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1. Introduction
The state of California is home to nearly 40 million people (U.S. Census Bureau, 2019) and is the leading 
United States (US) state in agriculture, accounting for over 13% of the country's total agricultural value (U.S. 
Department of Agriculture, 2020). Precipitation in the form of rain and high-elevation snow during the 
cold season (November–March) accounts for more than two-thirds of the annual precipitation (e.g., Cooper 
et al., 2018; Frankson et al., 2017; Swain et al., 2016). The precipitation that gets stored in mountain snow-
pack and engineered reservoirs during the cold season is a water resource for the entire water year (Guirguis 
et al., 2019; Knowles et al., 2006; Lund et al., 2018).

California (CA) experienced a historic drought over 2011–2017, with the 2011–2014 three-winter average 
precipitation for California recorded as the second driest over 100 years (Figure 1 of Seager et al., 2015). A 
strong El Niño in 2015/16 did not bring the expected precipitation over the state (e.g., S.-K. Lee et al., 2018; 
Paek et al., 2017; Singh et al., 2018). The peak of the drought over 2012/13–2015/16 was caused by the un-
usual multi-year persistence of ridging conditions in the eastern North Pacific, the so-called “Ridiculously 
Resilient Ridge” (Swain et  al.,  2014), that greatly interrupted the westward propagation of mid-latitude 
storms and atmospheric rivers over the west coast of the US (Swain et al., 2016). Several hypotheses have 
been made to explain the persistence of ridging conditions such as observed over 2012/13–2015/16: tropical 
Pacific sea surface temperature (SST) variability (Hartmann, 2015; M.-Y. Lee et al., 2015; Seager & Hender-
son, 2016; Seager et al., 2015; Watson et al., 2016), tropical western Pacific atmospheric variability (Watson 
et al., 2016), western North Pacific SST and convective activity (Wang et al., 2014), Arctic sea ice variability 
(Cohen et al., 2017; M.-Y. Lee et al., 2015; Swain et al., 2017), Arctic Oscillation (AO; Singh et al., 2018), or 
the wave patterns that are intrinsic to mid-latitude atmospheric dynamics (Teng & Branstator, 2017). Al-
though these different drivers may all have played a role in driving the ridge, internal variability was likely 
a large factor, too (e.g., Seager et al., 2015; Watson et al., 2016).

Abstract California experienced a sharp transition from wet to historically dry conditions during 
the 2012/13 winter. Such transitions in the precipitation regime have strong consequences for water 
management, but predicting them at the seasonal time scale remains very challenging as little is known 
about what drives them. The 2012/13 winter was characterized by a neutral El Niño Southern Oscillation, 
strong Madden-Julian Oscillation (MJO) activity, and sudden stratospheric warming. This study examines 
the potential influence of these different drivers in atmospheric global climate model experiments 
with prescribed sea surface temperature (SST) and sea ice concentration and constrained tropical and/
or Arctic variability. Our model results are compared to reforecasts from the North American Multi-
Model Ensemble (NMME) and Subseasonal Experiment (SubX)/Subseasonal to Seasonal (S2S) projects 
to determine which important processes may have been missed by the seasonal prediction systems. Our 
simulations suggest that the tropical warm-west, cool-east SST anomaly played an active role in the wet 
conditions of November–December 2012 through a typical tropical-extratropical teleconnection. The 
tropical SST anomalies were not accurately predicted by the NMME models, and none of them predicted 
the wet anomalies in November–December. In contrast, the sudden transition toward dry conditions 
in January is found to be independent of tropical SST variability, and rather influenced by strong MJO 
activity over the western Pacific. The SubX/S2S models with a better MJO prediction tend to predict the 
dry conditions in January better. Our study highlights how intraseasonal processes superimpose on more 
persistent seasonal anomalies and induce regime shifts such as the wet-to-dry transition of the 2012/13 
winter.
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Although ridging conditions prevailed during the California drought period, each year was characterized 
by specific climatic conditions that played a role in forcing the ridge, with different physical mechanisms. 
Using Atmospheric General Circulation Models (AGCMs) simulations, Seager et al. (2015) show the role 
of La Niña SST anomalies on the drought of 2011/12 winter, consistent with the ENSO-California precip-
itation relationship (e.g., Ropelewski & Halpert, 1986; Seager & Hoerling, 2014). The ENSO-CA rainfall 
teleconnection is more consistent under La Niña than El Niño conditions. The 2015/16 winter is a good 
example, since high-pressure anomalies prevailed over the southwest US, preventing much-needed atmos-
pheric rivers and precipitation from hitting the region, despite one of the strongest El Niño on record (e.g., 
S.-K. Lee et al., 2018; Paek et al., 2017; Singh et al., 2018). For the 2012/13 and 2013/14 winters, Seager 
et al. (2015) found an influence for the warm-west, cool-east tropical Pacific SST pattern that was dominant, 
with neutral ENSO conditions. This is also supported by Hartmann (2015), M.-Y. Lee et al. (2015), Seager 
and Henderson (2016), Wang et al. (2014), and Watson et al. (2016) for the case of the 2013/14 winter. For 
the 2012/13 winter, the SST variability cannot fully explain the persistence of dry conditions (Seager & Hen-
derson, 2016; Seager et al., 2015; Wang & Schubert, 2014).

Most studies have focused on the role of SST/sea ice boundary conditions, the main source of predictability 
for seasonal forecasting (Cohen et  al.,  2017; Hartmann,  2015; M.-Y. Lee et  al.,  2015; Seager & Hender-
son, 2016; Seager et al., 2015; Swain et al., 2017). However, the influence of tropical and high-latitude vari-
ability on the midlatitudes is not limited to SST/sea ice variability. Other atmospheric variabilities, such as 
the Madden-Julian oscillation (MJO; Madden & Julian, 1971) in the tropics, or polar stratosphere/annular 
mode variability in the Arctic, have the potential to drive the mid-latitude atmospheric dynamics through 
remote teleconnections. The MJO represents tropical convective activity, propagating eastward from the 
Indian Ocean to the central Pacific Ocean with a period of 30–60 days. The upper-level divergence associ-
ated with MJO convection is a source of Rossby waves that propagate into the extratropics (e.g., Hoskins & 
Karoly, 1981; Sardeshmukh & Hoskins, 1988). The MJO leads to a wave-induced trough or ridge in the east-
ern North Pacific depending on the phase of MJO activity, affecting weather in the western US, including 
California. For instance, MJO phases 4 and 5 with enhanced convection in the western Pacific promote dry 
conditions over California (Becker et al., 2011; Mo & Higgins, 1998). As mentioned in Wang et al. (2017), 
subseasonal variability, such as MJO, can become a predictable source of otherwise unpredictable atmos-
pheric noise at the seasonal time scale. In addition to the tropical variability, Singh et al. (2018) showed 
that an accurate prediction of high-latitude atmospheric circulation anomalies in a seasonal forecast model 
experiment results in a successful simulation of CA rainfall difference between the 2015/16 and 2016/17 
winters.

