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Abstract 

Catching up to fungal plant pathogens: A characteriza�on of extrachromosomal circular DNAs 
and gene presence absence varia�on in Magnaporthe oryzae 

By 

Pierre M. Joubert 

Doctor of Philosophy in Microbiology 

Designated Emphasis in Computa�onal and Genomic Biology 

University of California, Berkeley 

Professor Ksenia V. Krasileva, Chair 

Fungal plant pathogens have major impacts on agriculture and global food security and are 
likely to have an even greater impact in the future. The current tools that we have available to 
combat them are insufficient, in part because these fungi can quickly adapt to these tools. 
Understanding fungal plant pathogen evolu�on is therefore essen�al to curbing the threat these 
pathogens pose. In Chapter 1, I describe the mo�va�ons for my disserta�on work and the state 
of the field of fungal plant pathogen evolu�on. I also introduce the model organism I used in my 
research, Magnaporthe oryzae, which causes the blast disease. Chapter 2 describes my 
characteriza�on of the extrachromosomal circular DNAs (eccDNAs) of M. oryzae. EccDNAs are a 
diverse class of molecules that can contribute to phenotypic and genotypic plas�city in 
eukaryotes, and I hypothesized that these may be involved in fungal plant pathogen evolu�on. I 
show that M. oryzae has a more diverse set of eccDNAs than other organisms and that these 
are enriched in LTR retrotransposons. I also show that many genes are found on eccDNAs in M. 
oryzae, and that effectors are enriched on eccDNAs. Finally, I show that eccDNAs are associated 
with gene presence-absence varia�on (PAV). Next, in Chapter 3, I discuss in greater detail the 
results presented in Chapter 2, as well as their implica�ons and poten�al future direc�ons. I 
also further discuss evidence in Chapter 2 that led me to believe that eccDNAs do not play a 
major role in fungal plant pathogen evolu�on and led me to focus directly on gene PAV in M. 
oryzae in the remainder of my disserta�on. Subsequently, in Chapter 4, I describe my 
characteriza�on of these events in M. oryzae. I find that genes experiencing PAV between 
lineages of M. oryzae are enriched in disease-causing and non-self-recogni�on genes. I describe 
how gene PAV events in the rice and wheat pathotypes show clear differences in their count 
and genomic loca�on. Through comparing PAV genes to conserved genes, I show that these had 
dis�nct distances to TEs, distances to other genes, lengths, GC content, expression, and 
epigene�c marks. I also describe how a machine learning model can be trained to take 
advantage of these features to predict genes prone to PAV in the M. oryzae genome. Finally, in 
Chapter 5, I further discuss the implica�ons of the results I describe in this disserta�on, as well 
as future direc�ons for implemen�ng machine learning models and general knowledge of 
fungal plant pathogen evolu�on to help guide ra�onal disease resistance engineering in crops. 
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Chapter 1 

Introduc�on to fungal plant pathogen genome evolu�on, Magnaporthe oryzae, and 
mo�va�ons for research 
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Fungal plant pathogens pose a major threat to all agricultural crops. These fungi can cause many 
different types of disease and cause massive losses in yield. Unfortunately, climate change will 
likely increase pathogen pressure on agriculture [1,2]. The recent emergence and rapid spread 
of devasta�ng diseases like wheat blast and Panama disease of bananas also indicate that fungal 
plant pathogens will be a growing problem in the future [3,4].  

Current methods to combat these fungi are unfortunately not enough to curb their threat. 
Fungicides have devasta�ng environmental consequences and can o�en only slow the 
inevitable spread of these fungi [5,6]. Selec�ve breeding and gene�c engineering are more likely 
to be frui�ul solu�ons. However, these tac�cs are o�en very slow to implement, and fungal 
plant pathogens can quickly adapt to overcome disease resistance [7]. Understanding how these 
pathogens can adapt to their host will help us design crops with more robust and long-las�ng 
disease resistance in the future, and it is a central mo�va�ng ques�on for my disserta�on work. 

Fungal plant pathogens secrete proteins called effectors to modify host func�ons and cause 
disease [8]. Their hosts o�en use receptors called NLRs to detect these effectors and trigger an 
immune response [9]. To avoid this immune response, pathogens secrete large suites of 
effectors with redundant func�ons. This means that they can simply stop secre�ng effectors 
that their host detects to escape recogni�on. The loss of effector produc�on can be triggered 
through a variety of mechanisms including gene dele�on, muta�on, and transcrip�onal 
silencing [10]. Alterna�vely, these fungi can secrete mutant variants of effectors that cannot be 
detected by the plant or secrete effectors that suppress the plant’s immune system. The result 
of these dynamics is that, as plant scien�sts produce new resistant crop varie�es, o�en by 
gene�cally engineering or breeding NLRs with new binding specifici�es into them, fungal plant 
pathogens con�nue to evolve and eventually escape recogni�on. This has led to resistant crops 
some�mes losing their resistance a�er being in use for only a few years [10]. 

In addi�on to fast genera�on �mes, these pathogens take advantage of many features of their 
genomes to adapt quickly to their hosts. For example, many fungal plant pathogens have a 
“two-speed” genome architecture [7,11]. This genomic organiza�on is characterized by the 
tendency for house-keeping genes to be present in gene-rich, repeat-sparse regions of the 
genome, and the tendency for effector genes to be present in gene-sparse, repeat-rich regions 
of the genome. This architecture is thought to enable effector genes to evolve rapidly while 
important house-keeping genes evolve more slowly. Transposable elements (TEs), accessory 
chromosomes, rapid evolu�on in sub-telomeric regions of the genome, and horizontal gene 
transfer events have also been implicated in the success of fungal plant pathogens [7,12,13].  
Finally, extensive gene presence-absence varia�on (PAV) has been observed in many fungal 
plant pathogens, implying that they are able to quickly lose genes to escape recogni�on by their 
hosts [10,14]. However, fungal plant pathogen evolu�on remains an ac�ve area of research, and 
how these fungi shape their genomes to beter take advantage of these features remains 
unknown. Addi�onally, whether we can construct predic�ve models that can predict effector 
evolu�on and help guide disease-resistance engineering has remained an open ques�on in the 
field. 

Magnaporthe oryzae (syn. Pyricularia oryzae) causes the blast disease and is one of the most 
important and well-studied fungal plant pathogens [15,16]. It causes massive losses in rice crops 
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each year, equivalent to feeding 60 million people [17], and the emerging devasta�ng wheat-
infec�ng pathotype is likely to be an even bigger threat to global wheat produc�on [4,16]. 
Because of its importance, it is amongst the fungal plant pathogens with the most available 
bioinforma�cs datasets. This includes hundreds of available genomes as well as transcriptomic 
datasets, and epigene�c datasets which makes it an ideal model for studying fungal plant 
pathogen evolu�on. TEs, accessory chromosomes, horizontal gene transfer, and extensive gene 
PAV have all been implicated in its evolu�on [18–27]. Addi�onally, M. oryzae reproduces 
clonally most of the �me, which raises major ques�ons about how it can produce enough 
gene�c diversity to evolve in response to its hosts [26,28]. In this disserta�on, I describe the 
research I carried out to improve our understanding of M. oryzae evolu�on and discuss how my 
findings might apply to the evolu�on of other fungal plant pathogens. 

Genomes o�en respond to stress by shedding extrachromosomal circular DNAs (eccDNAs). 
These molecules can be generated through many different processes including DNA repair, 
transcrip�on, and TE ac�vity [29–32]. EccDNAs can accumulate in cells, massively amplifying the 
copy numbers of genes they contain [33–38]. EccDNA-mediated gene amplifica�on can cause 
changes in phenotype and can result in adapta�on to stress [33,34,37,39,40]. EccDNAs can also 
generate genomic structural varia�on [33,41–44]. Given the impressive evolu�onary poten�al 
of eccDNAs, and the associa�ons between eccDNAs and repe��ve sequences, I hypothesized 
that eccDNAs might be involved in fungal plant pathogen evolu�on. If this were the case, 
eccDNAs could be an important target for crop disease preven�on, as they are in cancer [29], 
and could allow us to observe fungal plant pathogen genome evolu�on under various stressors 
more easily in the lab. 

As described in Chapter 2 of this disserta�on, I sequenced the eccDNAs of M. oryzae and 
characterized them. I compared eccDNAs across mul�ple organisms and found that M. oryzae 
eccDNAs were par�cularly numerous and diverse and were more likely to contain LTR 
retrotransposon sequences. When I looked at eccDNAs generated from LTR retrotransposons in 
M. oryzae, I found that each of them used unique mechanisms for eccDNA forma�on. I also 
found that most genes in M. oryzae were present on eccDNAs in my data. However, a small 
subset was not, and this subset was enriched for genes related to cytoskeleton forma�on. I also 
found a set of genes that were par�cularly prone to forming eccDNAs. These genes were more 
likely to experience PAV than other genes and were more likely to be in the gene-sparse, repeat-
dense compartment of the M. oryzae genome. Finally, I found that effectors were more likely to 
be found on eccDNAs than other genes. These results posed many interes�ng ques�ons about 
eccDNA biology. However, I did not find evidence of eccDNA-mediated structural varia�on in M. 
oryzae, indica�ng that eccDNAs are unlikely to play a major role in fungal plant pathogen 
evolu�on. This led me to focus on other types of structural varia�on instead, and especially PAV. 

As previously men�oned in this chapter, one of the ways fungal plant pathogens can escape 
recogni�on by their hosts is simply by removing the genes responsible for producing the 
detected effector from their genomes. Extensive effector PAV has been reported in the past in 
the rice pathotype of M. oryzae [20,25–27]. This PAV is thought to contribute to M. oryzae’s 
adapta�on, and differences in gene content have been observed in isolated popula�ons of the 
fungus [26]. However, other groups that have looked at PAV in M. oryzae in the past were 
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mostly focused on effectors. They also did not dive deeper into where these PAV events happen 
in the genome and what features they might be associated with. Finally, PAV events had not 
been compared across different pathotypes of M. oryzae. I hypothesized that if we could gain a 
beter understanding of these features, we could generate models that might help predict gene 
losses in the future. 

In Chapter 4 of this disserta�on, I describe my characteriza�on of PAV in M. oryzae. First, I found 
extensive PAV of effectors and non-self-recogni�on genes in the fungus. When I looked at what 
features were associated with gene PAV, I found that these events were associated with high TE 
densi�es and low gene densi�es. I also found that genes prone to PAV had clear differences in 
their length, GC content, expression, and epigene�c marks when compared to conserved genes. 
When I compared orthogroups experiencing PAV in rice-infec�ng strains of M. oryzae to those 
prone to PAV in wheat-infec�ng strains, I found that the rice pathotype had fewer of these 
orthogroups and that they were more likely to be found in well-defined clusters in the M. oryzae 
genome. I also found clear differences in the genomic features associated with PAV genes 
between rice-infec�ng and wheat-infec�ng M. oryzae. Using the genomic features of PAV genes 
that I iden�fied, I was able to train machine learning models to predict which genes are prone 
to PAV in the M. oryzae genome. The work presented in Chapter 4 of this disserta�on, has 
important implica�ons for the future of plant disease resistance engineering and supports the 
hypothesis that we will be able to use complex models to predict fungal plant pathogen 
evolu�on in the future and use that informa�on to improve the engineering of robust disease 
resistance in crops. 

In summary, this disserta�on highlights the need for further inves�ga�on of eccDNAs, especially 
in fungal plant pathogens, and demonstrates unique features of the M. oryzae genome that 
could play an important role in its evolu�on. It also highlights differences in the evolu�on of the 
different pathotypes of M. oryzae that could have been shaped by differences in their history. 
Finally, I show evidence in this disserta�on that aspects of genome evolu�on in M. oryzae can 
be linked to specific genomic features and that these can be used to construct predic�ve 
machine learning models, which supports the idea that predic�ng fungal plant pathogen 
evolu�on to guide disease engineering in crops could be possible in the future.
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Chapter 2 

Characteriza�on of the extrachromosomal circular DNAs of Magnaporthe oryzae 
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The contents of this chapter are based on the following publica�on: 

Joubert, P.M., Krasileva, K.V. The extrachromosomal circular DNAs of the rice blast pathogen 
Magnaporthe oryzae contain a wide variety of LTR retrotransposons, genes, and effectors. BMC 
Biology 20, 260 (2022). htps://doi.org/10.1186/s12915-022-01457-2 

Abstract 

Background:  

One of the ways genomes respond to stress is by producing extrachromosomal circular DNAs 
(eccDNAs). EccDNAs can contain genes and drama�cally increase their copy number. They can 
also reinsert into the genome, genera�ng structural varia�on. They have been shown to provide 
a source of phenotypic and genotypic plas�city in several species. However, whole circularome 
studies have so far been limited to a few model organisms. Fungal plant pathogens are a serious 
threat to global food security in part because of their rapid adapta�on to disease preven�on 
strategies. Understanding the mechanisms fungal pathogens use to escape disease control is 
paramount to curbing their threat.  

Results:  

We present a whole circularome sequencing study of the rice blast pathogen, Magnaporthe 
oryzae. We find that M. oryzae has a highly diverse circularome that contains many genes and 
shows evidence of large LTR retrotransposon ac�vity. We find that genes enriched on eccDNAs 
in M. oryzae occur in genomic regions prone to presence-absence varia�on, and that disease 
associated genes are frequently on eccDNAs. Finally, we find that a subset of genes is never 
present on eccDNAs in our data, which indicates that the presence of these genes on eccDNAs is 
selected against.  

Conclusions: 

Our study paves the way to understanding how eccDNAs contribute to adapta�on in M. oryzae. 
Our analysis also reveals how M. oryzae eccDNAs differ from those of other species, and 
highlights the need for further compara�ve characteriza�on of eccDNAs across species to gain a 
beter understanding of these molecules. 

Background 

Extrachromosomal circular DNAs (eccDNAs) are a broad and poorly understood category of 
molecules defined simply by the fact that they are circular and originate from chromosomal 
DNA. This group of molecules has been referred to by many names and includes many smaller 
categories of molecules such as episomes, double minutes, small polydisperse circular DNAs, 
and microDNAs. They form through several mechanisms including non-allelic homologous 
recombina�on (NAHR), double strand break repair, replica�on slippage, replica�on fork stalling, 
R-loop forma�on during transcrip�on [29], and as a byproduct of LTR retrotransposon ac�vity 
[30–32] (Fig. 1A). EccDNAs can accumulate in cells through autonomous replica�on [33–36], 
high rates of forma�on [37], or through reten�on in ageing cells [38]. EccDNAs can contain 
genes, and amplifica�on of gene-containing eccDNAs has been linked to adapta�on to copper 
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[37] and nitrogen [33] stress in yeast, herbicide resistance in weeds [34], and drug resistance in 
cancer cells [39,40]. EccDNA forma�on is thought to some�mes cause genomic dele�ons 
[33,41,42] and reinser�on of eccDNAs a�er their forma�on has also been thought to generate 
structural varia�on [43,44]. Some evidence also indicates that eccDNAs could facilitate 
horizontal gene transfer [44]. Despite their poten�al as important facilitators of gene�c and 
phenotypic plas�city and presence in all eukaryotes, research efforts, and especially whole 
circularome sequencing experiments, have been limited to model organisms and human cancer. 
Therefore, how these molecules behave across the tree of life and how different species could 
take advantage of these molecules to rapidly adapt to their environments have remained largely 
unknown. 

 

 

Fig. 1. Comparison of eccDNA forma�on in M. oryzae and other organisms. A. Examples of 
mechanisms of extrachromosomal circular DNA (eccDNA) forma�on. 1. eccDNA forma�on as a 
result of double strand break repair. The blue enzyme represents several different types of DNA 
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repair mechanisms 2. eccDNA forma�on as a result of non-allelic homologous recombina�on 
(NAHR). The green boxes represent homologous sequences. 3. eccDNA forma�on as a result of 
LTR retrotransposon ac�vity. The blue and green enzyme represents RNA polymerase, and the 
orange enzyme represents a reverse transcriptase (RVT). Rectangles that are partly blue and 
partly red represent hybrid LTRs formed from 5’ and 3’ LTRs during retrotransposi�on. DNA is 
drawn in black and RNA in gray. B. Comparison of genome size and number of eccDNA forming 
regions for Arabidopsis thaliana [45], Oryza sativa [46], Homo sapiens [41], Saccharomyces 
cerevisiae [47], and Magnaporthe oryzae. The number of eccDNA forming regions are shown as 
called by our pipeline in an average sample. Circularome data for A. thaliana and O. sativa leaf 
�ssue, H. sapiens muscle �ssue, and S. cerevisiae dele�on collec�on samples are shown. The 
organism and protein icons were created with BioRender.com. 

One of the greatest threats to food security is the devastation of crops by fungal plant 
pathogens. These pathogens secrete molecules known as effectors to modify host functions 
and cause disease [8]. The most promising solution to these diseases is the genetic modification 
of crops by introducing new disease resistance genes, often by allowing the crops to detect 
effectors and trigger immune responses [48]. Unfortunately, the deployment of disease 
resistant crops has often had only short-term success as some fungal pathogens have adapted 
to these defenses in very short time spans [10]. Similarly, fungicides are often used to mitigate 
the devastation caused by pathogens but fungi often evolve drug resistance [49]. A better 
understanding of how these pathogens adapt and overcome disease prevention efforts so 
quickly is vital to implementing future strategies. Sequencing and characterization of the 
genomes of fungal plant pathogens have implicated transposable elements [50], accessory 
chromosomes [13,51], and horizontal gene transfer [12]. Additionally, the compartmentalized 
genome architectures of some of these pathogens, commonly referred to as the “two-speed” 
genome, is thought to facilitate adaptation to stress by harboring stress response genes and 
disease associated genes, including effectors, in rapidly evolving regions of their genomes that 
contain few genes and many repetitive elements [11]. Given the potential for eccDNAs to be a 
source of phenotypic and genotypic plasticity, we sought to characterize the circularome of one 
of these pathogens to identify if eccDNAs could play a role in the rapid adaptation of the fungal 
plant pathogen, Magnaporthe oryzae (syn. Pyricularia oryzae). 

M. oryzae, the causative agent of the rice blast disease [52], has been described as one of the 
most important fungal pathogens threatening agriculture [15] and is responsible for losses in 
rice crops equivalent to feeding 60 million people each year [53]. Its ease of culture as well as 
the importance of this pathogen for global food security have propelled M. oryzae  to being one 
of the most studied plant pathogens; resulting in over three hundred sequenced genomes, 
transcriptomic and epigenetic datasets, as well as genetic tools including CRISPR/Cas9 mediated 
genome editing [54]. The availability of these extensive genomic datasets makes M. oryzae a 
prime candidate for understanding the role eccDNAs may play in adaptation to stress in a 
fungal plant pathogen. 

We present here our analysis of circularome sequencing data for M. oryzae and identify 
eccDNA forming regions in its genome. We describe the high diversity of eccDNA forming 
regions that we found in the rice blast pathogen and compare it to previously sequenced 
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circularomes. We find that most of the M. oryzae circularome is made up of LTR 
retrotransposon sequences and that genes on eccDNAs tend to originate from regions of the 
genome prone to presence-absence variation. Additionally, our characterization of the genes 
found on eccDNAs shows that many genes are never found on eccDNAs under the conditions 
we tested and suggests that selection may shape which genes are found on these molecules. 
Finally, our analysis reveals that many disease-causing effectors are found on eccDNAs in the 
pathogen. 

Results 

Iden�fica�on of eccDNA forming regions in Magnaporthe oryzae 

To characterize the circularome of M. oryzae, eccDNAs were purified and sequenced from pure 
cultures of M. oryzae Guy11 using a protocol adapted from previously published methods [46]. 
Briefly, a�er total DNA extrac�on of 3 biological replicates, linear DNA was degraded from 3 
technical replicates for each biological replicate using an exonuclease, and the remaining 
circular DNA was amplified using rolling circle amplifica�on (RCA). Deple�on of linear DNA was 
verified with qPCR using markers to the M. oryzae ac�n gene (MGG_03982, Addi�onal File 1: 
Fig. S1). This gene was used as a marker for linear DNA since increased copies of the ACT1 gene 
are thought to be deleterious in yeast [47,55]. Isolated eccDNAs were then sequenced using 
both paired-end Illumina sequencing and PacBio circular consensus sequencing (CCS). In total, 
we sequenced 8 samples as one technical replicate failed quality checks during library 
prepara�on. On average, Illumina sequencing yields were 6.5 Gbp per sample, and PacBio 
sequencing yields were 8 Gbp (subreads) and 500 Mbp (CCS) per sample. 

To iden�fy specific breakpoints indica�ng eccDNA forma�on in our Illumina sequencing data, 
we developed a pipeline inspired by previously published methods [41]. In circularome 
sequencing data, split mapping reads originate from sequencing circulariza�on junc�ons of 
eccDNAs. Addi�onally, read pairs in the data that map in the opposite direc�on represent 
sequencing from paired-end sequencing fragments that span these circulariza�on junc�ons. 
Our pipeline used split reads in combina�on with opposite facing read pairs to find evidence of 
eccDNA forma�on (Fig. 2). This allowed us to iden�fy, with high confidence, genomic sequences 
belonging to eccDNAs, which we will herea�er refer to as “eccDNA forming regions.” We will 
refer to split reads associated with these eccDNA forming regions simply as “junc�on split 
reads.” Our analysis was limited to these eccDNA forming regions, rather than the fully resolved 
structure of each eccDNA molecule because of the complexity of eccDNAs and the techniques 
used to sequence them in this study. For example, eccDNAs can some�mes contain mul�ple 
copies of the same sequence [56] and our use of RCA, which generates long DNA fragments 
containing hundreds of tandem repeats of each circular molecule [57], prevents determina�on 
of whether a sequence is repeated many �mes on an eccDNA molecule or is just present once. 
Addi�onally, eccDNAs have also been shown to assemble with others, forming complex 
structures [58]. While our long-read PacBio sequencing may have been able to address this 
issue, our atempts at reference-free assembly of complete eccDNAs were unsuccessful, likely 
due to insufficient coverage of each molecule. While only eccDNA forming regions could be 
described in this study, these regions s�ll enable a detailed descrip�on of the M. oryzae 
circularome. Across all 8 sequenced samples, our pipeline iden�fied 1,719,878 eccDNA forming 
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regions using Illumina paired-end sequencing data (Addi�onal File 2). We validated 8 of these 
eccDNA forming regions using outward PCR and Sanger sequencing (Fig. 2 and Addi�onal File 1: 
Fig. S2). These regions were chosen for valida�on as they fully contained genes of interest to the 
rest of the study, including well-known effectors.

 

Fig. 2. Summary of evidence suppor�ng an eccDNA forming region of interest in the M. oryzae 
genome.  A. Loca�on of effector AvrPita3 and Mariner transposon. B. Loca�on of eccDNA 
forming regions. The eccDNA forming region in red was chosen for valida�on using outward 
PCR.  This eccDNA forming region was considered to fully encompass AvrPita3. C. Sanger 
sequencing read generated from outward PCR (Addi�onal File 1: Fig. S2) that supports eccDNA 
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forming region highlighted in red in track B. D. Overall Illumina sequencing read coverage. E. 
Junc�on split reads obtained from Illumina data. Split reads are joined by a dashed line. Black 
arrows indicate not all reads were shown in areas with high counts. F. Opposite facing read pairs 
obtained from Illumina data. Read pairs are joined by a solid line. Black arrows indicate that not 
all reads were shown in areas with high counts. G. Split reads obtained from PacBio CCS data. 
Overlapping arrows indicate single reads mapped to the same loca�on more than once. Split 
reads are joined by a dashed line. All data was obtained from a single sequenced sample 
(biological replicate 1, technical replicate A). 

