
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Finding Critical Infrastructure Using Wardriving Data

Permalink
https://escholarship.org/uc/item/5wr679vb

Author
Wu, Huanlei

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5wr679vb
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Finding Critical Infrastructure Using Wardriving Data

A Thesis submitted in partial satisfaction of the
requirements for the degree Master of Science

in

Computer Science and Engineering

by

Huanlei Wu

Committee in charge:

Professor Aaron David Shalev, Chair
Professor Patrick Pannuto
Professor Stefan Savage

2022

Copyright

Huanlei Wu, 2022

All rights reserved.

The Thesis of Huanlei Wu is approved, and it is acceptable in quality and form

for publication on microfilm and electronically.

University of California San Diego

2022

iii

TABLE OF CONTENTS

Thesis Approval Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . vii

Acknowledgements . viii

Vita . ix

Abstract of the Thesis . x

Chapter 1 Introduction . 1
1.1 Related Work . 2

Chapter 2 Wardriving Data . 4
2.1 Bluetana Data . 4
2.2 WiGLE Data . 5

Chapter 3 Removing Irrelevant Data From Wardriving Data . 7
3.1 Preliminary Filtering of Inaccurate Data . 7
3.2 Stationary Devices . 8
3.3 Clustering . 9

3.3.1 Name Clustering: Original Method . 10
3.3.2 Name Clustering: Jaro-Winkler Distance . 12
3.3.3 MAC Address Clustering . 12

3.4 Filtering . 13
3.4.1 Infrastructure Filtering: Google Places API . 14
3.4.2 Infrastructure Filtering: Intersections . 15
3.4.3 Infrastructure Filtering: Airports . 15
3.4.4 Geographical Filtering by US States . 15

Chapter 4 Results . 17
4.1 Bluetana Data . 17
4.2 WiGLE Data . 19

4.2.1 Infrastructural Clustering . 19
4.2.2 Geographical Clustering . 25

Chapter 5 Discussion . 27
5.1 Limitations and Challenges . 27
5.2 Security and Impact . 28

iv

Chapter 6 Conclusion . 30
6.1 Future Work . 30

Appendix A List of MAC Address Prefixes . 32

Bibliography . 34

v

LIST OF FIGURES

Figure 3.1. Original method explained with a simple example using device names
RNBT-5D68 and RNBT-6408. 12

Figure 4.1. The location of a “PLREP” device and what we believe the device is. 19

Figure 4.2. Pedestrian crossing push button that contains Bluetooth. 20

Figure 4.3. A recloser control box in LA found on WiGLE that was created by SEL. . 21

Figure 4.4. “SLA...AAA==” devices found in Fort Lauderdale-Hollywood Interna-
tional Airport. 23

Figure 4.5. The location of all the “SLA...AAA==” and “5AAA” devices in their
respective airports. 24

vi

LIST OF TABLES

Table 4.1. Top 10 Google place types that devices were near. 17

Table 4.2. Summary of the interesting clusters found when filtering by intersections
and the percentage of the devices in the cluster near the intersection. x
represents a digit 0-9. 22

Table 4.3. Summary of the interesting clusters found when filtering by airports and the
percentage of the devices in the cluster near the intersection. 25

Table 4.4. Summary of the interesting clusters found when filtering by US states and
the percentage of the devices in the cluster near the intersection. x represents
a digit 0-9. 26

vii

ACKNOWLEDGEMENTS

I would like to thank my mentor Nishant Bhaskar and my thesis advisor Aaron Shalev

for their patience and guidance throughout this journey. Thank you taking the time to discuss

my progress and explaining to me the concepts that were foreign to me at the start of this paper.

Without their help, I would not have finished my thesis on time, and I am eternally grateful for

their support.

I would also like to thank my Helium team, who were considerate of my predicament.

Specifically, I would like thank Alex Yen for not overloading me with work during the final days

of my thesis and also taking the time to help review my thesis defense.

Lastly, I would like to thank Stefan Savage and Pat Pannuto for agreeing to be my other

2 thesis committee members and catering to my horrible last minute planning.

viii

VITA

2020 Bachelor of Science in Computer Science and Engineering, University of California
Santa Cruz

2022 Master of Science in Computer Science and Engineering, University of California
San Diego

PUBLICATIONS

Dhananjay Jagtap, Alex Yen, Huanlei Wu, Aaron Schulman, and Pat Pannuto. “Federated
infrastructure: Usage, patterns, and insights from “the people’s network”.” In Proceedings of
the 21st ACM Internet Measurement Conference, IMC ’21, page 22–36, New York, NY, United
States, 2021.

ix

ABSTRACT OF THE THESIS

Finding Critical Infrastructure Using Wardriving Data

by

Huanlei Wu

Master of Science in Computer Science and Engineering

University of California San Diego, 2022

Professor Aaron David Shalev, Chair

As the need for convenience and accessibility of technology grows, so does the number

of wireless devices used in our infrastructure. Users of these devices can range from the average

individual to corporations to the government. On one hand, these wireless devices can afford their

users with an easier experience, but on the other hand, they can become entry points to malicious

attacks. While there is extensive research into the security of wireless devices on a small scale,

there lacks an understanding of it on a larger scale: what infrastructures are vulnerable, where

these vulnerabilities are located, and what devices make the infrastructure vulnerable. In order

to get a better understanding of these wireless-capable infrastructures, we first need to get data

on how wireless devices are used in infrastructure. One readily available way to obtain this

x

data is through wardriving. However, wardriving data is extremely large and noisy; it contains

all scanned wireless data, including devices not related to any infrastructure. Thus, it can be

hard to get any relevant devices out of the data. In this work, we try to understand the viability

of identifying infrastructure-related devices using wardriving data. We find that it is possible

through using a variety of cleaning, clustering, and filtering heuristics to remove noisy data. We

then discuss the devices that we found and consider the implications and impact of a few of

them.

xi

Chapter 1

Introduction

We are currently living in an era where there is a nonstop growth of wireless devices due

to their convenience and ease of use. Thus, more and more of these wireless devices are making

their way into our critical infrastructure. For example, many cities are starting to deploy smart

grids to help mitigate power issues or to simply have an easier way to configure and maintain the

power grid. While the abundance of these devices can make life easier, it can also provide another

entry point for malicious entities to attack and obtain valuable information. Infrastructures such

as the smart grids, hospitals, and other establishments that use Bluetooth devices can be majorly

affected by these attacks. Thus, having an understanding of what infrastructure is vulnerable,

where the infrastructure is, and what devices make the infrastructure vulnerable is critical.

The first step in understanding these burgeoning wireless infrastructures is through the

wireless devices that make up the infrastructure. In order to identify which wireless devices are

involved in what infrastructure, there must first exist a database of these devices. Unfortunately,

there is no registry for users to register their wireless devices, so having a complete and accurate

set of wireless devices data is impossible. As a result, people have found other ways to obtain

this information, one of them being through wardriving. Using this technique, people can scan

for wireless devices in their immediate vicinity and upload the scan data to a database. However,

a by-product of wardriving is the large number of irrelevant, non-infrastructure devices that

inundates the database. Because the data gathered comes from uncontrolled environments,

1

devices such as wireless earphones or Bluetooth car stereos are entered into the database, making

it difficult to identify any meaningful devices. Thus, the idea of utilizing wardriving data to

understand infrastructure and identify devices can be unappealing.

