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MATER IALS SC I ENCE

Precursor recommendation for inorganic synthesis by
machine learning materials similarity from scientific
literature
Tanjin He1,2, Haoyan Huo1,2, Christopher J. Bartel1,2,3, Zheren Wang1,2, Kevin Cruse1,2,
Gerbrand Ceder1,2*

Synthesis prediction is a key accelerator for the rapid design of advanced materials. However, determining syn-
thesis variables such as the choice of precursor materials is challenging for inorganic materials because the
sequence of reactions during heating is not well understood. In this work, we use a knowledge base of
29,900 solid-state synthesis recipes, text-mined from the scientific literature, to automatically learn which pre-
cursors to recommend for the synthesis of a novel target material. The data-driven approach learns chemical
similarity of materials and refers the synthesis of a new target to precedent synthesis procedures of similar ma-
terials, mimicking human synthesis design. When proposing five precursor sets for each of 2654 unseen test
target materials, the recommendation strategy achieves a success rate of at least 82%. Our approach captures
decades of heuristic synthesis data in a mathematical form, making it accessible for use in recommendation
engines and autonomous laboratories.
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INTRODUCTION
Predictive synthesis is a grand challenge that would accelerate the
discovery of advanced inorganic materials (1). The complexity of
synthesis mainly originates from the interactions of many design
variables, including the diversity of precursor candidates for each
element in the target material (oxides, hydroxides, carbonates,
etc.), the experimental conditions (temperature, atmosphere, etc.),
and the chronological organization of operations (mixing, firing, re-
ducing, etc.). Properly selecting the combination of experimental
variables is crucial and demanding for successful synthesis (2–4).
Here, we focus on the rational design of precursor combinations
for solid-state synthesis, a widely used approach to create inorganic
materials.

Because of the lack of a general theory for how phases evolve
during heating, synthesis design is mostly driven by heuristics
and basic chemical insights. Unlike the success of retrosynthesis
and automated design for organic materials based on the conserva-
tion and transformation of functional groups (5–7), the mecha-
nisms underlying inorganic solid-state synthesis are not well
understood (6, 8–10). Here, we define a recipe to be any structured
information about a target material, including the precursors, oper-
ations, conditions, and other experimental details. Experimental re-
searchers usually approach a new inorganic synthesis by manually
looking up similar materials in the literature and repurposing pre-
cedent recipes for a novel material. However, deciding what mate-
rials are similar and thus where to look is often driven by intuition
and limited by individuals’ personal experience in specific chemical
spaces, hindering the ability to rapidly design syntheses for new
chemistries. With the emergence of large-scale materials synthesis
datasets from text-mining efforts (11–14), it is becoming possible to

statistically learn the similarity of materials and the correlation of
their synthesis variables in a more systematic and quantitative
fashion, and provide such tools as a guide to scientists when ap-
proaching the synthesis of novel compounds.

Several studies have demonstrated the promise of building
general models for the predictive synthesis of inorganic materials.
Aykol et al. (15) and McDermott et al. (16) proposed heuristic
models to rank the favorability of synthesis reactions or pathways
based on thermodynamic metrics such as the reaction energy, nu-
cleation barrier, and the number of competing phases. Kim et al.
(17) used the stochasticity of a conditional variational autoencoder
model to generate various samples of synthesis actions and precur-
sors for the target material. Huo et al. (18) predicted synthesis con-
ditions using large solid-state synthesis datasets text-mined from
scientific journal articles. An interesting yet unexplored angle is
to machine learn how the precursors of different target materials
are shared and varied to enable the recommendation of multiple
synthesis recipes with some ranked potential of success. In addition,
extending the assessment from specific case studies to a large test set
is also valuable for the development and improvement of predictive
synthesis models.

We propose a precursor recommendation strategy (Fig. 1) based
on machine-learned similarity of materials to automate the litera-
ture-based approach used by experimental researchers. Inspired
by natural language processing models (19–21), we designed an en-
coding neural network to learn the vectorized representation of a
material based on its corresponding precursors for the quantifica-
tion of materials similarity. Assuming that the target material can be
synthesized using an experimental design adapted from a similar
material, synthesis variables such as precursors, operations, and
conditions can be proposed and ranked by querying the knowledge
base of previously synthesized materials. In this work, we applied
the recommendation strategy to predict precursors for 2654 test
target materials in a historical validation. Learning from a knowl-
edge base of 29,900 synthesis reactions text-mined from the
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scientific literature, we demonstrate that the algorithm can acquire
chemical knowledge on materials similarity via self-supervised
learning and make promising decisions on precursor selection.
Our quantitative recommendation pipeline captures how experi-
mental researchers learn synthesis from the literature and enables
rational and rapid precursor selection for new inorganic materials.
It also provides meaningful initial solutions in the active learning
and decision-making process for autonomous synthesis.