To determine how similar our technical and biological replicates were to each other, we 
compared the coordinates of eccDNA forming regions found in each sample. Overall, we found 
litle overlap in eccDNA forming regions between technical replicates (14.16%, 10.09%, and 
23.77%, for biological replicates 1, 2 and 3, respec�vely) and between biological replicates 
(9.41%) when comparing the exact start and end coordinates of these regions (Addi�onal File 1: 
Fig. S3). Rarefac�on analysis showed that these differences could be at least par�ally atributed 
to under sequencing, though this data could also be evidence of many low copy number 
eccDNAs being produced by the M. oryzae genome (Addi�onal File 1: Fig. S4). However, 
principal component analysis using the coverage of junc�on split reads throughout the genome 
showed that technical replicates were more likely to be similar to other technical replicates 
within the same biological replicate than across biological replicates in the content of their 
eccDNA forming regions (Addi�onal File 1: Fig. S5). Addi�onally, while exact coordinates of 
eccDNA forming regions did not have much overlap between samples, considering eccDNA 
forming regions whose start and end coordinates were within 100 bp of each other in two 
different samples to be the same increased this overlap greatly between technical replicates 
(48.46%, 45.55%, and 58.29% for biological replicates 1, 2 and 3, respec�vely) and between 
biological replicates (42.89%) (Addi�onal File 1: Fig. S6). We performed a permuta�on analysis 
to simulate random forma�on of eccDNAs throughout the genome to verify that this result was 
meaningful and observed litle overlap between replicates in this simulated scenario when 
increasing our overlap tolerance up to 100bp (Addi�onal File 1: Fig. S6). All together, these 
results, as well as others presented throughout this study suggested that while the exact 
breakpoints of eccDNA forming regions were not iden�cal across samples, the genomic loci, or 
hotspots, of eccDNA forma�on were highly similar. 

Likely due to the great number of different eccDNAs in M. oryzae, the coverage of our PacBio 
sequencing data was too low to enable de novo assembly of eccDNA molecules. Therefore, we 
used our long read data to infer eccDNA forming regions by mapping them to the M. oryzae 
Guy11 genome and comparing these regions to those called using our short read data. This was 
done using a similar pipeline to the Illumina data with less stringent criteria which was beter 
adapted to the lower read depth of the long read data. Our long read data allowed us to iden�fy 
147,335 eccDNA forming regions across all samples (Addi�onal File 3). We compared these 
eccDNA forming regions to those called using Illumina data, allowing for up to a 10 bp 
difference between breakpoints to account for mapping ambiguity, and found that, on average, 
81.42% of eccDNA forming regions called using PacBio data for one sample were also found in 
our eccDNA forming regions called using Illumina reads in the same sample (Addi�onal File 1: 
Fig. S7). We were able to atribute much of this discrepancy to our stringent criteria for calling 
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eccDNA forming regions since simply searching for split reads in our Illumina data increased this 
rate to 90.36% (Addi�onal File 1: Fig. S7). The remaining differences are likely due to Illumina 
reads not being long enough to properly be mapped as split reads in certain regions of the 
genome. Such strong overlap between eccDNA forming regions called by long reads and short 
reads demonstrates the robustness of our short read data analysis. Aside from this valida�on, 
we chose not to include the PacBio data in our final analyses due to the low read depth. 

Next, we quan�fied the poten�al false posi�ve rate of our pipeline that could have originated 
from any undigested genomic DNA in our samples by running the pipeline on previously 
published whole genome sequencing data from M. oryzae Guy11 [19,54,59]. Based off the 
number of eccDNA forming regions called from this data, we es�mated this false posi�ve rate to 
be approximately 3 junc�on split reads per million sequencing reads (Addi�onal File 4: Table 
S1). In comparison, we found 41,873 junc�on split reads per million reads in our eccDNA 
enriched samples, on average, indica�ng a very low false posi�ve rate from our pipeline. 
Addi�onally, we could not completely rule out the presence of eccDNAs in the whole genome 
sequencing samples we analyzed. This valida�on showed that any remaining linear DNA in our 
samples a�er linear DNA degrada�on were unlikely to be called as eccDNA forming regions by 
our pipeline. 

Finally, we benchmarked our pipeline on previously published eccDNA data in human �ssue [41] 
(Addi�onal Files 5 and 6). We found that, on average, 74.62% of eccDNA forming regions called 
by our pipeline were also described in the published dataset (Addi�onal File 1: Fig. S8A). This 
number was even higher for eccDNA forming regions associated with 10 or more junc�on split 
reads (85.63%). The small frac�on of eccDNA forming regions called by our pipeline that did not 
appear in the published list could not be atributed to how our pipeline handled mul�-mapping 
reads (Addi�onal File 1: Fig. S8A, see Methods) and were likely due to differences in sequence 
data processing and different criteria for selec�ng split reads between the two studies [41]. 
However, the two lists significantly differed in the number of eccDNA forming regions iden�fied, 
with our pipeline iden�fying substan�ally less (Addi�onal File 1: Fig. S8B). This difference can be 
atributed to our stricter evidence to call eccDNA forming regions. In our method, eccDNA 
forming regions were only called if split reads mapped to the region. This was in contrast to 
other methods of calling eccDNA forming regions which rely at least partly on peaks in 
sequencing coverage [41,47,60]. This meant that our pipeline could not detect eccDNAs formed 
from homologous recombina�on (HR)  between iden�cal repeats which do not result in split 
reads. We chose this method for M. oryzae because it showed circularome sequencing coverage 
throughout the en�re genome in our samples and very few clear coverage peaks, which 
indicates that many low copy number eccDNAs were present in our samples. The high degree of 
overlap between our called eccDNA forming regions and those described by Møller et al. makes 
us confident that the eccDNA forming regions called using our pipeline are robust. 

The M. oryzae circularome is more diverse and contains more noncoding sequences than the 
circularomes of other organisms 

We were first interested in comparing the circularome of M. oryzae to those of other previously 
characterized organisms. To compare these datasets across different organisms, we gathered 
sequencing data from several previous studies [41,45–47] and reanalyzed them using our 
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pipeline (Addi�onal Files 5-20). Our analysis revealed a very large number of eccDNA forming 
regions in M. oryzae compared to other previously sequenced organisms (Fig. 1B). We also 
looked at the percentage of the genome that was found in eccDNA forming regions and found 
that while most organisms had 1-10% of their genome in eccDNA forming regions, our samples 
showed an average of 74.48% of the M. oryzae genome in eccDNA forming regions (Addi�onal 
File 1: Fig. S9A). The difference in the number of eccDNA forming regions between organisms 
was s�ll striking a�er normalizing for genome size and sequencing library size (Addi�onal File 1: 
Fig. S9B). These results supported the idea that the low amount of overlap in eccDNA forming 
regions between our samples could be explained partly by the great number of eccDNAs 
produced by the M. oryzae genome. While the difference in the number of called eccDNA 
forming regions could be atributed to differences in the methods used for eccDNA purifica�on 
(Addi�onal File 4: Table S2), we extracted and sequenced eccDNAs from Oryza sativa and found 
similar levels of diversity to previously published samples (Addi�onal File 1: Fig. S9B). We also 
found that M. oryzae had more eccDNA forming regions made up of noncoding sequences 
rela�ve to the percentage of noncoding sequence in its genome than other organisms aside 
from S. cerevisiae (Fig. 1B, Addi�onal File 1: Fig. S9C). 

LTR retrotransposon sequences make up most of the M. oryzae circularome 

Gypsy and Copia LTR retrotransposons frequently generate eccDNAs through several 
mechanisms [30–32], so we looked for the presence of these sequences in the M. oryzae 
circularome. Our analysis revealed that 54.12% of the eccDNA forming regions we iden�fied 
were composed of more than 90% LTR retrotransposon sequence, indica�ng that these 
elements made up a large por�on of the pathogen’s circularome, despite only making up a 
small frac�on of its genome (Fig. 1B, Addi�onal File 1: Fig. S10). Further compara�ve analysis 
revealed that a much higher propor�on of the M. oryzae circularome was made up of these LTR 
retrotransposon sequences than in other organisms (Fig. 1B, Addi�onal File 1: Fig. S9D and S9E).  

All six LTR retrotransposons iden�fied in M. oryzae Guy11 formed eccDNAs (Fig. 3A). However, 
the elements MAGGY, GYMAG1, and Copia1 made up the majority of the eccDNA sequencing 
data (Fig. 3B). When this data was normalized to the propor�on of the genome made up by 
each transposon, GYMAG1 stood out as making up a much greater percentage of the 
sequencing data than expected (Fig. 3C, Addi�onal File 1: Fig. S11).
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Fig. 3. The majority of eccDNAs in M. oryzae are made up of LTR retrotransposons. A. 
Manhatan plot showing the number of junc�on split reads per million averaged across 
biological replicates for all 100 bp bins that overlap an LTR retrotransposon in the M. oryzae 
Guy11 genome. Each point represents one of these bins. B. Boxplot showing the percentage of 
sequencing reads that map to LTR retrotransposons. Each point represents one sample, and the 
shape of the points represent the biological replicate that sample was taken from. C. Boxplot 
showing the ra�o of the percentage of sequencing reads that map to LTR retrotransposons to 
the percentage of the M. oryzae Guy11 genome that is made up by that retrotransposon. Each 
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point represents one sample, and the shape of the points represent the biological replicate that 
sample was taken from. 

LTR retrotransposons in M. oryzae form eccDNAs through a variety of mechanisms 

LTR retrotransposons can form eccDNAs through a variety of mechanisms [30–32]. EccDNA 
forma�on commonly occurs a�er transcrip�on and reverse transcrip�on of the transposon 
which results in a linear fragment of extrachromosomal DNA [61] (Fig. 1A). Then, the most 
common circulariza�on mechanisms are nonhomologous end joining (NHEJ) of the two LTR 
ends to form eccDNAs containing two LTRs (scenario 1, Fig. 4A), autointegra�on of the 
retrotransposon forming single LTR eccDNAs of various lengths, depending on where in the 
internal sequence of the transposon the autointegra�on event happens (scenario 2, Fig. 4B), 
and HR between the two LTRs to forming single LTR eccDNAs (scenario 3, Fig. 4C). Finally, LTR 
retrotransposon sequences can also become part of eccDNAs by other eccDNA forma�on 
mechanisms that do not rely on retrotransposi�on ac�vity, such as intrachromosomal HR 
between solo-LTRs or between mul�ple copies of the same transposon [32,33,47]. Given this 
diversity of mechanisms, we wanted to evaluate which of them contributed to eccDNA 
forma�on in M. oryzae. To do this, we first simulated the expected read coverage for each of the 
three ac�ve LTR eccDNA forma�on mechanisms under ideal condi�ons where only one 
mechanism of forma�on was occurring (Fig. 4A-C). Then, we measured the prevalence of 
scenarios 1 and 2 by iden�fying specific split read variants in our data. LTR eccDNAs formed 
through NHEJ result in split reads that map to one end of an LTR and the other which we will 
refer to as LTR-LTR split reads (Addi�onal File 1: Fig. S12 and S13A). Autointegra�on results in 
split reads that map to one LTR and to the internal region of the transposon which we will refer 
to as LTR-internal split reads (Addi�onal File 1: Fig. S13B and S14). HR between two iden�cal 
LTRs (scenario 3) would not result in a split read so we could not find this type of evidence in 
our data. 
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Fig. 4. LTR retrotransposons in M. oryzae form eccDNAs through a variety of mechanisms. A-C. 
Profile plots showing expected sequencing read coverage for each LTR retrotransposon eccDNA 
forma�on scenario as well as graphical representa�ons of the scenario. In the graphics, blue 
and red rectangles represent hybrid LTRs formed from 5’ and 3’ LTRs during retrotransposi�on 
and green and orange lines represent areas of the internal region of the retrotransposon with 
dis�nct sequences. D-I. Profile plots showing observed sequencing read coverage for each LTR 
retrotransposon found in the M. oryzae Guy11 genome. 

Comparisons between simulated and observed read coverage plots revealed contribu�ons of 
several eccDNA forma�on mechanisms that varied by transposable element. For MAGGY, our 
analysis indicated that it forms eccDNAs primarily through autointegra�on (Fig. 4D). This was 
supported by a high correla�on between the number of sequencing reads and LTR-internal split 
reads (Addi�onal File 1: Fig. S13A) and a low correla�on between sequencing reads and LTR-LTR 
split reads (Addi�onal File 1: Fig. S12A). The data also pointed to MGRL3 and GYMAG1 forming 
eccDNAs primarily through autointegra�on (Fig. 4E and 4G, Addi�onal File 1: Fig. S12BD and 
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S13BD). Copia1, on the other hand showed a clear patern of read coverage corresponding to 
eccDNA forma�on through HR (Fig. 4F), though the high correla�on between sequencing reads 
and LTR-internal split reads mapping to this element hinted that a small, but propor�onal, 
frac�on of Copia1 elements formed eccDNAs through autointegra�on (Addi�onal File 1: Fig. 
S13C). In the case of GYMAG2, its sequencing read coverage resembled a patern expected for 
LTR-eccDNAs formed through NHEJ (Fig. 4H). The large amount of LTR-LTR split reads per million 
mapped reads found corresponding to GYMAG2 elements compared to other retrotransposons 
supported this inference (Addi�onal File 1: Fig. S14A). PYRET’s dis�nct sequencing read 
coverage profile likely indicated that it mostly formed eccDNAs by other eccDNA forma�on 
mechanisms that do not rely on retrotransposi�on ac�vity such as intrachromosomal HR (Fig. 
4I). A low correla�on between sequencing read coverage and both LTR-LTR split reads and LTR-
internal split reads, as well as the fragmented nature of PYRET elements, which is a sign of low 
recent retrotransposon ac�vity, supported this inference (Addi�onal File 1: Fig. S12F and S13F). 
Finally, to determine whether the results we obtained were caused by bias in the length and 
completeness of the retrotransposon sequences in the M. oryzae genome, we generated profile 
plots for each retrotransposon using previously generated whole genome sequencing data 
[19,54,59]. The results from this analysis ruled out this possibility (Addi�onal File 1: Fig. S15). In 
conclusion, it is clear that a variety of eccDNA forma�on mechanisms contributed to eccDNAs 
containing LTR retrotransposon sequences, and that these mechanisms varied by element. 

MicroDNAs are dis�nct from other eccDNAs 

MicroDNAs have previously been studied as a dis�nct set of molecules within the eccDNA 
category. Besides being small (less than 400bp), microDNAs are found to be enriched in genic 
regions, exons, 5’UTRs and CpG islands [42,62]. We examined if microDNAs in M. oryzae 
showed these characteris�cs by analyzing eccDNA forming regions less than 400 bp in length 
with less than 10% LTR retrotransposon sequence across different organisms. Enrichment of 
microDNAs in CpG islands was the most consistent result across all organisms we analyzed, 
though this enrichment was not found in M. oryzae (Addi�onal File 1: Fig. S16). Similarly, we 
found no enrichment of microDNAs in 5’UTRs in M. oryzae. We did however find a small 
enrichment of microDNAs in genic regions in M. oryzae as seen in many of the other sequenced 
organisms (Addi�onal File 1: Fig. S16 and S17). In general, our analysis suggested that the 
previously described characteris�cs of microDNAs are not common across all organisms and 
sample types. 

MicroDNAs also displayed dis�nct features from the remaining subset of non-LTR eccDNAs 
which we called large eccDNAs. Among other differences, we found that, unlike microDNAs, 
large eccDNAs tended to be enriched in intergenic regions (Addi�onal File 1: Fig. S17 and S18). 
Addi�onally, eccDNAs are o�en associated with ac�ve transcrip�on [29,37], and we found a 
slight but significant correla�on between expression and junc�on split reads for large eccDNAs 
but not for microDNAs (Addi�onal File 1: Fig. S19). 

In yeast, eccDNA amplifica�on is thought to o�en occur with the help of autonomously 
replica�ng sequences (ARSs) which contain ARS consensus sequences (ACSs) [33,47,63]. In M. 
oryzae, we found that ACSs were enriched in large eccDNAs (permuta�on test, mean of 
expected: 5320.14 regions, observed: 6950 regions, p < 0.01, n = 100 replicates) but depleted in 
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microDNAs (permuta�on test, mean of expected: 818.09 regions, observed: 714 regions, p < 
0.01, n = 100 replicates). However, for both large eccDNAs and microDNAs, presence of an ACS 
in the eccDNA forming region did not result in an increased number of junc�on split reads 
(Addi�onal File 1: Fig. S20). Finally, microDNAs have been found to be associated with 
chroma�n marks and increased GC content [42,62]. However, we did not find any of these 
enrichments in microDNAs or large eccDNAs in M. oryzae (Addi�onal File 1: Fig. S21). 

Many genes are found encompassed by eccDNA forming regions 

Many eccDNAs contain genes, and these eccDNAs can provide genotypic and phenotypic 
plas�city in other organisms. In M. oryzae we found that, out of the 12,115 genes in Guy11, 
9,866 were fully contained by an eccDNA forming region in at least one sample (Fig. 2B and 5A). 
These genes included TRF1 (MGG_04843) and PTP2 (MGG_00912) which have been shown to 
be involved in fungicide resistance in M. oryzae [64,65]. EccDNA forming regions containing 
these two genes were validated using outward PCR (Addi�onal File 1: Fig. S2). However, not all 
genes were observed in eccDNA forming regions at the same frequency, and their presence on 
eccDNAs was heterogenous across samples. To further understand what types of genes are 
enriched in eccDNA forming regions, we focused on a robust set of eccDNA-associated genes. To 
iden�fy these genes, we first counted the number of �mes each gene was found fully contained 
by a junc�on split read in each sample. We referred to this count as the number of 
“encompassing split reads” for each gene. We then normalized this count to the number of 
junc�on split reads in each sample and averaged it across technical replicates for each biological 
replicate. Finally, we sorted the genes by their prevalence in each biological replicate and chose 
genes that were found in the top third of genes for this count in all three biological replicates. In 
total, using these metrics, we iden�fied 558 eccDNA-associated genes shared across all 
biological replicates (Fig. 5A, Addi�onal File 1: Fig. S22 and Addi�onal File 21). 

To iden�fy biological processes enriched in eccDNA-associated genes, we performed gene 
ontology (GO) enrichment analysis. We found that eccDNA-associated genes were enriched for 
GO terms related to vesicle transport, mitosis, and the cytoskeleton among other terms (Fig. 6A, 
Addi�onal File 1: Fig. S23 and Addi�onal Files 22-24). We also explored whether eccDNA-
associated genes showed differences in gene expression or other genomic features from other 
genes. However, we found no difference between eccDNA-associated genes and other genes in 
gene expression, GC content, or histone marks, aside from a significant difference in H3K36me3 
(Addi�onal File 1: Fig. S24 and S25). 
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Fig. 5. EccDNA forming regions contain most M. oryzae genes, but not all, and many are 
associated with presence-absence varia�on. A. Manhatan plot showing the number of 
encompassing split reads per million junc�on split reads averaged across biological replicates 
for each gene in the M. oryzae Guy11 genome. Each dot represents one gene. EccDNA-
associated genes with known gene names are labeled according to their normalized 
encompassing split read count and posi�on in the genome. EccDNA-absent genes with known 
gene names are labeled with lines poin�ng to their loca�on in the genome. B. Stacked bar plot 
showing the percentage of eccDNA-absent genes, other genes, and eccDNA-associated genes in 
the M. oryzae Guy11 genome that had an ortholog in all other 162 M. oryzae genomes analyzed 
or not. Numbers indicate the number of genes in each category. C. Rarefac�on analysis of the 
observed number of genes found fully encompassed by eccDNA forming regions at different 
subsamples of all found eccDNA forming regions, compared to the same number of randomly 
selected genomic regions. 
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Fig. 6. Gene Ontology (GO) terms associated with eccDNA-associated and eccDNA-absent genes 
in M. oryzae. Func�onal categories in the cellular component GO with an observed number of 
A. eccDNA-associated genes or B. eccDNA-absent genes that is significantly different from the 
expected number with correc�on for gene length bias. The y-axis shows the different func�onal 
categories, and the x-axis represents the observed number of genes divided by the expected 
number of genes in this group. Dots outside of the grey rectangle represent func�onal 
categories that are observed more o�en than expected. The size of dots indicates the total 
number of genes in the M. oryzae genome that belong to each func�onal category. Only the 20 
categories with the largest -log10 p-values according to a Chi-square test are shown. 
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EccDNA-associated genes are closer to gene sparse and repeat dense regions of the genome 
than other genes 

Some plant pathogens are described as having “two-speed” genomes with housekeeping genes 
found close together in repeat-poor regions and environmentally responsive and disease-
associated genes found in repeat-dense and gene-poor regions [11]. To determine if eccDNA-
associated genes were enriched in either of these genomic contexts, we analyzed if eccDNA-
associated genes were more distant from other genes than expected by chance (Fig. 7). We 
observed a significant difference (permuta�on test for difference of medians, p = 0.0117, n = 
10,000 replicates) between the median distance to the nearest gene of eccDNA-associated 
genes (543 base pairs) and other genes (485 base pairs). We also observed a significant 
difference (permuta�on test for difference of medians, p =  0.0282, n = 10,000 replicates) 
between the median distance to the nearest genomic repeat of eccDNA-associated genes (663 
base pairs) and other genes (769 base pairs, Addi�onal File 1: Fig. S26). This difference in 
proximity was not observed for transposable elements, indica�ng that transposable elements 
alone were not responsible for this effect (Addi�onal File 1: Fig. S27). The heterogeneity of 
eccDNAs and the mechanisms of their forma�on might be influencing this comparison. 
However, our data points to a link between genome architecture and eccDNA forma�on. 
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Fig. 7. EccDNA-associtated genes are o�en found in gene sparse regions of the M. oryzae 
genome. Two-dimensional density plot represen�ng the 5’ and 3’ distance to the nearest gene 
in the M. oryzae Guy11 genome in kilobase pairs for each A. gene, B. predicted effector, C. 
eccDNA-associated genes, and D. eccDNA-absent genes. Known effectors are shown as text in B. 
Dashed lines represent median 5’ and 3’ distance to nearest gene. 

EccDNA-associated genes are more prone to presence-absence varia�on than other genes 

There is evidence of eccDNAs genera�ng structural varia�on in other organisms [43,44]. We 
therefore tested whether eccDNA forma�on is associated with genes prone to presence-
absence varia�on in 162 rice-infec�ng M. oryzae isolates (Addi�onal File 25). As expected from 
previous studies [25,27], our analysis indicated that predicted effectors were more likely to 
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experience presence-absence varia�on (Addi�onal File 1: Fig. S28; X-squared = 146.33, df = 1, p-
value < 2.2e-16). We also found that eccDNA-associated genes were more likely to be prone to 
presence-absence varia�on (Fig. 5B; X-squared = 16.262, df = 2, p-value = 2.95e-04). This result 
suggested that eccDNA forma�on and structural varia�on occur in similar regions of the 
genome but did not show whether they are directly linked. To see if a more direct link existed, 
we surveyed the genomes of the M. oryzae isolates for small dele�ons that completely or 
par�ally overlapped genes but did not disrupt neighboring genes. We were able to iden�fy 257 
such events (Addi�onal File 26). However, none of these dele�ons matched our eccDNA forming 
regions and only 8 of them came within 50 bp. Our rarefac�on analyses revealed that there is 
likely to be a much greater diversity of eccDNAs than what we were able to capture at the 
sequencing depth of this study, whether we considered samples individually or as a whole 
(Addi�onal File 1: Fig. S4 and S29). Therefore, eccDNA forma�on that could have contributed to 
structural varia�on might have been missed due to either under sequencing or  absence in the 
condi�ons tested in this study. 