Still, wardriving is the only way to get a data set comprehensive enough to identify a

multitude of wireless infrastructures in the real world, if it could at all. Therefore, we were

curious of the feasibility of using wardriving data to find infrastructure-related devices. To

answer this question, we explored different ways of cleaning, clustering, and filtering of the

data to decrease the number of devices to look at, specifically the data that don’t pertain to

infrastructures. Because the wardriving data set is extremely large, we used only a small subset

of wireless devices, looking only at Bluetooth devices in the United States. More specifically, we

used the wardriving data obtained from [2] and the US Bluetooth data from WiGLE. From our

experiment, we realized that we indeed could identify devices that are a part of the infrastructure

after filtering out the irrelevant, noisy data.

Chapter 2 gives a brief explanation and history of wardriving and describes the two data

sets. Chapter 3 describes the different clustering and filtering methods used to remove devices

that are not part of an infrastructure. Chapter 4 details the device clusters found by using methods

described in Chapter 3. Chapter 5 explains the limitations of the data and discusses the security

concerns and impact that the identified Bluetooth device clusters may have if attackers were able

to successfully take control of them. Chapter 6 concludes the paper and lists out possible future

works.

1.1 Related Work

The act of identifying wireless devices with limited information is not a new concept;

many works [9, 12, 15, 16, 17] are concerned over the security risks that arise from the rapid

growth of wireless devices. Literature [17] acknowledges the security issues and devises a

machine learning framework that uses network traffic to classify IoT devices from a chosen set.

2

Using a device’s network traffic characteristics, Sivanathan et al. trained a model that could

take in a device from a list of 28 IoT devices and classify it with 99% accuracy. Like all of the

aforementioned works, the data the paper looks at is related to WiFi network traffic. A problem

that can arise from using WiFi network traffic is that in order to get the traffic data, the individual

must tap into the network first. Thus, there is a limitation when it comes to working with network

traffic to identify wireless devices. There are limitations for obtaining scan data for wardriving

as well (such as long scan times), but tapping into a network is not a concern. For our paper, we

take a look into using Bluetooth scan data to identify devices. Another difference between [17]

and our work is that [17] only sampled 28 devices and did not attempt to classify any IoT devices

outside of those original 28. In our work, we look at the Bluetooth scan data in the United States

from Bluetana and WiGLE, allowing our results to be more representative of the devices that

could be found.

Literature [15] also created a machine learning classification model using certain charac-

teristics of encrypted WiFi packets and the spectrum they use when transmitting data. It improves

upon [17] as it allows for previously unseen devices to be labeled as well. However, like the

previous work [17], it also uses machine learning, and identifying devices in this fashion requires

a lot of labeled data. This is a problem for data sets that do not have ground truth or have a team

that can manually go through and hand label the necessary amount of data points. Wardriving,

unfortunately, is one such data set that does not provide a device type next to the scanned device;

moreover, going through the data to label enough devices for machine learning is a daunting task.

Therefore, for our work, we look into ways of classifying devices for infrastructures without the

use of ground truth labels.

3

Chapter 2

Wardriving Data

Wardriving is the act of searching for unsecured wireless networks by scanning for these

networks around a reference point. The term wardriving was coined by Pete Shipley, drawing

inspiration from the term wardialing in which an individual automatically dials multiple phone

numbers in hopes of finding an unprotected modem. However, unlike wardialing, wardriving

involves the person to move around as wireless networks cannot be seen in certain areas due

to having a limited range and interference. For our project, all the data we look at comes from

utilizing the wardriving technique.

2.1 Bluetana Data

Bluetana is a measurement tool created by graduate students at the University of Califor-

nia San Diego that uses the Android Bluetooth APIs to scan for gas pump skimmers. [2] The

motivation behind Bluetana was to help law enforcement locate skimmers easier; before Bluetana,

officers would have to manually open up gas pumps in order to check for these skimmers, but

with the tool, they are able to automatically detect nearby skimmers. For this project, Bhaskar

et al. sent the tool to law enforcement in 4 different states — California, Arizona, Nevada, and

Maryland — to collect skimmer data.

Besides skimmer data, Bluetana also captures information on other Bluetooth devices

within the area and sends it to a secure database over a cellular link. [2] We use the entries of

4

this database as one of our data sets for clustering together similar Bluetooth devices.

2.2 WiGLE Data

Our second data set comes from a service called WiGLE, which is an acronym for

Wireless Geographic Logging Engine.1 Like the name suggests, it receives data about wireless

networks and stores it into a database for users to pull from. Fortunately, WiGLE provides a

Bluetooth Search API2 that automatically retrieves the data for the devices that match a given

attribute. For our project, we provided the API with MAC address prefixes that we believed had

devices that were part of an infrastructure. The MAC address prefixes that we used can be found

at Appendix A.

Unlike Bluetana, where its user base are mainly law enforcement, a few volunteers, and

the occasional academics, WiGLE is used by everyone around the world. The only prerequisite

is for the person to register for an account. Afterwards, users can search for wireless networks

through its web interface or APIs and update the database either manually by inputting wireless

network data on the website or using a supported app to scan and automatically enter it into the

system. While the worldwide effort is impressive, to not overwhelm ourselves with too much

data, we only look at the devices in the United States as a starting point.

Two features of WiGLE that is important to know about is the QoS (Quality of Service)

attribute that comes with each WiGLE entry and the weighted-centroid trilateration. The QoS of

an access point (AP) is a way for WiGLE to identify the reliability of it. Taken from WiGLE’s

wiki: ”If an AP is seen on more than one day, or by more than one user, the QOS goes up,

because it’s more likely to be stable.” 3 Since devices that are part of an infrastructure tend

to be stationary and online for most of its lifetime, the QoS will be important in filtering out

uninteresting devices.

1https://WiGLE.net/
2https://api.WiGLE.net/swagger#/Bluetooth%20search%20and%20information%20tools/search
3https://WiGLE.net/wiki/index.cgi?QoS

5

https://WiGLE.net/
https://api.WiGLE.net/swagger#/Bluetooth%20search%20and%20information%20tools/search
https://WiGLE.net/wiki/index.cgi?QoS

The other important feature is the weighted-centroid trilateration formula WiGLE uses to

pinpoint where a device is. Even if a device is stationary, the coordinates of the device entered by

its users might vary since there are many factors that will affect the accuracy of a GPS coordinate.

For WiGLE, the final location of the device is an average of all the longitudes and latitudes

recorded of it weighted by its RSSI.4 We use the weighted-centroid trilateration coordinate as

the location of the device when identifying devices near infrastructure.

4https://WiGLE.net/faq/

6

https://WiGLE.net/faq/

Chapter 3

Removing Irrelevant Data From Wardriv-
ing Data

Narrowing down the Bluetooth data was tricky: we didn’t want to remove too many

devices, but we also didn’t want to keep too many devices to manually sift through. This chapter

describes our approach to the dilemma and explains the reasoning behind our decisions and

thresholds we chose.

