the power spectrum, which can be expressed as products of the basic elements with tripolar
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structure defined in §4.1:

Cov(ζ̂(R), ζ̂(R′)) =
∑
Λ,Λ′
E(Λ′)CovΛ,Λ′(R,R

′)PΛ(R̂)PΛ′(R̂
′)

=

∫
d3s

V

∑
G

N−1∏
i=0

〈δ(x + rGi)δ(x + r′i + s)〉|rG0=r′0=0 (33)

=

∫
d3s

V
(4π)3N/2

∑
G

N−1∏
i=0

∑
`Gi`

′
iLi

i−`Gi+`
′
i+Lif`Gi`

′
iLi

(rGi, r
′
i, s)

×DP
`Gi`

′
iLi
C`Gi`

′
iLi

000 P`Gi`
′
iLi

(r̂Gi, r̂
′
i, ŝ)|rG0=r′0=0,

where we define CovΛ,Λ′(ζ(R), ζ(R′)) ≡ CovΛ,Λ′(R,R
′) and use the conjugation property P∗Λ′(R̂′) = E(Λ′)PΛ′(R̂

′).We denote

the permutation by G, with a total of N ! permutation terms. Since the basis is isotropic, we can apply Eq. (14) and rotationally

average over dR, dR′, and dS (with the normalization
∫
dS = (4π)−1

∫
dŝ):∑

Λ,Λ′
E(Λ′)CovΛ,Λ′(R,R

′)PΛ(R̂)PΛ′(R̂
′)

=

∫
s2ds

V
4π (4π)3N/2

∑
G

∑
LGL′Λ′′

N−1∏
i=0

i−`Gi+`
′
i+Lif`Gi`

′
iLi

(rGi, r
′
i, s)DP

`Gi`
′
iLi
C`Gi`

′
iLi

000

× (4π)−N/2QLGL′Λ′′DP
Λ′′CΛ′′

0 PLG(R̂
(N)
G )PL′(R̂′(N))|rG0=r′0=0

=

∫
s2ds

V
4π (4π)3N/2

∑
G

∑
LGL′Λ′′

N−1∏
i=0

i−`Gi+`
′
i+Lif`Gi`

′
iLi

(rGi, r
′
i, s)

×GLGL′Λ′′DP
Λ′′CΛ′′

0 PLG(R̂
(N)
G )PL′(R̂′(N))|rG0=r′0=0 (34)

where we denote LG ≡ {`G0, `G1, ..., `G(N−1)}, L′ ≡ {`′0, `′1, ..., `′N−1} as the angular momenta associated with the R and R′ vec-

tors, Λ′′ ≡ {L0, L1, ..., LN−1} as the angular momentum associated with the separation vector s, and M′′ = {M0,M1, ...,MN}.
The highlighted coefficients give rise to the coupling kernel in Fig. 1, diagram (5). Notice that the isotropic basis used herein

has N coordinates (instead of N − 1, as in the NPCF definition of Eq. 23), given that we evaluate the function at r0 = 0,

r′0 = 0 with corresponding angular momentum `G0 = 0 and `′0 = 0. Later, we will project the covariance onto the (N − 1)

basis; for clarity we distinguish the two with the superscript (N). Since both PLG(R̂
(N)
G ) and PL′(R̂′(N)) contain a factor

Y00(r̂0) = (4π)−1/2, we find a total prefactor (4π)−1. This cancels with our normalization convention for the rotational aver-

age. The non-canonically ordered isotropic function, PLG(R̂
(N)
G ), can be rewritten using the reordering coefficient defined in

Eq. (19):

PLG(R̂
(N)
G ) =

∑
J

BG
−1

LG,JPJ(R̂(N)). (35)

Finally, we project the covariance onto the isotropic basis P∗Λ(R̂) and P∗Λ′(R̂′), and perform an angular average over r and r′.

Orthogonality forces J → Λ and L′ → Λ′, giving the general form for the NPCF covariance:

CovΛ,Λ′(R,R
′)

= (4π)3N/2

∫
s2ds

V

∑
G

∑
Λ′′,LG

(−1)[−Σ(Λ)−Σ(Λ′)+Σ(Λ′′)]/2 BG
−1

LG,Λ G
LGΛ′Λ′′DΛ′′CΛ′′

0

N−1∏
i=0

f`Gi`
′
iLi

(rGi, r
′
i, s)|rG0=r′0=0, (36)

where Σ(Λ) =
∑
i `i, Σ(Λ′) =

∑
i `
′
i, and Σ(Λ′′) =

∑
i Li.

4.2.2 Fully-coupled Gaussian 4PCF covariance

Henceforth, we will focus on the fully-coupled covariance of the 4PCF. To derive this, we can use the general form given in

Eq. (36); however, as an explicit verification, we construct the 4PCF covariance in a different manner. Noticing that contractions

with the primary vertices lead to basis functions involving zero angular momenta, we split the fully-coupled covariance into

two different cases: those involving a mutual coupling of the primary vertices δ(r0) and δ(r′0 + s) (upper panel of Fig. 2) and

those where the primary vertices couple to the endpoints of the opposite family (lower panel of Fig. 2). In this decomposition,

the fully-coupled covariance can be written

Cov
(fc)

Λ,Λ′(R,R
′) = Cov

(fc),I

Λ,Λ′ (R,R
′) + Cov

(fc),II

Λ,Λ′ (R,R′); (37)

next, we will discuss these two cases.
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Case I Case II

r3’

r0 r0’

r1
r2

r3

s

r2’
r1’

r3’

r0’r0

r1
r2

r3

s

r2’
r1’

Figure 2. Schematic for the fully-coupled 4PCF covariance (i.e. the covariance of the connected 4PCF). We split the covariance into two

cases. In Case I, the primary vertices (red dots, labelled by r0 and r′0) from the primed and unprimed families are mutually coupled and
all the endpoints (labelled by ri and r′i) are coupled. In Case II, the primary vertices each are coupled to an endpoint from the opposite

family.

Case I In this scenario the contraction of the eight density fields leads to the term

II(R,R
′; s) ≡

〈
δ(x + r0)δ(x + s + r′0)

〉
|r0=r′0=0

×
〈
δ(x′ + ri)δ(x

′ + s + r′1)
〉 〈
δ(x′′ + rj)δ(x

′′ + s + r′2)
〉 〈
δ(x′′′ + rk)δ(x′′′ + s + r′3)

〉
=

∑
G

ξ(|s + r′0 − r0|)ξ(|s + r′1 − rG1|)ξ(|s + r′2 − rG2|)ξ(|s + r′3 − rG3|)|r0=r′0=0,

defining the shorthand II in the first line. Here, {i, j, k} denotes a permutation of the set {1, 2, 3}, which does not include the

primary vertices at r0 and r′0. There are 3! = 6 options by which to contract the remaining three density fields from the primed

and unprimed families. In the second line we introduce the notation G to denote a permutation, with {i, j, k} = {G1, G2, G3}.
The six permutations are given explicitly in Table 1. Using the basic elements constructed in Eq. (28), we can express the

product of the four 2PCFs as

II(R,R
′; s) =

∑
G

3∏
i=0

(4π)3/2
∑
`Gi`

′
iL

i−`Gi+`
′
i+Lif`Gi`

′
iLi

(rGi, r
′
i, s)DP

`Gi`
′
iLi
C`Gi`

′
iL

000 P`Gi`
′
iLi

(r̂Gi, r̂
′
i, ŝ)|r0=r′0=0; (38)

here we denote the collection of angular momenta as LG = {0, `G1, `G2, `G3}, L′ = {0, `′1, `′2, `′3} and Λ′′ = {0, L1, L2, L3}. In

principle, these should all involve intermediate angular momenta, however, the angular momentum associated with primary

vertex is set to be zero, thus the intermediate momenta are uniquely defined.

Performing a rotational average of dR, dR′, and dS over r̂Gi, r̂
′
i, and ŝ, leads to the quantity QΛGΛ′Λ′′ and a prefactor (4π)−2

for N = 4. When combined with the coefficients DP
`Gi`

′
iLi

and C`Gi`
′
iLi

000 for i = 0, . . . , 3 (cf. Eq. (14) and Eq. (17)), we obtain

the generalized Gaunt integral. The Gaunt integral for N = 4 involves a product of two 9-j symbols and intermediate angular

momenta given in Eq. (A3). However, one of the 9-j symbol can be reduced due to the presence zero angular momenta, and

the fully determined intermediate angular momenta: `12 = `G1, `′12 = `′1, and `12 = `G1. The Gaunt integral in this case reads

GΛGΛ′Λ′′ = (4π)−2DP
`G1`

′
1L1

3∏
i=0

DP
`Gi`

′
iΛi
C`Gi`

′
iLi

000


0 `G1 `G1

0 `′1 `′1
0 L1 L1




`G1 `G2 `G3

`′1 `′2 `′3
L1 L2 L3


= (4π)−2

3∏
i=0

DP
`Gi`

′
iΛi
C`Gi`

′
iLi

000


`G1 `G2 `G3

`′1 `′2 `′3
L1 L2 L3

 , (39)

where DP
`G1`

′
1L1

in the first line is cancelled by the first 9-j symbol, leaving only one 9-j symbol in the second line. Here
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(       )

(       )

=3

G11’

02’

G2

3’G3

0’

=2

0

0’G1

H1’G2

H2’

G3H3’

Case I

Case II

(       )

(      ) (      ) (      )

(      )

Figure 3. A diagrammatic representation of a fully-coupled covariance matrix with Case I shown in the upper panel and Case II in

the lower panel (as in Fig. 2). Each case can be broken down into two elementary structures: (a) a tripolar structure arising from the
contraction between overdensity fields from the primed and unprimed families, and (b) a coupling kernel given by the rotational average

over r, r′, and s. Moreover, since the covariance involves two primary vertices (one from the primed and the other from the unprimed

family), there are two dashed lines either connected to each other or connected to a solid line. All the three pieces are multiplied, summed
over the angular momenta, and integrated over s. In this figure we use Gi and Hi to denote permutations. For N = 4, the phase

(−1)Σ(Λ)(1−EG)/2 or (−1)Σ(Λ′)(1−EH )/2 can be directly read off from the plot as one goes around clockwise: an even permutation in the
ordering of angular momenta corresponds to a positive Levi-Civita symbol and always gives a positive phase, while an odd permutation

can flip the sign of the phase for parity-odd correlators. Diagrams (2) and (3) in Fig. 1 can be distinguished from each other by reading

the diagram clockwise (i.e. one cannot change one into the other by a 2D rotation in the page). The following steps are used to build
the “snowflake” diagrams on the right hand sides of the equation: (1) take the tripolar structures and multiply them with the coupling

kernel, (2) perform an integral over the radial part s of the separation vectors.

we introduce a Levi-Civita symbol, defined by EG = 1 if {G1, G2, G3} is an even permutation of {1, 2, 3} and −1 otherwise.