RESULTS
We begin with statistical insights from solid-state synthesis experi-
ments reported in 24,304 papers (11) to better understand the
problem of precursor selection (the “Problem of precursor selec-
tion” section). Because a universal model for solid-state synthesis
has not yet been established, we use a data-driven method to recom-
mend potential precursor sets for the given target material (Fig. 1).
The recommendation pipeline consists of three steps: (i) an encod-
ing model to digitize the target material as well as known materials
in the knowledge base (the “Materials encoding for precursor selec-
tion” section), (ii) similarity query based on the materials encoding
to identify a reference material that is most similar to the target (the
“Similarity of target materials” section), and (iii) recipe completion
to (a) compile the precursors referred from the reference material
and (b) add any possibly missed precursors if element conservation
is not achieved using conditional predictions based on referred pre-
cursors (the “Recommendation of precursor materials” section).

Problem of precursor selection
In the solid-state synthesis of inorganic materials, precursor selec-
tion plays a crucial role in governing the synthesis pathway by yield-
ing intermediates that may lead to the desiredmaterial or alternative
phases (2–4). For each metal/metalloid element, one precursor is
often used predominantly over all others, which we denote as the
common precursor (22). However, in a solid-state synthesis
dataset of 33,343 experimental recipes extracted from 24,304 mate-
rials science papers (11), we find that approximately half of the
target materials were synthesized using at least one uncommon pre-
cursor. Figure 2A presents the fraction of targets in the text-mined
dataset (11) that can be achieved as one increases the number of
available precursors. The precursors on the x axis are ordered by
the relative frequency with which they are used to bring a specific
element into a synthesis target. Uncommon precursors may be used
for a variety of reasons including synthetic constraints (e.g., temper-
ature and time), purity, morphology, and anthropogenic factors (2,
22, 23).

In addition, a probability analysis of the text-mined dataset in-
dicates that precursors for different chemical elements are not ran-
domly combined. The joint probability to select a specific precursor
pair (Ai, Bi) can be compared to the marginal probability to selectAi
for element Elea and Bi for Eleb. If the choices of Ai and Bi are in-
dependent, then the joint probability should equal the product of
the marginal probabilities, namely, P(Ai, Bi) = P(Ai)P(Bi).
However, inspection of 6472 pairs of precursors from our text-
mined dataset (Fig. 2B) reveals that many show a strong dependency

Fig. 1. Precursor recommendation strategy. (A) Pipeline for precursor recommendation consisting of three steps: (1) digitize target materials in the synthesis knowl-
edge base text-mined from scientific literature, (2) rank target materials in the knowledge base according to the similarity to the novel target, and (3) recommend
precursors based on analogy to the most similar target. (B) An example of precursor recommendation for Y2FeSbO7 by referring to the synthesis of FeSbO4.
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on each other [i.e., P(Ai, Bi) deviating significantly from P(Ai)P(Bi)].
A well-known example is that nitrates such as Ba(NO3)2 and
Ce(NO3)3 tend to be used together, likely because of their solubility
and applicability for solution processing (e.g., slurry preparation).
Unfortunately, these decisions regarding dependencies of precur-
sors are usually empirical and hard to standardize. Machine learn-
ing is a possible solution to ingest the heuristics that underlie such
selections.

Materials encoding for precursor selection
Our precursor recommendation model for the synthesis of a novel
target will mimic the human approach of trying to identify similar
target materials for which successful synthesis reactions are known.
To find similar materials, digital processing requires an encoding
model that transforms any arbitrary inorganic material into a nu-
merical vector. For organic synthesis, structural fingerprinting
such as Morgan2Feat (24) is a good choice (25) because it is
natural to track the conservation and change of functional groups
in organic reactions, but the concept of functional groups is not ap-
plicable to inorganic synthesis. Chemical formulas of inorganic
solids have been represented using a variety of approaches [e.g.,
Magpie (26, 27), Roost (28), CrabNet (29)]. However, these repre-
sentations are typically used as inputs to predict thermodynamic or
electronic properties of materials. Here, we attempt to directly in-
corporate synthesis information into the representation of a mate-
rial with arbitrary composition. Local text-based encodings such as
Word2Vec (30, 31) and FastText (17) are able to capture contextual
information from thematerials science literature, of which synthesis
information is a part; however, they are not applicable to unseen
materials when the materials text (sub)strings are not in the vocab-
ulary or when the materials are not in the predefined composition
space. For example, Pei et al. (31) computed the similarity of high-
entropy alloys as the average similarity of element strings by assum-
ing that the elements are present in equal proportions in the mate-
rial (e.g., CoCrFeNiV). However, this approach is not applicable to
unseen materials different from such composition template and
consequently would not be practical in our work on synthesis of
diverse inorganic materials. Substitution modeling can evaluate

similarity of precursors by assessing the viability of substituting
one precursor with another while retaining the same target, but it
cannot be used to identify analogues for new target materials (22).
In this work, we propose a synthesis context-based encoding model
using the idea that target materials produced with similar synthesis
variables are similar.