To give an overview of our methodology, we first filtered out data which we deemed to

be inaccurate. For our case, inaccurate data is data that is not representative of its device. We

will go into more details in Section 3.1. After filtering out the inaccurate data, we removed all

non-stationary devices as devices that are part of an infrastructure are stationary and usually

bound to the spot. We then clustered devices by their device names and MAC addresses as

devices with similar MAC addresses and device names are usually part of the same infrastructure

with the same functionality. Once we obtained all the clusters, we then started filtering out the

clusters in order to identify what devices are part of what infrastructure.

3.1 Preliminary Filtering of Inaccurate Data

Before beginning the main clustering and filtering portion described in the following

sections, we made sure that the data points we looked at were at least somewhat accurate and

relevant. Because we worked with two data sets, the preliminary filtering process for each data

7

set is different.

For the Bluetana data set, data that did not have a geo accuracy of less than 5 were

filtered out. geo accuracy is the “estimated horizontal accuracy radius in meters of this location

at the 68th percentile confidence level.”1 In layman’s terms, if the geo accuracy returned was a

5, that means the Android library was 68% confident that the device was within 5 meters of the

geo-coordinate it provided. Unfortunately, this function only returns the horizontal accuracy and

not the vertical accuracy, so while we have some confidence in the longitudinal data, we cannot

guarantee accuracy for the latitudinal data.

We also filtered out entries where the major device class was classified as either a 1 or

2 (computer or phone respectively) in the Bluetana data set. We did not want to remove too

many devices from the data set when filtering in case we missed a device that was part of some

infrastructure, but we were fairly confident that devices belonging in those two categories were

not part of any critical infrastructure.

For the WiGLE data set, we simply filtered out devices where the QoS was less than 4.

We chose the number 4 because it is the the rounded value of the median of the possible QoS

values (0-7).

3.2 Stationary Devices

Bluetooth devices are not only seen in infrastructure. Everyday devices such as headsets

and speakers utilize the technology for user convenience. Because we wanted to only look

at devices that could pertain to infrastructure, we had to take into consideration that many

entries in the database would contain such devices. We realized early on that many of these

non-infrastructure devices move from one place to another throughout the day. Therefore, we

defined what it means for a device to be stationary and removed those that did not fit the criteria.

The following bullet points outline our definition of a stationary device:

1https://developer.android.com/reference/android/location/Location#getAccuracy()

8

https://www.ampedrftech.com/datasheets/cod_definition.pdf
https://developer.android.com/reference/android/location/Location#getAccuracy()

• There must be at least 2 entries for the device within the data set; we cannot tell whether a

device is stationary or not with only one data entry.

• The time between the first and last recorded entry of the device must be at least 10 hours

apart. We didn’t want to have too large of a time threshold as we didn’t want to remove

too many devices from our device pool. Furthermore, a typical workday usually maxes out

at 10 hours, and any non-stationary devices follow its owner home after work.

• All recorded coordinate points of the device must be within a 50-meter radius. This is

done by finding the centroid of all the device’s coordinates and measuring the distance

between the centroid to a device coordinate using the Haversine formula. If any distance is

greater than 50 m, we declare that the device is not stationary.

Finding the stationary devices for the Bluetana data set was simple since the database

provided an entry for each time a device was seen. However, for WiGLE, the Bluetooth Search

API does not provide that information. Instead, we had to use the Bluetooth Detail API2 to get a

list of all the times a device was seen and its geo-coordinate at that time.

3.3 Clustering

For the most part, devices from the same infrastructure with the same functionalities have

similar names; devices can be grouped up based on their device names’ prefixes or suffixes. For

example, SP800-027C and SP800-02F5 are both of the SP800 family of speed signs. John’s

iPhone and Teri’s iPhone are both iPhones. However, clustering by both both prefixes and

suffixes of a device name at the same time is difficult as we want a one-to-one matching between

a device cluster and device. From the data, we concluded that similar devices (devices of the

same infrastructure and functionality) more often than not shared a prefix as opposed to a suffix,

so for this project, we only group device names by prefixes.

2https://api.WiGLE.net/swagger#/Bluetooth%20search%20and%20information%20tools/detail

9

https://api.WiGLE.net/swagger#/Bluetooth%20search%20and%20information%20tools/detail

3.3.1 Name Clustering: Original Method

At the beginning of the thesis — when we were using Bluetana’s data — we tried to

come up with our own way of grouping up similar devices. The method is as follows:

1. The device name is split into sections using spaces, underscores, and hyphens. This

includes both the device name that is being compared with and being compared to.

2. For each section, the letters of one device name is compared with the letters of another

device name at the same position. If they match, add the number of matching letters before

the current position and an additional point to the counter that keeps track of the total

amount of points earned in the section. If it doesn’t match, nothing is added to the counter.

The value of the counter is then divided by the the full score of the section (i.e., the score

if every letter matched). Repeat this step for all the sections.

3. Each section is then weighed to provide the final score. Since the assumption is that

a matching or similar prefix implies a higher probability that the devices are similar

devices, the weight is higher for the sections at the beginning. The general rule is that each

subsequent section’s weight is half of the current section’s unless the subsequent section is

the last section. In this case, the last section will share the same weight as its predecessor.

When there is only 1 section, that section gets a weight of 1.

4. The device will be clustered with another device if the final score is greater than 0.5.

Algorithm 1 shows the pseudocode for the aforementioned algorithm in more details and

Figure 3.1 provides a step-by-step example of the clustering algorithm.

This algorithm, however, has many flaws. As seen in the pseudocode, sections or letters

within each section could be cut off if the two device names’ lengths did not match, resulting in

many false positives and false negatives. Furthermore, devices names that did not have a space,

hyphen, or underscore had to have at least half of the name match or else they would not be

10

Algorithm 1. Original Device Name Clustering Method
1: procedure NAMECLUSTER(devname1, devname2)
2: devname1 arr← split devname1 by spaces ▷ device name array 1
3: devname2 arr← split devname2 by spaces ▷ device name array 1
4: f inal score← 0
5: arr len← shorter device name arrays
6:
7: for idx arr in range of the shorter device name arrays do
8: add points← 0
9: total points← 0

10: for idx sec in range of the shorter section at index idx arr do
11: if devname1 arr[idx arr][idx sec] = devname1 arr[idx arr][idx sec] then
12: total points← total points+add points+1
13: add points← add points+1
14: else
15: add points← 0
16: end if
17:
18: if arr len equals 1 then
19: f inal score← f inal score+ total points
20: else
21: if idx arr not equals arr len−1 then
22: f inal score← f inal score+ 1

2idx arr+1 ∗ total points
23: else
24: f inal score← f inal score+ 1

2idx arr ∗ total points
25: end if
26: end if
27: end for
28: end for
29: end procedure

11

Figure 3.1. Original method explained with a simple example using device names RNBT-5D68
and RNBT-6408.

clustered together. Therefore, we switched to using Jaro-Winkler similarity for name clustering

for the WiGLE data.