The values of EG for each permutation G are given in Table 1. Practically, this leads to a prefactor of (−1)`1+`2+`3 if the

permutation is odd, and unity otherwise. For the even-parity Λ this phase does not play a role, but it is of importance for odd

parity Λ.

Using Eq. (18), we can restore the canonical ordering in R̂G = {r̂G1, r̂G2, r̂G3}. For the 4PCF covariance, the reordering

coefficient BG
−1

LG,J
for (N − 1) = 3 involves only a phase and the product three of Kronecker deltas:

BG
−1

LG,J = (−1)Σ(Λ)(1−EG)/2
3∏
i=1

δK
ji`Gi−1

. (40)

Performing angular averages over R̂ and R̂′ allows us to set J → Λ and pick out the coefficients of the isotropic basis PΛ(R̂)

and PΛ′(R̂
′). Altogether, we arrive at the final form for Case I:

Cov
(fc),I

Λ,Λ′ (R,R
′) = (4π)4

∑
G

(−1)Σ(Λ)(1−EG)/2
∑

L1L2L3

DP
L1L2L3

CL1L2L3
000


`G1 `G2 `G3

`′1 `′2 `′3
L1 L2 L3


×

3∏
i=1

[
(−1)(−`Gi−`′i+Li)/2DP

`i`
′
iLi
C`Gi`

′
iLi

000

∫
s2ds

V
ξ(s)f`Gi`

′
iLi

(rGi, r
′
i, s)

]
. (41)

For illustration, we consider the limit where the correlation function ξ(s) becomes a Dirac delta function, and the power

spectrum consequently becomes unity. This limit enables a direct evaluation of both Eq. (38) and its representation Eq. (41),

providing a useful cross-check of our calculation.

From Eq. (38), we see that ξ(s) → δ
[3]
D (s) implies that s → 0. Consequently, we have that r′1 → rG1, r′2 → rG2, r′3 → rG3.

We now consider the representation in terms of f -integrals. For the first, taking P (k)→ 1 gives

f000(0, 0, s) =

∫
k2dk

2π2
j0(ks) =

1

4πs2
δ

[1]
D (s). (42)

This is simply a representation of the 3D Dirac delta function with spherical symmetry, expected since f000(0, 0, s) = ξ(s).
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G1 G2 G3 EG
1 2 3 1

1 3 2 -1

2 3 1 1
2 1 3 -1

3 1 2 1

3 2 1 -1

Table 1. Explicit forms of the six permutations appearing in the Case I covariance terms. These arise from the various options for con-

tracting density fields in Eq. (38). Each term involves a contraction between rGi and r′i. We additionally give the Levi-Civita permutation
factor EG for each.

G1 G2 G3 H1 H2 H3 EG EH
1 2 3 1 2 3 1 1

1 2 3 1 3 2 1 -1
1 2 3 2 1 3 1 1

1 2 3 2 3 1 1 -1

1 2 3 3 1 2 1 1
1 2 3 3 2 1 1 -1

2 3 1 1 2 3 1 1

2 3 1 1 3 2 1 -1
2 3 1 2 1 3 1 1

2 3 1 2 3 1 1 -1

2 3 1 3 1 2 1 1
2 3 1 3 2 1 1 -1

3 1 2 1 2 3 1 1

3 1 2 1 3 2 1 -1
3 1 2 2 1 3 1 1

3 1 2 2 3 1 1 -1

3 1 2 3 1 2 1 1
3 1 2 3 2 1 1 -1

Table 2. Explicit forms of the 18 permutations appearing in the Case II covariance terms. These arise from the various options for
contracting density fields in Eq. (44), in particular the contraction of r + rG1 with r′0, r with r′0 + r′H1, r0 + rG2 with r′0 + r′H2 and

r0 + rG3 with r′0 + r′H3 (noting the symmetry of the final two terms). We additionally give the permutation factors EG and EH for each.

The other f -integrals can be similarly evaluated in the limit s→ 0 (and again, P (k) = 1). We have

lim
s→0

f`Gi`
′
iL

(rGi, r
′
i, s) = lim

s→0

∫
k2dk

2π2
j`Gi(krGi)j`′i(kr

′
i)jL(ks) =

∫
k2dk

2π2
j`Gi(krGi)j`′i(kr

′
i) =

1

4πrGir′i
δ

[1]
D (rGi − r′i)δK

`Gi`
′
i
. (43)

For the first equality, we have noted that, as s→ 0, only j0 is non-zero, meaning L→ 0 and hence `→ `′ due to the 3-j symbol

in equation (41). We recognize this integral as a Dirac delta function, as before.

As shown in. Fig. 4, this result implies that, in the limit of uniform power spectra, the covariance for two tetrahedra is

non-vanishing only when (1) they have zero separation length and one of their vertices is coincident and (2) their sides are the

same lengths; i.e. when one tetrahedron can be perfectly rotated in 3D to overlap with the other.

Case II Here, we consider sets of contractions that involve couplings between primary vertices and endpoints across the two

families. Each is of the form

III(R,R
′; s) ≡

〈
δ(x + ri)δ(x + s + r′0)

〉 〈
δ(x′ + r0)δ(x′ + s + r′i′)

〉
|r0=r′0=0

×
〈
δ(x′′ + rj)δ(x

′′ + s + r′j′)
〉 〈
δ(x′′′ + rk)δ(x′′′ + s + r′k′)

〉
=

∑
G,H

ξ(s− rG1)ξ(s + r′H1)ξ(s− rG2 + r′H2)ξ(s− rG3 + r′H3), (44)

where {i, j, k} and {i′, j′, k′} are permutations of the set {1, 2, 3}. We write the two sets of the permutations as {i, j, k} =

{G1, G2, G3}, {i′, j′, k′} = {H1, H2, H3}, where one set follows a cyclic permutation, due to the explicit contraction with the

primary vertex. Given the symmetry among the pair ordering, i.e. {j, j′} ↔ {k, k′}, we can always fix the permutation of one

set of endpoints and let the other set explore all permutations. Here we choose G to follow cyclic permutation (giving rise to a

factor of three), with H being a standard permutation including six terms. In total, there are 18 permutations in this scenario.

For clarity, we write them explicitly in Table 2. As before, the primary vertices at r0 and r′0 are not permuted.
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Including the basic covariance elements, we can write:

III(R,R
′; s) =

∑
G,H

(4π)3/2
∑
`G1L1

f`G10`G1(rG1, 0, s)DP
`G10`G1

C`G10`G1
000 P`G10`G1(r̂G1, 0, ŝ)

× (4π)3/2
∑
`′
H1
L1

(−1)`
′
H1f0`′

H1
`′
H1

(0, r′H1, s)DP
0`′

H1
`′
H1
C0`′H1`

′
H1

000 P0`′
H1
`′
H1

(0, r̂′H1, ŝ)

×
3∏
i=2

(4π)3/2
∑

`Gi`
′
Hi
Li

i−`Gi+`
′
Hi+Lif`Gi`

′
Hi
Li

(rGi, r
′
Hi, s)DD`Gi`

′
Hi
Li
C`Gi`

′
HiLi

000 P`Gi`
′
Hi
Li

(r̂Gi, r̂
′
Hi, ŝ), (45)

where the collection of angular momenta is LG = {`G1, 0, `G2, `G3}, L′H = {0, `′H1, `
′
H2, `

′
H3}, and Λ′′ = {`G1, `

′
H1, L2, L3}.

To restore the canonical ordering for R̂G = {r̂G1, r̂G2, r̂G3} and R̂′H = {r̂′H1, r̂
′
H2, r̂

′
H3}, we use again the reordering coeffi-

cients, in the form

BG
−1

LG,J = (−1)Σ(Λ)(1−EG)/2
3∏
i=1

δK
ji`Gi−1

, BH
−1

L′
H
,J′ = (−1)Σ(Λ′)(1−EH )/2

3∏
i=1

δK
j′i`
′
Hi−1

. (46)

Since we restrict G to cyclic permutations, BG
−1

LG,J
is merely a Kronecker delta with a trivial phase. Additionally, the phase

factor Σ(Λ′) does not play a role for even parity Λ, but is of importance for odd-parity Λ.

As before, we proceed by performing a rotational average over dR, dR′, and dS, which leads to a generalized Gaunt integral,

involving two 9-j symbols, and a sum over intermediate angular momenta. As before, the presence of zero angular momenta

simplifies the intermediate coefficients, such that `12 = `G1, `′12 = `′H1, and consequently, `′′12 ≡ L1. We do not need to consider

permutation of the angular momenta L because their allowed range is fixed once the unprimed `i and the primed angular

momenta `′i are explicitly given (due to the triangular inequality). With these considerations, the generalized Gaunt integral

for N = 4 can be simplified as:

GLGL′HΛ′′ = (4π)−2(DP
`G1`

′
H1

0)
2

3∏
i=1

[
DP
`Gi`

′
Hi
Li

]
C`G10`G1

000 C0`′H1`
′
H1

000 C`G2`
′
2L2

000 C`G3`
′
3L3

000

×


`G1 0 `G1

0 `′H1 `′H1

`G1 `′H1 L1




`G1 `G2 `G3

`′H1 `′H2 `′H3

L1 L2 L3


= (4π)−2(−1)`G1+`′H1DP

`G2`
′
H2
L2
DP
`G3`

′
H3
L3
C`G2`

′
2L2

000 C`G3`
′
3L3

000


`G1 `G2 `G3

`′H1 `′H2 `′H3

L1 L2 L3

 , (47)

where the first 9-j symbol yields a factor of
(
DP
`G1`

′
H1

)−2

. The two 3-j symbols involving zero angular momentum get cancelled

with DP
`G1`

′
H1

, giving rise to an overall phase factor.

From the definition of the coefficients we find

DP
Λ′′CΛ′′

0 = (−1)L1
√

(2`G1 + 1)(2`′H1 + 1)(2`′′1 + 1)(2`′′2 + 1)(2`′′3 + 1) × C`G1`
′
H1L1

000 CL1L2L3
000 . (48)

We proceed by combining Eqs. (46-48), inserting these expressions into the definition of the covariance, and projecting out the

coefficients proportional to PΛ(R̂) and PΛ′(R̂
′). Noting that `G1 + `′H1 + L1 must be an even integer (else C`G1`

′
H1L1

000 is zero),

this factor can be dropped from the overall phase. Altogether we arrive at the final form for Case II:

Cov
(fc),II

Λ,Λ′ (R,R′) = (4π)4
∑
G,H

(−1)Σ(Λ′)(1−EH )/2
∑

L1L2L3

DP
L1L2L3

CL1L2L3
000


`G1 `G2 `G3

`′H1 `′H2 `′H3

L1 L2 L3


×

3∏
i=1

[
(−1)(−`Gi−`′Hi+Li)/2DP

`Gi`
′
Hi
Li
C`Gi`

′
HiLi

000

]
×
∫
s2ds

V
f`G10`G1(rG1, 0, s)f0`′

H1
`′
H1

(0, r′H1, s)f`G2`
′
H2
L2

(rG2, r
′
H2, s)f`G3`

′
H3
L3

(rG3, r
′
H3, s). (49)

As before, if we take the limit that the 2PCF is a Dirac delta function, ξ(s− rG1)→ δ
[3]
D (s− rG1) implies the limit s→ rG1.