Analogous to how language models (19–21) pretrain word rep-
resentations by predicting context for each word, we use a self-su-
pervised representation learning model to encode arbitrary
materials by predicting precursors for each target material, which
we refer to as PrecursorSelector encoding (Fig. 3A). The upstream
part is an encoder where properties of the target material are pro-
jected into a latent space as the encoded vector representation. In
principle, any intrinsic materials property could be included at
this step. Here, we use only composition for simplification. The
downstream part consists of multiple tasks where the encoded
vector is used as the input to predict different variables related to
precursor selection. Here, we use a masked precursor completion
(MPC) task (Fig. 3B) to capture (i) the correlation between the
target and precursors and (ii) the dependency between different
precursors in the same experiment. For each target material and
corresponding precursors in the training set, we randomly mask
part of the precursors and use the remaining precursors as a condi-
tion to predict the complete precursor set. We also add a task of re-
constructing the chemical composition to conserve the
compositional information of the target material. The downstream
task part is designed to be extensible; other synthesis variables such
as operations and conditions can be incorporated by adding corre-
sponding prediction tasks in a similar fashion. By training the entire
neural network, the encoded vectors for target materials with
similar precursors are automatically dragged closer to each other
in the latent space because that reduces the overall prediction
error. This PrecursorSelector encoding thus takes the correlation
induced by precursor selection and serves as a useful metric to
measure similarity of target materials in syntheses.

To demonstrate that the neural network is able to learn precursor
information, we present the results of the MPC task (Fig. 3B) for
LaAlO3 as an example (Table 1). LaAlO3 is a ternary material that
normally requires two precursors (one to deliver each cation, La and
Al). In this test, we masked one precursor and asked the model to
predict the complete precursor set. For the same target conditioned
with different partial precursors, the predicted probabilities of pre-
cursors strongly depend on the given precursor and agreewith some
rules of thumb for precursor selection. When the partial precursors
are oxides such as La2O3 or Al2O3, the most probable precursors are
predicted to be oxides for the other element, i.e., Al2O3 for La2O3
and La2O3 for Al2O3 (32). When the partial precursors are nitrates
such as La(NO3)3 or Al(NO3)3, nitrates for the other element are
prompted with higher probabilities, i.e., Al(NO3)3 for La(NO3)3
and La(NO3)3 for Al(NO3)3 (33). If both precursors are masked,
oxides rank first in the prediction because the common precursors
for elements La and Al are La2O3 and Al2O3, respectively. The
simple successful prediction shows that our PrecursorSelector en-
coding model is able to learn the correlation between the target
and precursors in different contexts of synthesis without explicit
input of chemical rules about synthesis. In addition, the use of dif-
ferent precursors suggests that various synthetic routes may lead to
the same target material. When a practical preference for a partic-
ular route exists, the framework we introduce in this work can be

Fig. 2. Usage of precursors in solid-state synthesis. (A) Fraction of targets that
can be synthesized with limited number of available precursors. The precursors are
ordered by relative frequency per metal/metalloid element. Precursors for 62 ele-
ments are considered. A target is included if at least one reported reaction for that
target was performed with the available precursors. (B) Pairwise dependency of
precursors Ai and Bi characterized by

PðAi ;BiÞ
PðAiÞPðBiÞ

. Probability is estimated from the fre-

quency of occurrence in the solid-state synthesis dataset. The value of log10
PðAi ;BiÞ

PðAiÞPðBiÞ

is zero when Ai and Bi are independent, positive when Ai and Bi tends to be used in
the same experiment more frequently than P(Ai)P(Bi), negative otherwise.
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extended to include more constraints, such as synthesis type, tem-
perature, morphology, particle size, and cost of precursors, by learn-
ing from pertinent datasets (23, 34, 35).

Similarity of target materials
Similarity establishes a link between a novel material to synthesize
and the knownmaterials in the knowledge base because it is reason-
able to assume that similar target materials share similar synthesis
variables in experiments. Although the understanding of similarity
is generally based on heuristics, the PrecursorSelector encoding in-
troduced in the “Materials encoding for precursor selection” section
provides a meaningful representation for quantified similarity anal-
ysis. Dedicated to precursor prediction in this study, we define the
similarity of two target materials as the similarity of the precursors
used in their respective syntheses. Although precursors for a new
target material are not known in advance, the PrecursorSelector en-
coding serves as a proxy reflecting the potential precursors to use. In
that latent space, we can take the cosine similarity (19, 20, 30) of the
PrecursorSelector encoding as a measure of the similarity (Sim) of
two target materials x1 and x2

Simðx1; x2Þ ≏ cos½f ðx1Þ; f ðx2Þ� ð1Þ

where f is the encoder part of the PrecursorSelector model trans-
forming the composition of the target material x into the encoded
target vector (Fig. 3A).

To demonstrate that the similarity estimated from PrecursorSe-
lector encoding is reasonable, we show typical materials with differ-
ent levels of similarity to an example target material NaZr2(PO4)3
(Table 2). The most similar materials are the ones with the same
elements such as Zr-containing phosphates and other sodium
super ionic conductor (NASICON) materials. The similarity
decreases slightly as additional elements are introduced (e.g.,
Na3Zr1.9Ti0.1Si2PO12) or when one element is substituted [e.g.,
LiZr2(PO4)3]. When the phosphate groups are replaced with
another anion, the similarity decreases further, with oxides having
generally mild similarity to the phosphate NaZr2(PO4)3. The simi-
larity decreases even further for compounds with no anion (e.g.,
intermetallics) and for non-oxygen anions (e.g., chalcogenides).
This finding agrees with our experimental experience that when
seeking a reference material, researchers will usually refer to com-
positions in the same chemical system or to cases where some ele-
ments are substituted. It is also worth noting that our quantitative
similarity is purely a data-driven abstraction from the literature and
uses no externally chemical knowledge.