In the present study, we conduct a case study of the 2012/13 winter that we chose to focus on for the fol-
lowing reasons. The 2012/13 winter is an interesting case because California experienced a transition from 
relatively wet conditions in November/December to dry conditions for the rest of the season (black line 
in Figure 1a, Swain et al., 2014). The January to March (JFM) precipitation average in 2013 is the third 
driest JFM average over 1979–2019 (Figure  1c), while the 2012 October to December (OND) average is 
slightly above average (Figure 1b). According to Wang and Schubert  (2014), the 2013 January–February 
average of precipitation is the driest over 1895–2014. Although the lack of rain in the 2012/13 winter was 
as pronounced as in the 2013/14 winter, the 2012/13 winter has been less studied than the 2013/14 and 
2015/16 winters. Such wet-to-dry transitions in the middle of winter are particularly challenging for de-
cision-makers who need to plan water usage for the rest of the rain season (Wang & Schubert, 2014). The 
seasonal prediction models failed to predict the wet-to-dry transition that occurred in January 2013. The CA 
precipitation forecast by each model from the North American Multi-Model Ensemble (NMME; Kirtman 
et al., 2014) is plotted in Figure 1a. Even at a 1.5-month lead time, the moderately wet conditions in Novem-
ber 2012 were poorly predicted by the models (colored lines in Figure 1a), and none of the models predicted 
the wet-to-dry transition. This is consistent with limited skill in predicting precipitation over the western 
US (e.g., Becker et al., 2020; Kumar & Chen, 2020; Slater et al., 2019), and it underscores the challenge of 
predicting regime shifts in CA precipitation months in advance. The upgrade or replacement of NMME 
models did not improve CA precipitation seasonal forecasting (Becker et al., 2020). Kumar and Chen (2020) 
point out that the low prediction skill is likely due to a low signal-to-noise ratio over California. The 2012/13 
winter is also interesting because it was characterized by neutral ENSO conditions in the tropical Pacific, a 
strong MJO activity, and a negative phase of the AO associated with a sudden stratospheric warming (SSW; 
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Baldwin et al., 2021) that occurred in early January 2013 (Xu & San Liang, 2017). Therefore, this winter is 
an interesting case to examine the role of MJO and high-latitude variability on CA rainfall and its wet-to-dry 
transition.

In this study, we explore the potential role of tropical and high-latitude variability using a set of regular 
AMIP simulations and “AMIP-plus” simulations that are partially constrained to observations within cer-
tain regions of the model domain. This allows us to assess potential predictability associated with not only 
SST/sea ice concentration (SIC) variability, but also “full” tropical and high-latitude variability. A nudging 
technique is used to impose tropical and high-latitude variability in an AGCM. This is an approach similar 
to Watson et al. (2016), who compared the influence of tropical western Pacific SST with the influence of 
tropical western Pacific atmospheric variability, for 2013/14 winter, by relaxing the atmosphere in the trop-
ical western Pacific.

Using a set of AMIP/AMIP-plus experiments, we aim to reveal drivers of the 2012/13 winter variability and 
in particular of the wet-to-dry shift in rainfall conditions. We put our results in perspective with season-
al forecasts from the NMME and subseasonal forecasts from the Subseasonal Experiment (SubX; Pegion 
et al., 2019) and Subseasonal to Seasonal (S2S; Vitart et al., 2017) prediction projects to highlight potential 
reasons for the failure of S2S prediction models in predicting seasonal CA rainfall in 2012/13. Although we 

Figure 1. (a) Time series of California (CA) precipitation anomalies from October 2012 to March 2013. The black line 
denotes the observations, and each colored line refers to a North American Multi-Model Ensemble (NMME) model 
initialized in October. (b)–(c) Histograms of (b) October to December (OND)-mean and (c) January to March (JFM)-
mean CA precipitation anomalies for 1979–2019. Red asterisks denote the OND 2012 and JFM 2013, respectively. The 
anomalies are obtained by subtracting the 1981–2010 climatology.
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analyze a single year in this study, our objective is to reveal potential physical mechanisms and model limi-
tations that may be of more general interest for seasonal forecasting. The plan of the study is as follows. The 
model experimental design is described in Section 2, along with the seasonal and subseasonal forecast data 
that we used. Section 3 explores physical mechanisms for the 2012/13 wet-to-dry transition using the AMIP 
and AMIP-plus experiments. In Section 4, we highlight potential reasons for the failure of seasonal forecast 
systems to predict the transition. Section 5 provides a summary and discussion of the results.

2. Data and Model
2.1. Observational Data

Daily and monthly averaged 200, 500, and 1000-hPa geopotential height for the 1980–2016 period is ob-
tained from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2; 
Gelaro et al., 2017). We use this field from reanalysis data to diagnose the atmospheric circulation during 
the 2012/13 winter. The Climate Prediction Center (CPC) US Unified Precipitation data are provided by the 
NOAA/OAR/ESRL PSL and are used to characterize the CA precipitation. We also use the precipitation 
data from the Global Precipitation Climatology Project (Adler et al., 2003) to ensure results are robust in an-
other data set. We found similar results when using GPCP and CPC, so only results using the CPC data are 
shown in the study. The Hadley Center monthly SST data set version 1 (HadISST; Rayner et al., 2003) is used 
to characterize SST variability. Finally, the National Oceanic and Atmospheric Administration (NOAA) 
daily Outgoing Longwave Radiation (OLR; Liebmann & Smith, 1996) data are used to diagnose tropical 
convective activity. For all fields, daily and monthly anomalies are calculated by removing the 1981–2010 
climatology.