Similarly, we were interested in iden�fying any poten�al DNA transloca�ons that may have 
occurred through an eccDNA intermediate. While we were able to successfully construct a 
bioinforma�cs pipeline that iden�fied one previously described eccDNA-mediated transloca�on 
in wine yeast [44] (Addi�onal File 1: Fig. S30), we were unable to iden�fy any such examples in 
the M. oryzae genomes  analyzed despite including isolates infec�ng a variety of hosts in this 
analysis (306 genomes in total, Addi�onal File 27). 

Finally, since mini-chromosomes have been hypothesized as playing important roles in fungal 
plant pathogen evolu�on, we also sought to determine whether genes that were previously 
found on M. oryzae mini-chromosomes were associated with eccDNA forma�on but found no 
such effect (Addi�onal File 1: Fig. S31).  

Many eccDNA-absent genes are myosin-complex related 

Since most M. oryzae genes appeared in eccDNA forming regions in at least one sample, we 
were par�cularly interested in the 2,249 genes that never appeared fully encompassed by an 
eccDNA forming region in any of our technical or biological replicates, which we called eccDNA-
absent (Fig. 5A, Addi�onal File 21). We first verified that eccDNA-absent genes were not caused 
by insufficient sequencing coverage using rarefac�on analysis. This analysis differed significantly 
from our previous ones (Addi�onal File 1: Fig. S4 and S29). Here, we counted the number of 
genes found in eccDNA forming regions at various subsamples of eccDNA forming regions. This 
analysis revealed that our observa�ons of eccDNA-absent genes were unlikely to be caused by 
the under sequencing we described previously as the number of genes found fully 
encompassed by eccDNA forming regions appeared to plateau at larger subsamples of eccDNA 
forming regions (Fig. 5C). Addi�onally, a permuta�on analysis showed that, given the high 
coverage of our data, we only expected to find 468 genes in this category by chance, which is far 
fewer than the 2,249 genes we observed (Fig. 5C). 

We next explored whether gene expression or other genomic features could explain the 
observed eccDNA-absent genes. However, we found no strong differences between eccDNA-
absent genes and other genes in gene expression, GC content, or histone marks (Addi�onal File 
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1: Fig. S24 and S25). EccDNA-absent genes also did not differ from other genes in terms of their 
distance to the nearest gene, repeat or transposable element (Fig. 7, Addi�onal File 1: Fig. S26 
and S27). 

Finally, we performed GO enrichment analysis on these genes and found, amongst many other 
enriched terms, that genes related to cytoskeletal proteins, and especially the myosin complex, 
were enriched within eccDNA-absent genes (Fig. 6B, Addi�onal File 1: Fig. S32, and Addi�onal 
Files 28-30). While genes related to the cytoskeleton were also enriched among eccDNA-
associated genes, these were related to mitosis and microtubule polymeriza�on, rather than 
the myosin complex (Fig. 6A, Addi�onal File 1: Fig S23). This result is of par�cular interest given 
that the ac�n gene has also been used in a previous study [47] as a marker for linear DNA due 
to its nega�ve fitness effect at high copy numbers in yeast [55]. As expected, the M. oryzae ac�n 
gene (MGG_03982) was one of the eccDNA-absent genes, meaning it was never found in an 
eccDNA forming region in its en�rety in any of our samples. Furthermore, in agreement with 
our GO enrichment results, MYO1 was  another eccDNA-absent gene. To validate our 
bioinforma�cs analysis, we tested whether we could amplify the full sequences of these genes 
from our eccDNA samples using PCR. In agreement with our findings, we were only able to 
amplify these sequences from our genomic DNA sample (Addi�onal File 1: Fig. S33). These 
results suggested that eccDNA forma�on is not random in M. oryzae and that certain groups of 
genes may be protected from eccDNA forma�on or maintenance of these eccDNAs in the cell. 

Effectors are enriched in eccDNA forming regions compared to other genes 

Finally, we wanted to iden�fy whether eccDNA forming regions contained disease-causing 
effectors. We found that many known M. oryzae effectors were encompassed by eccDNA 
forming regions in at least one sample. This included AvrPita3, AvrPita1, AvrPi9, AvrPi54, AvrPiz-
t, and Pwl4 (Fig. 2,8, and Addi�onal File 21). We validated eccDNA forming regions containing 
these effectors using outward PCR (Addi�onal File 1: Fig. S2). Addi�onally, we found that many 
predicted effectors were found in eccDNA forming regions (Fig. 8 and Addi�onal File 21). We 
also found that many of these puta�ve effectors were associated with larger numbers of 
encompassing split reads and found this difference to be sta�s�cally significant (Addi�onal File 
1: Fig. S34; permuta�on test for difference in medians, p < 0.0001, n = 10,000 replicates). 
Effectors are o�en small genes and  given the o�en-small size of eccDNA forming regions in our 
data ,which may have been caused by the bias of RCA towards small molecules [29,66] 
(Addi�onal File 1: Fig. S35), we felt that our analysis could be affected by this bias. To address 
this issue, we repeated our permuta�on test, comparing predicted effectors to a set of non-
effectors of similar lengths, and again found a significant difference in number of encompassing 
split reads (permuta�on test for difference in medians with correc�on for gene length 
distribu�on, p = 0.0206, n = 10,000 replicates). This result suggests that effectors are more likely 
to be found on eccDNAs than other genes in M. oryzae, and that this effect is not simply due to 
their size. Addi�onally, a small propor�on of effectors are found among our eccDNA-absent 
genes (Fig. 8). These candidates might be more evolu�onarily stable and therefore useful as 
targets for disease resistance. 
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Fig. 8. Effectors are enriched in eccDNAs in M. oryzae. Manhatan plot showing the number of 
encompassing split reads per million reads averaged across biological replicates for each gene in 
the M. oryzae Guy11 genome. Each dot represents one gene. Predicted effectors are shown in 
green and known effectors are shown as text. 

Discussion 

EccDNAs have been shown to be a source of significant phenotypic [33,34,37,39,40] and 
genotypic [43,67] plas�city that can help organisms adapt to stress. While eccDNAs have been 
extensively studied in human cancer [29], very few studies have atempted to study the 
circularome of other organisms, and even fewer have generated high quality whole circularome 
sequencing data. To expand our understanding of eccDNAs across the tree of life, we studied 
the circularome of the fungal plant pathogen M. oryzae and, developed many tools to analyze 
whole circularome sequencing data, which can o�en be difficult to interpret. These include a 
new pipeline to iden�fy eccDNA forming regions and frameworks for comparing this data across 
organisms, iden�fying mechanisms of eccDNA forma�on of LTR retrotransposons, iden�fying 
gene sets enriched or depleted in eccDNAs, and iden�fying structural variants that may have 
been caused by eccDNAs. Our analysis also revealed that the circularome of M. oryzae contains 
a wide diversity of eccDNA forming regions that appeared to exceed those of other previously 
characterized organisms. This wide diversity likely contributed to the under sequencing of our 
samples and a small overlap in exact eccDNA forming regions across samples. However, our 
analysis throughout this study showed that our samples clustered �ghtly together with regards 
to various features of the circularome, indica�ng that while exact eccDNA forming breakpoints 
were mostly not shared across samples, eccDNA forma�on hotspots were. We also found that 
eccDNA forming regions in M. oryzae were more commonly made up of LTR retrotransposons 
than other organisms. Though the results of our compara�ve analysis need to be verified using 
standardized protocols, these differences highlight the need to further characterize the 
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circularome of other eukaryotes to obtain a beter understanding of how they differ. 
Addi�onally, it is important to note that the data analyzed in this study only represent 
snapshots of the circularomes of the organisms described and could vary greatly across 
developmental stages and environmental stresses that were not included in these analyses. 
Further studies of eccDNAs across these different condi�ons are necessary to defini�vely 
describe and compare these molecules across organisms. 

We analyzed the types of genes that were found on eccDNAs in M. oryzae and found that 
eccDNA-associated genes were o�en prone to presence-absence varia�on, hin�ng at a link 
between eccDNAs and genomic plas�city. However, we could not find direct evidence of gene 
dele�ons occurring through an eccDNA intermediate in M. oryzae. Similarly, we could not find 
any evidence of eccDNA-mediated transloca�ons. These results could be due to our sequencing 
coverage and our bioinforma�cs pipelines not showing the full diversity of eccDNAs in M. 
oryzae. For example, our pipeline was unable to detect eccDNAs formed from HR between 
perfect repeats. Addi�onally, our scripts were able to iden�fy an eccDNA-mediated 
transloca�on in wine yeasts but were limited to non-repe��ve regions of the genome and may 
have missed some of these events in those regions in M. oryzae. Finally, it is possible that 
eccDNA-mediated transloca�ons occur on a larger �me scale than what we were able to sample 
within the M. oryzae species. However, it is likely that experimental approaches, such as 
inducing the forma�on of specific eccDNAs, are necessary to determine whether these events 
lead to chromosomal dele�ons or rearrangements. On a genome-wide scale, single cell 
sequencing of the circularome as well as genomic DNA could also lead to a more precise view of 
eccDNA forma�on and structural varia�on as they occur in the cell during vegeta�ve growth. 
These techniques will likely also need to be paired with amplifica�on-free eccDNA sequencing 
protocols as well as high coverage, long read sequencing to fully resolve the structure of 
eccDNA molecules. Addi�onally, we found that eccDNA-associated genes presented 
characteris�cs associated with the gene-sparse, repeat-rich, and “fast” part of the plant 
pathogen genome where rapid adapta�on to stress occurs [11]. The fact that eccDNA-
associated genes were closer to repeats than other genes, but not transposons specifically, 
indicated that this effect was not simply caused by eccDNA forma�on by LTR retrotransposons. 
We also found that predicted effectors were enriched in eccDNA forming regions. These results 
show that eccDNA forma�on occurs in the same genomic contexts as rapid genome evolu�on in 
M. oryzae and could also point to eccDNAs directly playing a role in the plas�city of important 
genes like effectors.  

We also iden�fied a set of eccDNA-absent genes, which were never found fully encompassed by 
eccDNA forming regions under our experimental condi�ons. This observa�on was not explained 
by incomplete sequencing. Histone marks, expression and proximity to repe��ve DNA did not 
appear to set these genes apart either. Though it is possible that other factors contribute to this 
phenomenon and directly prevent eccDNA forma�on in these regions, our data indicates that 
eccDNA forma�on in M. oryzae is not a random process and hints at selec�ve pressure ac�ng 
against cells that accumulate high copy numbers of these genes through eccDNA forma�on. 
This idea is supported by the absence of genes related to the myosin complex, which are 
deleterious at high copy numbers in other organisms.  
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Selec�ve pressure during growth under stress could favor M. oryzae cells containing higher copy 
numbers of genes important for survival under these condi�ons as has been extensively shown 
in other organisms [33,34,37,39,40]. For example, we iden�fied two genes associated with 
fungicide resistance in our eccDNA forming regions which, if amplified, could lead to drug 
resistance, as previously observed [34,39,40]. Further experimenta�on and characteriza�on of 
the M. oryzae circularome under stress is necessary to inves�gate if this eccDNA-mediated 
phenotypic plas�city is present in the plant pathogen. These experiments could also be used to 
assess how LTR retrotransposon ac�vity changes in response to stress in M. oryzae and how the 
mechanisms of eccDNA forma�on that we described might be affected. We atempted to 
perform such experiments by sequencing O. sativa �ssue infected by M. oryzae but found that 
O. sativa eccDNAs crowded out the circularome sequencing signal and prevented meaningful 
analysis, highligh�ng the need for a dedicated enrichment or single cell sequencing protocol. 
Addi�onally, analyzing the biological significance of the amplifica�on of specific genes on 
eccDNAs, especially across treatments, may prove challenging and will require further tool 
development. For example, the same genes may be on eccDNAs of varying sizes and 
composi�on across samples. Mul�ple genes could also be on each eccDNA, further complica�ng 
the analysis. The complexity of eccDNAs combined with the limita�ons of current eccDNA 
sequencing techniques severely limits the analysis of circularome sequencing data, which is why 
we chose to focus our analysis on hotspots of eccDNA forma�on and groups of genes, rather 
than individual genes. In the future, high coverage, long read sequencing of eccDNAs collected 
without amplifica�on will likely be necessary to perform more thorough analyses of eccDNAs; 
and this type of study is likely to become the gold standard for the field once cost is no longer 
prohibi�ve. 

Conclusions 

This study commences the characteriza�on of the M. oryzae circularome and highlights its 
poten�al for genera�ng phenotypic and genotypic plas�city. If eccDNAs were to facilitate these 
phenomena, they could become poten�al drug targets to prevent the rapid adapta�on of the 
blast pathogen to environmental stress, fungicides, and resistant crop varie�es. Furthermore, 
regions and genes prone to forming eccDNAs could be excluded as drug targets or as targets for 
engineered resistance in crops. On the other hand, we found 1,820 genes including several 
predicted effectors in the M. oryzae genome that were in the eccDNA-absent group and were 
conserved in all other rice infec�ng isolates that we analyzed. These genes could be high 
poten�al targets for fungicide design or engineered resistance. Our study also describes the 
great diversity of eccDNAs and the enrichment of LTR retrotransposons in the M. oryzae 
circularome. These observa�ons, in addi�on to the poten�al consequences of eccDNA 
forma�on, highlights the need to study these molecules in more organisms, including other 
fungal plant pathogens. 

Methods 

M. oryzae cultures and DNA extrac�on 

M. oryzae Guy11 was grown on Difco oatmeal agar plates for 21 days under constant light in a 
Percival Scien�fic Incubator Model CU-36L4 equipped with half fluorescent lights and half black 
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lights. 1 cm2 of mycelium was scraped from the colony edge and used to start 3 liquid cultures 
(biological replicates) in petri dishes with 15 ml complete medium [68] . Liquid cultures were 
incubated without shaking for 3 days in the same growth chamber. 

Total DNA extrac�on was performed according to a protocol from the Prof. Natalia Requena 
group at the Karlsruhe Ins�tute of Technology. Briefly, mycelium grown in liquid culture was 
washed 3 �mes with water and then ground in liquid nitrogen. Ground mycelium was incubated 
in extrac�on buffer (0.1M Tris-HCl pH 7.5, 0.05 M EDTA, 1% SDS, 0.5 M NaCl) at 65°C for 30 
minutes. 5M potassium acetate was then added to the samples which were then incubated on 
ice for 30 minutes. The supernatant was then washed with isopropanol and ethanol. Finally, the 
DNA pellet was resuspended in water and treated with RNase A (Thermo Scien�fic). 

O. sativa growth and DNA extrac�on 

O. sativa samples were originally intended to serve as control samples to be compared to �ssue 
infected by M. oryzae and therefore the methods below reflect this original intent. However, 
circularome sequencing data obtained from infected �ssue was not included in this study as it 
included very litle sequencing data that mapped to the M. oryzae Guy11 genome. 

O. sativa cv. Nipponbare seeds were surface sterilized in 70% ethanol for 1 minute and 10% 
bleach for 10 minutes with thorough rinsing in sterile deionized water a�er each before being 
placed on wet filter paper in a petri dish. The petri dish was wrapped in foil and placed at 4°C 
for 2 days to germinate. Germinated seedlings were planted in po�ng mix made up of 50% 
Turface and 50% Super Soil. Seedlings were grown for three weeks in a greenhouse under 
standard condi�ons. For three samples, the first true leaf was cut from one rice plant, its �p 
removed, and then cut into two equal segments, approximately 10mm in length. This pair of 
segments was then placed on their abaxial surface on wet filter paper in a petri dish. Five hole-
punches of filter paper soaked in 0.25% gela�n and 0.05% Tween-20 were then placed on each 
segment. The petri dishes were placed in an air�ght container with wet paper towels and then 
placed on a windowsill for 7 days. Hole-punches were removed and non-chloro�c �ssue in 
contact with hole-punches was ground in liquid nitrogen. DNA was extracted using the Qiagen 
Plant DNeasy mini kit. 

Circular DNA enrichment 

Total DNA obtained from DNA extrac�ons (biological replicates) were then split into three 
samples (technical replicates) before circular DNA enrichment. This enrichment was performed 
according to a protocol from Lanciano et al. with a few modifica�ons [46]. 5 µg of extracted 
DNA was used as input for circular DNA enrichment in M. oryzae, and 750 ng of extracted DNA 
were used for O. sativa. To purify the samples and begin removing large linear DNA fragments, 
the samples were treated using a Zymo Research DNA Clean and Concentrator kit with standard 
protocols. Linear DNA diges�on was then performed using Epicentre PlasmidSafe DNase and 
incubated at 37°C for 24 hours. DNase, ATP, and reac�on buffer were then added to the samples 
every 24 hours throughout the dura�on of the incuba�on. In total, the reac�on was allowed to 
proceed for 96 hours. Remaining DNA was then precipitated overnight at 4°C by adding 0.1 
volume 3M sodium acetate, 2.5 volumes ethanol and 1 µl glycogen (20 mg/ml). Rolling circle 
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amplifica�on was then performed using the Illustra TempliPhi 100 Amplifica�on Kit (GE 
Healthcare). Precipitated DNA was resuspended directly in 20 µl of the Illustra TempliPhi sample 
buffer and the amplifica�on reac�on was allowed to proceed for 24 hours at 30°C. 

Verifica�on of circular DNA enrichment 

In a separate experiment, 5 samples of M. oryzae mycelium were grown up in liquid culture and 
total DNA was extracted. Circular DNA enrichment was performed as before with some 
excep�ons and without technical replicates. First, linear DNA diges�on was only performed for 
72 hours for 3 samples. Next, aliquots of the incuba�ng samples were taken at 0 hours, 24 
hours, 48 hours and 72 hours for these 3 samples, and 0 hours, 48 hours, 72 hours and 96 hours 
for the last 2 samples. qPCR was then used to verify linear DNA deple�on in each sample using 
an Applied Biosystems QuantStudio 5 instrument and the QuantStudio Design and Analysis 
desktop so�ware. Primers were used to amplify a por�on of the M. oryzae ac�n gene 
(MGG_03982) along with Lightcycler 480 Sybr Green I master mix (Addi�onal File 4: Table S3). 
Data from four qPCR technical replicates was obtained. Remaining linear DNA frac�on in each 
sample at each �mepoint was then calculated using the 2-ΔΔCt method. 

Illumina library prepara�on and sequencing 

Library prepara�on was performed by the QB3-Berkeley Func�onal Genomics Laboratory at UC 
Berkeley. DNA was fragmented with an S220 Focused-Ultrasonicator (Covaris), and libraries 
prepared using the KAPA Hyper Prep kit for DNA (Roche KK8504). Truncated universal stub 
adapters were ligated to DNA fragments, which were then extended via PCR using unique dual 
indexing primers into full length Illumina adapters. Library quality was checked on an Agilent 
Fragment Analyzer. Libraries were then transferred to the QB3-Berkeley Vincent J. Coates 
Genomics Sequencing Laboratory, also at UC Berkeley. Library molarity was measured via 
quan�ta�ve PCR with the KAPA Library Quan�fica�on Kit (Roche KK4824) on a BioRad CFX 
Connect thermal cycler. Libraries were then pooled by molarity and sequenced on an Illumina 
NovaSeq 6000 S4 flowcell for 2 x 150 cycles, targe�ng at least 10Gb per sample. FastQ files were 
generated and demul�plexed using Illumina bcl2fastq2 version 2.20 and default se�ngs, on a 
server running CentOS Linux 7. One technical replicate did not pass quality control before library 
prepara�on and was omited. 

PacBio library prepara�on and sequencing 

Using a Covaris S220 Focused-Ultrasonicator, 2 ug of each DNA sample was sheared to an 
approximate fragment size of 5000 bp and purified using AMPure XP beads (Beckman Coulter).  
Library prepara�on was performed using the NEBNext Ultra DNA Library Prep Kit (kit number 
E7370L, New England Biolabs) and 8 cycles of PCR. Barcode sequences and barcodes assigned to 
each sample are described in Addi�onal files 31 and 32. Libraries were then quality controlled 
using a Bioanalyzer high sensi�vity DNA chip and the Agilent 2100 Bioanalyzer system. One 
technical replicate did not pass quality control before library prepara�on and was omited. The 
samples were then submited to Novogene (Tianjin, China) for PacBio sequencing which was 
performed on the PacBio Sequel pla�orm using a 600-minute sequencing strategy and three 
SMRT cells. 
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Inferring eccDNA forming regions from short read sequencing data 

Illumina sequencing signal was analyzed using a custom pipeline inspired by previously 
published methods [41]. Illumina reads were first trimmed of Illumina TruSeq adapters using 
CutAdapt [69] version 2.4 with the nextseq-trim=20 op�on. Trimmed reads were then mapped 
to the M. oryzae Guy11 genome [19] and the 70-15 mitochondrial sequence [70] obtained from 
the Broad Ins�tute (htps://www.broadins�tute.org/scien�fic-
community/science/projects/fungal-genome-ini�a�ve/magnaporthe-compara�ve-genomics-
proj) using BWA-MEM [71] version 0.7.17-r1188 and the q and a op�ons. Reads mapping to 
mitochondrial sequences were excluded. Uniquely mapped reads were then mined for split 
reads that mapped in the same orienta�on, had at least 20 bp of alignment on either side of the 
split, and mapped to only two places in the genome. We also only selected split reads where 
the start of the read mapped downstream from the end. This last filter sets these split reads 
apart from split reads that would indicate a dele�on in the genome. Split reads for which one 
side of the split read mapped more than 50kbp away from the other, or to a different scaffold 
than the other, were excluded. Opposite facing read pairs were also obtained from uniquely 
mapped reads. Candidate eccDNA forming regions were then inferred by combining these two 
structural read variants. A split read that contained an opposite facing read pair that mapped no 
more than a combined 500 bp from the borders of the region contained within the two halves 
of the split read was considered a candidate eccDNA, and a junc�on split read. The length 
distribu�on of these candidate eccDNA forming regions (Addi�onal File 1: Fig. S35A) was then 
used to probabilis�cally infer candidate eccDNA forming regions from mul�-mapping reads 
(Addi�onal File 1: Fig. S35B). For each mul�-mapping split read, a list of poten�al combina�ons 
of alignments that sa�sfied the previously described criteria for split reads was generated, and 
one of these combina�ons was chosen at random, weighted by its length according to the 
generated length distribu�on. The chosen combina�ons were then used to infer addi�onal 
candidate eccDNA forming regions by combining these with opposite facing read pairs as 
before, except this �me obtained from unique and mul�-mapping reads. 

Each candidate eccDNA forming region was then validated by verifying that the region had over 
95% read coverage and at least two junc�on split reads with the exact same coordinates. 
Candidate eccDNA forming regions that did not pass these criteria were considered low quality 
and were not included in the analysis. 