To better understand the similarity, we conducted a relationship
analysis (19, 20, 30) by visualizing four groups of target materials
synthesized using one shared precursor and one distinct precursor
(Fig. 4). For example, the syntheses of YCuO2, Ba3Y4O9, and
Ti3Y2O9 share Y2O3 as a precursor and separately use CuO,
BaCO3, and TiO2. The three other groups share the precursors
In2O3, Al2O3, and Fe2O3, respectively. To separate the effect of

Fig. 3. Representation learning to encode precursor information for target materials. (A) Multitask network structure to encode the target material in the upstream
and to predict the complete precursor set, chemical composition, and more synthesis variables in the downstream. x and u represent the composition and encoded
vector of the target material, respectively. pi represents the ith precursor in a predefined ordered precursor list. Dense layers are used in each layer unless specified
differently. (B) Submodel of multilabel classification for the MPC task. Part of the precursors are randomly masked; the remaining precursors (marked as “Y”) are used
as a condition to predict the probabilities of other precursors for the target material. The probabilities corresponding to the complete precursors (marked as “Y”) are
expected to be higher than that of unused precursors (marked as “N”). The attention block gproj (61) is used to aggregate the target vector and conditional precursors. The
final classification layer gcls and the embedding matrix for conditional precursors share the same weights. σ represents the sigmoid function.
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the precursor variation, we align the original points of the target
vectors by first projecting each target vector to the same vector
space as the precursors and then subtracting the vector of the
shared precursor, providing a difference vector showing the rela-
tionship between the target material and the shared precursor
(more details in the “Representation learning for similarity of ma-
terials” section). Next, we plot the top two principal components
(36) of these difference vectors in a two-dimensional plane. The dif-
ference vectors are automatically separated into three clusters ac-
cording to the precursor variate, representing three types of
relationships, “react with BaCO3,” “react with CuO,” and “react
with TiO2,” respectively. For example, Ba3Y4O9 is to Y2O3 as
BaAl2O4 is to Al2O3 (i.e., Ba3Y4O9 − Y2O3 ≈ BaAl2O4 − Al2O3)
because both syntheses use BaCO3. The consistency between this
automatic clustering and the chemical intuition again affirms the
efficacy of using PrecursorSelector encoding as a similarity metric.

Recommendation of precursor materials
With the capability of measuring similarity, a natural solution to
precursor selection is to replicate the literature-based approach
used by experimental researchers. Given a novel material to synthe-
size, we initialize our recommendation by first proposing a recipe
consisting of common precursors for each metal/metalloid
element in the target material because this might be the first
attempt in a lab. Then, we encode the novel target material and

known target materials in the knowledge base using PrecursorSelec-
tor encoding model from the “Materials encoding for precursor se-
lection” section and calculate the similarity between the novel target
and each known material with Eq. 1. We rank known materials
based on their similarity to the target such that a reference material
can be identified that is the most similar to the novel target. When
the precursors used in the synthesis of the reference material cannot
cover all elements of the target, we use MPC in Fig. 3B to predict the
missing precursors. For example, for Y2FeSbO7 (Fig. 1B), the most
similar material in the knowledge base is FeSbO4. It is reasonable to
assume that the precursors Fe2O3 and Sb2O5 used in the synthesis of
FeSbO4 (37) can also be used to synthesize Y2FeSbO7. Because the Y
source is missing,MPC finds that Y2O3 is likely to fit with Fe2O3 and
Sb2O5 for the synthesis of Y2FeSbO7, ending up as a complete pre-
cursor set (Fe2O3, Sb2O5, and Y2O3) (38). Multiple attempts of rec-
ommendation are feasible by moving down the list of known
materials ranked to be most similar to the novel target.

To evaluate our recommendation pipeline, we conduct a valida-
tion (Fig. 5) using the 33,343 synthesis recipes text-mined from the
scientific literature. Using the knowledge base of 24,034 materials
reported by the year 2014, we predict precursors for 2654 test
target materials newly reported from 2017 to 2020 (more details
in the “Data preparation” section). Because multiple precursors
exist for each element, the number of possible precursor combina-
tions increases combinatorially with the number of elements
present in the target material. A good precursor prediction algo-
rithm is anticipated to select from hundreds of possible precursor
combinations those that have a higher probability of success. For
each test material, we attempt to propose five different precursor
sets. For each attempt, we calculate the percentage of test materials
being successfully synthesized, where success means at least one set
of proposed precursors has been observed in previous experiments.
The similarity-based reference already increases the success rate to
73% at the second attempt. The first guess is set to default to the
most common precursors which leads to 36% success rate. Within
five attempts, the success rate of our recommendation pipeline
using PrecursorSelector encoding is 82%, comparable to the perfor-
mance of recommendations for organic synthesis (25). We note that
as defined here, “success” will be underestimated since some sug-
gested precursor sets may actually lead to successful target synthesis
although they may not have been tried (and therefore do not appear
in the data).