Recalling P (k) = 1, the f -integral associated with the second correlation function becomes

lim
s→rG1

f0`′
H1
`′
H1

(0, r′H1, s) = lim
s→rG1

∫
k2dk

2π2
j`(krG1)j`(kr

′
H1) =

1

4πrG1r′H1

δ
[1]
D (rG1 − r′H1). (50)

In addition, we have s → rGi − r′Hi for i = 2, 3. In this case, the resulting integral of three spherical Bessel functions can be

simplified using Eq. (3.21) of Mehrem et al. (1991), which we do not duplicate here. However, the former work shows the result

MNRAS 000, 1–31 (2021)
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Figure 4. Covariance calculation for the 4PCF in the limit of zero separation (i.e. where where ξ becomes a Dirac delta function). Left

column: In Case I, this limit implies that the two tetrahedra overlap at their origin with s → 0, r′1 → rG1, r′2 → rG2, and r′3 → rG3.
Right column: the same limit in Case II implies that the two tetrahedra also overlap but with one of the primary vertices sitting on an

endpoint from the other family. Consequently, we find s→ rG1, s→ −r′H1, s→ r′H2 − rG2, and s→ r′H3 − rG3.

to be zero unless the three vectors s, rGi, and r′Hi form a closed triangle, coinciding with our delta function assumption.6 This

result is unsurprising because the Dirac delta function can be written as an integral of a product of spherical Bessel functions.

It is interesting to consider the physical picture (cf. Fig. 4). When the correlation functions approach delta functions in case

II, the two tetrahedra also overlap but with their primary vertices sitting on the endpoint of that side, in particular, that side

of the tetrahedra must have the same length as the separation vector of each family.

Notably, Case I and Case II have similar mathematical structure, with essentially no differences induced by distinguishing

between the primary vertices and the endpoints. Combining both cases allows us to recover the general form (cf. Eq. 36)

including all 4! = 24 permutation terms.7

5 NUMERICAL IMPLEMENTATION AND COMPARISON WITH SIMULATIONS

5.1 Implementation of the connected covariance

The ingredients for the analytic covariance calculation from Eq. (36) comprise the f -integrals, a set of coefficients including

the product of DP
Λ, Wigner 3-j, Wigner 9-j symbols, and the phase. In practice, we compute all these elements using Python.

For efficiency, with the evaluation of the Wigner 3-j and 9-j symbols performed using the Sympy package. We pre-compute

the f -integrals for each radial bin, as well as the coupling coefficients, before assembling the covariance. These are stored in

dictionary format and loaded during the calculation. To compute the f -integral, which involves fine binning in k and s, we use

an analytic form for the bin-averaged spherical Bessel functions (cf. Eq. D2), which is exact and speeds up the implementation.

We use 5, 000 points in k ∈
[
10−4, 5

]
Mpc−1h and 4, 100 points in s ∈

[
10−5, 103

]
h−1 Mpc with both linearly spaced. We

choose these ranges and grid sizes such that on the one hand, the arrays fit in the same memory block managed by NumPy,

and on the other hand, they cover the integration range of interest with sufficiently small grid size. Given that our aim is to

measure the 4PCF up to `max = 4, we compute the f -integrals up to ` = 8 (considering L = ` + `′). To verify the numerical

evaluation and implementation of the bin-averaged f -integral, we compared the resulting forms to an analytic solution for the

integral of a product of three spherical Bessel functions (Fabrikant 2013), modified to accommodate for the bin-averaging. This

is discussed in Appendix D.

6 For a similar discussion for the 3PCF covariance of the limit that ξ becomes a Dirac delta function, see §6.3 in Slepian & Eisenstein
2015a.
7 We additionally note that all the above derivations could be performed in the spherical harmonics basis and would have the same

results. We will not repeat this derivation here.

MNRAS 000, 1–31 (2021)
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Figure 5. Comparison of the analytic and sample covariance matrices for a set of lognormal simulations. The first and second panels show
the comparison of the correlation matrix (defined by Mij = Cij/

√
CiiCjj) for angular momenta {Λ,Λ′} = {000, 000} in real space. Fig. 5a

gives the model prediction for the fully-coupled 4PCF correlation matrix, and the panels above and to the left show the (disconnected)

Gaussian 4PCF model in real space. The horizontal and vertical axes indicate 120 radial bins, ordered so that r1 < r2 < r3. This gives rise
to the block structure in the matrix and the saw-tooth shape of the correlation functions. Fig. 5b shows the correlation matrix estimated

from 1, 000 lognormal mocks, with the extended panels showing the measured full 4PCF from the lognormal mocks in real space. Fig. 5c

shows a comparison of the diagonal elements of the two covariance matrices; we note the values (vertical axis) are logarithmically scaled.

5.2 Comparison with lognormal simulations

We now compare theoretical covariance to those extracted from simulations. First, we use a set of 1, 000 lognormal mocks

at redshift z = 2 with a number density of ∼ 1.5 × 10−4 [h−1Mpc]−3 and volume V = 3.9 [Gpc/h]3.8 The lognormal mocks

are generated using Nbodykit (Hand et al. 2018), where the overdensity fields are evolved according to the Zel’dovich ap-

proximation (zeroth-order Lagrangian perturbation theory) (Schneider & Bartelmann 1995). We prepare mocks in both real-

and redshift space in order to investigate the impact of RSD on the covariance. The input linear power spectrum is generated

with the cosmological parameters
{

Ωm, Ωbh
2, h, ns, σ8

}
= {0.31, 0.022, 0.676, 0.97, 0.8} with a linear bias b1 = 1.8. The

4PCFs are measured using the encore code 9 at 10 radial bins centered at rbin = {27, 41, ..., 153}h−1Mpc with a bin width

of 14h−1Mpc. In this setup, these lognormal mocks have a low level of non-Gaussianity due to the high redshift and have a

relatively high shot noise.

The sample covariance estimated from mock simulations is defined as

Cmock =
1

Nmock − 1

Nmock∑
i=1

(
ζ(i) − ζ̄

)(
ζ(i) − ζ̄

)T

, (51)

where the data vector ζ(i) (with dimension Nbins) is the 4PCF measured from the i-th mock simulation, and ζ̄ is the mean

over all Nmock realizations. Since the mean is estimated from the mocks themselves, the definition includes the prefactor

(Nmock − 1)−1.

When computing the f -integrals in real space, we use the same input power spectrum that was used to generate the lognormal

mocks. In redshift space the power spectrum is additionally multiplied by the isotropic Kaiser factor (b2 + 2fb/3 + f2/5)/b2,

with f being the logarithmic derivative with respect to scale factor of the linear growth rate (Kaiser 1987). In both cases, we

damp the power spectra by exp
(
−(k/k0)2

)
to avoid numerical issues, setting k0 = 1 [Mpc−1 h]. We find that the shot noise

term is sensitive to the precise form of exponential damping function. For the lognormal mocks, which feature a large shot

noise, we observe better agreement between theory and simulations when the shot noise damping is not included.

Fig. 5 shows a comparison between the theoretical and sample covariance from the lognormal mocks for angular momenta

{Λ,Λ′} = {000, 000} in real space. The 2D plot in the first panel shows the model prediction for the fully-coupled 4PCF

correlation matrix M, where the correlation matrix is the covariance matrix C normalized by its diagonal terms, i.e. Mij =

Cij/
√

CiiCjj . We arrange the radial bins in the following manner: we start by fixing bins in r1 and r2 and loop over r3, then

move to the next radial bin in r2 at the same fixed r1 and again loop over r3, before move to the next bin in r1. This is repeated

until all possible radial binning combinations are explored; this specific way of arranging the bins is denoted as the net bin

8 While it may seem more prudent to construct simulations that match our assumption of Gaussianity, this is non-trivial, since we

require a discrete density field. In principle, one could use a set of discrete particles which are assigned the Gaussian random field value
as weights. However, this approach does not reproduces covariance correctly, since it puts multiple galaxies at the same position and

effectively enhances the shot noise.
9 https://github.com/oliverphilcox/encore
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Figure 6. Left panel: half-inverse test comparing the lognormal simulations and the analytic covariance, both of which are shown
in Fig. 5. If the covariance matrices agree, both the mean and the off-diagonal elements should be noisy fluctuations around zero. For

clarity, we plot only the lower triangle, and give the standard deviation for the off-diagonal elements, σnon−diag, for the diagonal elements,

σdiag, and for all elements combined, σall. Right panel: comparison between the eigenvalues of the analytic covariance (solid curve) and
lognormal mock covariance (dotted curve).

index. During this process we force the radial bin arrangement to be r1 < r2 < r3. In total, we have C3
10 = 10!/(7! 3!) = 120

radial bins. The radial bin arrangement also leads to the block structure in the covariance matrix.

The second panel of Fig. 5 shows the measurement from 1000 lognormal mocks in real space with the inset showing the

measurements of the full 4PCF from Gaussian mocks. Comparing the first and the second panel, we can see that the analytic

covariance is able to capture the off-diagonal features. The covariance for {Λ,Λ′} = {000, 000} is mostly positive as a result

of the auto-covariance for the angular momenta themselves. The third panel shows a comparison of the diagonal elements of

these two matrices in log-scale. The extended panels at the top and right of the first panel in Fig. 5a show the Gaussian 4PCF

model in real space, where the (disconnected) Gaussian 4PCF consists of a product of two 2PCF (see appendix A in Philcox

et al. (2021b) for a derivation ). Since the 2PCF is approximately given by a declining power law, combination with our radial

bin arrangement leads to the saw-tooth shape of the 4PCF. The extended panels at the top and right of the second panel

of Fig. 5b are the measured full 4PCF (includes both connected and disconnected term) in real space. They both assist the

visualization of the block structure of the correlation matrices.