Inferring eccDNA forming regions from long read sequencing data 

CCS were first called from PacBio data using ccs version 3.4.1 (htps://ccs.how/). Demul�plexing 
was then performed using lima version 1.9.0 (htps://lima.how/) and sequences of barcodes 
used for library prepara�on (Addi�onal Files 31 and 32). CCSs were then mapped to the M. 
oryzae Guy11 genome using minimap2 [72] version 2.18-r1015. Only uniquely mapped reads 
were kept for analysis. EccDNA forming regions were then iden�fied by looking for split reads 
that either: 1) mapped in the same orienta�on to the same exact region mul�ple �mes or 2) 
mapped less than 50 kb apart, in the same orienta�on and oriented properly so that they were 
indica�ve of a circular junc�on rather than a dele�on. 
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Outward PCR valida�on of eccDNA forming regions and PCR valida�on of eccDNA-absent 
genes 

Outward facing primers were designed to 8 eccDNA forming regions of interest to validate their 
presence in our eccDNA sequencing samples. Primers were designed to amplify the junc�on of 
each eccDNA but not result in a product of the same size when used on genomic DNA 
(Addi�onal File 4: Table S3). Primer3 [73] was used for primer design and the oligonucleo�des 
were synthesized by Integrated DNA Technologies. PCR was performed using New England 
Biolab’s Phusion High-Fidelity DNA polymerase on M. oryzae Guy11 genomic DNA and rolling 
circle amplifica�on products for the sample each eccDNA forming region was found in. 5ng DNA 
of each sample was used per 50 µl PCR reac�on as well as 5X Phusion HF buffer, 10 mM dNTPs, 
10 µM forward primer, 10 µM reverse primer, and 1 unit of Phusion DNA polymerase. PCR 
condi�ons were as follows: ini�al denatura�on at 98C̊ for 30 seconds, 35 cycles of denatura�on 
at 98C̊ for 10 seconds, annealing at 64C̊ or 65C̊ for 30 seconds, extension at 72C̊ for 10 seconds, 
and a final extension at 72C̊ for 5 minutes. PCR products were run on a 2% agarose gel to check 
for amplifica�on. Bands of the expected size were extracted from electrophoresis gels using 
Zymo Research’s Zymoclean Gel DNA Recovery Kit. Sanger sequencing was performed by the UC 
Berkeley DNA Sequencing Facility, and Sanger sequences were examined for matches to 
corresponding eccDNA forming regions using BLASTN [74] version 2.2.9 and manual inspec�on. 

PCR valida�on of eccDNA-absent genes was performed using similar methods. Primers were 
designed to amplify the en�re annotated gene region of MYO1 and the ac�n gene 
(MGG_03982) and a small segment of the MAGGY LTR retrotransposon from genomic DNA. 2ng 
DNA of each sample was used per 20 µl PCR reac�on as well as 5X Phusion HF buffer, 10 mM 
dNTPs, 10 µM forward primer, 10 µM reverse primer, and 0.4 units of Phusion DNA polymerase. 
PCR condi�ons were as follows: ini�al denatura�on at 98C̊ for 30 seconds, 25 cycles of 
denatura�on at 98C̊ for 10 seconds, annealing at 64C̊ or 65C̊ for 30 seconds, extension at 72C̊ 
for 5, 60 or 120 seconds, and a final extension at 72C̊ for 5 minutes. PCR products were run on a 
1% agarose gel to check for amplifica�on. 

Comparing eccDNA forming regions inferred from Illumina data and eccDNA forming regions 
inferred from PacBio data 

EccDNA forming regions called using Illumina data and PacBio data were found to be iden�cal if 
their start and end coordinates were within 10 bp of each other to account for mapping errors. 
EccDNA forming regions were then called with less stringent requirements to verify if any of the 
missing eccDNA forming regions were being filtered out somewhere in the pipeline. In this test, 
all uniquely mapped split reads that had 10 or more bp overlap on either side were properly 
oriented, and those less than 50kb apart were considered eccDNA forming regions. 

Benchmarking eccDNA forming regions called using our pipeline on previously published data 

EccDNA forming regions called using our pipeline were compared to eccDNA forming regions 
previously published for H. sapiens [41]. EccDNA forming regions were found to be iden�cal if 
their start and end coordinates were within 10 bp of each other. EccDNA forming regions 
described as low quality by the authors were excluded from the published dataset before 
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comparison. High coverage eccDNA forming regions were chosen for comparison if they had 
more than 10 associated junc�on split reads. Finally, mul�-mapping reads were excluded from 
the pipeline to iden�fy eccDNA forming regions called using only uniquely mapped reads. 

Comparing eccDNA sequencing samples to each other 

Overlaps in eccDNA forming regions between samples were first calculated based off the exact 
coordinates of the eccDNA forming regions and Venn diagrams based off these overlaps were 
generated using the ggVennDiagram R package [75] version 1.2.0. EccDNA forming regions 
found in all technical replicates taken from each biological replicate were first combined before 
looking for overlaps between biological replicates. Overlaps were then calculated with various 
levels of tolerance for the start and end coordinates of the eccDNA forming regions so that 
regions in one sample that were within 10, 100, or 1000 bp from the start and end coordinates 
of a region in another sample were considered to be found in both samples. Rarefac�on 
analysis for eccDNA forming regions in all samples was performed by sampling mapped eccDNA 
sequencing reads at random in increasing 10% intervals. For each subsample, eccDNA forming 
regions were called as previously described and counted. Principal component analysis of read 
coverage was performed by first calcula�ng junc�on split read coverage for all 10kbp windows 
in the genome for each sample. These values were then normalized to the total number of 
junc�on split reads in each sample. The matrix of normalized junc�on split read coverage for all 
samples was then processed using the prcomp func�on in R version 3.6.1 with the scale = TRUE 
op�on, and the first 6 principal components were ploted using the ggbiplot R package [76] 
version 0.55. 

Gene and effector annota�on 

The M. oryzae Guy11 genome along with 162 other rice-infec�ng M. oryzae genomes 
(Addi�onal File 25) were annotated using the FunGAP [77] version 1.1.0 annota�on pipeline. 
For all genomes, RNAseq data (SRR8842990) obtained from GEO accession GSE129291 was used 
along with the proteomes of M. oryzae 70-15, P131, and MZ5-1-6 taken from GenBank 
(accessions GCA_000002495.2, GCA_000292605.1, and GCA_004346965.1, respec�vely). The 
‘sordariomycetes_odb10’ op�on was used for the busco_dataset op�on and the 
‘magnaporthe_grisea’ op�on was used for the augustus_species op�on. For repeat masking, a 
transposable element library generated by combining the RepBase [78] fngrep version 25.10 
with a de novo repeat library, generated by RepeatModeler [79] version 2.0.1 run on the M. 
oryzae Guy11 genome with the LTRStruct op�on, was used for all genomes. Genes in M. oryzae 
Guy11 were assigned names according to the gene names listed on UniProtKB for M. oryzae 70-
15 accessed in October 2021. To make this assignment, M. oryzae Guy11 proteins were aligned 
to the M. oryzae 70-15 proteome using BLASTP [74] version 2.7.1+. Hits with greater than 80% 
sequence iden�ty that spanned more than 80% of the length of both the M. oryzae Guy11 
protein and the M. oryzae 70-15 protein were assigned names. 

Effectors were predicted among M. oryzae Guy11 genes by first selec�ng genes with signal 
pep�des which were predicted using SignalP [80] version 5.0b Darwin x86_64. Genes with 
predicted transmembrane domains from TMHMM [81] version 2.0c were then excluded. Finally, 
EffectorP [82] version 2.0 was used to predict effectors from this secreted gene set. Previously 



33 
 

well-characterized effectors were iden�fied using previously published protein sequences [27] 
and DIAMOND [83] version 2.0.9.147. 

High quality LTR-retrotransposon annota�ons in M. oryzae 

High quality, full length, consensus sequences for known Gypsy elements in M. oryzae (MAGGY, 
GYMAG1, GYMAG2, PYRET, MGRL3) and one Copia element (Copia1) were generated using the 
WICKERso� [84] suite of tools. Reference sequences from other genomes for each element 
were obtained from the RepBase [78] fngrep version 25.10 library. The M. oryzae Guy11 
genome was then scanned for the presence of these sequences using BLASTN [74] version 2.2.9  
and then filtered to hits with 90% sequence iden�ty and that contained 90% of the sequence 
length. Hits for each reference sequence were then extended to include 500 base pairs of 
genomic sequence upstream and downstream of the hit. A mul�ple sequence alignment of hits 
for each reference sequence was then generated using ClustalW [85] version 1.83 and 
boundaries were visually inspected and trimmed. Consensus sequences for each element were 
then generated from these mul�ple sequence alignments. These consensus sequences were 
split into LTR and internal regions by self-alignment using the BLASTN [74] webserver in August 
2020 to iden�fy LTRs. These consensus sequences are available in Addi�onal File 33. Finally, the 
loca�ons of these elements in M. oryzae Guy11 genome were annotated with RepeatMasker 
[86] version 4.1.1 with the -cutoff 250, -nolow, -no_is, and -norna op�ons to iden�fy their 
loca�ons in the M. oryzae Guy11 genome. For read coverage plots as well as histone and GC 
content plots, full length LTR retrotransposon copies were required. These were iden�fied by 
using the original full length consensus sequences with RepeatMasker as before and then 
filtering to hits greater than 3000 bp in length and greater than 90% sequence iden�ty. 

Compara�ve analysis of eccDNA forming regions 

Analysis of eccDNA forming regions in organisms other than M. oryzae were performed as 
described above for Illumina sequencing data using previously published genome, gene 
annota�on, and transposable element annota�on files (Addi�onal File 34). However, unlike the 
other data used in this study, the sequencing data in the S. cerevisiae dataset was single-end 
and therefore opposite facing read pairs could not be used to infer eccDNA forming regions. 
Instead, only eccDNA forming regions with three overlapping junc�on split reads were used for 
analysis. For all organisms, reads mapping to unplaced scaffolds and organellar genomes were 
removed a�er mapping as described above for the M. oryzae mitochondrial genome. These 
scaffolds were also removed from genome size, number of coding base pairs, and number of 
LTR retrotransposon base pairs calcula�ons for compara�ve analysis. To calculate the percent of 
the genome that was covered in each sample, the genomecov command of the BEDtools [87] 
suite versions 2.28.0 was used with the -d op�on along with the coordinates of eccDNA forming 
regions for each sample. Any base pair with a coverage value greater than zero was counted as 
being a por�on of the genome in an eccDNA forming region. 

Characteriza�on of eccDNA forma�on by LTR retrotransposons 

To generate the Manhatan plot, junc�on split reads were filtered by selec�ng regions that were 
made up of 90% LTR retrotransposon sequences. Junc�on split read coverage was then 
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calculated for each 100 bp window in the genome. Coverage values were then normalized to 
the total number of LTR eccDNA junc�on split reads per sample. These coverage values were 
then averaged across technical replicates for each biological replicate, and then averaged across 
biological replicates. Finally, only 100 bp bins that overlapped at least 50 bp with an LTR 
retrotransposon were ploted in Fig 3A. For Addi�onal File 1: Fig. S10, only bins with coverage 
greater than 0 were ploted. 

To simulate expected read coverage for different types of LTR eccDNAs, the Copia1 consensus 
sequence was taken as a reference, though the MAGGY consensus sequence yielded iden�cal 
results. Simulated DNA sequences were then generated for each type of LTR eccDNA. The 
expected 2-LTR circular sequence generated by NHEJ (scenario 1, Fig. 4A) was made up of two 
LTR sequences and the internal sequence, and the expected 1-LTR circle sequence generated by 
HR (scenario 3, Fig. 4C) was made up of one LTR sequence and the internal sequence. These 
sequences were shuffled 1000 �mes to generate 1000 sequences star�ng at various points of 
the expected circularized sequence. For the 1-LTR circle sequence generated by autointegra�on 
(scenario 2, Fig. 4B), the random autointegra�on events were simulated by choosing a random 
length segment of the internal sequence star�ng with its start or end, adding the LTR sequence 
to this sequence, and randomly shuffling the sequence to simulate a circular sequence. This 
process was repeated 1000 �mes to generate 1000 sequences. Finally, for each scenario, 
Illumina reads were simulated to reach 2000x coverage for each of the simulated sequences 
using ART Illumina [88] version 4.5.8 and the following parameters: 150 bp read length, 450 bp 
mean insert size, 50 bp insert size standard devia�on, HiSeqX TruSeq. Reads were mapped to 
the simulated sequences using BWA-MEM [71] version 0.7.17-r1188 with default se�ngs and 
coverage for each base pair was calculated. 

To generate observed coverage for each element, sequencing read coverage across the genome 
was calculated for all 10 base pair windows in the M. oryzae Guy11 genome for each sample. 
Coverage values were then normalized to the total number of mapped sequencing reads in each 
sample. These coverage values were then averaged across technical replicates for each 
biological replicate, and then averaged across biological replicates. Finally, profile plot data was 
generated for full length, high confidence sequences for each LTR retrotransposon using 
computeMatrix scale-regions and plotProfile of the DeepTools [89] suite of tools version 3.5.1 
using full length, high confidence LTR retrotransposon sequences. Profile plots were also 
generated using previously published whole genome sequencing data by averaging sequencing 
coverage across all three samples [19,54,59]. 

Iden�fica�on of split reads associated with eccDNA forma�on from LTR retrotransposons 

Split reads were first iden�fied as any read that mapped to only two places in the genome with 
at least 20 base pairs of alignment on either side. LTR-LTR split reads were then selected from 
these split reads for each LTR retrotransposon if both sides of the split read had any overlap 
with any copy of that retrotransposon’s LTR in the genome. LTR-internal split reads were 
selected if one side of the split read had any overlap with any copy of the retrotransposon’s LTR 
in the genome and the other side had any overlap with any copy of the retrotransposon’s 
internal region in the genome. Read coverage, LTR-LTR split read coverage, and LTR-internal 
coverage was then calculated for each annota�on of each LTR retrotransposon. Coverage values 
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were then normalized to the total number of mapped sequencing reads in each sample. These 
coverage values were then averaged across technical replicates for each biological replicate, and 
then averaged across biological replicates. 

Comparison of microDNAs and large eccDNAs across organisms 

Genome, gene annota�on, and transposable element annota�on files for each organism used 
for this analysis were as previously described (Addi�onal File 34). Again, organellar genomes as 
well as unplaced con�gs were filtered out of these files before analysis. Introns and UTRs were 
added to gene annota�on files that were missing these elements using the 
‘agat_convert_sp_gff2g�.pl’ and ‘agat_sp_add_introns.pl’ commands from the AGAT toolkit 
version 0.6.2 (htps://github.com/NBISweden/AGAT). Cpgplot of EMBOSS [90] version 6.6.0.0 
was used to annotate CpG islands in each genome. Upstream and downstream regions were 
defined as being 2000 base pairs upstream from the transcrip�on start site and downstream 
from the transcrip�on end site, respec�vely. Genic regions were defined as being made up of all 
sequences between transcrip�on start and end sites, and intergenic regions were the opposite. 
Junc�on split reads were counted as being from a specific region if they overlapped to any 
extent within that region. 

The observed percentage of junc�on split reads overlapping with each region type was 
calculated for each sample for each organism and an average of these percentages was 
calculated. The junc�on split reads of each sample were then shuffled across the genome 10 
�mes, excluding LTR retrotransposon loca�ons, and an expected percentage for each region was 
calculated, averaged across all permuta�ons, then averaged across all samples for each 
organism. Finally, the log2 of the fold enrichment was calculated by taking the log2 of the 
observed average percentage over the expected average percentage. 

Correla�on of expression and eccDNA forma�on 

Previously published RNAseq data from M. oryzae Guy11 grown in liquid culture in rich medium 
was obtained [91] (Addi�onal File 35). The data was mapped to the M. oryzae Guy11 genome 
using STAR [92] version 2.7.1a with the quantMode GeneCounts op�on. Read counts per gene 
were then divided by library size and mul�plied by the length of each gene in order to obtain 
reads per kilobase million (RPKMs). RPKMs per gene were then averaged across all samples. 

Junc�on split read counts per gene used to analyze the correla�on of expression and eccDNA 
forma�on were generated for each gene by coun�ng the number of junc�on split reads that 
intersect the gene to any extent. Counts per gene were first assessed for each sample and 
normalized to the number of junc�on split reads in that sample. Normalized counts were then 
averaged across technical replicates for each biological replicate. Average counts per biological 
replicate were then averaged to obtain the final result. 

To compare gene content and eccDNA forma�on, the M. oryzae genome was divided into 
100kbp bins and the number of genes per bin was calculated. Junc�on split reads per bin were 
calculated for each sample using the same method. Junc�on split read per bin values were then 
normalized to the total number of junc�on split reads in each sample. These values were 



36 
 

averaged across technical replicates for each biological replicate, and then averaged across 
biological replicates. 

ACS enrichment analysis 

The published ACS sequence profile [63] was used to iden�fy ACSs in eccDNA forming regions 
using the FIMO [93] so�ware version 4.12.0. Only hits scoring greater than 17 were kept. In 
order to test for enrichment of these sequences, an expected distribu�on of ACS sequences was 
generated by randomly shuffling eccDNA forming regions across the M. oryzae Guy11 genome, 
excluding regions containing LTR retrotransposons. The observed number of ACS sequences in 
eccDNA forming regions was then compared to the expected distribu�on to generate a p-value. 

Histone mark and GC content profile plots 

Previously published ChIPSeq data for H3K27me3, H3K27ac, H3K36me3, and loading controls 
were obtained [91]. Sequencing reads for each technical replicate were combined before reads 
for each treatment for each biological replicate were mapped to the M. oryzae Guy11 genome 
using BWA-MEM [71] version 0.7.17-r1188 with default se�ngs. The bamCompare command 
from the DeepTools [89] suite of tools version 3.5.1 with the scaleFactorsMethod readCount 
op�on was used to compare the signal from each treatment to the loading control for each 
biological replicate. computeMatrix scale-regions was then used in conjunc�on with the 
plotProfile command to generate processed data for profile plots. A�er verifying that all 
biological replicates resulted in similar profile plots, only the first biological replicate was chosen 
for presenta�on. 

To generate tracks used for profile plots, a few different strategies were used. GC content profile 
plots were generated by calcula�ng GC percentage for 50 base pair windows throughout the 
genome. Profile plot data was then generated using computeMatrix scale-regions and 
plotProfile commands as before. Methylated and acetylated genes were determined using the 
methyla�on and acetyla�on peaks published by Zhang et al. [91]. Marked genes were called 
when at least 50% of the gene overlapped with a peak. Large eccDNAs, microDNAs, and LTR-
eccDNAs from all M. oryzae Guy11 samples were combined into a single list which was filtered 
for duplicates and used for the corresponding tracks in the profile plots. The genome baseline 
track was generated by combining all of these eccDNA forming regions and shuffling them 
randomly across the genome. Finally, the full length, high quality LTR-retrotransposon 
annota�ons described above were used for LTR retrotransposon tracks. The same approach was 
used for genera�ng profile plots to compare histone marks and GC content for eccDNA-
associated and eccDNA-absent genes. 

Iden�fica�on of eccDNA-associated and eccDNA-absent genes 

Encompassing split read counts per gene for determining eccDNA-associated and eccDNA-
absent genes were generated for each gene by coun�ng the junc�on split reads that fully 
encompass the gene using the intersect command of the BEDTools [87] suite version 2.28.0 with 
the -f 1 op�on. This count was normalized to the total number of junc�on split reads in each 
sample, then averaged across technical replicates for each biological replicate. Genes with a 
count of zero were removed from each biological replicate before being sorted by this count. 
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Genes in the top third for this count were compared between biological reps using the 
ggVennDiagram R package [75] version 1.2.0. This count was averaged across biological 
replicates to obtain the encompassing split read count per gene for visualiza�ons in Fig. 5A and 
Fig. 8 and for comparison between predicted effectors and other genes (Addi�onal File 1: Fig. 
S34). 

GO enrichment analysis 

GO terms were first assigned to annotated M. oryzae Guy11 genes using the PANNZER2 [94] 
webserver on August 17th, 2020. Annotated GO terms were then filtered to annota�ons with a 
posi�ve predic�ve value greater than 0.6. The topGO [95] R package version 2.36.0 was used to 
parse assigned GO terms and reduce the gene list to a list of feasible genes for analysis. Either 
eccDNA-associated or eccDNA-absent were assigned as significant genes, and the number of 
these genes belonging to each GO term was used as the observed value for the enrichment 
analysis. A kernel density func�on was then generated using the gene lengths of the significant 
gene set. The same number of genes as the significant gene set were sampled at random from 
the feasible gene set using weighted random selec�on with weights obtained from the kernel 
density func�on. This random sampling was repeated 100 �mes and the average of the number 
of genes belonging to each GO term was used as the expected value for the enrichment 
analysis. Finally, the Chi-square sta�s�c was computed comparing observed and expected 
values to test for enrichment or deple�on of each GO term. 

Gene presence absence varia�on 

In order to iden�fy genes prone to presence absence varia�on in the M. oryzae Guy11 genome, 
OrthoFinder [96] version 2.5.1 with default se�ngs was used on all of the M. oryzae proteomes 
and the Neurospora crassa proteome obtained from GenBank (accession GCA_000182925.2). 
Then, for each M. oryzae genome, we queried whether each gene annotated in the M. oryzae 
Guy11 genome had an ortholog iden�fied by OrthoFinder in that genome. Finally, the absence 
of genes without orthologues was confirmed using BLASTN [74] version 2.7.1+. 

Small, genic dele�ons were iden�fied using orthologs iden�fied by OrthoFinder [96] version 
2.5.1 as before. For each genome, we looked for genes in the M. oryzae Guy11 genome that had 
no ortholog in that genome, but that were flanked by two genes with orthologs in that genome. 
One-to-many, many-to-many, and many-to-one orthologs were excluded from this analysis. 
Candidate gene dele�ons were validated using alignments performed using the nucmer and 
mummerplot commands of the MUMmer [97] suite of tools version 4.0.0rc1 to verify that a 
DNA dele�on truly existed, and that this dele�on overlapped the gene of interest. 

Iden�fica�on of eccDNA-mediated transloca�ons 

Iden�fica�on of transloca�ons with a poten�al eccDNA intermediate was done by first aligning 
two genomes using the nucmer command of the MUMmer [97] suite of tools version 4.0.0rc1 
with the maxmatch op�on. The nucmer output was then parsed to look for por�ons of the 
reference genome that had an upstream region that aligned to one query scaffold, followed by 
two separate adjacent alignments to another query scaffold, followed by a downstream region 
that aligned to the original query scaffold. We also required that the two adjacent alignments in 
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the center of the region were to adjacent regions in the query scaffold, but their order was 
reversed compared to the reference. Candidate eccDNA-mediated transloca�ons were verified 
manually by inspec�ng alignment plots generated using the mummerplot command. The S. 
cerevisiae EC1118 (GCA_000218975.1) and M22 genomes (GCA_000182075.2) obtained from 
GenBank were used to verify the ability of our pipeline to detect these transloca�on events. The 
M. oryzae Guy11 genome was then compared to 306 M. oryzae genomes (Addi�onal File 27) to 
look for these events in the M. oryzae species. Before alignment, transposable elements were 
masked from these M. oryzae genomes using RepeatMasker [86] version 4.1.1 with the -cutoff 
250, -nolow, -no_is, and -norna op�ons, as well as a transposable elements library generated by 
combining the RepBase [78] fngrep version 25.10 with the de novo repeat library generated by 
RepeatModeler [79] version 2.0.1 run on the M. oryzae Guy11 genome with default se�ngs 
aside from the LTRStruct argument.  

Minichromosome genes and eccDNAs 

Scaffolds corresponding to minichromosomes in the M. oryzae FR13 (GCA_900474655.3), 
CD156 (GCA_900474475.3), and US71 (GCA_900474175.3) genomes were extracted according 
to previously published data [23]. Exonerate [98] version 2.4.0  was then used with the 
protein2genome model to iden�fy genes in the M. oryzae Guy11 genome that were found on 
minichromosomes in these other isolates. Hits with greater than 70% sequence iden�ty to any 
minichromosome scaffold were iden�fied as genes found on minichromosomes. Encompassing 
split reads were then counted for all genes. This count was normalized to total number of 
junc�on split reads in each sample, then averaged across technical replicates for each biological 
replicate, then averaged across biological replicates. Finally, normalized encompassing split read 
counts for genes found on minichromosomes were compared to genes not found on 
minichromosomes. 