We also establish a baseline model (“Most frequent” in Fig. 5)
that ranks precursor sets based on the product of frequencies with

Table 1. MPC conditioned on different partial precursors for the same target material LaAlO3. The predicted complete precursors are the ones with the
highest probabilities (bold). N/A denotes the absence of partial precursors, i.e., all precursors are masked in the MPC task.

Partial precursors (condition)
Probability to use different precursors (output)

La2O3 Al2O3 La(NO3)3 Al(NO3)3 La2(CO3)3 Al(OH)3

La2O3 0.75 0.71 0.58 0.57 0.57 0.57

Al2O3 0.72 0.73 0.58 0.57 0.58 0.56

La(NO3)3 0.60 0.59 0.64 0.63 0.61 0.61

Al(NO3)3 0.62 0.58 0.65 0.65 0.62 0.60

N/A 0.70 0.69 0.59 0.58 0.59 0.59

Table 2. Different levels of similarity between NaZr2(PO4)3 and
materials in the knowledge base.

Target Similarity Target Similarity

Zr3(PO4)4 0.946 Li1.8ZrO3 0.701

Na3Zr2Si2PO12 0.929 NaNbO3 0.600

Na3Zr1.8Ge0.2Si2PO12 0.921 Li2Mg2(MoO4)3 0.500

Na3Ca0.1Zr1.9Si2PO11.9 0.908 Sr2Ce2Ti5O16 0.400

Na3Zr1.9Ti0.1Si2PO12 0.900 Ga0.75Al0.25FeO3 0.300

LiZr2(PO4)3 0.896 Cu2Te 0.200

NaLa(PO3)4 0.874 Ni60Fe30Mn10 0.100

Sr0.125Ca0.375Zr2(PO4)3 0.852 AgCrSe2 0.000

Na5Cu2(PO4)3 0.830 Zn0.1Cd0.9Cr2S4 −0.099

LiGe2(PO4)3 0.796 Cr2AlC −0.202
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which different precursors are used in the literature (more details in
the “Baseline models”). This baseline simulates the typical early
stage of the trial-and-error process where researchers grid-search
different combinations of precursors matching elements present
in the target material without the knowledge of dependency of pre-
cursors (Fig. 2B). The success rate of this baseline is 58% within five
attempts. Our recommendation pipeline performs better because
the dependency of precursors is more easily captured when the
combination of precursors is sourced from a previously used suc-
cessful recipe for a similar target. Through in situ diffraction of syn-
thesis (2–4), it is now better understood that some precursor sets do
not lead to the target material because they form intermediate
phases which have consumed much of the overall reaction energy,
thereby leaving a low driving force to form the target. It is likely that
our literature-informed precursor prediction approach implicitly
captures some of this reactivity and pathway information, resulting
in a higher prediction power than random selection or selection
based on how common a precursor is.

In addition, we compare with three other baseline models
(“Magpie encoding,” “FastText encoding,” and “Raw composition”
in Fig. 5) using the same recommendation strategy but different en-
coding methods (more details in the “Baseline models”). Magpie
encoding (26, 27) is a set of attributes computed using the fraction
of elements in a material, including stoichiometric attributes, ele-
mental property statistics, electronic structure attributes, and
ionic compound attributes. Precursor recommendation with
Magpie encoding achieves a success rate of 68% within five at-
tempts; it performs reasonably well because these properties
reflect the material composition, and generally, materials with
close compositions tend to be similar. Similarly, precursor recom-
mendation directly with the raw material composition achieves a
success rate of 66% within five attempts. FastText encoding (17)

uses the FastText model (39) to capture information about the co-
occurrences of context words around material formulas/names in
the literature. However, only 1985 test materials can be digitized
with FastText encoding due to the conflict between the limited vo-
cabulary of n-grams and the variety of float numbers in material
formulas. The success rate using FastText encoding is 56% within
five attempts. Overall, the recommendation with PrecursorSelector
encoding performs substantially better because Magpie and Fast-
Text encodings are more generic but not dedicated to predictive
synthesis. The PrecursorSelector encoding and MPC capture the
correlation between synthesis variables and known target materials,
which better extends to novel materials.

DISCUSSION
Because of its heuristic nature, it is challenging to capture the
decades of synthesis knowledge established in the literature. By es-
tablishing a materials similarity measure that is a natural handle of
chemical knowledge and leveraging a large-scale dataset of prece-
dent synthesis recipes, our similarity-based recommendation strat-
egy mimics human synthesis design and succeeds in precursor
selection. The incorporation of precursor information into materi-
als representations (Fig. 3) leads to a quantitative similarity metric
that successfully reproduces a known precursor set 82% of the time
in five attempts or less (Fig. 5). We discuss the strengths and weak-
nesses of this recommendation algorithm and its generalizability to
broader synthesis prediction problems.

In this work, materials similarity is learned through an automat-
ic feature extraction process mapping a target material to the com-
bination of precursors. While learning the usage of precursors,

Fig. 4. Relationships between targets and their shared precursors. Four
groups of target materials are synthesized each using one shared precursor
shown as the original point (Y2O3, In2O3, Al2O3, or Fe2O3) and one distinct precur-
sor shown as the edge (BaCO3, CuO, or TiO2). The relationship of “react with
another precursor” is visualized as the first two principal components of the diff-
erence vector between the target and the shared precursor gproj[ f (x)] − pi. The
original points corresponding to different precursors pi’s are jittered for clarity.