In order to quantify the similarity between the Gaussian model prediction and the mock measurements, we perform a test,

which we label as ‘the half-inverse test’. This considers the matrix

S ≡ C
−1/2
modelCmockC

−1/2
model − 1, (52)

where 1 is the identity matrix. If the two covariances were identical S which would vanish (Deadman et al. 2013). Fig. 6

shows the half-inverse test in the left panel, with the eigenvalues of the 4PCF covariance inferred from the model (solid blue

curve) and the mocks (dotted black curve) shown in the right panel. If the analytic and sample covariance matrices agree, the

half-inverse matrix should follow a Wishart distribution (Wishart 1928; Anderson 2009) and we expect the standard deviation

of half-inverse matrix elements to scale as 1/
√
Nmock∼0.03, where Nmock = 1, 000 is the number of mocks. The standard

deviation of the diagonal elements should be two times larger than that of the off-diagonal ones, since the expression for the

variance of a Wishart distribution contains a Kronecker delta for matrix elements i = j.

For the lognormal mocks, the mean of the half-inverse matrix elements is 〈S〉 = 2.3×10−3, much smaller than their standard

deviation. However, we observe a residual in the diagonal terms; indeed, the mean of these is 0.180. If we decompose the

theoretical covariance into its diagonal eigenvalue matrix D and a unitary matrix V of eigenvectors, we can write C
−1/2
model =

VD−1/2V−1. If the eigenbasis of the analytic covariance is close enough to the mock-estimated one, the half-inverse test reduces

to the ratio between the eigenvalues of the two covariances. Here, we see that the eigenvalues of the model covariance are slightly

lower than those of the mock covariance. A possible explanation for this residual is that the lognormal mocks have intrinsically

high shot noise, which can generate non-Gaussian (but Poissonian) terms in the covariance that require modeling beyond

the Gaussian approximation. Another possibility arises from the choice of input power spectrum. Here, we used the power

spectrum which generated the lognormal mock, instead of that measured from the lognormal mocks. Due to the lognormal

transformation of the density fields, and post Zel’dovich evolution, the two spectra could differ slightly.

Fig. 7 is similar to Fig. 5, but shows a comparison between the two sets of covariances in redshift space. Compared to

the real space correlation matrix, we see that RSD slightly enhances the off-diagonal structure for {Λ,Λ′} = {000, 000}. The

agreement in the diagonal elements and the half-inverse test are of the similar level compared to the real space test, with

MNRAS 000, 1–31 (2021)
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Figure 7. As Fig. 5, but comparing the analytic and lognormal covariances in redshift space. Fig. 7 gives the results of the half-inverse
test in the same format as Fig. 6a. The model also works well in redshift space in that it shows comparable coupling structure for the

correlation matrices and the diagonal elements of the covariances. However, we do observe a residual in the diagonal elements of the

matrix for the half-inverse test.

similar diagonal residual found in the half-inverse test as well. Although our numerical implementation of the 4PCF covariance

ignores higher order angular momentum contribution arising from RSD, 10 this comparison shows that the RSD effect can be

largely accounted for by simply modeling the covariance using an input power spectrum equal to the RSD monopole. Finally,

we note that the RSD doubles the amplitude of the Gaussian 4PCF model and the full 4PCF measured from the mocks in

the extended panels of Fig. 7a and Fig. 7b. These quantities are dominated by the two-point statistics and the increase in the

amplitude is approximately given by the Kaiser factor to the fourth power.

5.3 Comparison with Quijote simulations

To further understand the non-Gaussianity arising from gravitational evolution and to test the validity of our Gaussian

assumption, we compare the theoretical covariance formalism to the sample covariance measured from the Quijote halo

catalogues.11 Each of the Quijote simulations has a box size of V = 1.0 [h−1 Gpc]3, a fiducial cosmology {Ωm, Ωb, h, ns, σ8} =

{0.3175, 0.049, 0.6711, 0.9624, 0.834}, zero neutrino mass, and is at redshift z = 0.5 (Villaescusa-Navarro et al. 2020).

We test our algorithm on 100 Quijote halo catalogues created from 1, 0243 cold dark matter (CDM) particles. Halos are

identified using a particle number cut Nparticle > 150 per halo, which corresponds to Mcut = 1.2 × 1013 [h−1 M�]. This gives

two times lower shot noise compared to the lognormal mocks. As before, the catalogues are prepared both in real and redshift

space, and we use the same radial binning. The f -integral is constructed from the power spectrum monopole measured from

the Quijote halo catalogues for both real and redshift space. For this set of simulations we applied exponential damping to

both the power spectrum and shot noise.

Fig. 8 shows a comparison for {Λ,Λ′} = {000, 000} in real space. Again, we see a positive matrix, but this time with an

enhanced off-diagonal feature, due to the lower shot noise (approximately less by a factor of two than that of the lognormal

mocks). Fig. 9 gives a comparison for the cross order {Λ,Λ′} = {000, 101} in real space. Again, the analytic correlation matrix

is able to capture the features in the off-diagonal elements seen in the mocks. The overall negative structure in the correlation

matrix is due to the anti-correlation between the 4PCF ζ000 and ζ101. Since we correlate two different angular distributions we

expect the structure of the covariance to be asymmetric. The right panel shows the diagonal elements of the cross covariance for

the theoretical model and the Quijote simulation; here, the model covariance slightly underpredicts the covariance diagonal

at the small scales seen at the peaks of the saw-tooth shape, but overall the ratio between the sample and mock covariance

oscillates around unity with a mean
〈
Cmock
ii /Cmodel

ii

〉
∼ 0.96.

To quantify the similarity between the model predictions and simulations, we again utilize the half-inverse test. The left panel

in Fig. 10 shows the results for {Λ,Λ′} = {000, 000}, while the right panel shows {Λ,Λ′} = {000, 101}, both of which are in real

space. In order to invert the cross covariance, we build a full matrix which includes the auto-covariance {Λ,Λ′} = {000, 000}
and {Λ,Λ′} = {101, 101}, which doubles the size of the matrix. In this case, we do not observe any residuals in the diagonal of

the matrix. Given 100 halo catalogues, the standard deviation is expected to be of order 1/
√

100 = 0.1, matching that found

from the data.

In addition we also perform a comparison for {Λ,Λ′} = {000, 101} in redshift space, shown in Fig. 11. Compared to the

real space, RSD enhances the diagonals by a factor of ∼ 2.3 for this cross covariance term, but its overall shape is almost

unaffected. From the right panel, we see that the diagonal elements of the theoretical covariance slightly under-predict those

10 See Appendix E for a more rigorous treatment of this effect
11 https://quijote-simulations.readthedocs.io/en/latest/halos.html
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Figure 8. As Fig. 5, but for Quijote halo catalogue in real space, using 1,000 simulations. For the simulations with non-negligible
non-Gaussianity, the model can adequately predict various features of the correlation matrix, with a good match for the diagonal elements

of the covariance as well.
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Figure 9. As Fig. 5, but for Quijote halo catalogue in real space. Here, we plot the cross-covariance with angular momenta {Λ,Λ′} =
{000, 101}.
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Figure 10. Half-inverse test for the analytic covariance and sample covariance of the Quijote halo catalogue in real space, in the format of
Fig. 6a. Left panel: angular momenta {Λ,Λ′} = {000, 000}. Right panel: cross-covariance with angular momenta {Λ,Λ′} = {000, 101}.
For comparison we show the full matrix with {Λ,Λ′} = {000, 000} + {000, 101} + {101, 000} + {101, 101}. The standard deviations for
respectively the off-diagonal elements, σnon−diag, the diagonal elements, σdiag, and all the elements, σall, are given in the insets.
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Figure 11. As Fig. 7, but for Quijote halo catalogue with angular momenta {Λ,Λ′} = {000, 101} including RSD. The analytic covariance
well describes the structure of the sample covariance in this scenario.

estimated from Quijote simulation at small scales, but the mean of the ratio is close to unity, with
〈
Cmock
ii /Cmodel

ii

〉
∼ 1.04.

This is also demonstrated in panel (d), showing no residual from the half-inverse test. In principle, we could extend our model

to include RSD effects as described in Appendix E; we leave this effort to future for work.

5.4 Comparison with the MultiDark-Patchy mocks

Finally, to test the impact of the non-uniform survey geometry, we compare our Gaussian covariance model to a set of

MultiDark-Patchy mocks (Kitaura et al. 2016; Rodŕıguez-Torres et al. 2016) produced for the Sloan Digital Sky Survey

(SDSS) Baryon Oscillation Spectroscopic Survey (BOSS) Data Release (DR) 12 (Dawson et al. 2013; Alam et al. 2015). In this

test, we focus on the set of Patchy mocks that match the galaxy clustering of the BOSS Constant Stellar Mass (CMASS)

Luminous Red Galaxy (LRG) sample at an effective redshift zeff = 0.57 in the North Galactic Cap (NGC). The mock catalogues

were constructed using the Planck cosmology {Ωm, Ωb, h, ns, σ8} = {0.307115, 0.048206, 0.6777, 0.9611, 0.8288}.
For simulations in a cubic box, the volume, V , entering the theoretical covariance is simply given by the box size, and the

number density is the ratio between the number of particles (galaxies or halos) and the volume. For a sample with survey

geometry and a radial selection function, we generalize the volume and number density estimator of Wadekar et al. (2020);

Putter et al. (2012):

Veff =

[ ∫
d3r n4(r)w4(r)

]2∫
d3r n8(r)w8(r)

, n̄eff =

∫
d3r n8(r)w8(r)∫
d3r n7(r)w8(r)

, (53)

where n(r) is the number density of the sample as a function of redshift and w(r) is the galaxy weight (including both systematic

and FKP weights (Feldman et al. 1994)). To calculate this, we apply the default weights provided in the Patchy mocks. These

are given by12

wtot = wfkp · wveto · wfiber collision, (54)

where the FKP weight is wfkp =
(
1 + 104(h−1 Mpc)3 · n(r)

)−1
, wveto is a binary indicating whether the object is excluded

by veto mask or not, and wfiber collision is a fiber collision weight. For Patchy NGC, we obtain n̄ = 3.2 × 10−4 (h−1 Mpc)−3

and V −1
eff = 1.9 (h−1 Gpc)3. We caution however that this is only an approximation and does not fully account for the survey

geometry, even for the 2PCF covariance (Wadekar et al. 2020).

The input power spectrum is measured from the Patchy mocks then fitted using the Effective Field Theory of Large Scale

Structure (EFT; Carrasco et al. 2012; Baumann et al. 2012) including one-loop bias, RSD, counterterms and infrared resum-

mation (Senatore & Zaldarriaga 2014; Senatore 2015; Ivanov et al. 2020), implemented using the class-pt code (Chudaykin

et al. 2020). The 4PCF is measured from 999 Patchy mocks with random catalogues 50× larger than data, and the same

radial binning scheme as before. As above, we apply an exponential damping to the power spectrum and shot noise.