2.2. Model and Experimental Design

All AGCM experiments are performed using the Specified Chemistry Whole Atmosphere Community Cli-
mate Model, version 4 (SC-WACCM4; Smith et al., 2014). SC-WACCM4 is a high-top atmospheric model 
with 66 vertical levels up to 5.1 × 10−6 hPa. The horizontal resolution is 1.9° latitude and 2.5° longitude. 
Table 1 describes the three main AGCM experiments used in this study. Each experiment consists of 10 
ensemble members that span the 1980–2016 period. Each ensemble is generated by adding a tiny temper-
ature perturbation in the atmospheric initial conditions. They include observed external forcings (green-
house gases, aerosols, and solar radiation) and a prescribed Quasi-Biennial Oscillation (QBO) that follows 
observed radiosonde data over 1980–2016. Greenhouse gas and aerosol concentrations are set to the fixed 
values from the year 2000. Here is a description of the experiments:

1.  AMIP is a traditional AMIP experiment with time-varying SST and SIC. Monthly mean observed SST/
SIC used as boundary conditions come from Hurrell et al. (2008). AMIP highlights the influence of ob-
served SST/SIC anomalies on climate variability of the 1980–2016 period.

Two additional perturbation experiments (i.e., AMIP-plus experiments) are conducted to examine other 
potential drivers from the tropics and from the high latitudes.

 2.  AMIP_TROP is an experiment in which tropical variability is controlled through relaxation (or nudg-
ing) of zonal wind, meridional wind, temperature, and surface pressure, at every time step of the model. 
Between 30°S and 22°N, these fields are nudged toward a target state that represents 3-hourly anoma-
lies of the MERRA-2 reanalyses. Since reanalyses cannot be directly nudged in the model (that would 

Experiment name Descriptions

AMIP 37-year experiment prescribed observed SST and SIC over the 1980–2016 period

AMIP_TROP Same as AMIP experiment but with additionally nudged tropical variability (30°S–22°N, <150 hPa)

AMIP_TRHL Same as AMIP experiment but with additionally nudged tropical (30°S–22°N, <150 hPa) and high-
latitude variability (>65°N, <300 hPa)

Table 1 
Descriptions of AMIP and AMIP-Plus Experiments Used in This Study
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create inconsistencies due to different mean states in the model and the real world), the daily model 
climatology is interpolated into 3-hourly data, and then MERRA-2 anomalies are superimposed on the 
model climatology. The nudging is imposed from the surface up to 150 hPa to efficiently constrain the 
tropical troposphere toward observed variability. By doing so, we prescribe modes of tropical variability 
over various time scales, most notably the MJO. Its impact on mid-latitudes, more specifically on CA 
precipitation, can then be assessed.

 3.  AMIP_TRHL includes additional nudging of tropospheric high-latitude variability, north of 65°N, from 
the surface up to 300 hPa. It allows us to explore the potential role of high-latitude processes on the 
2012/13 CA rainfall variability, including the persistence of negative AO conditions during the 2012/13 
winter.

We also performed AMIP_HL experiments (Table  S1), similar to AMIP_TRHL but with nudging in the 
high-latitudes only. It is briefly mentioned in the paper to discuss the impact of high-latitude variability in 
isolation. Ensemble averages of these experiments partly remove the influence of internal variability and 
isolate the forced response to the imposed forcing. Like for observations, the daily and monthly anomalies 
are defined by subtracting the 1981–2010 climatology.

Figure 2a shows the spatial distribution of the mean observed SST anomaly in December–February (DJF) 
2012/13. Using the AMIP experiment, we can explore the role of the observed global SST/SIC anomalies on 
the atmospheric circulation during the 2012/13 winter (Figure 2b). The largest SST anomalies were found 
in the North Pacific, with warm anomalies in the central North Pacific and cold anomalies to the west and 
east. Tropical SST anomalies were overall weak, with moderate warm anomalies in the South China Sea 
and the eastern Indian Ocean and moderate cool anomalies in the eastern tropical Pacific (they were too 
weak to be classified as La Niña). These weak tropical SST anomalies were suggested as drivers of dry/ridge 
conditions over the western US in 2012/13 winter (Seager et al., 2015). Slight differences between observed 
SST and AMIP skin temperature (Figures 2a and 2b) are due to the use of a different SST data set in the 
AMIP runs, that is, the merged product of HadISST and NOAA weekly optimum interpolation SST analysis 
of Hurrell et al. (2008).

The observed MJO activity during the 2012/13 winter is shown in Figure 2c, using a Hovmӧller diagram 
of equatorially (15°S–15°N) averaged and 20–100 days filtered NOAA OLR and MERRA-2 850-hPa zonal 
wind anomalies. Strong MJO activity is visible from the end of December to the end of February, consistent 
with about 1.5 of the DJF-mean OLR-based MJO index (OMI; Kiladis et al., 2014). The enhanced convec-
tion anomalies develop in the Indian Ocean and propagate in the central Pacific to the end of January, and 
redevelop in the Indian Ocean (Figure 2c). The lower level westerly (easterly) wind to the west (east) of 
enhanced convection shows a systematic change with the convective activity. Overall, the MJO activity is 
efficiently prescribed when tropical variability is nudged in the model (Figure 2d). The simulated OLR is 
not exactly equal to the observed OLR because OLR is defined at the top of the atmosphere, outside of the 
nudging domain. However, the OLR and MJO variability is very close to observations, so that its related 
teleconnection and effects on CA precipitation can be examined in the AMIP-plus simulations (Figure 2d). 
Note that the MJO is not well simulated by the model so it is almost absent in AMIP (not shown).

AMIP_TRHL is forced in the tropics as well as in the high-latitude Arctic troposphere (65°–90°N, below 
300 hPa; blue circle in Figure 2f). This experiment allows us to isolate the potential influence of high-lat-
itude variability on the wet-to-dry transition. A negative AO index persisted from October 2012 to March 
2013 with −1.36 of average value (estimated from the CPC monthly AO index). As shown in Figures 2e 
and 2f, the anomalous anticyclonic circulation of the negative AO in high-latitudes is efficiently prescribed 
in AMIP_TRHL. Of course, the AO is not strictly a high-latitude process, and it is the result of eddy-mean 
flow interaction in midlatitudes. However, by nudging the high-latitudes, we constrain the location of the 
midlatitude flow and jet streams on their poleward flank, that is, we partially prescribe AO variability in the 
models. The potential influence of other high-latitude processes, particularly the downward effect of SSW 
in the Arctic troposphere, is likely included by nudging the Arctic troposphere to reanalysis.
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2.3. Seasonal Prediction Models