Rarefac�on analysis for eccDNA-absent genes and unique eccDNA forming regions 

Rarefac�on analysis for genes found fully encompassed by eccDNA forming regions were 
performed by first sampling eccDNA forming regions from all samples at random in increasing 
10% intervals. For each subsample, the number of genes found fully encompassed by eccDNA 
forming regions was determined as before. Next, eccDNA forming regions were shuffled across 
the genome and sampled at random in increasing 10% intervals. Again, the number of genes 
found fully encompassed by eccDNA forming regions was determined for each sample. This 
analysis was performed 100 �mes with similar results as those represented in Fig. 5C. A similar 
approach was used for rarefac�on analysis of eccDNA forming regions but the number of 
unique microDNAs, large eccDNAs and LTR-eccDNAs were counted at each subsample instead. 

Data processing and analysis 

Data processing was performed in a RedHat Enterprise Linux environment with GNU bash 
version 4.2.46(20)-release. GNU coreu�ls version 8.22, GNU grep version 2.20, GNU sed version 
4.2.2, gzip version 1.5, and GNU awk version 4.0.2 were all used for file processing and handling. 
Conda version 4.8.2 (htps://docs.conda.io/en/latest/) was used to facilitate installa�on of 
so�ware and packages. Code paralleliza�on was performed with GNU parallel [99] version 
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20180322. Previously published data was downloaded using curl version 7.65.3 
(htps://curl.se/) and sra-tools version 2.10.4 (htps://github.com/ncbi/sra-tools). Image file 
processing was performed with the help of ghostscript version 9.25 (htps://ghostscript.com/) 
and imagemagick version 7.0.4-7 (htps://imagemagick.org/index.php). BED format files were 
processed using bedtools [87] version 2.28.0 and bedGraphToBigWig version 4 
(htps://www.encodeproject.org/so�ware/bedgraphtobigwig/). SAM and BAM format files 
were processed with SAMtools [100] version 1.8 and Picard version 2.9.0 
(htps://broadins�tute.github.io/picard/). 

Data processing was also facilitated by custom Python scripts writen in Python version 3.7.4 
with the help of the pandas [101] version 0.25.1 and numpy [102] version 1.17.2 modules. The 
scipy [103] version 1.4.1 and more-intertools version 7.2.0 (htps://more-
itertools.readthedocs.io/) modules were also used. 

Data analysis and sta�s�cal analyses were performed in R version 3.6.1. Data handling was 
processed using data.table [104] version 1.13.6, �dyr [105] version 1.1.3, reshape2 [106] version 
1.4.4, and dplyr [107] version 1.0.4 packages. Plo�ng was performed using the ggplot2 [108] 
version 3.3.5 package, with help from RColorBrewer [109] version 1.1.2, scales [110] version 
1.1.1, cowplot [111] version 1.1.1, ggprepel [112] version 0.9.1 and ggpubr [113] version 0.4.0 
packages. The Gviz [114] version 1.28.3 was used for BAM file visualiza�on. Tables were made 
using gt [115] version 0.3.1. 
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Addi�onal File 1: Supplementary Figures. 

 

Fig. S1. Degradation of linear DNA using exonuclease treatment. Scatter plot showing the effect 
of exonuclease treatment on linear DNA fraction of total extracted DNA from M. oryzae tissue 
samples. Each dot represents one biological replicate averaged across four qPCR replicates. 
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Fig. S2. Outward PCR validation of eccDNA forming regions. Genes of interest found in eccDNA 
forming regions are listed for each group of three samples. One primer set was used per group 
and the expected product size is written below the gene name. All samples for each product 
were from the same PCR reaction. All boxes indicate PCR products that were Sanger sequenced. 
White boxes indicate PCR products that matched the expected eccDNA junctions. Yellow boxes 
indicate PCR products that originated from continuous sequences of DNA present in both the 
genomic DNA and on a high confidence eccDNA forming region found in the eccDNA sample. 
Blue boxes indicate PCR products with different sequences. PCR for AvrPita3, AvrPi9, AvrPi54, 
AvrPiz-t, and TRF1 junctions were all performed using biological replicate 1, technical replicate 
A. PCR for AvrPita1, and PTP2 junctions were performed using biological replicate 1, technical 
replicate C. PCR for the Pwl4 junction was performed using biological replicate 2, technical 
replicate A. 
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Fig. S3. Overlap in exact break points of eccDNA forming regions across samples. Venn diagrams 
showing the number of eccDNA forming regions sharing exact coordinates across technical 
replicates (A-C) and all biological replicates (D). EccDNA forming regions from all technical 
replicates for each biological replicate were merged before they were compared between 
biological replicates. 
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Fig. S4. Rarefaction analysis of sequencing coverage and eccDNA forming regions across all 
samples. Rarefaction curves showing the number of eccDNA forming regions called at each 
subset of total mapped reads for each sample. Each dot represents one subsample of mapped 
sequencing reads for one sequenced sample. 
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Fig. S5. Principal components analysis of sequencing coverage between samples. Biplots 
showing values of each sample for the first six principal components (PCs) generated from a 
principal components analysis performed using sequencing read coverage of all 10kbp bins 
across the M. oryzae Guy11 genome. Each dot represents one sample, and the shape of the 
dots represent the biological replicate each sample was taken from. 
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Fig. S6. Overlap in eccDNA forming regions across samples, with increasing tolerance for start 
and end coordinates. Histogram showing percentage of eccDNA forming regions found in all 
technical replicates for each biological replicate (A-C) as well as percentage of eccDNA forming 
regions found in all biological replicates (D). Percentages are shown for comparison of eccDNA 
forming regions based off exact coordinates as well as increasing levels of tolerance when 
comparing the start and end coordinates of the eccDNA forming regions. EccDNA forming 
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regions from all technical replicates for each biological replicate were merged before they were 
compared between biological replicates. This observed data was compared to data obtained by 
randomly placing eccDNA forming regions throughout the genome for each sample. 
Percentages shown for these shuffled data points are the mean of 100 randomized trials. 
Standard deviations were too small to visualize meaningfully in the figure. 

 

Fig. S7. Overlap between eccDNA forming regions called using PacBio sequencing data and 
Illumina sequencing data. Boxplot showing the percentage of eccDNA forming regions that 
were found in each sample using our PacBio sequencing data that were also represented in 
either eccDNA forming regions called using our Illumina sequencing data or split reads found in 
this data. Each point represents one sample, and the shape of the points represent the 
biological replicate that sample was taken from. 
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Fig. S8. Comparison between eccDNA forming regions in human samples called in this 
manuscript and in the original publication. A. Boxplot showing the percentage of eccDNA 
forming regions that were found using our pipeline that were also found in the published 
eccDNA forming regions for human samples. Each dot represents one sample. B. Bar plot 
showing counts of eccDNA forming regions generated from our pipeline compared to counts in 
published data. Sample IDs we taken from the Sequence Read Archive (SRA). 
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Fig. S9. Comparison of eccDNA forming regions between M. oryzae and other previously 
studied organisms. Box plots comparing A. the percentage of the genome found in eccDNA 
forming regions, B. log 10 count of eccDNA forming regions normalized to genome size and 
sequencing library size, C. percent of eccDNA forming regions that contain more than 50% 
noncoding sequences divided by percent of the genome made up of noncoding seqeuence, D. 
percent of eccDNA forming regions that contain more than 90% LTR/Gypsy retrotransposon 
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sequence divide by percent of the genome made up of LTR/Gypsy retrotransposon sequence, E. 
percent of eccDNA forming regions that contain more than 90% LTR/Copia retrotransposon 
sequence divided by percent of the genome made up of LTR/Gypsy retrotransposon sequence 
across multiple organisms and studies. Each dot represents one sequenced sample. Shapes 
represent variations in sample type within the same organism. For M. oryzae, shapes 
correspond to which biological replicate each sample was taken from. For Oryza sativa, circles 
represent leaf samples, triangles represent callus samples and diamonds represent seed 
samples. For Homo sapiens, circles represent muscle samples and triangles represent leukocyte 
samples. For Arabidopsis thaliana, circles represent wild type flower samples, empty circles 
represent epi12 mutant flower samples, squares represent root samples, diamonds represent 
leaf samples and triangles represent stem samples. For Saccharomyces cerevisiae, circles 
represent samples from the yeast deletion collection, squares represent samples from the yeast 
deletion collection treated with zeocin, triangles represent samples from GAP1 circle carrying 
yeast, diamonds represent samples from clonal isogenic haploid S228C yeast. For the 
retrotransposon boxplots, H. sapiens samples were excluded due to a lack of active LTR/Gypsy 
and LTR/Copia retrotransposons in their genome [116] and S. cerevisiae samples were excluded 
due to a small number of eccDNA forming regions containing retrotransposon sequences. 

 

Fig. S10. EccDNA forming regions composed of more than 90% LTR retrotransposon sequence 
in M. oryzae. Manhattan plot showing the number of junction split reads per million averaged 
across biological replicates for all 100 bp bins with junction split read coverage greater than 
zero in the M. oryzae Guy11 genome. Each dot represents one of these bins. Bins made up of 
more than 90% LTR retrotransposon sequence are colored in black. 
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Fig. S11. Percentage of the M. oryzae Guy11 genome made up of each LTR retrotransposon. 

 

Fig. S12. Correlation between number of LTR-LTR split reads and sequencing reads in eccDNA 
sequencing samples for each LTR retrotransposon in M. oryzae. A-F. Scatter plots showing 
Pearson’s correlation coefficient between log 10 sequencing reads per million reads and log 10 
LTR-LTR split reads per million sequencing reads, averaged across biological replicates. Each dot 
represents one annotated portion of the LTR region of an LTR retrotransposon. 
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Fig. S13. Number of LTR-LTR split reads and LTR-internal split reads in eccDNA sequencing 
samples for each LTR retrotransposon in M. oryzae. A. Box plot showing identified LTR-LTR split 
reads per million reads mapped to each element for each LTR retrotransposon in the M. oryzae 
Guy11 genome. Each point represents one sample. B. Box plot showing identified LTR-internal 
split reads per million reads mapped to each element, for each LTR retrotransposon in the M. 
oryzae Guy11 genome. Each point represents one sample, and the shape of the points 
represent the biological replicate that sample was taken from. 

 

 

Fig. S14. Correlation between number of LTR-internal split reads and sequencing reads in 
eccDNA sequencing samples for each LTR-retrotransposon in M. oryzae. A-F. Scatter plots 
showing Pearson’s correlation between log 10 sequencing reads per million reads and log 10 
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LTR-internal split reads per million sequencing reads, averaged across biological replicates. Each 
dot represents one annotated portion of the internal region of an LTR retrotransposon. 

 

Fig. S15. Expected read coverage for LTR retrotransposons in M. oryzae. A-F. Profile plots 
showing observed whole genome sequencing read coverage for each LTR retrotransposon 
found in the M. oryzae Guy11 genome. 
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Fig. S16. MicroDNA enrichment and depletion in the genomes of various organisms. Bar plot 
showing observed enrichment of microDNAs across various regions of the genome across 
different previously sequenced organisms and sample types. Log2 fold enrichment of -5 
represents samples where no microDNAs were found in that region. The presented data is an 
average of all sequenced samples of each type. 
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Fig. S17. Enrichment and depletion of microDNAs and large eccDNAs across various genomic 
regions in M. oryzae. Box plot showing observed enrichment of microDNAs and large eccDNAs 
across various regions of the genome. Each point represents one sample, and the shape of the 
points represent the biological replicate that sample was taken from. 
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Fig. S18. Correlation between gene count and junction split read count across the M. oryzae 
genome. Scatter plot showing the number of genes and log 10 of the number of junction split 
reads per million per 100 kilobase pair bin in the M. oryzae Guy11 genome for A. large eccDNAs 
or B. microDNAs, averaged across biological replicates. The red line represents a linear 
regression line and the grey shadow represents 95% confidence intervals. 
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Fig. S19. Correlation between junction split read count and expression for M. oryzae genes. 
Two-dimensional density plot showing the log 10 of the reads per kilobase million averaged 
across multiple RNAseq samples and log 10 of the number of overlapping junction split reads 
per million for each gene for A. large eccDNAs and B. microDNAs, averaged across biological 
replicates. The red line represents a linear regression line and the grey shadow represents 95% 
confidence intervals.  
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Fig. S20. Comparison of junction split read counts between eccDNA forming regions with and 
without an ACS. Box plot showing the log 10 of the number of junction split reads per million 
reads averaged across biological replicates for eccDNA forming regions that do and do not 
contain ACSs for A. large eccDNAs and B. microDNAs. 

 

 

Fig. S21. GC content and chromatin marks of eccDNA forming regions in M. oryzae. Profile plots 
showing the average A. percent GC content, B. log2 ratio of read coverage for H3K36me3 
chromatin immunoprecipitation and input control, C. log2 ratio of read coverage for H3K27me3 
chromatin immunoprecipitation and input control and D. log2 ratio between read coverage for 
H3K27ac chromatin immunoprecipitation and input control for all M. oryzae genes, randomly 
selected regions of the genome, LTR retrotransposons, large eccDNAs, LTR-eccDNAs and 
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microDNAs. Methylated and nonmethylated genes and acetylated and nonacetylated genes, as 
defined by Zhang et al., are also represented in C. and D., respectively. 

 

Fig. S22. Overlap between genes enriched on eccDNAs in biological replicates. Venn diagram 
showing overlap between genes in the top 33% for how often they were found fully 
encompassed by eccDNA forming regions in each biological replicate. Technical replicates for 
each biological replicates were normalized to the number of junction split reads in each sample 
then averaged. 558 genes found in the top 33% for all biological replicates were designated 
eccDNA-associated (colored in orange). 
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Fig. S23. GO terms associated with eccDNA-associated genes. Functional categories in the A. 
molecular function and B. biological pathway Gene Ontology with an observed number of 
eccDNA-associated genes that is significantly different from the expected number with 
correction for gene length bias (Chi-square test, p < 0.05). The y-axis shows the different 
functional categories, and the x-axis represents the observed number of genes divided by the 
expected number of genes in this group. Dots outside of the grey rectangle represent functional 
categories that are observed more often than expected. The size of dots indicates the total 
number of genes in the M. oryzae genome that belong to each functional category. Only the 20 
categories with the largest -log10 p-values are shown. 
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Fig. S24. GC content and chromatin marks of eccDNA-associated and eccDNA-absent genes in 
M. oryzae. Profile plots showing the average A. percent GC content, B. log2 ratio between read 
coverage for H3K36me3 chromatin immunoprecipitation and input control, C. log2 ratio 
between read coverage for H3K27me3 chromatin immunoprecipitation and input control and 
D. log2 ratio between read coverage for H3K27ac chromatin immunoprecipitation and input 
control for all M. oryzae genes, randomly selected regions of the genome, eccDNA-associated 
genes, and eccDNA-absent genes. Methylated and nonmethylated genes and acetylated and 
nonacetylated genes, as defined by Zhang et al., are also represented in C. and D., respectively. 

 

Fig. S25. Comparison of expression data between eccDNA-associated genes and eccDNA-absent 
genes in M. oryzae. Box plot showing the log 10 reads per kilobase million (RPKM) averaged 
across 12 previously published RNAseq samples for eccDNA-associated genes and eccDNA-
absent genes. 
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Fig. S26. Proximity of M. oryzae genes to repeats. Two-dimensional density plot representing 
the 5’ and 3’ distance to the nearest repeat in the M. oryzae Guy11 genome in kilobase pairs for 
each A. gene, B. predicted effector, C. eccDNA-associated genes, and D. eccDNA-absent genes. 
Known effectors are shown as text in B. Dashed lines represent median 5’ and 3’ distance to 
nearest gene. 



62 
 

 

Fig. S27. Proximity of M. oryzae genes to TEs. Two-dimensional density plot representing the 5’ 
and 3’ distance to the nearest transposable element in the M. oryzae Guy11 genome in kilobase 
pairs for each A. gene, B. predicted effector, C. eccDNA-associated genes, and D. eccDNA-
absent genes. Known effectors are shown as text in B. Dashed lines represent median 5’ and 3’ 
distance to nearest gene. 
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Fig. S28. Predicted effectors are prone to presence-absence variation in M. oryzae. Stacked bar 
plot showing the percentage of predicted effectors and all other genes in the M. oryzae Guy11 
genome that had an ortholog in all other 162 M. oryzae genomes analyzed or not. Numbers 
indicate the number of genes in each category. 
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Fig. S29. Rarefaction curves for eccDNA forming regions in M. oryzae. Rarefaction analysis of 
the number of unique eccDNA forming regions at different subsamples of eccDNA forming 
regions across all samples for A. LTR-eccDNAs, B. large eccDNAs and C. microDNAs. 
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Fig. S30. Example of an eccDNA-mediated translocation in wine yeasts. Dot plot alignments 
between S. cerevisiae M22 and S. cerevisiae EC1118 genomes showing a DNA translocation 
likely caused by an eccDNA intermediate in yeast. A. A scaffold of the EC1118 genome aligns to 
two different scaffolds of the M22 genome. B. A scaffold of the M22 genome aligns to two 
different scaffolds of the EC1118 genome. 
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Fig. S31. Comparison of encompassing split read counts between genes found on mini-
chromosomes in M. oryzae and other genes. Box plot showing the log 10 of the number of 
junction split reads per million reads averaged across biological replicates that fully encompass 
genes previously found on mini-chromosomes in other strains of M. oryzae and other genes. 
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Fig. S32. GO terms associated with eccDNA-absent genes. Functional categories in the A. 
molecular function and B. biological pathway Gene Ontology with an observed number of 
eccDNA-absent genes that is significantly different from the expected number with correction 
for gene length bias (Chi-square test, p < 0.05). The y-axis shows the different functional 
categories, and the x-axis represents the observed number of genes divided by the expected 
number of genes in this group. Dots outside of the grey rectangle represent functional 
categories that are observed more often than expected. The size of dots indicates the total 
number of genes in the M. oryzae genome that belong to each functional category. Only the 20 
categories with the largest -log10 p-values are shown. 
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Fig. S33. PCR validation of eccDNA-absent genes. Features of interest are listed at the top of 
each group. One primer set was used per group and the expected product size is written below 
the feature name. A portion of the MAGGY LTR retrotransposon was used as a positive control 
for amplification. EccDNA samples were grouped by biological replicate and ordered within 
groups by technical replicate. All samples for each product were from the same PCR reaction. 
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Fig. S34. Effectors are enriched in eccDNAs in M. oryzae. Box plot showing the number of fully 
encompassing junction split reads per million junction split reads averaged across biological 
replicates for predicted effectors compared to all other genes. 

 

Fig. S35. Lengths of eccDNA forming regions in M. oryzae. Histograms showing the distribution 
of candidate eccDNA forming regions in M. oryzae for one sequenced sample. A. Length 
distribution of candidate eccDNA forming regions inferred from uniquely mapped reads. B. 
Length distribution of candidate eccDNA forming regions inferred from multi-mapping reads. 

Addi�onal File 2: List of eccDNA forming regions called using Illumina circularome sequencing 
data for M. oryzae in this study.  

The first column describes the sample the eccDNA forming region was called with, the next 
three columns represent the genomic coordinates of the eccDNA forming region, and the last 
column represents the number of junc�on split reads used to call the eccDNA forming region. 

Addi�onal File 3: List of eccDNA forming regions called using PacBio circularome sequencing 
data for M. oryzae in this study.  

The first column describes the sample the eccDNA forming region was called with, the next 
three columns represent the genomic coordinates of the eccDNA forming region, and the last 
column represents the number of junc�on split reads used to call the eccDNA forming region. 

Addi�onal File 4: Supplementary Tables. 

 

Table S1. Number of eccDNA forming regions called using whole genome sequencing data. Read 
count, eccDNA forming regions inferred, and number of junc�on split reads found using our 
pipeline on three previously published whole genome sequencing datasets for M. oryzae. 
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Table S2. Summary of protocols used to extract eccDNAs in studies analyzed in this manuscript. 
DNA extrac�on kit, column purifica�on kit, linear DNA degrada�on enzymes and circular DNA 
amplifica�on enzymes used for all studies whose data was used to compare the circularomes of 
the organisms discussed in this study. 



71 
 

 

Table S3. Primers used for qPCR valida�on of linear DNA degrada�on and outward PCR 
valida�on of eccDNA forming regions. 

Addi�onal File 5: List of eccDNA forming regions called using Illumina circularome sequencing 
data for H. sapiens muscle �ssue published by Møller et al. [41].  

The first column describes the sample the eccDNA was called with, the next three columns 
represent the genomic coordinates of the eccDNA forming region, and the last column 
represents the number of junc�on split reads used to call the eccDNA forming region. 
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Addi�onal File 6: List of eccDNA forming regions called using Illumina circularome sequencing 
data for H. sapiens leukocytes published by Møller et al. [41].  

The first column describes the sample the eccDNA was called with, the next three columns 
represent the genomic coordinates of the eccDNA forming region, and the last column 
represents the number of junc�on split reads used to call the eccDNA forming region. 

Addi�onal File 7: List of eccDNA forming regions called using Illumina circularome sequencing 
data for O. sativa in this study.  

The first column describes the sample the eccDNA forming region was called with, the next 
three columns represent the genomic coordinates of the eccDNA forming region, and the last 
column represents the number of junc�on split reads used to call the eccDNA forming region. 

Addi�onal File 8: List of eccDNA forming regions called using Illumina circularome sequencing 
data for O. sativa leaf �ssue published by Lanciano et al. [46].  

The first column describes the sample the eccDNA was called with, the next three columns 
represent the genomic coordinates of the eccDNA forming region, and the last column 
represents the number of junc�on split reads used to call the eccDNA forming region. 

Addi�onal File 9: List of eccDNA forming regions called using Illumina circularome sequencing 
data for O. sativa seed �ssue published by Lanciano et al. [46].  

The first column describes the sample the eccDNA was called with, the next three columns 
represent the genomic coordinates of the eccDNA forming region, and the last column 
represents the number of junc�on split reads used to call the eccDNA forming region.  

Addi�onal File 10: List of eccDNA forming regions called using Illumina circularome 
sequencing data for O. sativa callus �ssue published by Lanciano et al. [46].  

The first column describes the sample the eccDNA was called with, the next three columns 
represent the genomic coordinates of the eccDNA forming region, and the last column 
represents the number of junc�on split reads used to call the eccDNA forming region.  

Addi�onal File 11: List of eccDNA forming regions called using Illumina circularome 
sequencing data for A. thaliana wild type �ssue published by Lanciano et al. [46].  

The first column describes the sample the eccDNA was called with, the next three columns 
represent the genomic coordinates of the eccDNA forming region, and the last column 
represents the number of junc�on split reads used to call the eccDNA forming region. 

Addi�onal File 12: List of eccDNA forming regions called using Illumina circularome 
sequencing data for A. thaliana epi12 mutant �ssue published by Lanciano et al. [46].  

The first column describes the sample the eccDNA was called with, the next three columns 
represent the genomic coordinates of the eccDNA forming region, and the last column 
represents the number of junc�on split reads used to call the eccDNA forming region. 
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Addi�onal File 13: List of eccDNA forming regions called using Illumina circularome 
sequencing data for A. thaliana leaf �ssue published by Wang et al. [45].  

The first column describes the sample the eccDNA was called with, the next three columns 
represent the genomic coordinates of the eccDNA forming region, and the last column 
represents the number of junc�on split reads used to call the eccDNA forming region. 

Addi�onal File 14: List of eccDNA forming regions called using Illumina circularome 
sequencing data for A. thaliana root �ssue published by Wang et al. [45].  

The first column describes the sample the eccDNA was called with, the next three columns 
represent the genomic coordinates of the eccDNA forming region, and the last column 
represents the number of junc�on split reads used to call the eccDNA forming region. 

Addi�onal File 15: List of eccDNA forming regions called using Illumina circularome 
sequencing data for A. thaliana stem �ssue published by Wang et al. [45].  

