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Abstract 
Two experiments were conducted to assess the intuitive 
reasoning of students when examining data from an analysis 
of variance design. Participants were shown hypothetical 
datasets that differed with regards to within-group and/or 
between-group variability, and were asked to judge the 
amount of evidence that each provided in support of a 
particular theory. The first experiment (n=57) examined the 
influence of presentation format of the hypothetical datasets. 
Participants were randomly assigned to receive the 
hypothetical datasets in one of two formats: (1) group data 
stacked vertically in a single column, or (2) group data 
displayed side-by-side in two columns. In the second 
experiment (n=13), students’ reasoning about the hypothetical 
datasets was assessed both before and after completing an 
introductory graduate level statistics course. Consistent with 
prior research, participants tended to place an inordinate 
amount of weight on the relative importance of between-
group, as opposed to within-group, variability. The results 
indicate that neither presentation format (Experiment 1) nor 
statistics training (Experiment 2) is enough to overcome this 
aspect of naïve statistical reasoning. 
 

Keywords: naïve statistics; statistical understanding; intuitive 
knowledge; conceptual knowledge; expert-novice differences 

Introduction 
In recent years more students are being required to 

register for statistics courses as it is becoming more 
prevalent in various degree programs. As such, a greater 
number of students are experiencing statistics anxiety 
(Onwuegbuzie & Wilson, 2003). For educators, 
identification of statistics-naïve students’ intuitive 
understandings and biases may help to alleviate their 
anxiety and focus their instruction, respectively.  Thus, the 
purpose of this paper is to examine the persistence of 
intuitive understandings and biases concerning statistics. 

Over forty years ago, Peterson and Beach (1967) 
reviewed the literature on the ability of individuals to be 
intuitive about, or estimate, statistics.  They were impressed 
by the accuracy with which individuals with no formal 
training in statistics can estimate descriptive statistics, such 
as means and variability.  However, there are some biases 
present in statistics-naïve individual’s reasoning, as well. 
For example, Beach and Scopp (1967) and Kareev, Armon 
and Horwiz-Zeligar (2002) have noted that estimation of 

variability tends to be conservative.  Peterson and Beach 
(1967) suggested that this may be due to an unwillingness to 
weight large deviations heavily. 

Recently, there has been renewed interest in naïve 
statistics (e.g., Masnick & Morris, 2008; Trumpower & 
Fellus, 2008).  This resurgence has focused on statistics-
naïve students’ ability to perform an intuitive analysis of 
variance (ANOVA) - that is, to detect between and within-
group variability and integrate that information in order to 
make judgements about group differences.  In the typical 
“intuitive ANOVA” study, participants are presented with 
datasets comprised of scores from two different conditions.  
They are then asked to make judgements concerning the 
evidence for a difference between the two conditions. 

Using this experimental paradigm, Trumpower and Fellus 
(2008) showed some of the understandings and biases that 
individuals display when performing an intuitive ANOVA.  
Participants were given a cover story regarding a theory that 
frozen golf balls travel farther than unfrozen golf balls.  
They were told that in order to test the theory, frozen and 
unfrozen golf balls were hit with the same force by a robotic 
arm.  The distances traveled by a group of unfrozen golf 
balls and a group of frozen golf balls were then shown to the 
participants, and they were asked to rate the amount of 
support that the hypothetical experiment provides for the 
claim that frozen balls travel farther (see Figure 1).  Several 
such hypothetical datasets were presented, varying with 
respect to the magnitude of the between and/or within-group 
variability.   

 
Three normal golf balls and three frozen golf balls are each 
hit by the robot in random order: 
 

normal  frozen 
300  450          Weak        Strong 
250  400     1    2    3    4    5    6    7    8    9    10 
350  350 
   Why? 
 

Figure 1. Example dataset used in Experiments 1 & 2. 
 