Seasonal forecasts from the North America Multi-Model Ensemble (NMME; Kirtman et al., 2014) are used 
to investigate how the 2012/13 wet-to-dry transition was predicted and why models failed to predict it. Ta-
ble 2 presents the nine NMME models used in this study. The selection of models is made based on the avail-
ability of the SST, 200-hPa geopotential height (Z200), and precipitation fields in the International Research 
Institute (IRI) archive for the NMME data set. The NMME model forecasts analyzed here are a combination 
of both hindcasts and real-time predictions. The forecasts are initialized every month, we use the forecasts 

Figure 2. (a) Sea surface temperature (SST) anomalies averaged over December–February (DJF) of 2012/13 in 
observations. (b) Same as (a) but for skin temperature (TS) anomalies in AMIP. (c and d) Hovmӧller diagrams of 
20–100 days filtered Outgoing Longwave Radiation (OLR) anomalies (shaded) and 850-hPa zonal wind anomalies 
(contoured at ±3, ±2, and ±1 m s−1) from December 1 to February 28 in (c) observations and (d) AMIP_TROP. The 
OLR and zonal wind anomalies averaged over the tropics (15°S–15°N) are shown. (e and f) 1000-hPa geopotential 
height (Z1000) anomalies averaged over DJF of 2012/13 in (e) Modern-Era Retrospective Analysis for Research and 
Applications, Version 2 (MERRA-2) and (f) AMIP_TRHL; the blue circle at 65°N denotes the edge of the nudging 
domain in AMIP_TRHL.
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initialized in October and November to verify whether the rainfall transition of the 2012/13 winter was pre-
dicted by the models. The NMME models have at least 8.5 months of forecast lead time (in the case of the 
two NASA models), and up to 11.5 months forecast lead time. The forecast ensemble means and monthly 
means are analyzed in this study. The monthly climatology of each model is calculated by averaging all the 
forecasts initialized on a given month over the common period of 1982–2010. As the monthly climatology 
is subtracted from the raw data to compute the anomalies, the model bias is removed. This is an important 
step to improve the skill of the NMME models (Barnston et al., 2015).

2.4. Subseasonal Prediction Models

To examine the impact of the subseasonal variability, reforecasts from the SubX (Pegion et al., 2019) and 
S2S prediction (Vitart et al., 2017) projects are used, instead of the NMME models. The daily data of NMME 
models are mostly provided until 2012, and therefore the analysis for 2012/13 winter is not available. Table 3 
provides information about the 12 subseasonal prediction models considered in this study (two versions of 
NCAR-CESM1 with differing model levels in the stratosphere, five SubX, and five S2S models), including 
the initialization interval, ensemble size, horizontal resolution, and reforecast period. The model selection 
is based on the availability of data for 2012/13 winter. Vitart et al. (2017) and Pegion et al. (2019) provide 
more information on each S2S and SubX model's configurations, respectively. All models include a mini-
mum of one forecast per week, with a reforecast length between 32 and 62 days (Table 3). The climatology 

Model Forecast period Forecast length (month) Ensemble size Model resolution

ECCC-CanCM4i 1981-present 0.5–11.5 10 T63L31

ECCC-GEM-NEMO 1981-present 0.5–11.5 10 about 1.4° × 1.4° L79

NCAR-CCSM3 1982–2018 0.5–11.5 6 T85L26

NCAR-CCSM4 1982-present 0.5–11.5 10 0.9° × 1.25° L26

GFDL-CM2p1-aer04 1982-present 0.5–11.5 10 2° × 2.5° L24

GFDL-CM2p5-FLOR-A06 1980-present 0.5–11.5 12 C18L32

GFDL-CM2p5-FLOR-B01 1980-present 0.5–11.5 12 C18L32

NASA-GEOSS2S 1981-present 0.5–8.5 4 0.5° × 0.5° L72

NASA-GMAO-GEOS5 1981–2018 0.5–8.5 11 1° × 1.25° L72

Table 2 
Descriptions of the North American Multi-Model Ensemble (NMME) Models Used in This Study

Model
Reforecast 

period
Reforecast 
frequency

Reforecast length 
(days) Ensemble size Model resolution

NCAR-30LCESM1 1999–2015 1/week 45 10 0.9° × 1.25° L30

NCAR-46LCESM1 1999–2015 1/week 45 10 0.9° × 1.25° L46

NASA-GEOS 1999–2015 Every 5 days 45 4 0.5° × 0.5° L72

RSMAS-CCSM4 1999–2016 1/week 45 3 0.9° × 1.25° L26

ESRL-FIM 1999–2016 1/week 32 4 About 60 km L64

Navy-ESPC 1999–2016 4/week 45 4 T359 L50

NCEP-GEFS 1999–2016 1/week 35 11 T574/382 L64

BoM-POAMA 1981–2013 6/month 62 33 T47 L17

CMA-BCC 2004–2018 2/week 60 4 T266 L56

ECMWF-Cy41r1 1996–2013 2/week 46 11 T639/319 L91

ECCC-GEPS 1998–2017 1/week 32 4 0.35° × 0.35° L45

UKMO-GloSea5 1993–2015 1/week 60 3 N216 L85

Table 3 
Descriptions of the Subseasonal Experiment (SubX) and Subseasonal to Seasonal (S2S) Models Used in This Study
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of the SubX and the two CESM1 models, which is computed for 1999–2015 and provided in the IRI archive, 
is used to calculate the anomalies. Since the climatology of the S2S models is not provided, it is computed 
by averaging the reforecasts initialized on the same date over the entire period of analysis, in line with pre-
vious studies (e.g., Lim et al., 2018; Vitart et al., 2017). The ensemble size of the models ranges from 3 (i.e., 
RSMAS-CCSM4, UKMO-GloSea5) to 33 (i.e., BoM-POAMA) ensemble members. In this study, the analyses 
are based on the ensemble mean of each model's reforecasts.