Fig. 5. Performance of various precursor prediction algorithms. For each of the
2654 test target materials, the algorithm attempts to propose n (1 ≤ n ≤ 5 as the x
axis) precursor sets. The y axis shows the success rate that at least one of the n
proposed precursor set is observed in previous experimental records. PrecursorSe-
lector encoding: This work. Magpie encoding/FastText encoding/Raw composi-
tion: Similar recommendation pipeline to this work but using Magpie
representation (26, 27)/FastText representation (17)/the raw material composition.
Most frequent: Select precursors by frequency.
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useful chemical knowledge for synthesis practice is accordingly em-
bedded in PrecursorSelector encoding. The first level of knowledge
about materials similarity is based on composition. For example, to
synthesize Li7La3Nb2O13, PrecursorSelector encoding finds
Li5La3Nb2O12 as a reference target material (Table 3) because
their difference in composition is only one Li2O unit. PrecursorSe-
lector encoding also reflects the consideration of valence in
synthesis. Although it is not necessary to keep the valence in the
precursor the same as that in the target, a precursor with similar
valence states to the target is frequently used in practical synthesis
(22). For example, to synthesize NaGa4.6Mn0.01Zn1.69Si5.5O20.1 (40),
MnCO3 was used as the Mn source because the valence state of Mn
is 2+ in both the target and precursor. PrecursorSelector encoding
finds Mn0.24Zn1.76SiO4 similar to NaGa4.6Mn0.01Zn1.69Si5.5O20.1
because the valence state of Mn is also 2+ in Mn0.24Zn1.76SiO4,
despite NaGa4.6Mn0.01Zn1.69Si5.5O20.1 containing large fractions of
Na and Ga while Mn0.24Zn1.76SiO4 does not. Our algorithm also
captures the similarity of syntheses between compounds which
have one element substituted. For example, PrecursorSelector en-
coding refers to CaZnSO for synthesizing SrZnSO because the ele-
ments Ca and Sr are regarded as similar.While such knowledgemay
appear obvious to the trained chemist, our approach enables it to be
automatically extracted and convoluted as a vectorized representa-
tion (Fig. 3), making it thereby available in a mathematical form,
convenient to be used in recommendation engines or automated
labs (41).

Because of this customized synthesis similarity of materials and
our precursor recommendation pipeline, we are able to not only
recommend trivial solutions for target synthesis such as the use of
common precursors but also deal with more challenging situations.
One typical scenario is the adoption of uncommon precursors. For
example, Lalère et al. (42) used NaH2PO4 as the source of Na and P
to synthesize Na3TiV(PO4)3, while the common precursors for Na
and P are Na2CO3 andNH4H2PO4, respectively. It is not apparent to

conclude from the composition of Na3TiV(PO4)3 that the uncom-
mon precursor NaH2PO4 is needed. However, the similarity-based
recommendation pipeline successfully predicts the use of NaH2PO4
by referring to a similar material Na3V2(PO4)3 (43). A plausible
reason for the choice of NaH2PO4 for Na3TiV(PO4)3 can also be
inferred from the synthesis of Na3V2(PO4)3. Feng et al. (43) report-
ed that NaH2PO4 was used to implement a one-pot solid-state syn-
thesis of Na3V2(PO4)3, while Fang et al. (44) reported that a
reductive agent and additional complex operations are needed
when using Na2CO3 and NH4H2PO4. Similar outcomes may also
apply to the synthesis of Na3TiV(PO4)3. A second example is the
successful precursor recommendation for the target compound
GdLu(MoO4)3. Instead of the common precursor MoO3, a less
common precursor (NH4)6Mo7O24 was adopted as the Mo source
(45). The use of (NH4)6Mo7O24 may facilitate the mixing of differ-
ent ions in the synthesis of GdLu(MoO4)3. The adoption of uncom-
mon precursors also provides clues in underexplored chemical
spaces such as mixed-anion compounds (46). Taking the pentanary
oxynitride material BaYSi2O5N (47) as an example, the five-compo-
nent system, including multiple anions, implies that many precur-
sor combinations can potentially yield the target phase, including
oxides, nitrides, carbonates, etc. Our recommendation pipeline cor-
rectly identifies that a combination of SiO2 and Si3N4 facilitates the
formation of BaYSi2O5N by referring to a quaternary oxynitride
material, YSiO2N (48). Another challenging situation is that multi-
ple precursors may be used for the same element. Usually, only one
precursor is used for eachmetal/metalloid element in the target ma-
terial, but exceptions do exist. For example, CuO and CuCl2 were
used as the Cu source in the synthesis of Cu3Yb(SeO3)2O2Cl (49).
Through analogy to Cu4Se5O12Cl2 (50), the recommended precur-
sor set includes both CuO and CuCl2. Moreover, it is possible to
predict multiple correct precursor sets by referring to multiple
similar target materials. For example, two different sets of precur-
sors for LiMn0.5Fe0.5PO4 were reported by Zhuang et al. (51) and

Table 3. Representative successful and failed examples for precursor prediction using the similarity-based recommendation pipeline in this study.