3.3.2 Name Clustering: Jaro-Winkler Distance

The Jaro-Winkler distance is a way of measuring the similarity between two sequences.

[6] It takes the Jaro distance metric and adds in a prefix length constant and a prefix scale constant

to favor sequences that have similar prefixes. This feature is essential as our observation was that

similar devices have matching or similar prefixes. While this method also has its flaws, it is less

restrictive than our original method on prefix matching.

3.3.3 MAC Address Clustering

A problem with both of the name clustering methods is that a nontrivial amount of

devices do not have a device name associated with them, and thus, are not placed in clusters. In

12

order to mitigate this problem, we decided to utilize the MAC address as a means of sorting the

devices with no names. For the devices with no names, their MAC addresses were compared to

the MAC addresses of all the devices already in a cluster. The nameless device was then placed

into the cluster that contained the device that had the closest MAC address value to the nameless

device’s.

We also used the MAC addresses to further fine-tune the clustering of similar devices.

MAC address prefixes (the first 3 bytes of the MAC address) tells us the OUI of that device.

OUI stands for Organizationally Unique Identifier, and like the name suggests, it is used to

differentiate and identify companies and organizations. While each 3 bytes have a one-to-one

mapping to an OUI, the OUI can have a one-to-many mapping to the MAC address prefixes. For

instance, the MAC address prefix 00:18:32 is owned by Texas Instruments, but Texas Instruments

has hundreds more MAC address prefixes such as 00:18:31 and 00:18:33.

We believed grouping by MAC address prefixes made sense since similar devices usually

come from the same company or organization. However, we wanted to cluster with a finer

granularity of the MAC addresses, so we also matched 1 additional byte of the MAC address.

The final device clusters had all devices in it match the first 4 bytes of their MAC addresses as

well as their device names.

3.4 Filtering

Device name clustering is a start to determining which devices are similar to each other,

but it is not helpful in pinpointing the devices that are part of an infrastructure what type of

devices they are. We may infer that devices SP100, SP80, and SP20 have similar functionalities

to one another, but we do not know what infrastructures they are a part of or if they are part of an

infrastructure at all. In order to understand what devices belonged to what infrastructure, we use

4 different filtering methods.

13

3.4.1 Infrastructure Filtering: Google Places API

The first of these filtering methods we used involved calling the Google Places API. While

we had the coordinates of each device and thus know where they are on a map, this information

told us nothing about its surroundings. Therefore, we used Google Places Nearby Search API to

obtain the different place types near a device. The Google Places API documentation3 provides

an exhaustive list of Google place types that can be returned from the API call. For the Nearby

Search API, only values from Table 1 are returned.

Using the API, we first obtained a list of different place types found within 50 m for

each of the stationary devices. We then found the number of devices that were in one of these

place types as a way to understand the popularity of the place types in relation to these devices.

We also calculated the percentage of devices within a cluster that had a certain place type to

understand how devices were spread out and what place types correlated to what device cluster.

We kept only the device clusters where this percentage was greater than 50%.

However, there were 2 main flaws with using the Nearby Search API. One of these flaws

was the labeling of the nearby points of interests: not all points of interests are labeled as we

would like them to be labeled. For example, a point of interest had the place type embassy, but

when we further investigated the place, it turned out that the place was an embassy for religion,

not a country. The other flaw was the efficiency of the code. If we ever wanted to change the

radius threshold from 50 m, we would have to call the API again to update the nearby points of

interests. One option is to provide a large radius at the beginning of the API call, but this could

increase the data drastically, and sorting out the nearby points of interests would take too much

time. Thus, when we started using the WiGLE data instead, we decided to remove the Google

Places API method as one of our clustering options and focus on specific infrastructures; the

Google Places API was used only for the Bluetana data, and the Bluetana data only used the

Google Places API to filter data.

3https://developers.google.com/maps/documentation/places/web-service/supported types

14

https://developers.google.com/maps/documentation/places/web-service/supported_types

3.4.2 Infrastructure Filtering: Intersections

One infrastructure we were interested in — but the Google Places Nearby Search API

could not provide — was intersections. Our workaround was to call upon the GeoNames API, an

API which provides the closest intersection to a given coordinate, and use the haversine formula

to determine the distance of a device to its corresponding intersection. Like the previous method,

our radius threshold is 50 m; any device whose distance from their closest intersection is less

than or equal to 50 m would be considered as near an intersection. With the new list of devices

that are near intersections, we found the percentage of devices within a cluster that were near

intersections and removed any clusters that had a percentage less than 50%.

3.4.3 Infrastructure Filtering: Airports

Another infrastructure we were interested in was airports. We found a reliable source4

for the coordinates of airports in the US and used it to narrow our stationary device list down to

only devices within 1 km of an airport. Since the data set for the airports was so large, we only

considered medium and large airports.

Identifying whether a device was near an airport is difficult. Unlike intersections where

the shape and size are similar to one another, different airports have different sizes and dimensions.

Because we had no way of knowing the shape and size of each airport, we generalized the radius

threshold to be 1 km; any devices that are within a 1 km radius from the geo-coordinate of the

airport will be considered to by near airports. We then calculated the percentage of devices in a

cluster that were near airports and removed the clusters that had a percentage less than 30% to

make up for the ambiguities.

3.4.4 Geographical Filtering by US States

Infrastructure devices can also vary by region. Therefore, we decided to look at the

devices by US states. To cluster each device by state, we first found the boundaries of each state

4https://data-usdot.opendata.arcgis.com/datasets/usdot::airports-1

15

https://data-usdot.opendata.arcgis.com/datasets/usdot::airports-1

by using a shape file of the US found on the US government’s open data website.5 With the

boundaries, we then sorted the devices by state based on their coordinate points and calculated the

percentage of devices within a cluster that were in a certain state. Once again, if the percentage

dropped below 50%, the cluster was removed.

5https://catalog.data.gov/dataset/tiger-line-shapefile-2017-nation-u-s-current-state-and-equivalent-national

16

https://catalog.data.gov/dataset/tiger-line-shapefile-2017-nation-u-s-current-state-and-equivalent-national

Chapter 4

Results

In this chapter, we will be discussing the interesting infrastructure-related device clusters

we found after narrowing down the data. The chapter will be split into 2 sections: one section

describes the results found using the Bluetana data set and the other the WiGLE data set.

4.1 Bluetana Data

In total, the Bluetana data set had 1,890,076 entries. However, many of these entries

were of the same device scanned at different times. By using the preliminary filtering and our

original device name clustering methods, we were able to avoid duplicates devices, narrowing

the data down to 359 clusters of stationary devices. We then further narrowed down the data by

grouping the clusters by their nearby place types from the Google Places Nearby Search API.

This was done so that we could find the number of devices that were in one of these place types

as we were interested in devices that appeared often near a specific place type.

Table 4.1 shows the top 10 places the Bluetana scanned devices were near and the number

Table 4.1. Top 10 Google place types that devices were near.