3. Results From the AMIP and AMIP-Plus Experiments
To reveal potential mechanisms for the wet-to-dry transition of the 2012/13 winter, this section examines 
the precipitation and circulation response to the imposed forcings in the three AMIP experiments (Table 1). 
Figure 3 shows the 500-hPa geopotential height (Z500) and precipitation anomalies in MERRA-2 and the 
three model experiments in December 2012, when a trough was present in the eastern North Pacific (Fig-
ure 3a) that brought precipitation over California (Figure 3b). Note that the trough was already present in 
November (Figure S1a). Figure 4 shows January anomalies, when persisting ridging conditions in the east-
ern North Pacific (Figure 4a) prevented atmospheric rivers from bringing precipitation over the southwest 
US (Figure 4b). Figure 5 summarizes the evolution of monthly mean CA precipitation anomalies in obser-
vations (in red) and in the model experiments. The eastern North Pacific (ENP; 150°–110°W, 30°–55°N) 
Z500, which is a proxy for the CA precipitation, is also examined in Figure 5b. The correlation between 
DJF-mean CA precipitation and DJF-mean ENP Z500 in MERRA-2 is −0.74 over 1979–2017. In MERRA-2, 
the Z500 anomalies over the North Pacific change from a trough in November–December to a ridge in Jan-
uary–March (Figures 3a, 4a, and 5b). This is consistent with the wet-to-dry transition shown in Figure 1a 
and also visible in Figure 5a.

In December, a tropical-extratropical teleconnection pattern is present in the North Pacific with a trough/
ridge/trough wave train of Z500 anomalies from East Asia to eastern North Pacific/western North America 
(Figure 3a). This pattern has a barotropic structure, which is visible in Z200 anomalies (not shown). Let's 
now examine the model experiments. AMIP, AMIP_TROP, and AMIP_TRHL simulate a certain degree 
of the observed trough/ridge/trough wave train that propagates over the North Pacific in December (Fig-
ures 3c, 3e, and 3g). In particular, the North Pacific ridge and the ENP trough appear in all three simulations 
and accompany the anomalously wet conditions in the western US, even though their location and ampli-
tude are slightly different between the simulations (Figures 3d, 3f, and 3h).

To quantitatively measure the agreement between model experiments and observations, the spatial correla-
tions of Z500 anomalies between MERRA-2 and each experiment are given in Table 4. The spatial correlation 
is calculated over the North Pacific (120°E−120°W, 30°–55°N) to encompass the tropical-extratropical wave 
train, outside the nudging area (Table 1). In December, the spatial correlations in AMIP, AMIP_TROP, and 
AMIP_TRHL are very similar, with respective values of 0.81, 0.79, and 0.83. The difference in ENP through 
anomalies between AMIP_TROP, AMIP_TRHL, and AMIP is not statistically significant (Figure S4). This 
result reveals that AMIP already does a good job in reproducing the observed anomalies (Figures 3c and 3d, 
Table 4), indicating that SST variability played a role in the ENP trough that brought precipitation over Cal-
ifornia in November–December 2012. This further suggests that November–December 2012 was a window 
of opportunity for NMME seasonal forecasts that mostly rely on SST variability, unlike subseasonal fore-
casts. Of course, this is provided that SST anomalies are well predicted in the NMME models, a question we 
will discuss in Section 4.1.

A logical question to ask is which SST anomalies were most important in driving the wave train and pro-
moting the wave train pattern. This is difficult to answer without further dedicated experiments, but it is 
likely that the tropical SST pattern of warm SST anomalies in the South China Sea (above 0.6 K) and weak 
cool anomalies in the eastern Pacific (Figure 2a) were influential (Barsugli & Sardeshmukh, 2002; Li & 
Forest, 2014; Newman & Sardeshmukh, 1998). The midlatitude anomalies (cold/warm/cold anomalies col-
located with the trough/ridge/trough wave train in the North Pacific) were likely driven by the wave train 
pattern rather than the other way around (Lau & Nath, 1994).

Unlike for November–December, little of the midlatitude wave train in January–March 2013 can be ex-
plained by SST variability (Figures 4, S2, and S3). AMIP captures the dry/ridge anomalies in January–March 
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2013, but with weak amplitude and a large ensemble spread (see also yellow bars in Figure 5). This is con-
sistent with Figure 2e of Wang and Schubert (2014) also found dry conditions in their simulations with a 
large ensemble spread. Although AMIP exhibits a weak ridge anomaly over the eastern North Pacific and 
a weak dry anomaly over the western US in January, the ridge is shifted westward compared to MERRA-2 
reanalysis (Figures 4a and 4c). The low spatial correlation (R = 0.44 in Table 4) supports that the observed 
circulation pattern is not well represented in AMIP. In February and March, the performance further de-
grades in AMIP, and the spatial correlation drops to −0.03 (Table 4). In contrast, AMIP_TROP captures 
the amplitude and position of the ENP ridge (Figure 4e; see also Figures S2e and S3e) and associated pre-
cipitation deficit (Figures 4f, S2f, and S3f), highlighting a role for tropical variability in the wet/trough to 
dry/ridge transition. The ENP ridge in AMIP_TROP is significantly different and larger than that in AMIP 
(Figure S4b). The spatial distribution of Z500 anomalies over the North Pacific becomes closer to MERRA-2 

Figure 3. (a) 500-hPa geopotential height anomalies from Modern-Era Retrospective Analysis for Research and 
Applications, Version 2 (MERRA-2) reanalysis and (b) precipitation anomalies from CPC in December 2012. (c and 
d) Same with (a and b) but in AMIP simulation. Different from (a and b), the statistically significant values at the 95% 
confidence level are marked with white closed circles in (c and d). (e and f) Same as (c and d) but in AMIP_TROP 
simulation. (g and h) Same as (c and d) but in AMIP_TRHL simulation.
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(R = 0.70 in Table 4). A large positive anomaly extends from the Bering Sea to the eastern North Pacific, and 
a higher Z500 is found in the Arctic (Figure 4e). The structure and amplitude of the ridge are more accu-
rately represented in AMIP_TRHL (Figures 4g and 5b). It looks like a cut-off high being stretched out from 
the Arctic. However, the ridge is not significantly different from that in AMIP_TROP, indicating that the 
high-latitude variability only has a secondary role in the transition (Figure S4d). When only high-latitude 
variability is nudged in AMIP_HL, the ENP ridge is not of larger amplitude and is shifted northward than 
that in AMIP_TROP (Figures S4f and S5c). The cyclonic circulation anomaly over the North Pacific trans-
ports water vapor over California, promoting weak wet conditions (Figure S5d). Altogether, these findings 
suggest that tropical SST and atmospheric variability played a significant role in the wet-to-dry transition 
of CA precipitation of the 2012/13 winter. High-latitude atmospheric variability by itself does not bring any 
predictability, but when coupled with a good representation of the tropics, it refines the shape of the tropi-
cal-extratropical wave trains and provides some additional skill. Interestingly, it also generally reduces the 
spread in the model response, an important factor for a successful forecast.