The first column describes the sample the eccDNA was called with, the next three columns 
represent the genomic coordinates of the eccDNA forming region, and the last column 
represents the number of junc�on split reads used to call the eccDNA forming region. 

Addi�onal File 16: List of eccDNA forming regions called using Illumina circularome 
sequencing data for A. thaliana flower �ssue published by Wang et al. [45].  

The first column describes the sample the eccDNA was called with, the next three columns 
represent the genomic coordinates of the eccDNA forming region, and the last column 
represents the number of junc�on split reads used to call the eccDNA forming region. 

Addi�onal File 17: List of eccDNA forming regions called using Illumina circularome 
sequencing data for S. cerevisiae wild type cells published by Møller et al. [41].  

The first column describes the sample the eccDNA was called with, the next three columns 
represent the genomic coordinates of the eccDNA forming region, and the last column 
represents the number of junc�on split reads used to call the eccDNA forming region. 

Addi�onal File 18: List of eccDNA forming regions called using Illumina circularome 
sequencing data for S. cerevisiae GAP1circle cells published by Møller et al. [47].  

The first column describes the sample the eccDNA was called with, the next three columns 
represent the genomic coordinates of the eccDNA forming region, and the last column 
represents the number of junc�on split reads used to call the eccDNA forming region. 

Addi�onal File 19: List of eccDNA forming regions called using Illumina circularome 
sequencing data for S. cerevisiae cells from the dele�on collec�on published by Møller et al. 
[47].  

The first column describes the sample the eccDNA was called with, the next three columns 
represent the genomic coordinates of the eccDNA forming region, and the last column 
represents the number of junc�on split reads used to call the eccDNA forming region. 
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Addi�onal File 20:  List of eccDNA forming regions called using Illumina circularome 
sequencing data for S. cerevisiae cells from the dele�on collec�on treated with zeocin 
published by Møller et al. [47].  

The first column describes the sample the eccDNA was called with, the next three columns 
represent the genomic coordinates of the eccDNA forming region, and the last column 
represents the number of junc�on split reads used to call the eccDNA forming region. 

Addi�onal File 21: List of genes annotated in the M. oryzae Guy11 genome along with other 
informa�on discussed in this study for each gene.  

The first three columns describe the genomic coordinates of the gene, the fourth column is the 
gene’s ID, the fi�h column describes whether the gene was predicted to be an effector, the sixth 
column lists its name if it is a known effector, the seventh column lists the name of the protein 
in the M. oryzae 70-15 proteome, the eighth column describes whether it is an eccDNA-
associated or eccDNA-absent gene, and the last column describes whether this gene was kept in 
all rice-infec�ng M. oryzae genomes analyzed. 

Addi�onal File 22: Enriched GO terms in the cellular components ontology for eccDNA-
associated genes.  

The first column lists the GO term, the second column lists the number of genes annotated with 
each term, the third column lists the number of genes observed in the eccDNA-associated 
category, the fourth column list the number of genes expected in that category, the fi�h column 
shows is a descrip�on of the go term, the sixth column lists the Chi-square value for that GO 
term, and the final column lists the ra�o of the observed number of genes in the eccDNA-
associated category divided by the expected number of genes in that category. 

Addi�onal File 23: Enriched GO terms in the molecular func�on ontology for eccDNA-
associated genes.  

The first column lists the GO term, the second column lists the number of genes annotated with 
each term, the third column lists the number of genes observed in the eccDNA-associated 
category, the fourth column lists the number of genes expected in that category, the fi�h 
column shows is a descrip�on of the go term, the sixth column lists the Chi-square value for 
that GO term, and the final column lists the ra�o of the observed number of genes in the 
eccDNA-associated category divided by the expected number of genes in that category. 

Addi�onal File 24: Enriched GO terms in the biological pathway ontology for eccDNA-
associated genes.  

The first column lists the GO term, the second column lists the number of genes annotated with 
each term, the third column lists the number of genes observed in the eccDNA-associated 
category, the fourth column list the number of genes expected in that category, the fi�h column 
shows is a descrip�on of the go term, the sixth column lists the Chi-square value for that GO 
term, and the final column lists the ra�o of the observed number of genes in the eccDNA-
associated category divided by the expected number of genes in that category. 
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Addi�onal File 25: List of GenBank accessions for the genomes of rice-infec�ng M. oryzae 
isolates used in this study for gene annota�on. 

Addi�onal File 26: List of small, genic dele�ons iden�fied in the M. oryzae Guy11 genome.  

The first three columns describe genomic coordinates of the dele�on, the fourth column is the 
missing gene’s ID, and the last column is the name of the genome where the dele�on is present. 

Addi�onal File 27: List of GenBank accessions for the genomes of M. oryzae used in this study 
to search for eccDNA-mediated transloca�ons. 

Addi�onal File 28: Enriched GO terms in the cellular components ontology for eccDNA-absent 
genes.  

The first column lists the GO term, the second column lists the number of genes annotated with 
each term, the third column lists the number of genes observed in the eccDNA-absent category, 
the fourth column list the number of genes expected in that category, the fi�h column shows is 
a descrip�on of the go term, the sixth column lists the Chi-square value for that GO term, and 
the final column lists the ra�o of the observed number of genes in the eccDNA-associated 
category divided by the expected number of genes in that category. 

Addi�onal File 29: Enriched GO terms in the molecular func�on ontology for eccDNA-absent 
genes.  

The first column lists the GO term, the second column lists the number of genes annotated with 
each term, the third column lists the number of genes observed in the eccDNA-absent category, 
the fourth column list the number of genes expected in that category, the fi�h column shows is 
a descrip�on of the go term, the sixth column lists the Chi-square value for that GO term, and 
the final column lists the ra�o of the observed number of genes in the eccDNA-associated 
category divided by the expected number of genes in that category. 

Addi�onal File 30: Enriched GO terms in the biological pathway ontology for eccDNA-absent 
genes. The first column lists the GO term, the second column lists the number of genes 
annotated with each term, the third column lists the number of genes observed in the eccDNA-
absent category, the fourth column list the number of genes expected in that category, the fi�h 
column shows is a descrip�on of the go term, the sixth column lists the Chi-square value for 
that GO term, and the final column lists the ra�o of the observed number of genes in the 
eccDNA-associated category divided by the expected number of genes in that category. 

Addi�onal File 31: List showing names of barcodes used for each PacBio sequencing sample. 

Addi�onal File 32: Sequences of barcodes used for library prepara�on of PacBio sequencing 
samples in FASTA format. 

Addi�onal File 33:  Consensus sequences of LTR retrotransposons in the M. oryzae Guy11 
genome in FASTA format. 

Addi�onal File 34: Genome, gene annota�on, and transposable element annota�on files used 
for compara�ve circularome analysis. 
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Addi�onal File 35: List of Sequence Read Archive accessions for RNAseq data used in this 
study.
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Chapter 3 

Extended Discussion and Conclusions of Chapter 2 and Transi�on to Chapter 4 
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In Chapter 2, I sequenced and characterized the eccDNAs of M. oryzae. Through a compara�ve 
analysis to previously published datasets, I found that M. oryzae eccDNAs are more diverse than 
those of other organisms and more likely to contain repe��ve elements. While this difference 
was stark no mater what normaliza�on or re-analysis approach I used, it is unclear why M. 
oryzae produces so many different eccDNAs. A few experiments could be done to help elucidate 
this ques�on. In general, more organisms need to have their eccDNAs sequenced to perform 
compara�ve analyses and to start to understand what factors generate diversity in eccDNA 
profiles. This data is especially lacking in fungi as the only other fungus that has had their 
eccDNAs sequenced is S. cerevisiae. It would also be interes�ng to sequence the eccDNAs of 
many fungal plant pathogens to see if they all show similar levels of diversity as M. oryzae. This 
could help support the hypothesis that eccDNAs play a role in fungal plant pathogen evolu�on. 

 The M. oryzae species contains many host-specific popula�ons, with dis�nct evolu�onary 
histories [117,118]. Therefore, it could also be interes�ng to see how these evolu�onary 
histories may affect their eccDNA profiles, and whether rice-infec�ng M. oryzae produce more 
eccDNAs than other pathotypes. Observing differences in eccDNA profiles between M. oryzae 
pathotypes could help narrow in on what factors define eccDNA content as well. To beter 
understand the mechanisms that generate such a great diversity of eccDNAs, M. oryzae DNA 
repair mutant could also have their eccDNA profiles characterized. Interes�ng work is already 
being done on M. oryzae DNA repair mutants [119] and it would be quite interes�ng to see how 
M. oryzae’s unique DNA repair biology is related to its unique eccDNA profile. Previously 
published studies on the effect of muta�ons in DNA repair genes supports the idea that these 
two factors may be related [29]. 

Through my analysis, I also found that LTR retrotransposons are par�cularly overrepresented in 
M. oryzae eccDNAs. As a follow up to this observa�on, I described which ones were most likely 
to contribute to eccDNA forma�on and found that different LTR retrotransposons formed 
eccDNAs through different mechanisms. Since it is well known that TE ac�vity varies between 
condi�ons [21,120], I hypothesized that the number and type of eccDNAs formed due to TE 
ac�vity would vary in these condi�ons. I was also interested to see if eccDNA sequencing could 
be a beter indicator of LTR retrotransposon ac�vity than RNA sequencing given that RNA 
sequencing measures the expression of all LTR retrotransposons, even those that have mutated 
to the point that they are no longer able to be reverse-transcribed. Addi�onally, it is important 
to emphasize that the eccDNA sequencing data that I analyzed in Chapter 2 was only done in 
one specific condi�on. It is possible that the eccDNA profile and the number of eccDNAs 
produced by M. oryzae could change under different growth condi�ons, such as within the 
plant, under different stressors, or at different growth stages.  

With these ideas in mind, I atempted to sequence eccDNAs under various condi�ons: during 
infec�on, a�er hydrogen peroxide treatment, and a�er methyl viologen treatment. 
Unfortunately, my analysis of these datasets was not successful due to technical reasons. 
Substan�al troubleshoo�ng was necessary to address the issues, but I did not end up 
performing this troubleshoo�ng and therefore never got meaningful data from these 
experiments. However, the central ques�on of Chapter 2 of my thesis was whether eccDNAs 
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might directly contribute to M. oryzae’s adapta�on, which is why I chose instead to focus my 
efforts on analyses that centered on the genic content of M. oryzae eccDNAs. 

First, I iden�fied sets of eccDNA-absent and eccDNA-associated genes. The existence of 
eccDNA-absent genes is an important finding as it shows that eccDNA forma�on in M. oryzae is 
not completely random and is likely shaped by some kind of biological selec�on. This selec�on 
could be ac�ng at the level of individual cell fitness. For example, it is possible that a cell that 
generates eccDNAs containing copies of the ac�n gene expresses too much of this gene, 
resul�ng in an unstable cytoskeleton and an unhealthy cell. Of course, this hypothesis assumes 
that genes are expressed directly from eccDNAs. While this has been observed in other 
organisms, the only evidence I gathered during my research relevant to this hypothesis was that 
there is a weak correla�on between eccDNA forma�on and previously published RNA 
sequencing data. This result needs to be validated with side-by-side RNA and eccDNA 
sequencing. Addi�onally, directly demonstra�ng expression from eccDNAs is a challenging task 
and showing a phenotypic effect associated with the amplifica�on of a gene on an eccDNA 
under stress condi�ons is likely much easier. An alterna�ve hypothesis for the existence of 
eccDNA-absent genes in M. oryzae is that there is some sort of mechanism that directly 
prevents the forma�on of these eccDNAs. H3K36me3 marks were the only feature of eccDNA-
absent genes that set them apart from other genes in my analysis. Sequencing eccDNAs in 
histone methyla�on mutants could also help reveal whether a direct mechanism for controlling 
eccDNA-forma�on exists in M. oryzae, which could be par�cularly interes�ng to look at if 
evidence of eccDNAs affec�ng the phenotype of some M. oryzae cells under stress was 
uncovered. 

Due to the co-localiza�on of TEs and rapid evolu�on in the M. oryzae genome, the 
overwhelming presence of TEs on eccDNAs hinted at an associa�on between eccDNAs and the 
evolu�on of M. oryzae. Iden�fying eccDNA-associated genes allowed me to further explore this 
correla�on. I found that eccDNA-associated genes o�en experience PAV. I also found that 
eccDNA-associated genes are o�en in gene-poor regions and repeat-rich regions of the genome. 
Finally, I found that effectors are enriched on eccDNAs. This was encouraging evidence that 
supported the idea that eccDNAs play a role in the rapid evolu�on of M. oryzae. However, the 
main effect of eccDNA forma�on is gene amplifica�on and it is not obvious how amplifica�on of 
effector genes on eccDNAs alone could help M. oryzae adapt to its host. While increased 
expression of effectors could, in theory, help M. oryzae defeat host defenses more quickly, it is 
unlikely that a stochas�c process like eccDNA forma�on would be very useful in accomplishing 
this. It is much easier to imagine stochas�c gene copy number varia�on being useful in 
adapta�on to environmental stressors, as has been discussed many �mes in the past 
[33,34,37,39,40]. This is why I was excited to find two genes known to be associated with 
fungicide-resistance captured by eccDNAs in my data. However, forma�on of eccDNAs 
containing these genes is not necessarily meaningful on its own and, again, fungicide resistance 
is not necessarily the result of increased expression of fungicide targets. To directly answer 
whether copy number varia�on caused by eccDNA forma�on could help M. oryzae adapt to its 
environment, eccDNA sequencing under different treatments, including fungicide treatments, 
would be required. However, as men�oned previously, while I atempted to perform these 
experiments, I was not able to draw meaningful conclusions from them. 
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EccDNAs can also contribute to genome evolu�on by causing genomic rearrangements. In this 
context, it is much easier to imagine how M. oryzae effectors could benefit from diversity 
genera�on through eccDNA forma�on. EccDNAs could shutle effectors to different areas of the 
genome or to mini chromosomes, genera�ng epigene�c diversity. If eccDNAs form without 
genera�ng genomic dele�ons, they could reinsert resul�ng in effector gene duplica�ons and 
enabling subsequent diversifica�on. If an eccDNA forms while causing a genomic dele�on, it 
could help M. oryzae escape detec�on by its host by removing an effector gene from the 
genome. EccDNAs could also mutate independently and then reinsert into the genome, 
genera�ng diversity.  

These eccDNA reinser�on events o�en leave characteris�c scars that can be mined 
bioinforma�cally. Therefore, I focused much of my �me during this project on finding these 
scars in the M. oryzae genome. However, despite using several exhaus�ve approaches, I could 
not find evidence of eccDNA transloca�on in M. oryzae. While it is possible that I did not sample 
quite enough genomes to observe this evidence and that there were some blind spots in my 
searches, this result heavily implies that eccDNA reinser�on is not a common phenomenon in 
M. oryzae. Rou�ne DNA transforma�on protocols have been used in M. oryzae to integrate 
exogenous plasmids into the fungus’ genome [121]. Therefore, the fact that I did not observe 
evidence of eccDNA reinser�on in M. oryzae came as a bit of a surprise. It is possible that some 
mechanism exists through which M. oryzae can quickly purge eccDNAs from its cells, perhaps 
similar to that employed by ageing yeast cells, that prevents the reintegra�on of eccDNAs into 
its genome [38]. It is also possible that M. oryzae does not produce enough eccDNAs for 
reinser�ons to be observable in the �me frame that I sampled. 

Regardless, since many of the poten�al roles for eccDNAs in effector evolu�on involve 
reinser�on, this result indicates that it is unlikely that eccDNAs have a large impact on M. 
oryzae’s adapta�on to crops. The one eccDNA-mediated genomic diversity genera�on process 
that does not involve reinser�on is gene dele�on. While I did find that many eccDNA-associated 
genes experience PAV, I did not find any overlap between genomic dele�ons in M. oryzae and 
eccDNA forma�on. Again, to conclusively confirm this nega�ve result, many more experiments 
are needed. For example, tandem eccDNA and DNA sequencing, especially at single-cell 
resolu�on, could directly confirm whether an eccDNA in one cell corresponds to a dele�on in 
the same cell. Unfortunately, this technology simply does not exist today and would be 
extremely challenging to implement. 

Ul�mately, my work in this chapter resulted in many interes�ng discoveries about eccDNA 
biology in M. oryzae and it laid the groundwork for many follow up experiments that would help 
further explain these discoveries. However, many ques�ons remain unanswered about eccDNA 
biology in general, and many tools s�ll need to be developed to properly answer them. It is 
unlikely that M. oryzae is the best model to answer these ques�ons and develop these tools. 
Models like S. cerevisiae and human cancer cells are, of course, far more appropriate. 
Furthermore, as described in this chapter and Chapter 2, several of the analyses I performed 
indicated that it is unlikely that eccDNAs play a major role in the evolu�on of the rice blast 
fungus. Given that my priority was to improve our understanding of genome evolu�on in M. 
oryzae, I chose to turn my focus away from eccDNAs in Chapter 4 of my disserta�on. 
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Through presen�ng and publishing the work I described in Chapter 2, I realized that while 
extensive effector PAV had been reported many �mes in M. oryzae [25–27], the rules that 
shaped these events had not been clearly defined. As I realized during the GSA’s 2022 Fungal 
Gene�cs Conference in Asilomar, CA, the M. oryzae genomics community was instead focused 
on popula�on gene�cs, effector evolu�on and mini-chromosome biology. Given the fact that 
PAV appeared to play an important role in M. oryzae’s evolu�on, it seemed to me that 
understanding the paterns shaping these PAV events could help us tackle the threat M. oryzae 
poses to global food security. Specifically, I wanted to see if a deeper understanding of these 
paterns could help us predict PAV events in the future and therefore engineer beter disease 
resistant crops. To study these paterns, I wanted to look at PAV in all genes, as I believed that 
focusing too much on effectors could lead me to miss some interes�ng biology. Addi�onally, I 
was interested in characterizing PAV in the emerging wheat-infec�ng strains of M. oryzae as this 
had not been done before. In a project not described in this disserta�on, Anne Nakamoto and I 
characterized the TE content of many pathotypes of M. oryzae and found that rice-infec�ng 
strains harbored much greater TE content than wheat-infec�ng ones [122]. This observa�on 
made me par�cularly interested in whether the paterns of PAV might be different between the 
two pathotypes. All these ideas lead to the work I present in Chapter 4, where I characterized 
PAV events in rice and wheat-infec�ng M. oryzae and built machine learning models that could 
accurately predict these events.



82 
 

Chapter 4 

Characteriza�on of gene presence-absence varia�on in Magnaporthe oryzae 
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The contents of this chapter are based on the following preprint: 

Joubert, P.M., Krasileva, K.V. Dis�nct genomic contexts predict gene presence-absence varia�on 
in different pathotypes of a fungal plant pathogen. bioRxiv (2023). 
htps://doi.org/10.1101/2023.02.17.529015 

Abstract 

Background 

Fungi use the accessory segments of their pan-genomes to adapt to their environments. While 
gene presence-absence variation (PAV) contributes to shaping these accessory gene reservoirs, 
whether these events happen in specific genomic contexts remains unclear. Additionally, since 
pan-genome studies often group together all members of the same species, it is uncertain 
whether genomic or epigenomic features shaping pan-genome evolution are consistent across 
populations within the same species. Fungal plant pathogens are useful models for answering 
these questions because members of the same species often infect distinct hosts, and they 
frequently rely on gene PAV to adapt to these hosts. 

Results 

We analyzed gene PAV in the rice and wheat blast fungus, Magnaporthe oryzae, and found that 
PAV of disease-causing effectors, antibiotic production, and non-self-recognition genes may 
drive the adaptation of the fungus to its environment. We then analyzed genomic and 
epigenomic features and data from available datasets for patterns that might help explain these 
PAV events. We observed that proximity to transposable elements (TEs), gene GC content, gene 
length, expression level in the host, and histone H3K27me3 marks were different between PAV 
genes and conserved genes, among other features. We used these features to construct a 
random forest classifier that was able to predict whether a gene is likely to experience PAV with 
high precision (86.06%) and recall (92.88%) in rice-infecting M. oryzae. Finally, we found that 
PAV genes in the wheat- and rice-infecting pathotypes of M. oryzae differed in their number 
and their genomic context. 

Conclusions 

Our results suggest that genomic and epigenomic features of gene PAV can be used to better 
understand and even predict fungal pan-genome evolution. We also show that substantial 
intra-species variation can exist in these features. 

Background 

Microbial species have expansive pan-genomes that allow them to adapt to their environments. 
While bacteria typically gain and lose genes in the form of large horizontal gene transfer events 
[123], the accessory portion of fungal pan-genomes, which is defined in contrast to the 
conserved set of genes found in all members of a species, are typically shaped by small gene 
duplication and deletion events, which contribute to gene presence-absence variation (PAV) 
[124]. Previous fungal pan-genome studies have focused on the roles and functions of core and 
accessory genes [124–127], but our knowledge of which genomic and epigenomic features 
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shape fungal pangenomes remains limited. Some studies have highlighted an association of 
accessory genes with subterminal chromosomal regions and transposable elements (TEs) 
[124,125], but it is uncertain whether these associations are strong enough to be predictive of 
gene PAV. While one study constructed models that could successfully predict meiotically 
derived structural variation generation events, and identified TEs, histone marks and GC 
content as particularly important predictors, it did not expand these findings to pan-genome 
evolution [128]. Finally, it is unclear whether any patterns in genomic or epigenomic features of 
PAV events would be generalizable to all populations of the same species, as pan-genomes are 
typically assembled for entire species without consideration of differential evolution between 
populations. 

Fungal plant pathogens are ideal candidates to study pan-genome evolution, and especially 
gene PAV. They have dynamic pan-genomes that allow them to adapt to their hosts [125–127]. 
Specifically, fungal plant pathogens secrete a wide range of rapidly evolving effector proteins to 
cause disease. These effectors can become a disadvantage, however, when the immune 
receptors of their hosts acquire new binding specificities that detect these effectors and trigger 
an immune response [9]. Gene PAV is therefore particularly important in fungal plant pathogen 
evolution [10]. In these fungi, rapid genome evolution, especially of effectors, tends to occur in 
TE-dense and gene-poor regions of the genome while slower evolution and house-keeping 
genes occur in TE-poor and gene-dense regions of the genome [7,11]. This idea is often referred 
to as the “two-speed” genome concept. While effectors are particularly prone to PAV, it is 
unclear whether this concept extends to gene PAV and especially PAV of non-effectors. Many 
fungal plant pathogens of the same species also infect distinct hosts, which could facilitate the 
characterization and comparison of these PAV events in isolated populations. 

Magnaporthe oryzae causes the blast disease of rice and wheat and is amongst the most 
important and well-studied pathogens with hundreds of available genomes and next-
generation sequencing datasets [15,16]. The fungus has been reported to experience 
substantial gene PAV but these analyses have been largely restricted to effectors, and the 
genomic and epigenomic features associated with these PAV events remain largely unexplored 
[25–27]. M. oryzae reproduces mostly clonally, which makes the study of how its pan-genome 
can evolve without substantial recombination possible [26,28,118]. Finally, the blast fungus 
infects several different hosts, enabling the comparison of gene PAV between pathotypes 
within the same species [28]. While rice blast has been a long-standing threat, the rapid spread 
of wheat blast throughout the world as well as its particularly devastating effect on wheat crops 
has strongly encouraged research into this pathotype of M. oryzae and especially how it was 
able to jump hosts from rice to wheat and become such a devastating pathogen [16]. 
Altogether, M. oryzae offers a unique opportunity for studying gene PAV and the genomic and 
epigenomic features that shape these events as well as how these events vary within a species. 