Target Reference target(s) Expected precursors Error in
recommendation

Successful

Li7La3Nb2O13 (65) Li5La3Nb2O12 (66) LiOH, La2O3, Nb2O5 N/A

NaGa4.6Mn0.01Zn1.69Si5.5O20.1
(40)

Mn0.24Zn1.76SiO4 (67) MnCO3, Na2CO3, Ga2O3, SiO2, ZnO N/A

SrZnSO (68) CaZnSO (69) SrCO3, ZnS N/A

Na3TiV(PO4)3 (42) Na3V2(PO4)3 (43) NaH2PO4, NH4VO3, TiO2 N/A

GdLu(MoO4)3 (45) Gd2(MoO4)3 (70) (NH4)6Mo7O24, Lu2O3, Gd2O3 N/A

BaYSi2O5N (47) YSiO2N (48) Si3N4, SiO2, BaCO3, Y2O3 N/A

Cu3Yb(SeO3)2O2Cl (49) Cu4Se5O12Cl2 (50) CuO, CuCl2, SeO2, Yb2O3 N/A

LiMn0.5Fe0.5PO4 (51, 52) LiMn0.8Fe0.2PO4 (53),
LiMn0.9Fe0.1PO4 (54)

MnCO3, FeC2O4, LiH2PO4; Mn(CH3COO)2,
FeC2O4, LiH2PO4

N/A

Failed

Li3CoTeO6 (55) LiCoO2 (71) Co, Te, Li2CO3 Co3O4, TeO2, LiOH

Sr4Al6SO16 (56) SrAl2O4 (72) SrCO3, SrSO4, Al(OH)3 SrCO3, H2SO4, Al(OH)3

Ca7.5Ba1.5Bi(VO4)7 (57) Bi3Ca9V11O41 (73) BaCO3, NH4VO3, CaCO3, Bi2O3 BaO, NH4VO3,
CaCO3, Bi2O3
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Wang et al. (52). The recommendation pipeline predicts both by
repurposing the precursor sets for LiMn0.8Fe0.2PO4 (53) and
LiMn0.9Fe0.1PO4 (54).

The recommendation of precursors presented here is still imper-
fect. The engine we present is inherently limited by the knowledge
base it is trained on, thereby biasing recommendations toward what
has been done previously and lacking creativity for unprecedented
combinations of precursors. For example, metals Co and Te were
used in the synthesis of Li3CoTeO6 (55), but no similar materials
in the knowledge base use the combination of Co and Te as precur-
sors. Another example is that SrCO3 and SrSO4 were used in the
synthesis of Sr4Al6SO16 (56). Although the recommendation pipe-
line is, in principle, able to predict multiple precursors for the same
element, a similar case using both SrCO3 and SrSO4 as the Sr source
is not found in the knowledge base. Both examples end up being
mispredictions. This situation could be improved when more data
from text mining and high-throughput experiments (41) are added
to the knowledge base. Furthermore, the success rate of the recom-
mendation strategy may be underestimated in some cases. For
example, BaO is predicted as the Ba source for synthesizing
Ca7.5Ba1.5Bi(VO4)7, while BaCO3 is used in the reported synthesis
(57). Given the slight difference between BaO and BaCO3, BaOmay
actually be suitable.

Besides the prediction of precursors, the similarity-based recom-
mendation framework is a potential step toward general synthesis
prediction. The same strategy can be extended to the recommenda-
tion of more synthesis variables, such as operations, device setups,
and experimental conditions, by adding corresponding prediction
tasks to the downstream part of the multitask network (Fig. 3) for
similarity measurement. For example, we may infer that reduced at-
mosphere is necessary for synthesizing Na3TiV(PO4)3 (42) because
it is used in the synthesis of a similar material Na3V2(PO4)3 (43).
Moreover, synthesis constraints such as the type of synthesis
method, temperature, morphology of the target material, particle
size, and cost can be added as conditions of synthesis prediction.
For example, we may integrate our effort of synthesis temperature
prediction to prioritize the predicted precursors within expected
temperature regime. Our automated algorithm, mimicking
human design process for the synthesis of a new target, provides
a practical solution to query decades of heuristic synthesis data in
recommendation engines and autonomous laboratories.