In order to mitigate the the window function effect, we further consider an optimization of the effective number density and

survey volume. Our motivation is that increasing the number density is an approximate way to incorporate non-Gaussianity

and effective volume is a leading order correction of the survey geometry. To compute this, we create a 2D grid of parameters,

scanning over both the number density and the effective volume. We maximize a log-likelihood based on the Kullback-Leibler

(KL) divergence using the expected Wishart distribution for mock covariances (Kullback & Leibler 1951) following O’Connell

et al. (2016); Philcox et al. (2019). This has the advantage that it only requires the analytic covariance to be inverted. The

12 http://www.skiesanduniverses.org/page/page-3/page-15/page-9/
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Figure 12. Log-likelihood for the parameters n̄ and Veff obtained from fitting the analytic covariance to the sample covariance of 1,000
Patchy mocks (including redshift-space effects and non-uniform survey geometry). The likelihood is constructed using the KL-divergence,

as in Eq. 55.

log-likelihood involves both the Gaussian covariance and the sample covariance measured from Patchy mocks:

− logL1(n̄, Veff) =
Nmock

2

[
Tr
(
C−1

model(n̄, Veff)Cmocks

)
− log detC−1

model(n̄, Veff)
]

+ · · · (55)

As a test, we optimized the likelihood for the Patchy NGC region using {Λ,Λ′} = {000, 000}. The 2D-grid was constructed

using n̄ ∈ [0.2, 4.4] × 10−4 (h−1 Mpc)−3 with an interval of 2 × 10−5 (h−1 Mpc)−3 and V −1
eff ∈ [0.2, 5] (h−1 Gpc)3 in 40 volume

bins. Fig. 12 shows a 2D interpolation of the log-likelihood. The degeneracy direction shows an inverse scaling relation between

the number density and volume; this is as expected since lowering the number density increases the shot noise, which increases

the overall amplitude of the covariance, but can be suppressed by a higher volume. For the Patchy NGC region,13 the optimized

number density and volume are respectively given by n̄ = 2.4× 10−4 (h−1 Mpc)−3 and V −1
eff = 1.57 (h−1 Gpc)3.

The comparison of the correlation matrix for {Λ,Λ′} = {000, 000} is shown in Fig. 13. The left and middle panels show

the optimized correlation matrix from the model prediction and the covariance obtained from the Patchy NGC mocks,

respectively. The right panel shows a comparison for the diagonal elements of the analytic covariance model with and without

optimization (solid red curve and dotted black curve, respectively), and the Patchy mocks (dashed grey curve). Fig. 14

shows the half-inverse test in the left panel, with the right panel giving the covariance matrix eigenvalues predicted by the

analytic model before optimization (dotted black curve), after optimization (solid red curve), and estimated from the Patchy

mocks (grey curve). Before applying the optimization, there is a clear mismatch between the theoretical prediction and the

mock measurement, both in terms of its diagonal elements and the eigenvalues. The mean of the half-inverse matrix gives

〈S〉 = −9× 10−4, while the mean of the diagonal is −0.012. The tests using the Quijote mocks indicate no obvious deviations

from RSD not nonlinearity, thus we expect the offset to arise due to the survey geometry. Fitting for the number density and

effective volume, we find that one can moderately compensate for this effect.

To this end, we also perform a parameter fit including a total of 13 auto-covariance terms in which Λ = Λ′ (using those

values of Λ which include at least one zero). We find the optimized number density and volume n̄ = 2.0 × 10−4 (h−1 Mpc)−3

and V −1
eff = 1.57 (h−1 Gpc)3. Fig. 15 shows a comparison of the correlation matrices estimated from the Patchy NGC mocks

and model prediction; for visibility we show 11 terms. Despite an overall good agreement between the mock correlation matrix

and the model one, we find that different angular momentum orders are affected by the non-Gaussianity and survey geometry

in different ways. As such, the number density and effective volume optimized for a specific angular momentum combination is

not necessarily the optimal combination for the others. This indicates a fundamental limitation of the fitting approximation.

6 SUMMARY

Summary statistics, such as the N -point correlation functions, can effectively capture cosmological information from the

spatial distribution of LSS. Throughout the past decades, significant work has been devoted to developing pipelines for the

analysis of two-point statistics, focused primarily on the extraction of the BAO position and the growth parameter, fσ8.

The next generation of surveys, e.g. the Dark Energy Spectroscopic Instrument (DESI Collaboration et al. 2016), the Euclid

satellite (Laureijs et al. 2011; Amendola et al. 2018), and the Rubin Observatory (LSST Science Collaboration et al. 2009) will

map out much larger survey volumes with increased statistical power, facilitating analysis beyond the two-point function.

Higher-order statistics allow us to gain new insight into gravity-induced nonlinearities and neutrino masses, particularly in

13 We also performed the same fitting procedure for the SGC, obtaining n̄ = 2.5× 10−4 (h−1 Mpc)−3 and V −1
eff = 0.49 (h−1 Gpc)3.
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Figure 13. As Fig. 5 but for 999 Patchy mocks. These include both RSD and survey geometry. The third panel shows a comparison of
the diagonal elements for the Patchy covariance (grey dashed curve), analytic covariance with and without optimization (red solid curve

and black dotted curve, respectively).
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Figure 14. Left panel: half-inverse test for the model applied to the Patchy NGC mocks for angular momenta {Λ,Λ′} = {000, 000},
as in Fig. 6a. Right panel: comparison of the eigenvalues for the theoretical covariance before optimization (dotted black curve), after

optimization (solid red curve), and from the Patchy mocks (dashed grey curve)
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Figure 15. Comparison of correlation matrices estimated from Patchy NGC mocks (left) and model (right). Unlike previous plots, we
include 11 different choices of Λ, with each submatrix being the correlation between angular momentum sets {Λ,Λ′} = {`1 `2 `3, `′1 `′2 `′3}.
The shot noise and volume entering the analytic covariance are optimized using 13 choices of Λ (those involving `i = 0, up to `max = 4).

Overall, we find reasonably good agreement between the Gaussian model and the sample covariance. We see some differences in the
off-diagonal terms, and these differences increase with rising angular momenta. The diagonal terms are relatively consistent with each
other, mostly as a result of the parameter fitting.
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combination with two-point statistics. Further, they can be used to study scalar parity violation, which cannot be probed at all

for NPCFs with N ≤ 3. A particular challenge is that higher-order statistics usually imply high dimensionality; if one purses

a simulation-based covariance estimation, a large number of mocks are required, which is computationally demanding.

In this paper we discuss an analytic approach to computing the NPCF covariance. In particular, we decompose the NPCF

into the isotropic basis functions described in Cahn & Slepian (2020), and compute the covariance in this basis. Assuming

the density field to be statistically isotropic (i.e. ignoring RSD), this is a natural basis to use, since it has full 3D rotational

symmetry

When constructing higher-order NPCFs, it is important to subtract any contributions which also appear in the lower-order

statistics, i.e. to use only the connected NPCF. As we have shown, the full NPCF covariance matrix can be written as a

sum of two pieces, denoted as fully-coupled and partially-coupled, with only the former contributing to the covariances of

connected NPCFs. We present a general formalism for the NPCF covariance under the assumption of Gaussianity, which we

can further break down into basic elements as contractions between two overdensity fields. Each basic element consists of an

f -integral (Eq. 29) with coefficients involving products of angular momenta and 3-j symbols multiplied by a phase. We show

that the general NPCF covariance can be built directly out of these basic elements by invoking properties of the isotropic

basis functions. In the N = 4 case, we explicitly derive the analytic form for the 4PCF covariance, introducing a diagrammatic

representation to assist with understanding of the coupling structure. We also numerically implement the analytic formalism

for this case.

We compare our theoretical model, which assumes Gaussianity, isotropy, and a uniform survey geometry, to simulations

with various levels of realism, including the lognormal mocks, which have high redshift and high shot noise, but suppressed

gravitational non-linearity, and the Quijote simulations, which have low redshift and low shot noise, and include non-linear

effects. One of the most interesting conclusions from these numerical tests is that, even though our näıve Gaussian model

takes neither RSD nor gravitational non-Gaussianities into account, it produces a reasonably accurate estimate of the Quijote

covariances in real and redshift space. However, despite a good overall match for the lognormal mocks, we do observe spurious

residuals via the half-inverse test. In particular, we find a residual in the diagonal elements, which is likely due to beyond-

Gaussian correlators induced by shot noise effects. Finally, we also test our model using the Patchy mocks. These have a

realistic survey geometry, matching that of the BOSS DR12 CMASS sample. In this case, we found the survey geometry to

have a major impact on our theoretical prediction. Since our analytic formalism does not include full treatment of the window

function, we account for the geometry by fitting for the number density and the effective volume by maximizing a likelihood

based on the KL-divergence. This is shown to roughly compensate for the window function. Our companion paper (Philcox

et al. 2021c) shows that the theoretical covariance can be used as an important tool to facilitate data compression (Scoccimarro

2000; Taylor et al. 2013), allowing a detection of gravitationally-induced non-Gaussianity from the BOSS 4PCF.

This work represents an important step along the path to constraining cosmology using. higher-point functions. A number

of extensions are possible, in particular, including modeling of window function effects, numerical implementation of the

covariances including RSD, extension to higher-order statistics such as the 5PCF and 6PCF, and a more thorough study of

the performance of the Gaussian model in the limit of high shot noise.
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APPENDIX A: EXPLICIT RESULTS FOR THE GENERALIZED GAUNT INTEGRALS WITH N = 2, 3

AND 4

In §2.2 we discussed the generalized Gaunt integral; here, we present explicit results for n = 2, 3 and 4, following (Cahn &

Slepian 2020). This uses the definition of Eq. (17), which includes the quantity QΛΛ′Λ′′ . For n = 2, given the definition of Q
in Eq. (15), we have Λ→ (`, `), Λ′ → (`′, `′), and Λ′′ → (`′′, `′′). This leads to

GΛΛ′Λ′′ = (4π)−1
√

(2`+ 1)(2`′ + 1)(2`′′ + 1)

(
` `′ `′′

0 0 0

)2

. (A1)
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This is a rescaling of the well-known result (Adams 1878) for the coefficient when a product of two Legendre polynomials is

expanded into a sum over single Legendre polynomials.

For n = 3 the generalized Gaunt integral is given by

GΛΛ′Λ′′ = (4π)−3/2QΛΛ′Λ′′
3∏
i=1

(
`i `′i `′′i
0 0 0

)√
(2`i + 1)(2`′i + 1)(2`′′i + 1)

= (4π)−3/2


`1 `′1 `′′1
`2 `′2 `′′2
`3 `′3 `′′3


3∏
i=1

(
`i `′i `′′i
0 0 0

)√
(2`i + 1)(2`′i + 1)(2`′′i + 1), (A2)

where we have used the definition of C`i`
′
i`
′′
i

000 (cf. Eq. 4) and DP
`i`
′
i`
′′
i

(cf. Eq. 12), and the quantity QΛΛ′Λ′′ is given by a 9-j

symbol, after summing over mi, m
′
i, and m′′i (for i = 1, 2, 3).