In this study, we sought to characterize and compare gene PAV in rice-infecting (MoO) and 
wheat-infecting M. oryzae (MoT). We first identified orthogroups experiencing PAV that 
distinguished isolated MoO lineages and found that they were enriched in effectors, as well as 
functions related to antibiotic production, and non-self-recognition. Next, we characterized the 
genomic contexts in which all gene PAV occurs in MoO and MoT and found that TEs were often 
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found in proximity to these genes. Additionally, we found that gene length, GC content, 
expression, and histone H3k27me3 marks were distinct for PAV genes. We used these features 
to construct a random forest classifier and found that the differences we observed were strong 
enough to produce a model that predicted whether a gene is likely to experience PAV with high 
precision (86.06%) and recall (92.88%). Finally, we found significant differences in the number 
of PAV events and the features that predict PAV in MoO and MoT, which could reflect their 
differing evolutionary history and could be evidence of distinct mechanisms contributing to 
gene loss in the two recently diverged lineages. 

Results 

Genes associated with pathogenicity, non-self-recognition and antibiotic production, are 
enriched among orthogroups experiencing lineage-differentiating presence-absence variation 
in M. oryzae 

Differences in gene PAV events between isolated lineages of M. oryzae could be evidence of 
local adaptation. MoO isolates can be grouped into four lineages, called lineages 1, 2, 3, and 4 
[28]. Lineages 2, 3, and 4 are monophyletic within the MoO phylogeny and propagate clonally 
[28]. All lineages show evidence of local adaptation [26]. To generate a table of all gene PAV 
events in MoO, we analyzed 123 previously published genomes [26,129,130]. These genomes 
were re-annotated, and the proteomes were clustered into orthogroups. This enabled us to 
identify putative gene absences in all genomes. These were then validated by using TBLASTN 
[74] against the genome and comparing hits to the missing orthogroup using BLASTP[74]. This 
approach helped ensure that gene absences were not annotation errors. We also constructed a 
phylogeny from a multiple sequence alignment of all of our single copy orthologs (SCOs) and 
found each of the three clonal MoO lineages formed separate monophyletic groups in our data, 
as previously observed (Additional File 1: Fig. S1) [26,28]. 

To identify whether differences in gene PAV events existed between the three clonal lineages 
of MoO, we performed a principal components analysis (PCA) on our table of PAV events. We 
found that the top 2 principal components (PCs) of our PCA clearly separated the lineages 
demonstrating that different PAV events had occurred in each lineage since their separation 
(Fig. 1A). Next, we identified 587 orthogroups that represented 70.53% and 62.17% of the 
variance in PCs1 and 2, respectively, and labeled these orthogroups as experiencing lineage-
differentiating PAV. We then identified, among all orthogroups, 594 putative effector 
orthogroups and found, as previously reported [25,26], that PAV of effector orthogroups alone 
were sufficient to separate the MoO lineages in a follow-up PCA (Fig. 1B). Given that we 
identified 4.30% of all orthogroups as putative effectors, the fact that 8.67% of lineage-
differentiating PAV orthogroups were effectors represented a clear enrichment. However, non-
effector orthogroups still represented 91.33% of lineage-differentiating PAV orthogroups, 
showing that many orthogroups besides effectors experience lineage-differentiating PAV (Fig. 
1C). 
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Fig. 1. PAV of effector and non-effector orthogroups differentiate the clonal lineages of rice-
infecting M. oryzae. A. Scatter plot of values for principal components (PCs) 1 and 2 resulting 
from a PCA of orthogroup PAV. Each point represents one isolate. B. Scatter plot of values for 
PCs 1 and 2 resulting from a PCA of effector orthogroup PAV. Each point represents one isolate. 
C. Heat map representing which orthogroups are present (color) or absent (white) in each 
genome. Effector orthogroups are separated from other orthogroups by a black box. The 
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phylogeny was generated using a multiple-sequence alignment of SCOs and fasttree and is a 
subset of the full MoO phylogeny generated from our data (Additional File 1: Fig. S1). In all 
panels, colors represent the clonal lineages of MoO. Blue represents lineage 2, orange 
represents lineage 3 and pink represents lineage 4. Lineages were named as previously 
described [28]. 

To identify what other types of genes were enriched amongst lineage-differentiating PAV 
orthogroups, we performed gene ontology (GO) and protein family (PFAM) enrichment 
analysis. This analysis revealed that lineage-differentiating PAV orthogroups were enriched for 
GO terms related to secondary metabolite production and biosynthesis of membrane 
components, among other terms (Fig. 2A). Lineage-differentiating PAV orthogroups were 
enriched for PFAM domains related to antibiotic production, among other domains (Fig. 2B). 
Genes without PFAM domains were also strongly enriched in PAV orthogroups (6040 
annotated, 407 observed, 256.55 expected, p-value < 0.001, Fisher’s exact test). Notably, the 
HET domain, which is associated with heterokaryon incompatibility in fungi, was also enriched 
among these orthogroups (Fig. 2B). Finally, while NACHT and NB-ARC domains did not appear 
enriched on their own due to a small number of lineage-differentiating PAV orthogroups having 
these annotations, NOD-like receptors (NLRs) which may play a import role in fungal immunity 
and contain either a NACHT or an NB-ARC domain [131], were enriched amongst lineage-
differentiating PAV orthogroups (23 annotated, 4 observed, 1.15 expected, p-value = 0.026, 
Fisher’s exact test). These results indicated that antibiotic production and non-host recognition, 
in addition to effectors, may play an important role in driving adaptation in these three isolated 
lineages of rice-infecting M. oryzae. 
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Fig. 2. Lineage-differentiating PAV orthogroups in rice-infecting M. oryzae contain many genes 
related to antibiotic production and non-self-recognition. A. Gene ontology (GO) enrichment 
analysis of lineage-differentiating PAV orthogroups. B. Protein family (PFAM) domain 
enrichment analysis of lineage-differentiating PAV orthogroups. P-values shown are the results 
of Fisher’s exact tests. 

Presence-absence variation genes are more common and more spread out throughout the 
genome in wheat-infecting M. oryzae than in rice-infecting M. oryzae 

We next sought to identify whether there were specific patterns in the genomic contexts of 
PAV events in M. oryzae. To expand our analyses beyond lineage-differentiating PAV 
orthogroups and to compare PAV orthogroups to conserved orthogroups, we first needed a 
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systematic way to label them. To avoid erroneously calling single gene gain or loss events as 
PAV, we chose to incorporate phylogenetic information in these definitions and therefore 
identified PAV and conserved orthogroups for each clonal, monophyletic lineage of M. oryzae. 
In our data, orthogroups were labeled as PAV if they were present in all isolates of at least two 
subclades within a lineage and absent in all isolates of at least two subclades within a lineage. 
This definition meant that at least two phylogenetically independent loss or gain events needed 
to be observed in our data for an orthogroup to be labeled PAV. All orthogroups that were 
present in all but two or fewer isolates in a lineage were labeled as conserved orthogroups. All 
orthogroups that did not fit this definition were labeled as “other”. Genes belonging to PAV 
orthogroups or conserved orthogroups were labeled PAV genes and conserved genes, 
respectively. This approach allowed us to label 1,269 and 1,029 PAV orthogroups in lineage 2 
and 3 of MoO, respectively (Fig. 3A). We did not include lineage 4 in our analysis because of its 
small sample size and omitted lineage 1 because it is thought to be recombining and would 
therefore would have violated the assumptions of our definition of PAV and conserved 
orthogroups [28]. 
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Fig. 3. PAV genes are more common and more spread out throughout the genome in wheat-
infecting M. oryzae than in rice-infecting M. oryzae. A. Stacked barplot comparing the number 
of PAV orthogroups (OGs) and conserved orthogroups in MoO and MoT. “Other OGs” denote 
orthogroups that did not satisfy our definitions for either category. B. Distribution of the 
lengths of genomic deletions in MoO and MoT. C. Density plot showing the distribution of the 
distances to the nearest PAV gene for conserved and PAV genes in MoO and MoT. Dashed lines 
in density plots represent the median values for all genes in both pathotypes. D. Violin plot 
showing the distribution of the distances to the nearest PAV gene for conserved and PAV genes 
in MoO and MoT. E. Percentages and proportions of PAV and conserved genes that are within 
1000bp of a PAV gene in MoO and MoT. Median values and statistical comparisons for data 
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shown in panels C through E are listed in Additional File 7, Additional File 8, and Additional File 
9. 

To compare PAV across rice and wheat-infecting M. oryzae isolates, we annotated, called 
orthogroups and validated missing orthologs for 36 previously published MoT genomes 
(Additional File 2). Unlike for MoO, MoT isolates have not been formally assigned into lineages 
in the past, though they are thought to have propagated primarily clonally since their recent 
appearance [118]. Given the small number of MoT genomes we used in our analysis, we chose 
not to separate them into different lineages (Additional File 1: Fig. S2). In these isolates, we 
identified substantially more PAV orthogroups than in the MoO lineages (Fig. 3A). To assess 
whether this contrast was reflected in genomic deletions, we used 117 MoO and 47 MoT 
Illumina whole-genome sequencing datasets to call genomic deletions based on a high-quality 
reference genome for each pathotype (Additional File 3 and Additional File 4). This approach 
allowed us to identify 1,870 deletions in MoO and 1,862 deletions in MoT despite using more 
than double the number of datasets for MoO than MoT (Additional File 5 and Additional File 6). 
We also found that genomic deletions were larger in MoO than in MoT, with a median of 
1,818bp in MoO and 960bp in MoT (Fig. 3B). Correspondingly, when we compared the density 
of PAV genes in MoO and MoT, we found that genes belonging to PAV orthogroups were much 
more likely to be in proximity with other genes belonging to PAV orthogroups in MoO than in 
MoT (Fig. 3C-E, Additional File 7, Additional File 8, and Additional File 9). Taken together, these 
results indicated that genomic deletions, especially those involving genes, were more likely to 
involve multiple genes in MoO than in MoT. These results also hinted that gene PAV happens in 
defined regions of the genome in MoO while in MoT these events are more likely to be 
randomly spread out throughout the genome. 

Genes prone to presence-absence variation are closer to transposable elements than other 
genes 

The two-speed genome hypothesis defines two genomic compartments in fungal plant 
pathogens, one characterized by rapid evolution, few genes and many TEs, and the other 
characterized by slow evolution, many genes and few TEs [7,11]. We investigated whether 
orthogroups experiencing PAV followed this model in M. oryzae. We found that genes in PAV 
orthogroups were much closer to TEs than genes in conserved orthogroups in both MoO and 
MoT (Fig. 4, Additional File 7 and Additional File 8). While the differences in distance to the 
nearest gene between conserved and PAV orthogroups in MoO or MoT were typically quite 
small (median difference <100bp), we did find that genes in PAV orthogroups were less likely to 
be close to genes than conserved genes, though the effect was not as strong as for TEs 
(Additional File 1: Fig. S3, Additional File 7, and Additional File 8). We also observed differences 
in these patterns for MoO and MoT. Specifically, we found that PAV orthogroups in MoO were 
more likely to be close to TEs than those in MoT (Fig. 4C and Additional File 9). We also found 
that MoO PAV  genes were more likely to be far away from genes that MoT PAV genes 
(Additional File 1: Fig. S3C and Additional File 9). 

To understand if these observations also applied to genomic deletions in MoT and MoO, we 
measured TE and gene densities within the genomic deletions we previously identified and 
within their flanking regions. This analysis revealed that genomic deletions and their flanking 
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regions were enriched in TEs and depleted in genes, though the effect was stronger for TE 
density than for gene density (Additional File 1: Fig. S4). 

 

Fig. 4. PAV genes are more likely to be found near transposable elements (TEs) than conserved 
genes. A. Density plots showing the distribution of the distances to the nearest TE for 
conserved and PAV genes in MoO and MoT. B. Violin plot showing the distribution of the 
distances to the nearest TE for conserved and PAV genes in MoO and MoT. C. Percentages and 
proportions of PAV and conserved genes that are within 5000bp of a TE in MoO and MoT. 
Dashed lines in density plots represent the median values for all genes in both pathotypes. 
Median values and statistical comparisons for data shown are listed in Additional File 7, 
Additional File 8, and Additional File 9. 

Genes prone to presence-absence variation show distinct genomic and epigenomic features 
and some differences in these features exist between rice and wheat-infecting M. oryzae 

A previous report has shown that MoO has a much greater TE content than MoT [122]. 
Therefore, given this fact and the increased number of PAV orthogroups in MoT compared to 
MoO we observed (Fig. 3A), it is unlikely that TEs alone define whether a gene is prone to PAV 
or not. We therefore chose to investigate whether we could identify other differences in 
genomic features between PAV genes and conserved genes in M. oryzae. We first looked at the 
GC content of these genes and the regions that flank them. PAV genes were more likely to have 
lower GC content than conserved genes (Fig. 5A and Additional File 10), as did the regions that 
flank them, though the effect was more subtle for the flanking regions (Additional File 1: Fig. 
S5A and Additional File 10). We also found that PAV genes were shorter than conserved genes 
(Fig. 5B and Additional File 10). We next performed various functional annotations of PAV and 
conserved genes and found that PAV genes were more likely to be predicted effectors, in 
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accordance with our previous results, and less likely to have GO or PFAM annotations than 
conserved genes (Additional File 1: Fig. S6 and Additional File 8). 

 

Fig. 5. PAV genes are distinct from conserved genes in many ways beyond their proximity to 
TEs. Density plots showing the distributions of A. gene GC content, B. gene lengths, C. 
expression in culture, D. expression in planta, and E. normalized H3K27me3 histone mark ChIP-
Seq signal for PAV and conserved genes in MoO and MoT. In panel E, MoT genes were not 
included as this data is not available for MoT. Statistics describing the distributions shown and 
statistical comparisons between these statistics are listed in Additional File 8, Additional File 9, 
Additional File 10, and Additional File 11. 

Next, we gathered histone mark, transcription, methylation, and extrachromosomal circular 
DNA sequencing (eccDNA) data from the literature for both MoO and MoT to further 
characterize PAV genes. Unfortunately, these datasets were only available for some strains of 
MoO or MoT but not for all. Therefore, we analyzed these datasets for one reference MoO 
strain and one reference MoT strain, and then generalized this signal to our orthogroups to 
impute the signal in other strains of M. oryzae. This allowed us to observe that average 
expression was higher both in culture and in planta for conserved genes than for PAV genes 
(Fig. 5C and D and Additional File 10). Additionally, PAV genes were more likely to show signal 
from chromatin immunoprecipitation sequencing of H3K27me3 and H3K36me3 histone marks 
and less likely to show signal from H3K27ac histone marks (Fig. 5E, Additional File 1: Fig. S5B 
and C, and Additional File 10). We also looked at bisulfite sequencing data and found that PAV 
genes were less methylated and showed a greater variation in methylation percentage than 
conserved genes (Additional File 1: Fig. S5D and Additional File 10). Finally, we found that PAV 
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genes had a much tighter distribution of eccDNA sequencing signal than conserved genes 
(Additional File 1: Fig. S5E and Additional File 10). Overall, these results indicated clear 
differences in the genomic and epigenomic features of PAV genes compared to conserved 
genes. 

Many differences between PAV genes in MoO and MoT were discovered through this process 
including in gene length, where PAV genes were smaller in MoT than MoO (Fig. 5B and 
Additional File 11), and in expression, where PAV genes in MoT showed less expression on 
average than MoO PAV genes both in culture and in planta (Fig. 5C and D and Additional File 
11). Additionally, PAV genes were more likely to have GO and PFAM annotations in MoO than 
in MoT (Additional File 1: Fig. S6E and F and Additional File 9). These observations further 
supported the idea that PAV may be occurring in different genomic contexts in MoO and MoT. 

Finally, we analyzed a similar set of features in the genomic deletions we identified in MoT and 
MoO. We found that while some of the trends we observed in PAV genes were similar in 
genomic deletions compared to a genomic baseline, such as H3K27me3 signal and GC content, 
other trends like the increase in expression of PAV genes did not translate to differences in 
RNAseq signal in deleted regions (Additional File 1: Fig. S7 and Additional File 12). 

Genomic and epigenomic features of genes prone to presence-absence variation can be used 
to generate predictive models for rice and wheat-infecting M. oryzae 

Our previous results demonstrated the differences in genomic contexts between PAV genes 
and conserved genes. We then wanted to determine whether these features in aggregate could 
provide enough signal to predict whether a gene was prone to PAV using a machine learning 
approach. To this end, we trained a random forest classifier on all features we described for 
MoO. We selected this algorithm because of its ease of implementation as well as its 
robustness to correlated features [132]. When we trained this model on data from all but 8 
strains of MoO and tested the model on the remaining strains, we observed that the model 
performed very well and was able to predict PAV genes with 86.06% precision and 92.88% 
recall on average (F1 = 89.34%, Fig. 6A). Our model also allowed us to determine how 
important each feature was in predicting PAV genes by calculating the decrease in the F1 
statistic when the variable in our testing data was permuted. This approach identified histone 
H3K27me3 as being the most predictive feature for PAV genes in MoO (Fig. 6B). Although the 
accuracy of predictions by the random forest classifier is robust to correlated features, the 
variable importances we observed were likely influenced by the fact that several variables in 
our model were correlated with each other and that many showed high dependences, which 
meant that the information encoded in these variables could also be described by other 
variables in the model (Additional File 1: Fig. S8 and Fig. S9). These importances should 
therefore be interpreted with caution. Next, we trained a model to predict PAV genes in MoT 
and found that the model performed even better with a precision of 94.81% and a recall of 
96.43% (F1 = 95.61%, Additional File 1: Fig. S10A). In this reduced model, gene expression in 
planta stood out as being particularly predictive of MoT PAV genes (Fig. 6C). Finally, we trained 
another MoO model using a reduced set of features that matched the data that was available 
for MoT, and found that the MoO model still performed well with an 86.11% precision and 
92.21% recall (F1 = 89.05%, Additional File 1: Fig. S10B). The similar performance of the two 
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MoO models could likely be explained by the high dependences of our variables (Additional File 
1: Fig. S8 and Fig. S9). When comparing the reduced MoO model to the MoT model, we noticed 
some differences between the importances of the features in each model (Fig. 6C and D). For 
example, in culture expression and the presence of functional annotations was more important 
in the reduced MoO model than in the MoT model. These differences in importances may have 
been influenced by the previously described differences in the features of PAV genes in MoO 
and MoT. 
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Fig. 6. Random forest classifiers accurately identify PAV genes in rice and wheat-infecting M. 
oryzae, but the models perform poorly on genes from the host they were not trained on. A. 
Confusion matrix showing predictions of the MoO random forest classifier when tested on MoO  
genes that it was not trained on. B. Decrease in the F1 statistic of the MoO random forest 
classifier when each feature is permuted in the testing data. Features described as questions 
are binary, all other features are continuous. C. Decrease in the F1 statistic of the MoT random 
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forest classifier when each feature is permuted in the testing data. D. Decrease in the F1 
statistic of the MoO random forest classifier trained on a subset of features when each variable 
is permuted in the testing data. F. Confusion matrix showing predictions of the MoT random 
forest classifier when tested on MoO genes. E. Confusion matrix showing predictions of the 
MoO random forest classifier trained on a reduced subset of features when tested on MoT 
genes. G. Density plots showing the distribution of the distances to the nearest PAV gene for 
false positive and true positive predictions by the MoT random forest classifier when tested on 
MoO genes. H. Density plots showing the distribution of the distances to the nearest PAV gene 
for false negative and true positive predictions by the MoO random forest classifier trained on a 
subset of features when tested on MoT genes. 

A predictive model trained on wheat-infecting M. oryzae data does not accurately predict 
presence-absence variation in rice-infecting M. oryzae and vice versa, highlighting differences 
in the genomic contexts of presence-absence variation in the two pathotypes 

Finally, we tested if the model trained on MoT data could predict whether genes are prone to 
PAV in MoO and vice versa. The MoT model performed very poorly on MoO data, with a 
precision of 25.40% and a recall of 9.06% (F1 = 13.35%,Fig. 6E). Similarly, the reduced MoO 
model performed very poorly on the MoT data with a precision of 19.30% and a recall of 9.41% 
(F1 = 12.65%, Fig. 6F). This result could be explained by a variety of factors including differences 
in genomic features between the two pathotypes, differences in the importances of each 
feature in the model, and overfitting. When we analyzed the conserved genes that the MoT 
model falsely labeled as PAV, we found that many of them were found in isolated regions far 
away from true PAV genes (Fig. 6G). Similarly, many of the PAV genes in MoT that were not 
detected by the MoO model were found in isolated regions (Fig. 6H). These results followed the 
patterns we observed in PAV clusters in MoO and MoT genomes (Fig. 3A). Our observations, 
combined with the differences we observed in the genomic and epigenomic features of PAV 
genes in MoO and MoT described previously, indicated that the patterns and genomic contexts 
of PAV between the two pathotypes are significantly different, despite being within the same 
species. 

Discussion 

Gene PAV plays an important role in fungal pan-genome evolution [124–127]. To improve our 
understanding of these events, we designed a robust pipeline to identify orthogroups 
experiencing PAV in M. oryzae. We found that PAV of these orthogroups differentiates isolated 
lineages of MoO, and found that these lineage-differentiating PAV orthogroups are enriched for 
effectors, as previously published [25,26]. We also found that genes related to antibiotic 
production and non-self-recognition were also enriched among them. This result could point to 
the local and rice-associated microbiome playing an important role in M. oryzae’s evolution. All 
three clonal lineages are geographically isolated and experience different climates [26]. They 
also tend to infect different rice varieties and cause disease of varying severity [26]. Geography 
and host genotype could have major influences on the microbiome the fungus encounters. 
Microbiome sampling of rice varieties used in these areas as well as the environment could 
therefore give better insight into the results we present here and how the microbiome might 
shape the fungus’ fitness. Additionally, it is important to note that adaptation to the host 
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microbiome and the environment in general are often forgotten when discussing fungal plant 
pathogen evolution. Our results point to the importance of considering these factors when 
studying the success of these pathogens. Unfortunately, we could not extend these analyses to 
MoT as lineages of MoT have not been formally defined in the past and neither has their 
geography or host phenotypes. 

We then looked to find features of PAV orthogroups that might help us better understand 
where these events are occurring in the genome. We found that these events were associated 
with a high TE density and a low gene density, though the effect was stronger for TE density 
than gene density. We also found that PAV genes are shorter, have lower GC content, and are 
more likely to be effectors. Finally, PAV genes are less expressed and display stronger histone 
H3K27me3 signal than conserved genes. When we combined all of these features into a 
predictive model, we found that the model performed very well and predicted PAV genes with 
86.06% precision and 92.88% recall, on average. We were also able to identify histone 
H3K27me3 as the most predictive feature, though gene length and GC content stood out as 
well. We could not clearly state whether genomic deletions showed similar features to PAV 
genes in our data. While we found that these genomic deletions occurred frequently in TE-
dense and gene-sparse areas of the genome, and that GC content and H3K27me3 ChIP-Seq 
signal for these regions resembled that of PAV genes, other features were not similar between 
the two. These results may have been confounded by the need for reference-based 
identification of these deletions, an unclear baseline for comparison, and events like 
transposon insertion polymorphisms. 