Ratings indicated that statistics-naïve college students can 

detect and understand the importance of both between-group 
and within-group variability.  For datasets that had the same 
within-group variability, participants reliably rated the 
dataset with larger between-group variability as providing 

3157



stronger evidence for a difference between conditions.  For 
datasets that had the same between-group variability, 
participants reliably rated the dataset with smaller within-
group variability as providing stronger evidence for a 
difference between conditions.  Thus far, participant’s 
intuitive ANOVA reasoning is consistent with the strength 
of evidence that would be indicated by performing an actual 
ANOVA on the datasets.  However, participants also 
displayed a bias of overweighing the importance of large 
between-group variability relative to small within-group 
variability.  One of the hypothetical datasets (shown in 
Figure 1) depicted a 100 yard difference between the means 
of the frozen and unfrozen golf balls coupled with a 50 yard 
standard deviation within each group.  Thus, this dataset had 
a 2:1 ratio of between to within-group variability.  Another 
of the hypothetical datasets depicted a 4 yard difference 
between the means of the frozen and unfrozen golf balls.  
But, this was coupled with just a 1 yard standard deviation 
within each group, resulting in a 4:1 ratio of between to 
within-group variability.  If one were to compute an actual t-
test or ANOVA on these two datasets, the one with the 
greater ratio of between to within-group variability would 
generate the larger F-statistic.  However, participants 
reliably rated the dataset with the smaller 2:1 ratio as 
providing stronger evidence for a difference between 
conditions.  In fact, Trumpower and Fellus found this bias 
for large but less reliable group differences over small yet 
more reliable  group differences in a group of students with 
no prior training in statistics as well as in a group of 
students who had just completed a university-level statistics 
course. 

In a similar study, Masnick and Morris (2008) examined 
the intuitive ANOVA capabilities of 9 year olds, 12 year 
olds, and college students.  They found that even the 9 year 
olds understand the relevance of between-group variability.  
The relevance of within-group variability appeared to be a 
more difficult concept to grasp, though.  Only the college 
students’ judgements about the data were influenced by 
within-group variability, albeit inconsistently.  College 
students were sometimes more confident in a difference 
between two datasets when there was larger within-group 
variability (although Masnick and Morris point out that 
within-group variability was confounded with the 
magnitude of the data points in their study).  In one other 
related study, Lubbock and Miller (1996) found that only 
about half of their 15 year old participants could identify 
within-group variability as being a source of 
“trustworthiness” of data. 

Thus, it appears that that statistics-naïve individuals (as 
young as 9 years old) have an intuitive understanding of the 
relevance of between-group variability.  But, intuitive 
understanding of the relevance of within-group variability is 
a bit less clear.  As we described earlier, Trumpower and 
Fellus (2008) documented one particular bias that both 
statistics-naïve and experienced students have regarding the 
relative importance of within-group variability.  The 
Trumpower and Fellus study had two limitations, however, 

which may temper any claims concerning the nature and 
stability of this bias in reasoning about within and between 
group variability.  First, the naïve and experienced students 
were sampled from independent populations.  The naïve 
participants were undergraduate-level teacher education 
students, whereas the experienced participants were 
graduate-level students, most of who were enrolled in a 
Master’s in Nursing program.  Any claims about the 
persistence of bias in ANOVA reasoning would be 
premature without demonstrating it in the same group of 
individuals before and after formal statistics instruction.  
Second, Trumpower and Fellus suggested that the bias may 
have been at least partially due to a misinterpretation of the 
data arising from the presentation format employed in the 
study.  Because data from the frozen and unfrozen 
conditions were aligned, side-by-side, in two columns as 
depicted in Figure 1, participants (especially the 
experienced ones) may have misinterpreted the golf balls as 
being paired across conditions.  That is, they may have 
believed that the data were from a correlated-groups design.  
Consistent with this interpretation, several of the 
participants actually computed difference scores by 
subtracting the distances of the frozen golf balls from the 
distances of the corresponding unfrozen golf balls when 
weighing the evidence provided by the data.  Scanning 
across columns when performing this pairwise-type 
comparison might serve to highlight large between-
condition differences while obscuring within-column 
variability.  Consider again the data in Figure 1.  This was 
the dataset mentioned earlier that had a 2:1 ratio of between 
to within-group variability.  Computation of difference 
scores in this dataset would result in two instances where 
the frozen golf ball went 150 yards further than the 
corresponding unfrozen golf ball, and only one instance in 
which the frozen golf ball did not travel farther than the 
corresponding unfrozen ball.  This may be contrasted with 
the dataset with a 4:1 ratio of between to within-group 
variability.  In this dataset, computation of difference scores 
would have resulted in three instances in which the frozen 
ball went farther than the corresponding unfrozen ball, but 
none in which the frozen ball went farther by more than 5 
yards.  In the qualitative results provided by participants, 
several mentioned that the frozen golf balls went much 
farther than the unfrozen balls on 2 out of 3 instances in the 
former dataset and that all of the frozen balls went further 
than the unfrozen balls, but only by an “insignificant” 
amount, in the latter dataset.  This sort of response was more 
prevalent in the statistics-experienced participants.  Indeed, 
calculation of difference scores and thinking about whether 
differences are big enough to be considered “significant” are 
likely to be fresh in the minds of students after a semester 
studying statistics.  The side-by-side presentation format of 
the data coupled with the fact that the experienced 
participants had recently performed correlated groups t-tests 
in their just completed statistics course may have primed 
this way of biased reasoning.  If so, then the apparent 
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persistence of the bias may be due to different factors in the 
naïve and experienced students. 