Google Place Type Count Google Place Type Count
restaurant 344 cafe 132

transit station 288 bar 119
atm 232 parking 119

convenience store 227 clothing store 112
gas station 208 car repair 107

17

of devices near it. Although restaurant has the most number of devices near it, many of these

devices were not part of an infrastructure. In fact, most of the places on the list were inflicted

with the same problem: they were buffered by Bluetooth TVs, printers, smart speakers, and other

smart devices that are not part of infrastructure. Table 4.1 exemplifies just how noisy the data is

and how many devices in a data set are not related to infrastructures. However, we were able to

identify 2 device clusters that we believe were part of some infrastructure,

One of these clusters was the cluster that saw devices sharing the name “Bluetooth USB

Host Controller.” This cluster was found near the financial infrastructures, with 10 out of the 11

devices found near the atm and bank place type. When we further investigated the devices by

inputting their locations into Google maps, we found that all 11 devices were near grocery shops

as well.

However, 11 devices is too small of a sample size, so we decided to query the device

prefix (60:02:b4) and name using WiGLE to see what data they had on the devices. We randomly

sampled a few of WiGLE’s results whose QoS were 4 or above and found that all the Bluetooth

USB Host Controller devices were near grocery stores. This confirms to us that the “Bluetooth

USB Host Controller” devices are related to grocery stores, but we are unsure of their purpose.

While further looking into “Bluetooth USB Host Controller” devices, we also found that devices

of the same name with a prefix 28:24:ff are located in Walmarts. Like the previous “Bluetooth

USB Host Controller” devices, we are unsure of this device’s functionality and the reason for

their placement in Walmarts.

The other cluster we believed that was part of an infrastructure was the cluster where the

device names started with “PLREP.” These “PLREP” devices were found near the place types

parking and doctor. However, we ruled out the doctor place type after searching for “PLREP”

devices on WiGLE since it seemed that the doctor place type was a one time occurrence.

Moreover, we believe that the first two letters ”PL” stand for parking lot. When we looked at

more examples of these “PLREP” devices near parking lots, we found that most of them had car

counters. Therefore, we concluded that these devices were parking lot car counters that keeps

18

(a) A “PLREP” device found on the WiGLE map. (b) The blue parking lot counter on the left side of
the image is what we believe the device to be.

Figure 4.1. The location of a “PLREP” device and what we believe the device is.

track of how many cars there are to report on the number of free parking spots. Figure 4.1a

shows a “PLREP” device on the WiGLE map and Figure 4.1b shows what we believe to be the

device at that location.

4.2 WiGLE Data

While working with Bluetana’s data set, we realized that it did not provide us with enough

data to continue working, so we switched to WiGLE’s database. We also decided to use the

Jaro-Winkler method to cluster devices by names as the original method was too stringent on

clustering device by names.

4.2.1 Infrastructural Clustering

Intersection

Associating device clusters to intersections produced intriguing results as not all the

clusters we discovered with a high percentage of devices near an intersection were expected.

An example of an expected cluster was the pedestrian crossing push buttons. Figure 4.2 shows

what a few pedestrian crossing push buttons with Bluetooth capabilities look like. Users with

the associated app may use it to push the pedestrian crossing push button without physically

touching it. According to Polara, one of the major manufacturers of this technology, the app can

19

Figure 4.2. Pedestrian crossing push button that contains Bluetooth.

also provide audio functionalities for the visually impaired in case the pedestrian crossing push

button does not give audio cues.1

The WiGLE data set was rife with pedestrian crossing push button entries, and many

of these entries had specific letterings in their device names. Device names that contained the

shorthand version of cardinal directions (“nw”, “sw”, “ne”, “se”), “PED” — which we assume

to be shorthand for pedestrian — or repeating portions of the name such as “A1A1” or “C3C3”

were found to be all pedestrian crossing push buttons. Unfortunately, we cannot provide the

percentage of all pedestrian crossing push buttons near an intersection since we are unsure if

we found all clusters that are pedestrian crossing push buttons, but from the clusters that we do

know, the percentage is between 80%-100%.

Another group of clusters is the cluster where the devices started with “P” followed

by 7 digits. Although we could not definitively conclude what these devices were, we believe

they are intricately tied with traffic lights. In fact, 93% of the devices in these clusters were

near intersections where there were traffic lights. We ruled out the possibility that these devices

1https://polara.com/ins-inavigator-accessible-pedestrian-signals

20

https://polara.com/ins-inavigator-accessible-pedestrian-signals

Figure 4.3. A recloser control box in LA found on WiGLE that was created by SEL.

are part of the pedestrian crossing push button as not all the intersections of these devices had

a Bluetooth pedestrian crossing push button as seen in Figure 4.2, and some didn’t have any

pedestrian crossing push buttons at all.

One of the more surprising cluster that was near intersections is the cluster involving

reclosers. Reclosers are automatic electric switches on utility poles that maintain the power line.

They are responsible for switching off the power in case of power line failures such as the power

line short-circuiting and restoring the power once the problem is fixed. Reclosers are not widely

associated with intersections; while they are found on utility poles that run along roads, there is

no expectation for them to be near intersections. However, according to the WiGLE data and the

GeoNames API, around 64% of the reclosers were near intersections.

The recloser clusters began with the letters “BLUE” followed by 13 digits. We concluded

that these devices were reclosers after manually surveying these devices’ geo-coordinates and

linking them to the data found in the FCC (Federal Communications Commission) database

regarding Bluetooth devices. When we manually surveyed the devices, we saw Figure 4.3, which

is a recloser controller box in Los Angeles, California with the word SEL on it. SEL-2924 and

21

Table 4.2. Summary of the interesting clusters found when filtering by intersections and the
percentage of the devices in the cluster near the intersection. x represents a digit 0-9.

Cluster Percentage
Pedestrian Crossing Push Buttons 80%-100%

Pxxxxxxx 93%
BLUExxxxxxxxxxxxx 64%

CITIX 92%
EV 54%
SP 53%

SEL2925 are Bluetooth serial adapters whose default device name is BLUExxxxxxxxxx where x

represents any digit 0-9. [14]

The pedestrian counter cluster “CITIX” was also somewhat an unexpected discovery.

“CITIX” is made by the company Eco-Counter that specializes in pedestrian and bicycle coun-

ters.2 92% of “CITIX” devices were located near intersections, but this is within reason as most

people cross intersections to enter malls and shopping centers, where most of the devices are

found. Surprisingly, a few of these devices were also found near libraries.

Yet another surprising but reasonable cluster near intersections involves speed signs,

specifically devices that began with “SP” or “EV”. We believe the “SP” in the device names is

short for “SafePace”, which is a radar speed sign designed by TrafficLogix and the “EV” in the

device names stands for “Evolution”, which is another type of radar speed sign from the same

company TrafficLogix. 53% of the devices from cluster “SP” are near intersections and 54% of

the devices from cluster “EV” are as well.

Airport

While filtering by intersections gave some relevant device clusters that could be part of

intersections, filtering by airports was less successful. In total, we found 3 clusters of devices

that could be related to airports, but highly unlikely due to our speculation of what these devices

could be. These 3 clusters are clusters where the device names began with “XXRAJ”, “SLA” and

2https://www.eco-counter.com/company/about-us/

22

https://www.eco-counter.com/company/about-us/

Figure 4.4. “SLA...AAA==” devices found in Fort Lauderdale-Hollywood International Airport.

ended with “AAA==”, and “5AAA” followed by a mixture of 25 random symbols, characters, or

numbers.