Figure 4. Same as Figure 3 but for January 2013.
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We further explore the influence of the tropics by investigating the im-
pact of the MJO on the dry/ridge conditions of January 2013 in AMIP_
TROP. As mentioned in Section 2, the MJO was particularly active during 
the 2012/13 winter (Figure 2c). Under phases 4 and 5 of the MJO, dry 
conditions tend to dominate over California due to MJO teleconnection 
in the extratropics (Becker et al., 2011; Mo & Higgins, 1998). Based on the 
OMI, strong MJO phases 4 and 5 dominated in early January, associat-
ed with enhanced convection in the western Pacific (Figure 2c). Tropical 
convection induces upper-level divergence anomalies that drive Rossby 
wave propagation from the tropics to the extratropics (e.g., Hoskins & 
Karoly, 1981; Sardeshmukh & Hoskins, 1988). Figure 6 reveals the large-
scale atmospheric anomalies that may have resulted from the MJO-re-
lated tropical perturbations in January 2013. It shows the observed and 
modeled Z200 and OLR anomalies, averaged from January 2 to January 
14, when the OMI was in MJO phases 4 and 5. The variables are filtered 
using a 20–100-day bandpass filter to isolate MJO-related variability. To 
account for the timing of Rossby wave propagation from the tropics into 
the extratropics, the 5-day and 10-day time-lagged responses of Z200 are 
also shown in Figures 6c–6f. The averaged value for January 7–19 cor-
responds to the 5-day lagged response, and the 10-day lagged response 
corresponds to the January 12–24 average.

AMIP_TROP exhibits a pattern of MJO teleconnection that closely re-
sembles observations. At lag 0, strong enhanced convection due to MJO 
phases 4 and 5 is visible in the western Pacific, both in observations and 
AMIP_TROP (dashed green contours in Figures 6a and 6b). It is associ-
ated with a Rossby wave train that propagates in the North Pacific and 
North America, with a smaller amplitude in AMIP_TROP but a similar 
spatial structure. At lag 5 and 10 days, the western North Pacific trough 
weakens, and a ridge emerges and intensifies over the eastern North Pa-
cific (Figures 6d and 6f), similar to MERRA-2 (Figures 6c and 6e). The 
ENP ridge is statistically significant in AMIP_TROP and AMIP_TRHL, 
whereas it is absent in AMIP (Figure S6). The daily time series of ENP 
Z500 in AMIP_TROP exhibits the trough-to-ridge transition as in obser-
vations (not shown). These results indicate that the wet-to-dry transition 
in AMIP_TROP does not arise from coincidence. The strong and persis-
tent MJO convection in the western Pacific was an active driver for the 
transition from wet/trough to dry/ridge conditions over California in ear-
ly 2013.

4. Results From Seasonal and Subseasonal Multi-
Model Ensemble System
4.1. On the Role of SST Anomalies Before the Transition

This section explores why the seasonal prediction models failed to predict 
the wet-to-dry transition (Figure 1a), based on the findings of Section 3. 
First, we examine the SST prediction for December 2012 in the NMME 
models (Table 2) since we find a role for SST anomalies in driving wet/
trough conditions in early winter in AMIP (Figure 3). Figures 7b and 7c 
show the multi-model ensemble-mean (MME) SST and Z200 anomalies 
of December 2012 simulated in nine NMME models, which are initial-
ized in October and November 2012. Each forecast thus represents a 
2.5-month and 1.5-month forecast lead time, respectively. For example, 
when the model is initialized on November 15, 2012 and the forecast is 

Figure 5. The observed and modeled monthly mean (a) California (CA) 
precipitation and (b) eastern North Pacific (ENP; 150°–110°W, 30°–55°N) 
Z500 anomalies from October 2012 to March 2013. The red closed circle 
indicates observations. The yellow, green, and blue open circles are the 
ensemble mean values in each month from AMIP, AMIP_TROP, and 
AMIP_TRHL, respectively. The error bar indicates a 95% confidence 
interval for each ensemble mean value.

Experiment name 2012.11 2012.12 2013.01 2013.02 2013.03

AMIP 0.91 0.81 0.44 0.40 −0.03

AMIP_TROP 0.94 0.79 0.70 0.10 0.43

AMIP_TRHL 0.79 0.83 0.80 0.80 0.86

Table 4 
Spatial Correlation of Z500 Anomalies Over the North Pacific 
(120°E−120°W, 30°–55°N) of the AMIP and AMIP-plus Experiments With 
Modern-Era Retrospective Analysis for Research and Applications, Version 
2 (MERRA-2) in Each Month
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run until the end of December, it is defined as a 1.5-month forecast lead-time (Kirtman et al., 2014). We 
show the MME of the nine NMME models to discuss the general skill of the NMME forecasts for this par-
ticular event.

Figure 7a shows the observed SST and Z200 anomalies in December 2012, with the tropical-extratropical 
wave train and trough in the ENP domain that has been discussed in Section 3. The NMME forecasts ini-
tialized in October and November fail to predict the ENP trough and instead predict a weakened Aleutian 
low and anticyclonic conditions in the ENP domain (Figures 7b, 7c, and S7b), resulting in a prediction of 
neutral or slightly dry conditions in December over California (Figures 1a and S7a). A closer look at individ-
ual model forecasts reveals that none of the nine NMME models predicted the ENP trough when initialized 
in October (Figures S7b and S8). All NMME models underestimate the warm SST anomaly in the South 
China Sea and rather exhibit warm SST anomalies in the central Indian Ocean and central or eastern Pacific 
Ocean. The spatial correlations between tropical Pacific SST anomalies in the model and observations are 
under 0.5. Thus, it is not surprising that these forecasts show no skill in predicting the tropical-extratropical 
teleconnection.