The purpose of the current study was to build on the 
previous study completed by Trumpower and Fellus (2008).  
More specifically, we assess the persistence of the intuitive 
ANOVA bias identified by Trumpower and Fellus across 
different data presentation formats (Experiment 1), and 
within the same group of students before and after 
instruction (Experiment 2). 

Experiment 1 
When teaching students to perform a correlated groups t-

test or ANOVA by hand, paired data are almost exclusively 
presented in side-by-side columns.  When performing the 
same type of analysis with most computer software 
programs, such as SPSS, data must be entered in separate 
columns, as well.  Thus, the presentation format used by 
Trumpower and Fellus may have led statistics-experienced 
participants to misinterpret the data as a correlated-groups 
design, thereby leading them to calculate difference scores.  
This, in turn, may have focused their attention on large 
difference scores in favor of the frozen golf ball traveling 
farther and turned their attention away from within-column 
variability. 

If so, then presenting all of the data in a single column, in 
which distances of the unfrozen golf balls are stacked above 
the distances of the frozen golf balls, should eliminate 
misinterpretation of the data as coming from a correlated 
groups design.  Data to be analyzed with a correlated groups 
ANOVA are almost never presented in this stacked format 
in class or when entered into a data analysis software 
program.   Because between-group designs are analyzed by 
performing calculations within each condition (i.e., 
computing group means and standard deviations) rather than 
computing difference scores across conditions, it was 
expected that this “stacked” format would reduce or 
eliminate the tendency to focus more so on large differences 
across conditions than on within-condition variability. 

In Experiment 1, statistics-experienced participants were 
presented with hypothetical datasets to evaluate in an 
intuitive ANOVA paradigm as in Trumpower and Fellus 
(2008).  Participants were randomly assigned to receive the 
datasets in a side-by-side, two column format or in a 
vertically stacked, single column format. Table 1 presents 
the descriptive statistics of the hypothetical datasets, as well 
as the F-statistic that would result if an actual ANOVA were 
performed on the datasets.  The bias identified in 
Trumpower and Fellus (2008) was indicated by participants  
(both naïve and experienced) rating dataset 2 as providing 
stronger evidence than dataset 3, and dataset 1 as providing 
stronger evidence than dataset 3 (experienced participants 
only). 

Method 
Participants Fifty-seven students, who had recently 
completed an introductory level university statistics course 
at Marshall University, served as participants in exchange 

for partial course credit. The participants were randomly 
assigned to one of two groups (n=28; n=29) as described 
below. 

Materials & Procedure 
The students in both groups were given a test booklet, in 

which the first page was the same for all the students. The 
first page of the test booklet displayed the following 
scenario:   

 
Suppose two scientists/entrepreneurs are considering 
whether or not to develop a golf ball freezer that can be 
attached to a regular golf bag.  They have a theory that 
frozen golf balls travel farther than normal (i.e., 
unfrozen) golf balls. To test their theory, the 
scientists/entrepreneurs devise an experiment in which 
a robotic arm will be used to hit normal and frozen golf 
balls, all with the exact same force, after which the 
distance that each ball travels will be measured.  In 
order to remain completely unbiased, the 
scientists/entrepreneurs will allow independent 
researchers (who are completely unaware of their 
theory) to conduct the experiment. 
 