For the “XXRAJ” cluster, 31% of devices were found to be near airports. We found

2 plausible technologies that these devices could be. One of these is a parking enforcement

technology that enables cities to monitor parked cars, citing them if they go over the time allotted

for them to park at a parking structure of meter.3 The other is a handheld printer called the Zebra

Printer.4 According to [3], the handheld printer can be used to print out parking ticket for cars

that overstay their time. Although handheld printers would not be labeled as stationary by a

person, it is possible these devices never leave a 50 m radius and thus, are considered “stationary”

by our filtering algorithm. Nonetheless, neither of these options are exclusively bound to airports.

For the “SLA...AAA==” and “5AAA” devices, the former devices littered the parking

structures in the Fort Lauderdale-Hollywood International Airport in Florida and the latter

devices were found scattered around the terminals in the O’Hare International Airport in Illinois

and Orlando International Airport in Florida. Figure 4.4 shows the “SLA...AAA==” devices in

3https://github.com/ggerts/BLE-Parking-Enforcement-Detector/blob/master/BLE inspector.py
4https://chms.pushpay.com/s/article/How-do-I-set-up-a-Zebra-printer-for-the-Check-In-App

23

https://github.com/ggerts/BLE-Parking-Enforcement-Detector/blob/master/BLE_inspector.py
https://chms.pushpay.com/s/article/How-do-I-set-up-a-Zebra-printer-for-the-Check-In-App

(a) “5AAA” devices found in O’Hare International Air-
port.

(b) “5AAA” devices found in Orlando International Air-
port.

Figure 4.5. The location of all the “SLA...AAA==” and “5AAA” devices in their respective
airports.

24

Table 4.3. Summary of the interesting clusters found when filtering by airports and the percentage
of the devices in the cluster near the intersection.

Cluster Percentage
XXRAJ 31%

SLA...AAA== 65%
5AAA 95%

the Fort Lauderdale-Hollywood International Airport’s parking structure, Figure 4.5a and Figure

4.5b shows the “5AAA” devices in the O’Hare International Airport and Orlando International

Airport respectively. Although we were unable to ascertain what these devices were used for,

from the figures, we can see from the figures that “SLA...AAA==” littered the parking structures

of the Fort Lauderdale-Hollywood International Airport and “5AAA” were scattered around

the terminals of O’Hare and Orlando International Airport and thus, we can conclude that the

“SLA...AAA==” devices in airports are probably related to parking infrastructures and “5AAA”

devices are related to shopping infrastructures.

4.2.2 Geographical Clustering

With the geographical clustering by US states method, we found 4 clusters we believe

are related to some type of infrastructure. The first of these device cluster is the cluster where

the device names begin with “YCH”. 9 out of the 10 “YCH” stationary devices were located

in Wisconsin, with the other device located in Florida. These devices were found near “CITIX”

devices — and in turn found near malls and shopping centers — so we believe they are also

pedestrian or vehicle counters. However, one can also argue that because the shopping center

already has the “CITIX” pedestrian and bicycle counter, “YCH” must be a different type of

stationary Bluetooth device. Either option is more reasonable than earphones, which is the top

search result for “YCH” Bluetooth devices and is not stationary.

The second device cluster is the alleged capacitor clusters found only in Florida. They

are labeled alleged as there is no evidence that they are capacitors other than the infrastructure

near them (utility poles) and their device names. Devices in this cluster had names that began

25

Table 4.4. Summary of the interesting clusters found when filtering by US states and the
percentage of the devices in the cluster near the intersection. x represents a digit 0-9.

Cluster State Percentage
YCH Wisconsin 90%
cap Florida 100%

xxVCxxxx Tennessee 59%
FireFly Kentucky 73%

with “cap”, “cap#”, “capp”, and “cappp” followed by 4 digits. Capacitor bank controls with

Bluetooth capabilities do exist, but we were not able to find any solid evidence that linked these

devices to capacitors.

The “VC” device clusters are in the same boat as the capacitor clusters. These clusters’

device names come in the form xxVCxxxx where x represents digits 0-9. While they are found

mainly in Tennessee (13 devices), they can also be seen in Florida (1 device) and Minnesota

(8 devices). Like the capacitor cluster, there is no evidence that these devices are related to the

smart grid other than the fact that they are near utility poles.

The final device cluster is the “FireFly” cluster where 30 out of the 41 devices in the

cluster were located in Kentucky. These “FireFly” devices use Grid Connect’s FireFly serial to

Bluetooth adapter and thus, can be used in many different situations. However, like the Pxxxxxxx

device discussed in Section 4.2.1, we are fairly certain that the “FireFly” devices in Kentucky are

used for in traffic light-related technology as while there were many other device types near it

such as pedestrian crossing push buttons and utility poles, more often than not the devices were

located near traffic lights than the other infrastructures.

26

Chapter 5

Discussion

5.1 Limitations and Challenges

Despite both data sets containing a large number of data points, both had similar limita-

tions that prevented us to be fully confident in our results. A shared issue between the two data

sets is the geo-coordinate accuracy issue. Recall from Section 3.1 that we only kept entries where

the geo accuracy was less than 5. The WiGLE data, however, does not have the get accuracy()

feature, so instead we use the QoS data provided for each device. We drop devices that have a

QoS less than 4. In this case, Bluetana lost 31,173 out of 63,987 unique devices and WiGLE

lost 301,164 out of 332,036 unique devices. Furthermore, a nontrivial chunk of the data were

non-stationary devices. After filtering out the non-stationary devices, the Bluetana data set

lost an additional 30,537 entries and the WiGLE data set lost 19,396 unique devices. While

the remaining number of devices are still in the thousand range, this value is before clustering.

Furthermore, scanning for devices through wardriving is fickle, and many devices that were part

of the infrastructure but were only scanned once would have been removed using our method of

identifying infrastructure-related devices.

Another limitation was the lack of names for many of the devices. 8.6% of Bluetana’s

data had no device name and 31.8% of WiGLE’s data had the same infliction. Because of the

substantial amount of devices without a name that we were losing out on if we did not cluster

them, we used the unconventional and unverified method of placing non-name devices with the

27

cluster whose device had the closest MAC address to the non-name device. While studies such

as [8] and [1] discuss the poor MAC randomization of mobile devices, we do not know if that

directly translates over to all the devices in the two databases.

A challenge and time-consuming task unique to WiGLE was the daily API query limit.

The WiGLE Search API did not cause too much trouble, though for a few MAC address prefixes,

the Search API hit the daily limit, so we had to run the Search API multiple times on those MAC

address prefixes. What did give us troubles was the WiGLE Detail API. In total, 30,872 devices

from WiGLE matched our MAC address prefixes and had a QoS greater than or equal to 4, but

the Detail API could only provide information on 500 MAC addresses a day. This number was

later bumped up to 2,000, but even then, if we started calling the Detail API with 2,000 daily

queries from the start, it would take more than 15 days to finish querying all 30,872 devices.