Although the general prediction skill of tropical SST is quite high, with anomaly correlations of 0.5 or 
higher even in 5-month lead forecasts (Becker et al., 2020), it does not show up in this specific year. Several 
reasons may explain the poor performance in predicting the 2012/13 tropical SST. First, the SST anomalies 
in 2012/13 winter were weak, and a weak signal is harder to predict (Hoskins, 2013). Second, initial errors 

Figure 6. (a) Composite of 20–100 days filtered Z200 (shading) and Outgoing Longwave Radiation (OLR) (contour) anomalies for January 2–14 in 
observations. (c), (e) Same as (a) but Z200 at lag 5 (January 7–19) and lag 10 (January 12–24). (b, d, f) Same as (a, c, e) but in AMIP_TROP. The contour interval 
of OLR is 12 W m−2, and zero contours are omitted.
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in the tropics may have led to a failed prediction of SST. For instance, 
Hua and Su (2020) found that the initial cold errors in the southeastern 
Pacific Ocean lead to the failed prediction of El Niño events in the NMME 
models, disturbing the development of warm SST anomalies in the east-
ern Pacific. The impact of initial errors that grow rapidly is also suggest-
ed in Newman and Sardeshmukh  (2017). A similar problem is found 
in this case study. Figure  8 shows the relationship between initialized 
SST (i.e., 0.5-month lead time) and December forecasted SST using the 
NMME forecasts initialized in October and November. It is examined in 
the South China Sea (90°–120°E, 0°–20°N; Figure 8a) and in the eastern 
Pacific Ocean (150°–70°W, 10°S–10°N; Figure 8b) where warm and cool 
SST anomalies are shown in December, respectively (Figure 7a). NCAR-
CCSM3, NCAR-CCSM4, and NASA-GMAO-GEOS5 have the largest ini-
tial warm error in the eastern Pacific, and GFDL-CM2p1-aer04 shows the 
largest initial cold error in the western Pacific. The observed SST anom-
alies change from normal to warm (cool) in the South China Sea (east-
ern Pacific Ocean), whereas all NMME models tend to maintain their 
initial states, close to the one-to-one line (gray dotted line in Figure 8). 
The initial model errors persist throughout the forecast period, and even 
models with an accurate SST at initialization do not capture the observed 
evolution of SST anomalies (e.g., ECCC-GEM-NEMO in Figure 8b). Re-
ducing initial error in tropical SST and improving the prediction of its 
temporal evolution will improve the overall usefulness of NMME model 
predictions.

4.2. On the Role of the MJO in Triggering the Transition

To examine the MJO impacts on the prediction of the wet-to-dry transi-
tion in January, 12 subseasonal prediction models (Table 3; Section 2.4) 
are used (recall NMME daily data is not available for the 2012/13 winter). 
Figure S9 shows the composite of OLR and Z200 anomalies in each of the 
12 subseasonal prediction models. We examine whether the prediction 
of MJO activity in January influences the prediction of dry/ridge con-
ditions. In Figure  9, we compare a good (UKMO-GloSea5) and a poor 
(GMAO-GEOS) week-2 prediction to observations. The OLR anomalies 

Figure 7. (a) SST (shading) and Z200 anomalies (contours) in December 
2012 from observations. (b)–(c) Same as (a) but for the multi-model mean 
of North American Multi-Model Ensemble (NMME) models, initialized in 
(b) October and (c) November. The contour interval of Z200 is 20 m, and 
zero contours are omitted.

Figure 8. (a) Relationship of South China Sea (SCS; 90°–120°E, 0°–20°N) SST anomalies between the initial value and the predicted value for December 2012. 
The closed circle and opened circle denote the values initialized in October and November, respectively. For example, the initial value of closed circles is the 
predicted value in October 2012, and the initial value of opened circles is in November 2012. Different colors indicate individual North American Multi-Model 
Ensemble (NMME) models, observations are in black. (b) Same with (a) but using the eastern Pacific SST (EP; 90°–120°E, 0°–20°N).
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are averaged for January 2–14, and the Z200 anomalies are averaged for 
January 7–19 (including a 5-day time lag; see Figure 6). Since the time 
filtering is unavailable in the forecast data, the previous 120-day averaged 
data are subtracted from the anomaly data to isolate the MJO-related sig-
nal (e.g., Gottschalck et al., 2010; Lim et al., 2018). For example, the pre-
vious 120-day averaged data of the day-1 forecast are calculated based on 
the previous 119 days of the observations and the first day of reforecasts. 
Following Pegion et al. (2019), reforecasts that are produced during the 
prior week (previous Friday–Thursday) are defined as the week-1 predic-
tion. For instance, the week-1 prediction in this study indicates the re-
forecasts initialized on December 28 to January 3 when it is before 1 week 
from the first occurrence of the MJO phases 4 and 5 (i.e., January 2). 
The week-2, week-3, and week-4 predictions are initialized for December 
21–27, 14–20, and 7–13, respectively.

In models that capture the strong enhanced convection in the western 
Pacific, the strong ENP ridge is well predicted (i.e., BoM-POAMA, CMA-
BCC in Figure S9, UKMO-GloSea5 in Figure 9b). The MJO convection in 
these models is well organized at the initial time and propagates eastward 
for 3 weeks (not shown). In contrast, the opposite is found in the models 
with a weak MJO convection (i.e., CESM-30LCESM1, CESM-46LCESM1, 
and ECCC-GEPS in Figure S9, GMAO-GEOS in Figure 9c). In these mod-
els, the MJO convection is rapidly disorganized at week-2. The small am-
plitude in the MJO convection prevents a strong teleconnection in the 
extratropics from happening, causing only a weak ENP ridge anomaly. 
This result highlights how a good prediction of the MJO can benefit CA 
rainfall prediction at the subseasonal time scale.

This relationship between MJO convection and ENP ridge is robust in 
the week-1 to week-4 forecasts (Figure 10a). Here, the MJO convection is 
defined by the OLR averaged over the western Pacific (WP_OLR; 110°–
140°E, 15°S–10°N) for January 2–14. The ENP ridge is determined by the 
area-averaged Z200 in the eastern North Pacific (ENP_Z200; 150°–110°W, 
30°–55°N) for January 7–19. The direct relationship between MJO con-
vection and CA precipitation is also evaluated in Figure 10b. It is evident 
from Figures 10a and 10b that the prediction of western Pacific MJO con-
vection is linked to the prediction of dry/ridge conditions in California, 
with negative correlation between ENP_Z200 and WP_OLR and positive 
correlation between CA precipitation and WP_OLR. For example, the 
week-2 prediction of UKMO-GloSea5, which shows the strongest MJO 

convection, predicts the second strongest ENP ridge (Figure 10a) and CA dry conditions (Figure 10b). The 
week-4 prediction of UKMO-GloSea5, which shows the weakest convection, predicts an ENP trough and 
excess of rain over California. These results further demonstrate that the MJO convection was a driver for 
the transition toward dry conditions over California in January via the tropical-extratropical teleconnection.