Listed on the following page are hypothetical results 
from several such experiments.  For each experiment, 
rate the amount of support (1=weak, 10=strong) that 
you think the test would provide for the claim that 
frozen golf balls go farther than normal golf balls, and 
briefly explain why. 
 
The second page of the test booklet displayed four 

hypothetical datasets. Each scenario provided the distances 
traveled by 3 frozen and 3 unfrozen golf balls. Participants 
were asked to rate, on a 10 point rating scale, the strength of 
support provided by the data for the claim that frozen golf 
balls go farther than normal golf balls. Participants were 
also provided space to explain the reason for each of their 
ratings.  

The raw scores for both the unfrozen and frozen golf balls 
were displayed vertically in one column (one set stacked 
above the other) for one group and horizontally in two 
columns (side-by-side) for the other group.  

 
Table 1: Means (and standard deviations) of conditions, 

and resulting F-statistics, of hypothetical datasets. 
 

Dataset Unfrozen Frozen F 
1 300 (50) 304 (50) .01 
2 300 (50) 400 (50) 6 
3 300 (1) 304 (1) 24 
4 300 (1) 400 (1) 15000 

 

Results 
Ratings were analyzed using a 2 Format (side-by-side; 
stacked) x 4 Dataset split-plot ANOVA with repeated 
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measures on the second factor. The main effect of Dataset 
was significant, F(3,162)=103.48, p<.001, but neither the 
Format main effect, F(1,54)=0.055, p=.816, nor the Dataset 
x Format interaction, F(3,162)= 0.638, p=0.591, was 
significant (see Figure 2). 

 The main effect of Dataset was followed up by all 
possible pairwise comparisons among the 4 datasets.  The 
Tukey procedure was used to determine the critical values 
used for testing all pairwise contrasts (Maxwell & Delaney, 
2003).  Datasets 1 and 2 and datasets 3 and 4 differ only 
with respect to between-group variability (with datasets 2 
and 4 having larger between-group mean differences).  
Participants rated dataset 2 as providing significantly 
stronger evidence than dataset 1, F(1,55)=71.60, p<.001 and 
rated dataset 4 as providing stronger evidence than dataset 
3, F(1,54)=216.75, p<.001. 

Datasets 2 and 4 and datasets 1 and 3 differ only with 
respect to within-group variability (with datasets 4 and 3 
having smaller within-group standard deviations).  
Participants rated dataset 4 as providing stronger evidence 
than dataset 2, F(1,54)=22.23, p<.001, but they rated dataset 
3 as providing weaker evidence than dataset 1, 
F(1,55)=11.61, p=.001. 

Datasets 1 and 4 and datasets 2 and 3 differ with respect 
to both within and between-group variability.  Dataset 4 has 
both a larger between-group mean difference and smaller 
within-group standard deviation than dataset 1.  It was no 
surprise, then, that participants did rate dataset 4 as 
providing stronger evidence than dataset 1, F(1,54)=135.14, 
p<.001.  Dataset 2 has a larger between-group mean 
difference but also a larger within-group standard deviation 
than dataset 3.  Dataset 2 has a 2:1 ratio of between to 
within-group variability, whereas dataset 3 has a 4:1 ratio.  
Nonetheless, participants rated dataset 2 as providing 
stronger evidence than dataset 3, F(1,55)=102.67, p<.001. 
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Figure 2. Mean ratings by Dataset and Format. 

Discussion 
Format of the hypothetical datasets had no effect on 

student’s ratings.  Presenting data in a single, stacked 
column did not eliminate the bias of experienced students to 
consider larger, less reliable differences as stronger 
evidence than smaller, more reliable differences.  Even 

when the data format discouraged computation of difference 
scores (i.e., one group’s data stacked atop the other group’s 
data), students still placed more emphasis on the magnitude 
of the difference in distances traveled by frozen and 
unfrozen balls than on the trustworthiness of data indicated 
by within-condition variability. 