MATERIALS AND METHODS
Representation learning for similarity of materials
The neural network consists of an encoder part for encoding target
materials and a task part for predicting variables related to precur-
sor selection. The encoder part f is a three-layer fully connected sub-
model transforming the composition of the target material x into a
32-dimensional target vector u = f(x). The input composition is an
array with 83 units showing the fraction of each element. The
reduced dimension of the encoded target vector is inspired by the
bottleneck architecture of autoencoders (58). By limiting the di-
mension of the encoded vector, the network is forced to learn a
more compact and efficient representation of the input data,
which is more appropriate for the precursor selection-related down-
stream tasks (59). The task part uses different network architectures
for different tasks of prediction, including precursor completion
and composition recovery in this work. The MPC task replaces

part of the precursors with a placeholder "[MASK]" (21) at
random and uses the remaining precursors as a condition to
predict the complete precursor set for the target material, which
is formulated as a multilabel classification problem (60). An atten-
tion block gproj (61) is used to aggregate the target vector and the
vectors for conditional precursors as a projected vector v = gproj(u;
p1, p2,…) with dimensionality of 32. Then, v is passed to the precur-
sor classification layer represented by a 417 × 32 matrix P, of which
each row is the 32-dimensional vector representation of a potential-
ly used precursor pi. To avoid having too many neural network
weights to learn, the precursor completion task only considers
417 precursors used in at least five reactions in the knowledge
base. The probability to use each precursor is indicated by
sigmoidðp`

i vÞ, allowing nonexclusive prediction of multiple precur-
sors (60). Here, v acts as a probe corresponding to the target mate-
rial projected in the precursor space and is used to search for pi’s
with similar vector representations via a dot product. The condi-
tional precursors input to gproj share the same trainable vector rep-
resentations as pi’s. Circle loss (62) is used because of its benefits in
capturing the dependency between different labels in multilabel
classification and deep feature learning. The composition recovery
task is a two-layer fully connected submodel decoding back to the
chemical composition x from the target vector u, similar to the
mechanism of autoencoders (58, 63). Mean squared error loss is
used because it is the most popular for regression. More tasks pre-
dicting other synthesis variables such as operations and conditions
can be appended in a similar fashion. To combine the loss functions
in this multitask neural network, an adaptive loss (64) is used to au-
tomatically weigh different loss by considering the homoscedastic
uncertainty of each task.

Baseline models
Most frequent
This baseline model ranks precursor sets based on an empirical
joint probability without considering the dependency of precursors
(Fig. 2B). Assuming that the choices of precursors are independent
of each other, the joint probability of selecting a specific set of pre-
cursors can be estimated as the product of their marginal probabil-
ities. For each metal/metalloid element, different precursors can be
used as the source. The marginal probability to use a precursor is
estimated as the relative frequency of using that precursor over all
precursors contributing the same metal/metalloid element. For
example, the precursor set ranked in first place is always the com-
bination of common precursors for eachmetal/metalloid element in
the target material, which is also typically the first attempt in the lab.
Magpie encoding
This baseline model uses the same recommendation strategy as
Fig. 1, except that the similarity is calculated usingMagpie encoding
(26, 27). The composition of each target material is converted into a
vector consisting of 132 statistical quantities such as the average and
standard deviation of various elemental properties. The cosine sim-
ilarity is used, as shown in Eq. 1. When the precursors from the ref-
erence target material cannot cover all elements of the novel target,
the common precursors for the missing elements are supplemented
because MPC (Fig. 3B) is only trained for PrecursorSelector
encoding.
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FastText encoding
Similar to the baseline ofMagpie encoding, this baseline model uses
the same recommendation strategy as Fig. 1, except that the similar-
ity is calculated using FastText encoding (17). The formula of each
target material is converted into a 100-dimensional vector using the
FastText model trained with materials science papers (17). The total
number of target materials tested in this baseline model is 1985
instead of 2654 because some n-grams such as certain float
numbers corresponding to the amount of elements are not in the
vocabulary.
Raw composition
Similar to the baseline ofMagpie encoding, this baseline model uses
the same recommendation strategy as Fig. 1, except that the similar-
ity is calculated using the cosine similarity of raw material compo-
sition. The formula of each target material is converted into an 83-
dimensional vector corresponding to the fraction of each element.

Data preparation
In total, 33,343 inorganic solid-state synthesis recipes extracted
from 24,304 materials science papers (11) were used in this work.
Because some material strings (e.g., Ba1−xSrxTiO3) extracted from
the literature contain variables corresponding to different
amounts of elements, we substituted these variables with their
values from the text to ensure that a material in any reaction only
corresponds to one composition, resulting in 49,924 expanded
reactions and 28,598 target materials. An ideal test for generalizabil-
ity and applicability of this method would be to synthesize many
entirely new materials using recommended precursors. In the
absence of performing extensive new synthesis experiments, we de-
signed a robust test to simulate precursor recommendation for
target materials that are new to the trained model. We split the
data based on the year of publication, i.e., training set (or knowledge
base) for reactions published by 2014, validation set for reactions in
2015 and 2016, and test set for reactions from 2017 to 2020. In
addition, to avoid data leakage where the synthesis of the same
material can be reported again in a more recent year, we placed re-
actions for target materials with the same prototype formula in the
same dataset as the earliest record. The prototype formula was
defined as the formula corresponding to a family of materials in-
cluding (i) the formula itself, (iii) formulas derived from a small
amount (<0.3) of substitution (e.g., Ca0.2La0.8MnO3 for prototype
formula LaMnO3), and (iii) formulas able to be coarse-grained by
rounding the amount of elements to one decimal place (e.g.,
Ba1.001La0.004TiO3 for the prototype formula BaTiO3). In the end,
the number of reactions in the training/validation/test set was
44,736/2254/2934 from 29,900/1451/1992 original recipes. The
number of target materials in the training/validation/test set was
24,304/1910/2654, respectively.
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