5.2 Security and Impact

Consumer wireless devices value ease of use as it is directed towards the average person,

which leave them open to new attack vectors. Literature [7] addresses this issue in regards to

Bluetooth, pointing out that while Bluetooth allows users the convenience and ease of using

it, it also lacks a centralized security infrastructure, resulting in many security vulnerabilities

that can be exploited. While there are countermeasures to prevent and combat the mentioned

vulnerabilities, there are many more vulnerabilities to be discovered. Furthermore, Bluetooth

isn’t the only wireless technology out there. In 2014, Cesar Cerrudo found a way to theoretically

manipulate the traffic lights in cities like Seattle, New York, and Washington, DC. [4] These

cities used traffic light sensors that followed the Sensys NanoPower Protocol, which lacked data

encryption and authentication. Then in 2020, 2 researchers from Netherlands discovered how to

manipulate the traffic lights without being near them. In their DefCon talk [11], Wesley Neelen

and Rik van Duijn described their method: Realizing they could reverse engineer the Android

app and bypass the authentication step (since there was no authentication process in the first

28

place), they used a Python script and sent spoofed CAM (cooperative awareness message) data

to the traffic light controller.

Now imagine the above scenario for the FireFly traffic light controllers in Kentucky. It is

highly likely that the FireFly traffic light controllers uses the same procedures as each other to

communicate as, mentioned in the previous paragraph, convenience is a selling point of installing

Bluetooth into everyday objects. Therefore, it will only take an attacker to crack one of the

FireFly traffic light controller to manipulate the 29 other known controllers. Although 30 does

not seem like much, remember that 30 is the minimum number of traffic light controllers that use

the FireFly Bluetooth to serial adapter. Furthermore, the major concern should be that Kentucky

FireFly traffic controllers are on a unprotected scannable network; major infrastructure devices

should not be seen in the first place.

Additionally, reclosers are also a security concern. [10] cautions about malicious actors

who can potentially connect to smart grid devices through Bluetooth to wreak havoc and brings

up reclosers as an example. Literature [13] confirms this belief, providing a possible attack

vector that attackers could use to take control of reclosers. This is a major concern as reclosers

are electric switches responsible for turning the power of a power line off or on depending on the

condition of the power line. Literature [13] further explains that the attacker can take control of

the recloser controller which is the gateway for configuring the recloser’s security settings and

maintenance. With control over the controller, the attacker can shut down the recloser and turn

off the power for those connected to the power line. For some, living without power for a few

hours is a minor convenience, but for others, it can end in death. In 2018, a New Jersey woman

died when the utility company turned off the electricity for a day, causing her electricity-powered

oxygen tank to stop working. [5] Although it is not a common story, it does shine a light on the

potential damages and harm a malicious actor can cause if the controlled the recloser.

29

Chapter 6

Conclusion

In this paper, we found that it was possible to identify infrastructure-related devices

by clustering and filtering wardriving data. We were able to reduce the number of devices to

manually examine by 96% for Bluetana and 94% for WiGLE. From our experiment, we were

able to discover devices that were part of the traffic light, smart grid, and parking infrastructures

as well as understand the impact and security concerns of some of these infrastructures. Although

our methodology produced devices that were part of an infrastructure, it is far from perfect.

Coupled with the noisy and unreliable data, many devices — some that were probably part of

an infrastructure but did not have enough entries or good QoS — were removed. However, we

believe our methodology is a good start into identifying infrastructure-related devices using noisy

wardriving data.s

6.1 Future Work

While we have tested many clustering and filtering heuristics on a large number of data,

there are other heuristics and data we have yet to look into. Though the current MAC address

prefix list is extensive, there are still many more prefixes out there that represent Bluetooth to

serial adapters. We would like to run our filtering and clustering methods on these new prefixes.

Furthermore, we would like to examine the prevalent devices near hospitals. We began

looking into hospitals, but due to the time limit, we were unfortunately unable to complete it in

30

time. The data set we used is provided by ArcGIS.1 We believe hospitals to be a good addition

as they seem to contain many devices that use Bluetooth. Identifying what devices use Bluetooth

and the impact if the device is compromised would be an interesting addition to our work.

Another clustering method we would like to test is clustering by the device name and the

first time a device is seen in a certain region. Devices related to the infrastructure tend to go live

at the same time. If we see a certain device cluster where the device’s first seen date are grouped

together, the chances of that cluster being part of an infrastructure would be quite high.

Outside of data and clustering heuristics, we would like to study if pedestrian crossing

push buttons can be used to manipulate the timing of traffic lights. Hacking traffic light controllers

is a popular topic in DefCon, but to the best of our knowledge, there are no works on taking

advantage of pedestrian crossing buttons.

1https://hifld-geoplatform.opendata.arcgis.com/maps/6ac5e325468c4cb9b905f1728d6fbf0f

31

https://hifld-geoplatform.opendata.arcgis.com/maps/6ac5e325468c4cb9b905f1728d6fbf0f