 

Experiment 2 
Thus far, the bias described by Trumpower and Fellus 

(2008) and in Experiment 1 has been demonstrated in 
students of different experience levels in statistics and has 
been shown to be robust with respect to data presentation 
formats.  However, a stronger case for the persistence of the 
bias would be made if it could be demonstrated in the same 
students before and after instruction.  In Experiment 2, the 
intuitive ANOVA abilities of a group of students was 
assessed during the first and last class of a graduate-level 
statistics course. 

Method 
Participants Twenty-two students enrolled in an 
introductory, graduate level, statistics course at the 
University of Ottawa volunteered to participate in exchange 
for extra course credit. Alternatives were made available for 
those who chose not to participate.  Several students were 
absent during the first class meeting and several other 
students dropped the course after attending the first week.  
A total of thirteen participants completed both the pre-and 
post-tests.  

Materials & Procedure 
During the first day of the course, participants were asked 

to complete a pre-test that was exactly the same as the test 
booklet used in the stacked format condition of Experiment 
1.  On the last day of the course, participants were asked to 
complete a post-test that was identical to the pre-test except 
that it used a different cover story involving a hypothetical 
difference between baseball bats made of normal and 
genetically-engineered wood. Identical datasets were used 
on both the pre-test and post-test.   

The likelihood that participants remembered the actual 
values of the datasets is minimal due to the length of time 
between pre and post-tests (3 months) and the frequency of 
other datasets encountered within the course during that 
time.  The course itself covered both descriptive and 
inferential statistics, including the sign test, z-test for single 
samples, t-tests for independent and correlated groups, and 
correlation and regression. 

Results 
A 2 Time (pre and post) x 4 Dataset repeated measures 

ANOVA was conducted on the participants’ ratings.  The 
main effect of Dataset was significant, F(3,33) =27.20, 
p<.001.  Neither the main effect of Time nor the Time by 
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Dataset interaction was significant, F(1,11)=3.54, p=.087 
and F(3,33)=1.95, p=.141, respectively (see Figure 3). 

The main effect of Dataset was followed up by all 
possible pairwise comparisons among the 4 datasets.  The 
Tukey procedure was again used to determine the critical 
values used for testing all pairwise contrasts.  Recall that 
datasets 1 and 2 and datasets 3 and 4 differ only with respect 
to between-group variability (with datasets 2 and 4 having 
larger between-group mean differences).  Participants rated 
dataset 2 as providing stronger evidence than dataset 1, 
F(1,11)=13.03, p=.004, and dataset 4 as providing stronger 
evidence than dataset 3, F(1,12)=27.31, p<.001. 

Also, recall that datasets 2 and 4 and datasets 1 and 3 
differ only with respect to within-group variability (with 
datasets 4 and 3 having smaller within-group standard 
deviations).  Participants rated dataset 4 as providing 
stronger evidence than dataset 2, F(1,12)=26.76, p<.001, 
and dataset 3 as providing stronger evidence than dataset 1, 
F(1,11)=13.77, p=.003. 

Finally, recall that datasets 1 and 4 and datasets 2 and 3 
differ with respect to both within and between-group 
variability.  Dataset 4 has both a larger between-group mean 
difference and smaller within-group standard deviation than 
dataset 1.  Again, not surprisingly, participants rated dataset 
4 as providing stronger evidence than dataset 1, 
F(1,11)=118.74, p<.001.  Dataset 2 has a larger between-
group mean difference combined with a larger within-group 
standard deviation than dataset 3 such that dataset 2 has a 
2:1 ratio of between to within-group variability, whereas 
dataset 3 has a 4:1 ratio.  Nonetheless, participants’ ratings 
for datasets 2 and 3 were not statistically different, 
F(1,12)=0.15, p=.702. 
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Figure 3. Mean ratings Dataset and Time. 
 

Discussion 
Students entered and exited the course with an ability to 
detect and realize the importance of between-group 
variability.  Where two datasets differed with respect to only 
the between-group variability, they rated the datasets with 
larger differences between group means as providing 
stronger evidence of differences between conditions. 
    They were also able to detect and to realize the 
importance of within-group variability to a certain extent.  