For n = 4, expanding the QΛΛ′Λ′′ quantity leads to 10 Wigner 3-j symbols, and consequently the product of two 9-j symbols.

The detailed derivation of this is given in Cahn & Slepian (2020) (section 6.4 and equation 71), leading to the final result:

GΛΛ′Λ′′ = (4π)−2
√

(2`12 + 1)(2`′12 + 1)(2`′′12 + 1)

×
4∏
i=1

√
(2`i + 1)(2`′i + 1)(2`′′i + 1)

(
`i `′i `′′i
0 0 0

)

×


`1 `2 `12

`′1 `′2 `′12

`′′1 `′′2 `′′12




`12 `3 `4
`′12 `′3 `′4
`′′12 `′′3 `′′4

 . (A3)

APPENDIX B: DERIVATION OF THE BASIC COVARIANCE ELEMENTS

B1 Real Space

Here we derive the basic covariance elements presented in §4.1. Without loss of generality we consider only the contraction

between a single pair of endpoints, neglecting the subindices and denoting the positions as r and r′. The coupling between two

endpoints across the unprimed and primed families can be expanded as:

〈δ(x + r)δ(x + s + r′)〉 = ξ(|r′ + s− r|) =

∫
k

eik·(r
′+s−r)P (k)

= (4π)3
∑
`m

∑
`′m′

∑
LM

i`
′+L−`

∫
k

P (k)

× j`′(kr′)jL(ks)j`(kr)Y
∗
`′m′(k̂)Y`′m′(r̂

′)YLM (k̂)Y ∗LM (ŝ)Y ∗`m(k̂)Y`m(r̂), (B1)

where, as stated in §3, we have assumed isotropy (i.e. that P (k) = P (k)) in the first equality. The second equality arises from

applying the plane wave expansion three times. Performing the angular integral over k̂ gives the Gaunt integral:

Gmm
′M

``′L ≡
∫
dΩkY

∗
`m(k̂)Y ∗`′m′(k̂)Y ∗LM (k̂) =

√
(2`+ 1)(2`′ + 1)(2L+ 1)

4π

(
` `′ L

0 0 0

)(
` `′ L

m m′ M

)
= (4π)−1/2DP

``′LC``
′L

000 C``
′L

mm′M . (B2)

Inserting the definition of the f -integral, Eq. (B1) becomes

〈δ(x + r)δ(x + s + r′)〉 = (4π)3
∑
``′L

∑
mm′M

i−`+`
′+L(4π)−1f``′L(r, r′, s)(4π)−1/2DP

``′LC``
′L

000 C``
′L

mm′M

×Y`m(r̂)Y`′m′(r̂
′)YLM (ŝ)

= (4π)3/2
∑
``′L

i−`+`
′+Lf``′L(r, r′, s) DP

``′L C``
′L

000 P``′L(r̂, r̂′, ŝ). (B3)

Finally, we give expressions for the contraction of two overdensity fields from the same family. These self-coupling terms

do not occur in the calculation of the covariance of the connected NPCF, but do appear if one considers a covariance which

includes the disconnected piece (as in Appendix C). In this case, ri and rj denote two endpoints from the same family. As

before, we apply the plane wave expansion to the exponentials in Eq. (26), then integrate over k̂ to find:

〈δ(x + ri)δ(x + rj)〉 = ξ(|ri − rj |) =

∫
k2dk

2π2
P (k)

∑
`

j`(kri)j`(krj)(2`+ 1)L`(r̂i · r̂j)

= (4π)3/2
∑
`

(−1)`
√

2`+ 1 f``0(ri, rj , 0) P``0(r̂i, r̂j , 0). (B4)
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In the second line, we have written our result in terms of the N = 3 isotropic functions to maintain a consistent structure for

all the basic elements. If one of the two overdensity fields is a primary, the expectation value is simply a 2PCF:

〈δ(x + r0)δ(x + ri)〉 |r0→0 = ξ(|ri − r0|)|r0→0 = (4π)3/2f000(r, 0, 0)P000(r̂, 0, 0). (B5)

B2 Redshift Space

Below, we derive the basic elements in redshift space, as a preparation for the fully-coupled covariance with RSD discussed in

Appendix E. We first expand the power spectrum in terms of Legendre polynomials:

P (k) =
∑
λ

Pλ(k)Lλ(k̂ · n̂) =
∑
λµ

4π

2λ+ 1
Pλ(k)Y ∗λµ(k̂)Yλµ(n̂) (B6)

where Pλ(k) is the λ-th Legendre multipole of the power spectrum (where λ is even) and n̂ is the line of sight.

The expectation value of the product of two overdensity fields now reads〈
δ(x + r)δ(x + r′ + s)

〉
=

∫
k

eik·(r
′+s−r)P (k)

=

∫
k

eik·(r
′+s−r)

∑
λµ

4π

2λ+ 1
Pλ(k)Y ∗λµ(k̂)Yλµ(n̂)

=

∫
dk̂

4π

∫
k2dk

2π2
(4π)3

∑
``′L

∑
mm′M

i`
′+L−`j`′(kr

′)j`′′(ks)j`(kr)Y
∗
`′m′(k̂)Y ∗LM (k̂)Y ∗`m(k̂)

×Y`′m′(r̂′)YLM (ŝ)Y`m(r̂)
∑
λµ

4π

2λ+ 1
Pλ(k)Y ∗λµ(k̂)Yλµ(n̂). (B7)

We can perform an angular integral over k̂:∫
dk̂ Y ∗`m(k̂)Y ∗`′m′(k̂)Y ∗LM (k̂)Y ∗λµ(k̂) =

∑
L̄

(−1)M̄G``
′L̄

mm′M̄G
L̄Lλ
−M̄Mµ

= (4π)−1
∑
L̄

(−1)M̄DP
``′Lλ(2L̄+ 1)C``

′L̄
mm′M̄C

L̄Lλ
−M̄MµC

``′L̄
000 CL̄Lλ000

= (4π)−1DP
``′LλC``

′Lλ
mm′m′′µC``

′Lλ
0000 ; (B8)

because of the additional l.o.s. direction n̂, we need to consider isotropic functions with four arguments:

P``′Lλ(r̂, r̂′, ŝ, n̂) =
∑

mm′Mµ

C``
′Lλ

mm′MµY`m(r̂)Y`′m′(r̂
′)YLM (ŝ)Yλµ(n̂). (B9)

To incorporate the power spectrum multipole decomposition, we extend the definition of the f -integral as follows:

fλ`1`2`3(r1, r2, r3) =

∫
k2dk

2π2
Pλ(k)j`1(kr1)j`2(kr2)j`3(kr3). (B10)

The redshift space basic covariance element can thus be written:〈
δ(x + r)δ(x + r′ + s)

〉
= (4π)2

∑
``′Lλ

i−`+`
′+L 1

2λ+ 1
DP
``′LλC``

′Lλ
0000 fλ``′L(r, r′, s)P``′Lλ(r̂, r̂′, ŝ, n̂). (B11)

APPENDIX C: PARTIALLY-COUPLED 4PCF COVARIANCE

C1 Fully-Coupled and Partially-Coupled Covariances

In §4.2 we presented the fully-coupled covariance, which is the part of relevance for the connected NPCF estimator. As before,

the connected estimator is obtained by subtracting the disconnected piece from full estimator as in Eq. (21). This feature is

now included in the encore code, and is discussed at length in our companion paper Philcox et al. (2021b). For completeness

however, we will discuss in this section how one may estimate the partially-coupled covariance.

We first sketch our reasoning for ignoring the partially-coupled terms in the connected 4PCF covariance. Following the

definition of our estimator, the fully-coupled covariance can be written as

Covfc(R,R′) ≡ Cov(ζ̂c, ζ̂c)

= Cov(ζ̂, ζ̂)− Cov(ζ̂dc, ζ̂)− Cov(ζ̂, ζ̂dc) + Cov(ζ̂dc, ζ̂dc), (C1)

where the the first term in the second equality, the covariance of the full estimator, is simply the covariance obtained from

all combinations of eight overdensity fields. We use 〈δδδδ〉 to denote the full estimator; given the symmetry, any one of the

overdensity fields can be thought of as a primary vertex, with the position of its neighbours fixed relative to the primary. As
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before, the covariance of the full estimator consists of both fully- and partially-coupled parts. Below, we give an example of a

contraction that leads to a partially-coupled term (here with angle brackets representing spatial integrals rather than statistical

expectations):

Cov(ζ̂, ζ̂)→ 〈δ δ δ δ〉〈δ′δ′δ′δ′〉.
The disconnected estimator is represented by 〈δδ〉 〈δδ〉. Again, we know the relative position between overdensity fields appears

within a 〈· · ·〉 integral, but the relative position between two 〈· · ·〉 is free. This leads us to consider only the self-coupling

contractions within an integral such as 〈δ δ〉〈δ δ〉; this contraction is, by definition, a 2PCF. Contractions such as 〈δ δ〉〈δ δ〉
must be integrated over the unfixed pair separation vector, resulting in an additional volume factor V −1, which leads to a

strong suppression. Below, we list the contractions that contribute to the partially-coupled covariance at leading order:

Cov(ζ̂dc, ζ̂)→ 〈δ δ〉〈δ δ〉〈δ′δ′δ′δ′〉

Cov(ζ̂, ζ̂dc)→ 〈δ δ δ δ〉〈δ′δ′〉〈δ′δ′〉

Cov(ζ̂dc, ζ̂dc)→ 〈δ δ〉〈δ δ〉〈δ′δ′〉〈δ′δ′〉.
After counting the permutations, we find 72 terms in each case, all of which cancel. This leads only corrections of O((r3

c/V )2)

and higher, where rc∼100h−1Mpc is the correlation length. This correction is typically ∼0.1% and hence can be neglected

when comparing to the measurements from the mock simulations with box length of Lbox∼O(1)h−1Gpc. We thus conclude

that the fully coupled covariance does represent that of the connected 4PCF in the large-volume limit.

C2 Analytic Form

For completeness, we also derive analytic expressions for the partially-coupled covariance. These contributions are composed of

similar structures to the basic elements shown in §4.1 and can be divided into four pieces as shown in Fig. C1. All terms involve

a self-coupling, i.e. the contraction of overdensity fields within a primed or unprimed family. As a result, the basis function will

end up with one of the angular momenta being zero, with the other two equal. This implies that the partially-coupled covariance

can be fully characterized just by ` and `′. The fundamental idea of the derivation is similar to that underlying the fully-coupled

covariance derivation. First, identify the basic elements that contribute to the given cases. Second, apply a rotational average

over the three direction vectors r̂, r̂′, and ŝ and reorder the permuted coordinates into canonical ordering. Third, project the

covariance onto the isotropic basis, picking out the terms proportional to PΛ(R̂) and PΛ′(R̂
′). Here we necessarily need to

introduce both permutations G and H because self-contraction breaks the symmetry of the coupling structure. As before, we

restrict G to cyclic permutations, allowing H to explore all possibilities.