These relationships continuously increase when the week 3–4 forecasts are considered (gold colored num-
bers in Figure 10), compared to using the week 1–4 forecasts (navy colored numbers in Figure 10). Consid-
ering that the relationship between WP_OLR and ENP_Z200 remains strong (−0.6 correlation) regardless 
of the forecast lead time (Figure 10c), this result emphasizes that improvement of MJO prediction may 
benefit the CA precipitation prediction beyond the 2-week time scale. Dias and Kiladis (2019) showed that 
the extratropical prediction skill in week 2–4 forecasts is dependent on the tropical prediction skill in sub-
seasonal prediction models. Likewise, Jung et al. (2010) showed that the midlatitude prediction could be 
improved after nudging the tropics. Our results are consistent with these previous studies.

Figure 9. Composite of Z200 (shading) and Outgoing Longwave 
Radiation (OLR) (contour) anomalies in (a) observations, (b) good 
prediction, and (c) poor prediction among the week-2 predictions of 12 
subseasonal prediction models. Note that the previous 120-day averaged 
values are also excluded in each variable. The OLR anomalies are averaged 
for January 2–14, and Z200 anomalies are averaged for January 7–19. The 
green contours denote the values at −36, −24, and −12 W m−2, indicating 
the enhanced convection. The OLR anomalies at 12, 24, and 36 W m−2 are 
contoured in brown, indicating the suppressed convection.
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5. Summary and Discussion
Using a combination of model experiments and forecasts, we demonstrate that the observed wet-to-dry 
transition of CA rainfall during the 2012/13 winter was mainly the result of the combined effects of tropical 
SST and strong MJO activity. In our AMIP experiments, we find that the tropical SST has an impact on the 
wet/trough conditions in November–December 2012, while the regime change to dry/ridge conditions in 
January 2013 is driven by the MJO teleconnection when tropical variability is imposed in the model. The 
role for the MJO is supported by evidence from the subseasonal prediction models, making January 2013 
an example of “window of opportunity” for S2S prediction of CA rainfall. The NMME seasonal prediction 
models, however, have difficulty in predicting not only the wet-to-dry transition of CA precipitation but also 
the tropical SST (Figure 7), which is found as a driver for wet/trough conditions in California (Figure 3). 

Figure 10. (a) Relationship between western Pacific (WP; 110°–140°E, 15°S–10°N) Outgoing Longwave Radiation 
(OLR) anomalies for January 2–14 and eastern North Pacific (ENP; 150°–110°W, 30°–55°N) Z200 for January 7–9. 
(b) Relationship between WP OLR and California (CA) precipitation (CA PRCP) for January 7–19. (c) Relationship 
between ENP Z200 and CA PRCP. Note that the previous 120-day averaged values are excluded in each variable. 
Different marks denote the different models and the observations. Blue, green, yellow, and red marks denote the 
week-1, week-2, week-3, and week-4 predictions, respectively. The r1–4 in the top right corner indicates the correlation 
coefficient of each relationship using week 1–4 predictions, and r2–4 and r3–4 are calculated by using week 2–4 and week 
3–4 predictions, respectively.
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Although the exact role of SST in triggering the tropical-extratropical teleconnection is unknown, this case 
study illustrates how improvement in tropical SST prediction (especially in the absence of a strong ENSO) 
is needed to achieve a higher forecast skill in the extratropics. Our experiments with nudging the Arctic 
suggest a secondary role for high-latitude atmospheric variability when compared to the influence of the 
tropics. Still, it helps shape the midlatitude response to the tropical forcing and reduces the spread among 
ensemble members. Therefore, improving predictions of the high-latitude processes at the S2S time scales 
would probably also benefit S2S predictions of midlatitude variability and CA rainfall.

Although this study identifies the MJO as a driver of the wet-to-dry transition, we did not investigate why 
dry conditions persisted throughout February and March 2013. Interestingly, AMIP_TROP and AMIP_
TRHL partly simulate a persistence in the ridge (Figures 5b, S2e, S2g, S3e, and S3g) in February and March. 
However, although quite active, the influence of MJO is not clearly shown in February and March, and how 
much S2S predictability may have been levered during this event is unclear. A potential driver may have 
been the sudden stratospheric warming that happened in early 2013, but it did not persist beyond mid-Janu-
ary. It is difficult to imagine how it may have impacted the ridge in February-March. It would be interesting 
to explore why AMIP_TROP and AMIP_TRHL simulate the persistence of the ridge in future work.

An interesting finding of this study is that the MJO activity partly explains the drought of 2012/13 winter 
when previous studies considered it to be driven by internal variability (Wang & Schubert,  2014). This 
supports the idea that unpredictable internal atmospheric variability at the seasonal time scale can be a 
predictable signal at the subseasonal time scale (Robertson et al., 2020; Wang et al., 2017). Of course, the 
present study has been limited to exploring potential mechanisms for CA rainfall variability of one win-
ter season only. Applying this approach to other transition cases, such as the normal-to-dry transition of 
2015/16 (Jong et al., 2018), or the other recent drought years of 2012–2016 which have been understood as 
primarily impacted by internal variability (Seager et al., 2015; Watson et al., 2016), may help identify poten-
tial mechanisms that could be useful to the S2S and larger-range forecasting effort.

Data Availability Statement
The sources of data used in this study are as follows. MERRA-2 reanalysis data were obtained from http://
goldsmr5.gesdisc.eosdis.nasa.gov/data/MERRA2/. NOAA OLR data were from https://psl.noaa.gov/data/
gridded/data.interp_OLR.html, and OMI for MJO index was from https://psl.noaa.gov/mjo/mjoindex/
omi.1x.txt. The CPC US Unified Precipitation data were downloaded from https://psl.noaa.gov/data/grid-
ded/data.unified.daily.conus.html, and HadISST1 was from https://www.metoffice.gov.uk/hadobs/hadisst/
data/download.html. NMME data set was available in https://iridl.ldeo.columbia.edu/SOURCES/.Models/.
NMME/. CESM1 models and SubX models were obtained from https://iridl.ldeo.columbia.edu/SOURCES/.
Models/.SubX/, and S2S models were from https://iridl.ldeo.columbia.edu/SOURCES/.ECMWF/.S2S/. The 
model output from AMIP experiments was published at this site (https://doi.org/10.5281/zenodo.5606152).
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