All other things being equal, students rated datasets with 
smaller within-group variability as providing stronger 
evidence of differences between the conditions.  However, 
students again displayed an intuitive bias such that a small, 
yet reliable difference (dataset 3) was deemed no stronger 
than a larger, but less reliable difference (dataset 2).  This 
bias was persistent, even after successfully completing a 
course covering inferential statistics.  It might be noted, 
however, that the bias was somewhat weaker here than in 
Experiment 1.  In Experiment 1, dataset 2 was rated as 
providing stronger evidence than dataset 3; here there was 
no significant difference. 

General discussion 
In the present study we have shown that students have a 
robust intuitive bias to consider large between-group 
variability as more important than small within-group 
variability when detecting differences between conditions.  
The bias was shown to not be due to presentation format, 
and to be stubbornly resistant to change after instruction.  At 
this point, the bias has been demonstrated in graduate and 
undergraduate students at different universities and in 
different academic concentrations. 

The bias displayed in this study could be the result of 
several sources.  One potential source is the contrast 
between statisticians’ and laypersons’ use of the word 
“difference”.  Statisticians may think in terms of statistically 
significant (i.e., reliable) differences, whereas laypersons 
are more likely to think in terms of practically important 
differences.  While a four yard difference could be very 
reliable, and therefore significant to a statistician, it might 
not be construed as a meaningful difference to a layperson.  
Conversely, a fifty yard difference that is unreliable would 
not be considered significant to a statistician, but might still 
be seen as a potentially meaningful difference to a 
layperson.  Put differently, laypersons may be more likely to 
spend money on a baseball bat that has the potential to hit 
the ball 50 yards further than they are to spend money on a 
baseball bat that is guaranteed to hit the ball only 4 yards 
further than normal bats.  To use an analogy, the layperson 
may be like a gambler who is more likely to place their 
money on a bet with a potentially big, although uncertain, 
payoff than on a bet with a small, but more certain, payoff.   

An additional source of the bias could be that students are 
using an intuitive confirmatory hypothesis testing 
procedure, along with the “bigger = more meaningful” 
layperson logic noted above.  Preliminary analysis of 
students’ verbal protocols indicates that many, in fact, did 
conduct a score-by-score analysis (as opposed to computing 
group means and variances), noting the number of scores 
from the experimental groups (i.e., the frozen and the 
genetically engineered bat conditions) that were larger than 
scores in the control groups.  Large differences in favor of 
the experimental condition were noted as confirming the 
hypothesis, whereas small differences in favor of the 
experimental condition and differences in favor of the 
control condition were sometimes discounted as being due 
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to error.  For example, one participant in Experiment 1 
explained their rating for dataset 2 by mentioning that 2 of 3 
frozen golf balls traveled farther than the normal golf balls, 
but the distance of the third frozen golf ball (which did not 
go farther than any of the normal golf balls) may have been 
due to chance.  This same participant, when explaining their 
rating for dataset 3 (in which all 3 frozen golf balls traveled 
farther than any of the normal golf balls, albeit by no more 
than 5 yards) simply mentioned that the differences were not 
significant. 

The picture for statistics instructors is not completely 
bleak.  Students do possess a good intuitive ability to detect 
and utilize between-group variability.  The problem may be 
that this ability is too good.  Students arrive in class with a 
strong tendency to focus on between-group differences and 
place too much emphasis on large differences.  While it is 
easy for students to understand that between-group 
differences are (at least partially) due to the effect of the 
independent variable, it appears more difficult for them to 
understand that some of the observed between-group 
difference may be due to other random effects (i.e., error in 
measurement). As such, statistics educators may want to 
determine how to shift attention toward the relative 
importance of within-group variation.  One strategy may be 
to encourage a more intensive focus on the actual sources of 
within group variation – i.e., help students understand why 
numbers within a given condition might vary and how these 
sources of variation signify unreliability in measurement 
that could lead to some of the observed between-group 
difference.  Although we are sure that statistics instructors 
already make an effort to illustrate the difference between 
within- and between-group variability, our studies show that 
the standard approach is often not very effective. 

Future studies will seek to pinpoint the source of the bias 
described in this study, with the goal of developing 
pedagogical strategies for overcoming it.  It may be that 
students simply need to get a “feel” for analyzing variance 
without even thinking in a statistical sense. 
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