Case I The partially-coupled covariance in this case contains the self-contraction between primary vertices, r0 and r′0, and

endpoints of their own family (see Fig. C1). This can be expressed as

II(R,R
′; s) = 〈δ(x + r0)δ(x + rG1)〉

〈
δ(x + s + r′0)δ(x + s + r′H1)

〉
|r0=0,r′0=0 (C2)

×
〈
δ(x + rG2)δ(x + s + r′H2)

〉 〈
δ(x + rG3)δ(x + s + r′H3)

〉
.

Inserting the definition of the basic elements defined in §4.1, we find

II(R,R
′; s) =∑

G,H

(4π)3/2f000(rG1, 0, 0)P000(r̂G1, 0, 0) (4π)3/2f000(0, r′H1, 0)P000(0, r̂′H1, 0)

× (4π)3/2
∑

`G2`
′
H2
L2

i−`G2+`′H2+L2f`G2`
′
H2
L2

(rG2, r
′
H2, s)DP

`G2`
′
H2
L2
C`G2`

′
H2L2

0 P`G2`
′
H2
L2

(r̂G2, r̂
′
H2, ŝ)

×(4π)3/2
∑

`G3`
′
H3
L3

i−`G3+`′H3+L3f`G3`
′
H3
L3

(rG3, r
′
H3, s)DP

`G3`
′
H3
L3
C`G3`

′
H3L3

000 P`G3`
′
H3
L3

(r̂G3, r̂
′
H3, ŝ). (C3)

Given that the sum of the orbital angular momentum must be an even number, `G2 = `′H2 and `G3 = `′H3, thus the sum

reduces to one over `, `′, `′′ with L = (`, `), L′ = (`′, `′), L′′ = (L,L). As a reminder, the coefficients C and DP are given in

Eq. (4) and Eq. (12), respectively. Integrating over s we find∫
d3s

V
II(R,R

′; s) =
∑
G,H

∑
LG,L′H

∫
s2ds

V
ξ(rG1)ξ(r′H1)(4π)4

∑
``′L

(−1)`+`
′+Lf``′L(rG2, r

′
H2, s)f``′L(rG3, r

′
H3, s)

×(DP
``′L)2(C``

′L
000 )2Q(``)(`′`′)(LL)DP

LLCLL00 PLG(r̂G1, r̂G2, r̂G3)PL′
H

(r̂′H1, r̂
′
H2, r̂

′
H3), (C4)

where the rotational average over dS gives a factor of 4π, following our normalization convention. LG has one angular momentum

of zero with the other two equal; the same goes for L′H . Expressing the two-argument isotropic basis functions in terms of those
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Figure C1. Diagrams for the partially-coupled covariance. This Figure is analogous to Fig. 2, but gives the terms necessary to model the

disconnected 4PCF covariance.

with three arguments, for example, P``(r̂G2, r̂G3) = (4π)1/2P0``(r̂G1, r̂G2, r̂G3), we obtain an additional 4π. We now insert the

definition of the generalized Gaunt integral for N = 2 (cf. Eq. A1), giving∫
d3s

V
II(R,R

′; s) =
∑
G,H

∑
LG,L′H

∫
s2ds

V
ξ(rG1)ξ(r′H1)(4π)4

∑
``′L

(−1)`+`
′
f``′L(rG2, r

′
H2, s)f``′L(rG3, r

′
H3, s)

×
√

(2`+ 1)(2`′ + 1)(2L+ 1)

(
` `′ L

0 0 0

)2

PLG(r̂G1, r̂G2, r̂G3)PL′
H

(r̂′H1, r̂
′
H2, r̂

′
H3). (C5)

Using Eq. (19), we may restore the arguments to canonical order:

PLG(R̂G) =
∑
J

BG
−1

LG,JPJ(R̂), PL′
H

(R̂′H) =
∑
J′
BH
−1

L′
H
,J′PJ′(R̂

′). (C6)

In this case, BG
−1

LG,J
and BH

−1

L′
H
,J′ are given by products of Kronecker deltas since one of the angular momenta is zero. Since the

partially-coupled covariance always leads to products of two f -integrals, it is useful to introduce the g-integral, defined by:∫
s2dsf``λ(r1, r2, s)f`′`′λ(r′1, r

′
2, s)

=

∫
k2dk

(2π)3
j`(kr1)j`(kr2)j`′(kr

′
1)j`′(kr

′
2)P 2(k) ≡ g```′`′(r1, r2, r

′
1, r
′
2). (C7)

It is worth noting that, unlike the f -integral, the g-integral has dimensions of volume. The coefficient (2π)−3 appears due to

the definition of the f -integral, together with the coefficient in the identity for the integral of two sBFs:∫
s2dsjλ(sa)jλ(sb) =

π

2ab
δD(a− b). (C8)

Together with the relation: ∑
L

(2L+ 1)

(
` `′ L

0 0 0

)2

= 1, (C9)

we find the final expression for the partially-coupled covariance Case I:

Cov
(pc),I

Λ,Λ′ =
∑
G,H

∑
LG,L′H

(4π)4

V
(−1)`+`

′√
(2`+ 1)(2`′ + 1)ξ(rG1)ξ(r′H1)g```′`′(rG2, rG3, r

′
H2, r

′
H3)BG

−1

LG,ΛB
H−1

L′
H
,Λ′ . (C10)

Here we keep the inverse reordering coefficient to make clear that the partially-coupled covariance only contributes to the

collection of the three angular momenta with the following form {Λ,Λ′} = {0``, 0`′`′}+ 8 perms..
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Case II In this case, only one of the primary vertices is connected intra-family-wise (as shown in Fig. C1). It can happen that

the primary vertex of the primed tetrahedron is coupled to an unprimed vertex, or the other way around. By symmetry, we

need only discuss one of the two possibilities. The contraction of the eight overdensity fields can be expressed as

III(R,R
′; s) = 〈δ(x + r0)δ(x + rG1)〉

〈
δ(x + rG2)δ(x + s + r′0)

〉
|r0=r′0=0

×
〈
δ(x + s + r′H1)δ(x + s + r′H2)

〉 〈
δ(x + rG3)δ(x + s + r′H3)

〉
. (C11)

In terms of the basic elements, III(R,R
′; s) becomes

III(R,R
′; s)

=
∑
G,H

(4π)3/2f000(rG1, 0, 0)P000(r̂G1, 0, 0)

×(4π)3/2
∑
`′
H1

(−1)`
′
H1f`′

H1
`′
H1

0(r′H1, r
′
H2, 0)

√
2`′H1 + 1P`′

H1
`′
H1

0(r̂′H1, r̂
′
H2, 0)

×(4π)3/2
∑
`G2

(−1)`G2f`G20`G2(rG2, 0, s)
√

2`G2 + 1P`G20`G2(r̂G2, 0, ŝ)

×(4π)3/2
∑

`G3`
′
H3
L3

i−`G3+`′H3+L3f`G3`
′
H3
L3

(rG3, r
′
H3, s)DP

`G3`
′
H3
L3
C`G3`

′
H3L3

000 P`G3`
′
H3
L3

(r̂G3, r̂
′
H3, ŝ). (C12)

Averaging over dS involves only two angular momenta, `G2 and L3, enforcing `G2 = L3 ≡ `. Similarly, averaging over dR
involves just `G2 and `G3 and sets `G2 = `G3 ≡ `. Finally, since r̂′H1 and r̂′H2 are already combined into an isotropic function,

the integration over dR′ effectively involves only r̂′H3 and will result in `′H3 = 0. The imaginary phase also becomes unity.

Using the definition given in Eq. (C7), we have∫
s2dsf`0`(rG2, 0, s)f`0`(rG3, r

′
H3, s) = g`0`0(rG2, 0, rG3, r

′
H3); (C13)

in this case, the g-integral can be reduced to an f -integral. The final form of Case II reads:

Cov
(pc),II

Λ,Λ′ =
∑
G,H

∑
LG,L′H

(4π)4

V
(−1)`+`

′
ξ(rG1)

√
(2`+ 1)(2`′ + 1)f`′`′0(r′H1, r

′
H2, 0)g`0`0(rG2, 0, rG3, r

′
H3)BG

−1

LG,ΛB
H−1

L′
H
,Λ′ . (C14)

The case in which an unprimed primary vertex δ(r0) couples to an endpoint from the primed family δ(r′i) follows similarly.

Case III The next form to consider occurs when both the primed vertices are coupled to a vertex from the opposite family.

In this case:

IIII(R,R
′; s) = 〈δ(x + rG1)δ(x + rG2)〉

〈
δ(x + s + r′H2)δ(x + s + r′H3)

〉
×
〈
δ(x + r0)δ(x + s + r′H1)

〉 〈
δ(x + rG3)δ(x + s + r′0)

〉
|r0=r′0=0. (C15)

Näıvely, this case also involves an isotropic function of the form P0``; however, the rotational average over the endpoint vectors

forces their paired angular momenta to be zero.

Inserting our basic elements, we have:

IIII(R,R
′; s) =

∑
G,H

(4π)3/2
∑
`G1

f`G1`G10(rG1, rG2, 0)(−1)`G1
√

2`G1 + 1P`G1`G10(r̂G1, r̂G2, 0)

× (4π)3/2
∑
`′
H1

f`′
H1
`′
H1

0(r′H1, r
′
H2, 0)(−1)`

′
H1
√

2`′H1 + 1P`′
H1
`′
H1

0(r̂′H1, r̂
′
H2, 0)

× (4π)3/2
∑
`′
H3

f0`′
H3
`′
H3

(0, r′H3, s)(−1)`
′
H3
√

2`′H3 + 1P0`′
H3
`′
H3

(0, r̂′H3, s)

× (4π)3/2
∑
`G3

f0`G3`G3(0, rG3, s)(−1)`G3
√

2`G3 + 1P0`G3`G3(0, r̂G3, s). (C16)

In this case, the rotation average over dR will leave only the `G3 = 0 term since r̂G1 and r̂G2 are already combined into an

isotropic function. Similarly, averaging over dR′ will force `′H3 = 0, allowing us to simplify `G1 ≡ ` and `′H1 ≡ `′. Therefore,

the two f -integrals associated with `G3 and `′H3 are given by∫
s2ds f000(0, rG3, s)f000(0, r′H3, s) = g0000(0, rG3, 0, r

′
H3), (C17)

where we have used the identity for the integral of a product of two sBFs given in Eq. (C8). The final form of Case III reads:

Cov
(pc),III

Λ,Λ′ = (C18)∑
G,H

∑
LG,L′H

(4π)4

V
(−1)`+`

′√
(2`+ 1)(2`′ + 1)f``0(rG1, rG2, 0)f`′`′0(r′H1, r

′
H2, 0)g0000(0, rG3, 0, r

′
H3)BG

−1

LG,ΛB
H−1

L′
H
,Λ′
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Case IV Finally, consider the direct contraction between two primary vertices, accompanied by the contraction of two end-

points from each family

IIV(R,R′; s) =
〈
δ(x + r0)δ(x + s + r′0)

〉
|r0=r′0=0

× 〈δ(x + rG1)δ(x + rG2)〉
〈
δ(x + s + r′H2)δ(x + s + r′H3)

〉 〈
δ(x + rG3)δ(x + s + r′H1)

〉
. (C19)

As before, inserting the basic elements leads to

IIV(R,R′; s) =
∑
G,H

(4π)3/2f000(0, 0, s)P000(0, 0, ŝ)

× (4π)3/2
∑
`G1

(−1)`G1f`G1`G10(rG1, rG2, 0)
√

2`G1 + 1P`G1`G10(r̂G1, r̂G2, 0)

× (4π)3/2
∑
`′
H1

(−1)`
′
H2f0`′

H2
`′
H2

(0, r′H2, r
′
H3)
√

2`′H2 + 1P0`′
H2
`′
H2

(0, r̂′H2, r̂
′
H3)

× (4π)3/2
∑

`G3`
′
H1
L3

i−`G3+`′H1+L3f`G3`
′
H1
L3

(rG3, r
′
H1, s)DP

`G3`
′
H1
L3
P`G3`

′
H1
L3

(r̂G3, r̂
′
H1, ŝ), (C20)

simplifying `G1 ≡ ` and `′H2 ≡ `′. We can see that the rotational average over dS forces L3 = 0 and thus `G3 = `′H1. Moreover,

since r̂G1 and r̂G2 are already in an isotropic configuration in P``0(r̂G1, r̂G2, r̂G3), the only allowed values of `G3 and `′H1 are

zero. It follows that the isotropic functions reduce to constants: P`G3`
′
H1
L3

(r̂G3, r̂
′
H1, ŝ) = (4π)−3/2 and f`G3`

′
H1
L3

(rG3, r
′
H1, s) =

f000(rG3, r
′
H1, s). Integrating over s and using Eq. (C7) we find∫

s2ds f000(0, 0, s)f000(rG3, r
′
H1, s) = g0000(0, 0, rG3, r

′
H1), (C21)

The final form of Case IV is given by

Cov
(pc),IV

Λ,Λ′ = (C22)∑
G,H

∑
LG,L′H

(4π)4

V
(−1)`+`

′√
(2`+ 1)(2`′ + 1)f``0(rG1, rG2, 0)f0`′`′(0, r

′
H2, r

′
H3)g0000(0, 0, rG3, r

′
H1)BG

−1

LG,ΛB
H−1

L′
H
,Λ′ .

APPENDIX D: ANALYTIC SOLUTION FOR INTEGRAL OF PRODUCT OF THREE SPHERICAL

BESSEL FUNCTIONS

When radial binning is included, the f -integral is evaluated with the bin-averaged sBFs:

f`1`2`3(r1, r2, r3) =

∫
k2dk

2π2
P (k)j̄`1(k; r1)j̄`2(k; r2)j`3(k; r3), (D1)

where the bin-averaged sBFs are defined as:

j̄`i(k; ri) =

∫
r2dr j`i(kri)Θ(ri)∫

r2drΘ(ri)
. (D2)

Here Θ(ri) is a binning function equal to unity within bin ri and zero elsewhere.

In order to check the evaluation and implementation of the f -integral, we compare the numerical result to an analytic form

with bin-averaged sBFs derived using Fabrikant (2013), Eq. (24):

Ie(p, q,m, n, `; a, b, c) =

∫ ∞
0

exp(−pk)kqjm(ak)jn(bk)j`(ck)dk. (D3)

For this test, we make use of Eq. (26) in Fabrikant (2013), which provides an explicit solution for Eq. (D3) with p = 1, q = 2,

and m = n = ` = 0, and thus of f000(a, b, c), when the power spectrum is replaced by a power law damped by an exponential:

Iexp(1, 2, 0, 0, 0; a, b, c)

=
1

4abc

(
−T abc+++ + T abc−++ + T abc+−+ + T abc++−

)
. (D4)

Here, we have introduced the notation that T abc±±± ≡ tan−1[(±a ± b ± c)/p]. In practice the sBFs with arguments a and b are

bin-averaged, and can be written as

j̄0(ak) =
3

k(a3
max − a3

min)

[
a2

maxj1(amaxk)− a2
minj1(amink)

]
, (D5)

where the recurrence relation (Rayleigh’s formula) gives

j1(xk) = − 1

k

d

dx
j0(xk) (D6)
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Figure D1. Comparison of the numerical and analytic implementations of the bin-averaged f -integral, setting `1 = `2 = `3 = 0, and
using a damped power-law power spectrum. We evaluate the integral at radial bin centers a and b as given in the legend, and their units

are h−1Mpc.

Replacing the sBF with the bin-averaged one given by Eq. (D5) and inserting the result into Eq. (D4) (setting q = 6 in order

to use the analytic solution), we have

Iexp(1, 6, 0, 0, 0; a, b, c)

=

∫ ∞
0

exp(−k)k6 j̄0(ak)j̄0(bk)j0(ck)dk

=
3

a3
max − a3

min

3

b3max − b3min

[
a2

maxb
2
max

d

damax

d

dbmax
Iexp(1, 2, 0, 0, 0; amax, bmax, c)

−a2
minb

2
max

d

damin

d

dbmax
Iexp(1, 2, 0, 0, 0; amin, bmax, c)

−a2
maxb

2
min

d

damax

d

dbmin
Iexp(1, 2, 0, 0, 0; amax, bmin, c)

+a2
minb

2
min

d

damin

d

dbmin
Iexp(1, 2, 0, 0, 0; amin, bmin, c)

]
. (D7)

In the above equation we obtain four types of terms, differing by their lower or upper bounds in a or b. Next, we focus on the

general form d
da

d
db
Iexp(...):

d

da

d

db
Iexp(...) =

d

da

d

db

[
1

4abc

(
−T abc+++ + T abc−++ + T abc+−+ + T abc++−

)]
. (D8)

Due to the symmetry of these expressions, in what follows we may focus on just the first term T abc+++.

d

da

d

db

(
1

4abc
T abc+++

)
=

d

da

d

db

(
1

4abc
tan−1[(c+ b+ a)/p]

)
=

1

4a2b2c

(
tan−1[(c+ b+ a)/p]− a+ b

p

1

(a+ b+ c)2/p2 + 1
− ab

p3

2(a+ b+ c)

((a+ b+ c)2/p2 + 1)2

)
, (D9)

This form remains the same for the rest of the T abc±±± terms, except for the signs. Inserting Eq. (D9) into Eq. (D7) we obtain

the final result shown in Fig. D1 (dotted black curves) after integrating over c. As an example, we evaluate the integral for two

cases a = 153h−1Mpc, b = 27h−1Mpc and a = 41h−1Mpc, b = 55h−1Mpc. In both cases the numerical implementation and

the analytic solution display excellent agreement.

APPENDIX E: GAUSSIAN NPCF COVARIANCES INCLUDING RSD

Here we extend our general expression for the real-space covariance to include RSD. As a preparation for the derivation, we

extend the Q quantity to involve four angular momenta:

QΛΛ′Λ′′Λ′′′ =
N∏
i=1

∑
mim

′
iMiµi

C`i`
′
iLiλi

mim
′
iMiµi

CΛ
MCΛ′

M′CΛ′′
M′′CΛ′′′

M′′′ , (E1)
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where the CΛ
M coefficient is defined in Eq. (2) with

HΛΛ′Λ′′Λ′′′ = (4π)−N/2
[
N∏
i=1

DP
`i`
′
iLiλi

C`i`
′
iLiλi

0000

]
QΛΛ′Λ′′Λ′′′ . (E2)

Furthermore, averaging over isotropic functions of four arguments gives∫
dR dR′ dS dN

N∏
i=1

P`i`′i`′′i λi
(r̂i, r̂

′
i, ŝ, n̂)

= (4π)−N
∑

LL′Λ′′Λ′′′
QLL

′Λ′′Λ′′′DP
Λ′′CΛ′′

0 DP
Λ′′′CΛ′′′

0 PL(R̂(N))PL′(R̂′(N)). (E3)

For the fully-coupled covariance including RSD we start from Eq. (33) and Eq. (B11):∑
Λ,Λ′
E(Λ′)CovΛ,Λ′(R,R

′)PΛ(R̂)PΛ′(R̂
′)

=

∫
d3s

V
(4π)2N

∑
G

N−1∏
i=0

∑
`Gi`

′
iLiλi

1

2λi + 1
i−`Gi+`

′
i+Li

×DP
`Gi`

′
iLiλi

C`Gi`
′
iLiλi

0000 fλi

`Gi`
′
iLi

(rGi, r
′
i, s)P`Gi`

′
iLiλi

(r̂Gi, r̂
′
i, ŝ, n̂)|r0=r′0=0. (E4)

Next, we apply the rotational average over r̂, r̂′, ŝ, and n̂14:∑
Λ,Λ′
E(Λ′)CovΛ,Λ′(R,R

′)PΛ(R̂)PΛ′(R̂
′)

=

∫
s2ds

V
(4π)3N/2

∑
G

N−1∏
i=0

∑
`Gi`

′
iLiλi

1

2λi + 1
i−`Gi+`

′
i+Li HLGL′Λ′′Λ′′′

× fλi

`Gi`
′
iLi

(rGi, r
′
i, s)DP

Λ′′ CΛ′′
0 DP

Λ′′′ CΛ′′′
0 PLG(R̂

(N)
G )PL′(R̂′(N))|r0=r′0=0; (E5)

as before, going from R̂
(N)
G → R̂G leads to a factor of (4π)−1/2, which is cancelled with the normalization factor arising from

dS. Next, we use the reordering coefficient to restore the canonical ordering of the arguments, and project both sides onto the

isotropic basis PΛ(R̂) and PΛ′(R̂
′). This yields the final form:

CovΛ,Λ′(R,R
′)

= (4π)3N/2

∫
s2ds

V

∑
G

∑
LGΛ′′Λ′′′

N−1∏
i=0

[
1

2λi + 1
fλi

`Gi`
′
iLi

(rGi, r
′
i, s)

]
(−1)[−Σ(Λ)−Σ(Λ′)+Σ(Λ′′)]/2

×BG
−1

LG,ΛH
LGΛ′Λ′′Λ′′′DP

Λ′′CΛ′′
0 DP

Λ′′′CΛ′′′
0 |rG0=r′0=0. (E6)
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