Appendix A

List of MAC Address Prefixes

• 00:06:66

• 68:27:19

• 04:91:62

• 34:15:13

• 00:03:19

• 00:17:53

• 00:22:58

• b0:b4:48

• 00:13:04

• 24:71:89

• cc:78:ab

• 74:6f:f7

• 0c:a6:94

• 00:a0:96

• f0:ab:54

• a4:d5:78

• 00:25:ca

• 00:0b:57

• 8c:de:52

• 42:93:1a

• 42:93:1a

• 00:0e:0e

• 98:d3:31

• 98:d3:32

• 98:d3:35

• 20:10:01

• 20:10:02

• 20:10:03

• 20:10:04

• 20:10:05

• 20:10:06

• 20:10:07

• 20:10:08

• 20:10:09

• 20:10:10

• 20:10:11

• 20:10:12

• 20:11:01

• 20:11:02

• 20:11:03

• 20:11:04

• 20:11:05

• 20:11:06

• 20:11:07

• 20:11:08

• 20:11:09

• 20:11:10

• 20:11:11

• 20:11:12

• 20:12:01

• 20:12:02

• 20:12:03

• 20:12:04

• 20:12:05

• 20:12:06

• 20:12:07

• 20:12:08

• 20:12:09

• 20:12:10

• 20:12:11

• 20:12:12

• 20:13:01

• 20:13:02

• 20:13:03

• 20:13:04

32

• 20:13:05

• 20:13:06

• 20:13:07

• 20:13:08

• 20:13:09

• 20:13:10

• 20:13:11

• 20:13:12

• 20:14:01

• 20:14:02

• 20:14:03

• 20:14:04

• 20:14:05

• 20:14:06

• 20:14:07

• 20:14:08

• 20:14:09

• 20:14:10

• 20:14:11

• 20:14:12

• 20:15:01

• 20:15:02

• 20:15:03

• 20:15:04

• 20:15:05

• 20:15:06

• 20:15:07

• 20:15:08

• 20:15:09

• 20:15:10

• 20:15:11

• 20:15:12

• 20:16:01

• 20:16:02

• 20:16:03

• 20:16:04

• 20:16:05

• 20:16:06

• 20:16:07

• 20:16:08

• 20:16:09

• 20:16:10

• 20:16:11

• 20:16:12

• 20:17:01

• 20:17:02

• 20:17:03

• 20:17:04

• 20:17:05

• 20:17:06

• 20:17:07

• 20:17:08

• 20:17:09

• 20:17:10

• 20:17:11

• 20:17:12

• 20:18:01

• 20:18:02

• 20:18:03

• 20:18:04

• 20:18:05

• 20:18:06

• 20:18:07

• 20:18:08

• 20:18:09

• 20:18:10

• 20:18:11

• 20:18:12

• 20:19:01

• 20:19:02

• 20:19:03

• 20:19:04

• 20:19:05

• 20:19:06

• 20:19:07

• 20:19:08

• 20:19:09

• 20:19:10

• 20:19:11

• 20:19:12

• 20:20:01

• 20:20:02

• 20:20:03

• 20:20:04

• 20:20:05

• 20:20:06

• 20:20:07

• 20:20:08

• 20:20:09

• 20:20:10

• 20:20:11

• 20:20:12

• 00:14:03

33

Bibliography

[1] Johannes K Becker, David Li, and David Starobinski. Tracking anonymized bluetooth
devices. Proc. Priv. Enhancing Technol., 2019(3):50–65, 2019.

[2] Nishant Bhaskar, Maxwell Bland, Kirill Levchenko, and Aaron Schulman. Please pay
inside: Evaluating bluetooth-based detection of gas pump skimmers. In 28th USENIX
Security Symposium (USENIX Security 19), pages 373–388, Santa Clara, CA, August 2019.
USENIX Association.

[3] Knowledge Center. How to set up a zebra printer for the check-in app. https://chms.pushpay.
com/s/article/How-do-I-set-up-a-Zebra-printer-for-the-Check-In-App, 2017.

[4] Cesar Cerrudo. Hacking traffic control systems. https://youtu.be/ j9lELCSZQw, 2014.

[5] Matthew Haag. New jersey woman on oxygen dies after electric com-
pany shuts off her power. https://www.nytimes.com/2018/07/09/nyregion/
woman-dies-oxygen-tank-electricity.html, 2018.

[6] Matthew A. Jaro. Advances in record-linkage methodology as applied to matching the 1985
census of tampa, florida. Journal of the American Statistical Association, 84(406):414–420,
1989.

[7] Angela M. Lonzetta, Peter Cope, Joseph Campbell, Bassam J. Mohd, and Thaier Hayajneh.
Security vulnerabilities in bluetooth technology as used in iot. Journal of Sensor and
Actuator Networks, 7(3), 2018.

[8] Jeremy Martin, Travis Mayberry, Collin Donahue, Lucas Foppe, Lamont Brown, Chadwick
Riggins, Erik C. Rye, and Dane Brown. A study of MAC address randomization in mobile
devices and when it fails. CoRR, abs/1703.02874, 2017.

[9] Markus Miettinen, Samuel Marchal, Ibbad Hafeez, N. Asokan, Ahmad-Reza Sadeghi, and
Sasu Tarkoma. Iot sentinel: Automated device-type identification for security enforcement
in iot. In 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), pages 2177–2184, 2017.

[10] Ken Munro. Bluetooth + electrical switchgear. https://www.pentestpartners.com/
security-blog/Bluetooth-electrical-switchgear/, 2018.

34

https://chms.pushpay.com/s/article/How-do-I-set-up-a-Zebra-printer-for-the-Check-In-App
https://chms.pushpay.com/s/article/How-do-I-set-up-a-Zebra-printer-for-the-Check-In-App
https://youtu.be/_j9lELCSZQw
https://www.nytimes.com/2018/07/09/nyregion/woman-dies-oxygen-tank-electricity.html
https://www.nytimes.com/2018/07/09/nyregion/woman-dies-oxygen-tank-electricity.html
https://www.pentestpartners.com/security-blog/Bluetooth-electrical-switchgear/
https://www.pentestpartners.com/security-blog/Bluetooth-electrical-switchgear/

[11] Wesley Neelen and Rik van Duijn. Hacking traffic lights. https://youtu.be/L9UUD3a7xP4,
2020.

[12] Jorge Ortiz, Catherine Crawford, and Franck Le. Devicemien: Network device behavior
modeling for identifying unknown iot devices. In Proceedings of the International Confer-
ence on Internet of Things Design and Implementation, IoTDI ’19, page 106–117, New
York, NY, USA, 2019. Association for Computing Machinery.

[13] V. S. Rajkumar, A. Stefanov, S. Musunuri, and J. de Wit. Exploiting ripple20 to compromise
power grid cyber security and impact system operations. In CIRED 2021 - The 26th
International Conference and Exhibition on Electricity Distribution, volume 2021, pages
3092–3096, 2021.

[14] Inc. Schweitzer Engineering Laboratories. Manual (sel-2924/sel-2925 blue-
tooth® serial adapters). https://fccid.io/ANATEL/02908-13-07001/Manual/
750F8E42-49B0-4BFC-AE70-0130C29FD1CD/PDF, 2017.

[15] Rahul Anand Sharma, Elahe Soltanaghaei, Anthony Rowe, and Vyas Sekar. Lumos:
Identifying and localizing diverse hidden IoT devices in an unfamiliar environment. In 31st
USENIX Security Symposium (USENIX Security 22), Boston, MA, August 2022. USENIX
Association.

[16] Chao Shen, Ruiyuan Lu, Saeid Samizade, and Liang He. Passive fingerprinting for wireless
devices: A multi-level decision approach. In 2017 IEEE International Conference on
Identity, Security and Behavior Analysis (ISBA), pages 1–6, 2017.

[17] Arunan Sivanathan, Hassan Habibi Gharakheili, Franco Loi, Adam Radford, Chamith
Wijenayake, Arun Vishwanath, and Vijay Sivaraman. Classifying iot devices in smart envi-
ronments using network traffic characteristics. IEEE Transactions on Mobile Computing,
18(8):1745–1759, 2019.

35

https://youtu.be/L9UUD3a7xP4
https://fccid.io/ANATEL/02908-13-07001/Manual/750F8E42-49B0-4BFC-AE70-0130C29FD1CD/PDF
https://fccid.io/ANATEL/02908-13-07001/Manual/750F8E42-49B0-4BFC-AE70-0130C29FD1CD/PDF

	Thesis Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Thesis
	Introduction
	Related Work

	Wardriving Data
	Bluetana Data
	WiGLE Data

	Removing Irrelevant Data From Wardriving Data
	Preliminary Filtering of Inaccurate Data
	Stationary Devices
	Clustering
	Name Clustering: Original Method
	Name Clustering: Jaro-Winkler Distance
	MAC Address Clustering

	Filtering
	Infrastructure Filtering: Google Places API
	Infrastructure Filtering: Intersections
	Infrastructure Filtering: Airports
	Geographical Filtering by US States

	Results
	Bluetana Data
	WiGLE Data
	Infrastructural Clustering
	Geographical Clustering

	Discussion
	Limitations and Challenges
	Security and Impact

	Conclusion
	Future Work

	List of MAC Address Prefixes
	Bibliography