Many of the features that were particularly important in our classifier were related to the two-
speed genome concept which supported the idea that gene PAV in M. oryzae is strongly 
associated with the rapidly evolving compartment of the genome [7,11]. Our findings support 
the idea that these features may play an important role in the evolution of the pathogen. 
However, the fact that the presence of TEs were important features in our random forest 
classifier but not amongst the most important, supports the idea that the correlation between 
TEs and rapid evolution is not always a causal one and that complex correlations are at play. In 
short, other variables may be shaping the PAV-prone compartment of the M. oryzae genome 
and driving both rapid evolution and TE activity. Our findings also reflect previous findings on 
the association between TEs and the evolution of the accessory portion of fungal pan-genomes 
[125]. While the gene space for the genomes we analyzed were well assembled, most of the 
genomes we performed our analysis on were not chromosome-level assemblies. Therefore, 
although we observed features associated with subterminal regions in our PAV genes, we could 
not confirm previous findings on the association between subterminal regions and accessory 
genes in other fungi [124]. This analysis should be repeated once more high-quality genomes 
become available for M. oryzae to fully determine whether these findings apply to the blast 
fungus as well. Similarly, though the features we identified in this study should be kept in mind 
when studying other pan-genomes, it is unclear whether the features of gene PAV we identified 
are applicable to other fungi, and therefore more in-depth studies of these genomic and 
epigenomic features are necessary to assess how broad these findings are as datasets become 
available for more fungi. 
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Though our random forest classifier performed well, many of the important features we used in 
our model had to be propagated from a single strain which likely led to many biologically 
inaccurate values in our data and potentially errors in how we ranked the importances of each 
variable. To truly validate our results, our approach would need to be repeated using more data 
for each isolate. However, even a model using a subset of our features performed well, 
indicating that RNAseq data for each isolate may be enough to further substantiate these 
results. Regardless, our model showed that PAV genes can be identified simply using features in 
the genome, therefore establishing a method to identify genes prone to PAV in M. oryzae 
without relying on phylogenetics. This could be useful for identifying genes prone to PAV in 
lineages of MoO with very few isolates, like lineage 4, or for studying PAV in groups of genes 
with complicated evolutionary relationships like sequence unrelated structurally similar (SUSS) 
effectors [133]. While our models performed well, they also identified many genes that had 
features of PAV genes but did not experience PAV. These false positives could help us better 
understand which genes are under strong selection to be kept in the M. oryzae genome or 
which genes’ genomic contexts are changing to look more like conserved genes. Notably, our 
results support the exciting possibility of using genomics to predict targets for disease-
prevention strategies that will remain in the genome, therefore making these strategies more 
robust. 

Finally, we found distinct patterns in the genomic contexts of PAV genes in MoO and MoT. 
Specifically, we found that PAV in MoT appeared to occur more frequently and was more 
spread out throughout the genome than in MoO. Though we used a similar number of isolates 
from MoT for our analysis as we did for each lineage of MoO, the evolutionary distances 
between isolates in lineages of the two pathotypes were different, which may have contributed 
to the differences in the number of PAV orthogroups we observed (Additional File 1: Fig. S1 and 
Fig. S2). However, the stark difference in the number of PAV orthogroups, as well as supporting 
evidence from our analysis of genomic deletions, suggest that our observations are valuable 
despite this caveat. We also found that many of the genomic and epigenomic features of PAV 
that we identified in MoO were different in MoT. These differences may have explained why 
our MoO random forest classifier performed poorly on MoT data and vice versa, since the 
patterns in the false positives and false negatives of these tests reflected the observed 
differences in PAV between MoO and MoT. These results in aggregate indicated differences in 
the evolution of the rice and wheat pathotypes of M. oryzae. 

The two M. oryzae pathotypes share some major differences in their TE content [122] and very 
different life histories, with MoO originating 9,800 thousand years ago [28] and propagating 
mostly clonally since then, while MoT is thought to have emerged approximately 60 years ago 
from a multi-hybrid swarm of many different M. oryzae pathotypes [16,118]. We propose that 
the differences in PAV across the two pathotypes may reflect these life histories, with MoO 
exhibiting more of a stable equilibrium and much slower paced evolution, where PAV events 
happen in specifically defined compartments of the genome, while MoT is rapidly losing and 
gaining genes, even in areas of the genome where most of the conserved genes in MoO are 
located. It is unclear at this point whether MoT is heading towards an equilibrium that will 
resemble MoO, or whether there are key differences between the two pathotypes that are 
shaping their genomes beyond their evolutionary histories. MoT, which appears to lose genes 
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at a faster rate than MoO and evolve rapidly in general, will pose a significant challenge for 
disease prevention. A better understanding of these evolutionary dynamics and the differences 
between MoO and MoT could help us better comprehend why MoT is such a devastating 
emerging pathogen and help us curb its threat. Finally, these results highlight the need to study 
isolated populations of a species separately as well as in aggregate to understand whether 
observations made for the pan-genome applies to every population within a species, especially 
if they are adapted to different hosts or environments and if they have different evolutionary 
histories. 

Conclusions 

Our study demonstrates that gene PAV can be associated with specific genomic and epigenomic 
features in fungi and that these associations can be predictive. We also show that major 
variation can exist in these features between different populations of the same species. This 
study therefore highlights the need for more studies of fungal pan-genomes and the genomic 
and epigenomic features that define them to better understand how fungi adapt to their 
environments. These studies could also lead to a greater understanding of how fungal plant 
pathogens adapt to their hosts. Predicting these adaptations could help us develop more 
effective disease prevention strategies in the future. Finally, it is important that future pan-
genome studies be done in a way that considers intra-species variation and evolutionary history 
of different populations to avoid generalizing based on a reference strain or pathotype. 

Methods 

Genome annotation, proteome orthogrouping, and phylogeny 

The set of 123 MoO genomes were obtained from a previously published study [26,129,130], 
while 36 MoT genomes (Additional File 2) as well as a single M. grisea proteome 
(GCA004355905.1) were obtained from NCBI’s GenBank. All genomes were verified to have 
more than 90% completeness using BUSCO version 5.2.2 and the “sordariomycetes_odb10” 
option [134]. Genomes were annotated using FunGAP [77] version 1.1.0 and RNAseq data 
obtained from Sequence Read Archive (SRA) accession ERR5875670. The 
“sordariomycetes_odb10” option was used for the busco_dataset argument and the 
“magnaporthe_grisea” option was used for the augustus_species argument. For repeat 
masking, a TE library generated by combining the RepBase [78] fngrep version 25.10 with a de 
novo repeat library, generated by RepeatModeler [79] version 2.0.1 run on the M. oryzae 
Guy11 genome (GCA002368485.1) with the LTRStruct option, was used for all genomes. 
Annotated proteomes were then used as input for OrthoFinder [96] version 2.5.4 to form two 
separate sets of orthogroups, one for MoO genomes and one for MoT genomes. The M. grisea 
proteome was included in both as an outgroup. Orthogrouping was performed using the 
“diamond_ultra_sens” parameter for sequence search, the “mafft” parameter for species tree 
generation and the “fasttree” parameter for gene tree generation. Single copy orthologs (SCOs) 
were then obtained from the OrthoFinder output, aligned using mafft [135] version 7.487 with 
the --maxiterate 1000 parameter and the --globalpair parameter, concatenated, and then 
trimmed using trimal [136] version 1.4.rev22 and a 0.8 gap threshold parameter. Finally, 
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fasttree [137] version 2.1.10 with the gamma parameter was used to generate a phylogeny and 
ape [138] version 5.5 was used to root each tree on the M. grisea outgroup. 

Gene absence validation 

A preliminary set of missing orthogroups in each genome was obtained from the OrthoFinder 
outputs. Gene absences were validated by first using TBLASTN [74] version 2.7.1+ with the -
max_intron_length 3000 parameter to align all protein sequences from an orthogroup to the 
genome that was missing that orthogroups. Any orthogroup that resulted in two or more hits 
above 55% sequence identity, 55% query coverage and an e-value smaller than 10-10 when 
aligned to the target genome were selected for further verification. These cutoffs were 
optimized so that less than 1% of orthogroups were misclassified as absent in a testing set of 
orthogroups that were known to be present in a target genome. Finally, TBLASTN hits were 
extracted as protein sequences using agat_sp_extract_sequences.pl version 0.9.1 from the 
AGAT toolkit (https://github.com/NBISweden/AGAT), and aligned against all protein sequences 
in all orthogroups using BLASTP [74] version 2.7.1+. The top 100 hits were collected, and 
majority vote was used to determine which orthogroup the TBLASTN hit would have belonged 
to had it been annotated by FunGAP. If no TBLASTN hits were found or if the BLASTP hits did 
not match the original missing orthogroup, the absence was counted as a validated absence, 
otherwise it was removed from the preliminary set of missing orthogroups. 

Effector annotation 

Effectors were predicted in all proteomes by first selecting genes with signal peptides which 
were predicted using SignalP [139] version 4.1 using the “euk” organism type and using 0.34 as 
a D-cutoff for both noTM and TM networks. Genes with predicted transmembrane domains 
from TMHMM [81] version 2.0c were then excluded. Finally, EffectorP [140] version 3.0 was 
used to predict effectors from this secreted gene set. Effector orthogroups were then called if 
at least half of the orthologs within the orthogroup were annotated as predicted effectors. 

Principal component analysis and identification of lineage-differentiating PAV orthogroups 

The matrix of missing effector orthogroups for each MoO isolate was used for PCA using the 
prcomp function in R version 3.6.1. PCA was performed a second time using the matrix of all 
missing orthogroups. Lineage-differentiating PAV orthogroups were then chosen by selecting 
the orthogroups that contributed more than 0.1% of the variance to PCs 1 and 2 using the 
get_pca_var function in R version 3.6.1. 

Gene ontology and protein family enrichment analyses 

All proteins were annotated for GO terms using the PANNZER2 [94] webserver and command 
line software SANSPANZ version 3 in October 2022. Only annotations with a positive predictive 
value greater than 0.6 and an ARGOT rank of 1 were kept. All GO terms assigned to genes 
within an orthogroup were then transferred to their orthogroup. GO term enrichment analysis 
was then performed using TopGO  [95] version 2.36.0 and enrichment was calculated using the 
Fisher’s exact test and the “weight” algorithm. Only GO terms that were assigned to 3 or more 
lineage-differentiating PAV orthogroups and who’s enrichment was significant at a p-value of 

https://github.com/NBISweden/AGAT
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less than 0.05 were reported. PFAM enrichment analysis was performed by annotating PFAM 
domains using pfam_scan.pl [141] version 1.6-4 and the PFAM-A database. The output from 
pfam_scan.pl was parsed using K-parse_Pfam_domains_v3.1.pl (https://github.com/krasileva-
group/plant_rgenes) [142] and an e-value cutoff of 0.001, and domain names were simplified 
by removing numbers and additional letters attached to domain names. Orthogroups were 
called as containing a domain if at least half of their orthologs had that domain annotation. 
Fisher’s exact test for enrichment was performed using the scipy.stats Python module [103] 
version 1.9.0. Only domains which were observed in three or more lineage-differentiating PAV 
orthologs and with enrichment p-values less than 0.05 were reported. 

Identification of genomic deletions 

Illumina sequencing data was obtained from 117 datasets for MoO and 47 datasets for MoT 
from the SRA (Additional File 3 and Additional File 4). Reads were mapped to the M. oryzae 
Guy11 genome (GCA002368485.1) for MoO datasets and to the M. oryzae B71 genome 
(GCA004785725.2) for MoT datasets using BWA MEM [71] version 0.7.17-r1188. Read 
duplicates were marked using Picard (https://broadinstitute.github.io/picard/) version 2.9.0. 
Structural variants were then called using smoove (https://github.com/brentp/smoove) version 
0.2.8, wham [143] version 1.7.0-311-g4e8c, Delly [144] version 0.9.1, and Manta [145] version 
1.6.0 using default settings. The Delly output was processed using bcftools [146] version 1.6 to 
keep only called structural variants that passed Delly’s quality control. Structural variants were 
then merged and filtered using SURVIVOR [147] version 1.0.7. Structural variants that were the 
same type, were on the same strand, and had breakpoints within 1000bp were merged. Only 
structural variants that were called by three or more callers and were larger than 50 bp were 
kept. Finally, the structural variants called for each dataset were all merged as before except 
breakpoints within 100bp were merged together. From this list of all structural variants, only 
genomic deletions were kept for further analysis. 

Definition of PAV orthogroups and conserved groups 

For each lineage, PAV orthogroups were defined by first taking the matrix of validated PAVs and 
filtering this matrix to orthogroups that were present in at least two isolates and absent in at 
least two isolates. The SCO phylogeny of the lineage was then analyzed for each candidate PAV 
orthogroup. If the orthogroup was only absent in strains that formed a monophyletic group, the 
orthogroup was not considered to be a PAV orthogroup. Additionally, if the orthogroup was 
only found in strains that formed a monophyletic group, the orthogroup was not considered to 
be a PAV orthogroup either. All orthogroups that were therefore present in two independent 
groups and absent in two independent groups were labeled PAV orthogroups. All orthogroups 
that were missing one or fewer strains were considered conserved orthogroups. All other 
orthogroups were considered “other”. 

Transposable element annotation 

TE annotation was performed using RepeatMasker [86] version 4.1.1 and a reference TE library 
for all pathotypes of M. oryzae generated by Nakamoto et al. [122]. The parameters -cutoff 
250, -nolow, -no_is, and -norna were used for the RepeatMasker command. 

https://github.com/krasileva-group/plant_rgenes
https://github.com/krasileva-group/plant_rgenes
https://broadinstitute.github.io/picard/
https://github.com/brentp/smoove
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Next-generation sequencing data and GC content analysis 

RNAseq data for MoO was obtained from SRA (Additional File 13) from a previous study [91] 
and mapped to the M. oryzae Guy11 genome (GCA002368485.1) for in culture data and the M. 
oryzae Guy11 genome combined with the Oryza sativa Nipponbare genome (GCA001433935.1) 
for the in planta data. RNAseq data for MoT was obtained from SRA accessions SRR9127598 
through SRR9127602 from a previously published study [22] and mapped to the M. oryzae B71 
genome (GCA004785725.2) for in culture data and the M. oryzae B71 genome combined with 
the wheat Triticum aestivum genome (GCA900519105.1) for the in planta data. Mapping was 
performed using STAR [92] version 2.7.1a and index files for mapping were made using the 
previously mentioned genomes and genome combinations along with corresponding gene 
annotation files obtained from FunGAP for the M. oryzae genomes, or from GenBank for the 
rice and wheat genomes. Read counts for each gene were calculated using the –quantMode 
GeneCounts parameter in STAR. These read counts were normalized to gene size as reads per 
kilobase values (RPK), then the total number of RPKs were summed for each sample and 
divided by one million. This sum was used to normalize read counts in each sample to obtain 
transcript per million (TPM) values for each sample. These TPM values were then averaged 
across treatments.  

Published ChIPSeq data for H3K27me3, H3K27ac and H3K36me3 histone marks were obtained 
from a study published by Zhang et al. [91]. Published eccDNA sequencing data were obtained 
from a previous study by Joubert and Krasileva [148]. Reads were mapped to the M. oryzae 
Guy11 genome using BWA MEM [71] version 0.7.17-r1188. Read counts per gene were 
obtained using the coverage command from the BEDtools suite of tools [87] version 2.28.0. 
Read counts were normalized for gene and library size and averaged per treatment as for 
RNAseq data. 

Methylation data from M. oryzae mycelium was obtained from a previous study published by 
Jeon et al. [149]. Reads were mapped to the M. oryzae genome and processed using the 
Bismark pipeline [150] version 0.24.0. Methylation percentage for all cytosines were extracted 
while ignoring the first 2 bases of all reads. The percentage of methylated cytosines was then 
calculated for a gene by averaging the methylation percentage of all cytosines in that gene. 

To assign signal from next-generation sequencing datasets to orthogroups, signal for all 
orthologs in M. oryzae Guy11 and M. oryzae B71 within each orthogroup were averaged. Any 
orthogroups that did not have orthologs from B71 and Guy11 within them were given a value 
equal to the median value for all other orthogroups. M. oryzae Guy11 was not included in the 
original orthogrouping so a separate set of orthogroups were generated which included the M. 
oryzae Guy11 proteome annotated using FunGAP [77] as previously described in order to 
transfer next-generation sequencing signals. 

Finally, GC content values for genes and flanking regions were calculated using the nuc 
command in BEDTools [87] version 2.28.0. 

The same methods were used for calculating these values for genomic deletions. 

Profile plots  
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10bp windows were first generated for each M. oryzae reference genome. The number of TEs 
and the number of genes in each window were then calculated using the coverage command in 
BEDTools [87] version 2.28.0 and stored as bedgraph files. Bigwig files were generated from 
bedgraph files using the bedGraphToBigWig tool 
(https://www.encodeproject.org/software/bedgraphtobigwig/) version 4. Finally, data for 
profile plots of genomic deletions were generated using the computeMatrix scale-regions and 
the plotProfile commands of the DeepTools suite of tools [89] version 3.5.1. 

Random forest classification and feature importances calculation 

Random forest classifiers were trained and performance statistics were calculated using the 
scikit-learn Python module [151] version 1.1.1. The hyperparameters used to train the model 
were as follows: 2000 estimators, a minimum of two samples to split a node, no minimum 
number of samples per leaf, no maximum tree depth, no maximum number of features per 
tree, and bootstrapping enabled. Classifiers were trained only on data for genes belonging to 
lineages 2 and 3 for MoO. Before training, all genes belonging to four genomes from each 
lineage were removed. From the remaining data, 50% of the genes not labeled as PAV were 
removed to improve the balance between PAV genes and non-PAV genes in the training data. 
The model was then trained and tested on the genes from the eight genomes that were 
removed before testing. The training and testing data split was repeated 100 times to generate 
average precision, recall, and F1 values as well as average number of true positives, false 
positives, true negatives, and false negatives for all models. 

Feature importances were calculated according to methods described within the rfpimp Python 
module (https://github.com/parrt/random-forest-importances). Briefly, a random forest 
classifier was trained and tested as before to measure a baseline F1 statistic. Each variable in 
the testing data was then permuted in turn and a new F1 statistic for the model was generated 
on the permuted data. The difference between the baseline F1 and the new F1 were then 
calculated. This process was then repeated 100 times and the average decrease in the F1 
statistic when each variable was permuted were reported. 

Spearman and point biserial correlation coefficients between variables were calculated using 
the cor function in R version 3.6.1. Phi correlation coefficients were calculated using the psych 
package [152] version 2.2.9. To calculate dependence statistics for each variable in the 
complete MoO model, a random forest classifier or a random forest regressor was used to 
predict each variable originally used to train the PAV gene prediction model using all remaining 
variables. The same hyperparameters and train-test split were used to train and test each 
model as for the original PAV gene prediction model. Baseline F1 or R2 values for each model 
were then calculated and the change in these values when each variable within the model was 
permuted were calculated as before. However, the results reported were only from a single run 
of this analysis. 

Data processing and analysis 

Data processing was performed in a RedHat Enterprise Linux environment with GNU bash 
version 4.2.46(20)-release. GNU coreutils version 8.22, GNU grep version 2.20, GNU sed version 

https://www.encodeproject.org/software/bedgraphtobigwig/
https://github.com/parrt/random-forest-importances
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4.2.2, gzip version 1.5, and GNU awk version 4.0.2 were all used for processing and handling. 
Conda (https://docs.conda.io/en/latest/) was used to facilitate installation of software and 
packages. Code parallelization was performed with GNU parallel [99] version 20180322. 
Previously published data was downloaded using curl version 7.65.3 (https://curl.se/) and sra-
tools version 2.10.4 (https://github.com/ncbi/sra-tools). BED format files were processed using 
BEDtools [87] version 2.28.0. VCF format files were processed using bcftools [146] version 1.6. 
SAM and BAM format files were processed using SAMtools [146] version 1.8. FASTA format files 
were processed using seqtk (https://github.com/lh3/seqtk) version 1.2-r102-dirty. 

Data processing and analysis were performed using custom Python scripts written in Python 
version 3.10.5 with the help of pandas [101] version 1.4.3 and numpy [102] version 1.23.1. GFF 
format files were parsed in Python using BCBio GFF version 0.6.9 
(https://github.com/chapmanb/bcbb/tree/master/gff). FASTA format files were processed in 
python using SeqIO from Biopython [153] version 1.80. 

Data processing and analysis were also performed using custom R scripts written in R version 
3.6.1 with the help of data.table [104] version 1.13.6, tidyr [105] version 1.1.3, reshape2 [106] 
version 1.4.4, and dplyr [107] version 1.0.4. Plotting was performed using the ggplot2 package 
[108] version 3.3.5 and the ggnewscale package [154] version 0.4.8. Phylogenies were analyzed 
and plotted using the ape [138] package version 5.5 and the phytools package [155] version 
0.7.90. 
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Addi�onal File 1 (Supplementary Figures) has been included below in its en�rety. Only the 
descrip�ons of all other addi�onal files have been included below. All addi�onal files are 
available as part of the original publica�on that this chapter was based on, as described at the 
beginning of the chapter. 

Additional File 1: Supplementary Figures. 

 

Fig. S1. Phylogeny of rice-infecting M. oryzae isolates used in this study. Phylogeny was 
generated using a multiple-sequence alignment of SCOs and fasttree [137]. Pie charts on nodes 
represent the fraction of bootstrap replicates that support the node. Isolates belonging to 
lineage 1 are colored yellow, isolates belonging to lineage 2 are colored orange, isolates 
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belonging to lineage 3 are colored blue, and isolates belonging to lineage 4 are colored pink. 
Lineages were named as previously described [28]. 

 

Fig. S2. Phylogeny of wheat-infecting M. oryzae isolates used in this study. Phylogeny was 
generated using a multiple-sequence alignment of SCOs and fasttree [137]. Pie charts on nodes 
represent the fraction of bootstrap replicates that support the node.  
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Fig. S3. Distances to the nearest gene for PAV and conserved genes in MoO and MoT. A. Density 
plots showing the distribution of the distances to the nearest gene for conserved and PAV 
genes in MoO and MoT. B. Violin plot showing the distribution of the distances to the nearest 
gene for conserved and PAV genes in MoO and MoT. C. Percentages and proportions of PAV 
and conserved genes that are within 1000bp of another gene in MoO and MoT. Dashed lines in 
density plots represent the median values for all genes in both pathotypes. Median values and 
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statistical comparisons for data shown are listed in Additional File 7, Additional File 8, and 
Additional File 9. 

 

Fig. S4. Profile plots showing transposable element (TE) and gene density within genomic 
regions of the rice and wheat-infecting M. oryzae genomes. The flanking regions of these 
regions are also shown. Gene- and TE-containing regions represent the subet of all deletions 
that overlapped at least 50% with a gene or TE sequence, respectively. Genomic deletions were 
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shuffled throughout the genome 100 times to generate the data for random regions in the 
plots. 

 

Fig. S5. Density plots of additional features of PAV and conserved genes. Density plots showing 
the distributions of A. average flanking GC content, B. normalized H3K36me3 histone mark 
ChIP-Seq signal, C. noramlized H3K27ac histone mark ChIP-Seq signal, D. average % methylation 
of cytosines, and E. normalized extrachromosomal DNA (eccDNA) sequencing signal for PAV 
and conserved genes in MoO and MoT. In panel A, the line representing the data for MoO PAV 
genes appears behind the line representing data for MoT PAV genes. In panels B, C, D, and E, 
MoT genes were not included as this data is not available for MoT. Statistics describing 
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distributions and statistical comparisons between these statistics are listed in Additional File 10 
and Additional File 11. 

 

Fig. S6. Comparison of various functional annotations of PAV and conserved genes. Comparison 
of percentages and ratios of PAV and conserved genes annotated as A. having a signal peptide, 
B. having a transmembrane (TM) domain, C. being a predicted effector, D. having a GO 
annotation, and E. having a protein family (PFAM) domain annotation for MoO and MoT genes. 
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Counts for each category and stastical comparisons of these counts are listed in Additional File 
8 and Additional File 9. 

 

Fig. S7. Density plots showing the distributions of various features of MoO and MoT genomic 
deletions. Density plots showing the distributions of A. AT content, B. normalized in culture 
RNAseq signal, C. normalized in planta RNAseq signal, D. normalized H3K36me3 histone mark 
ChIP-Seq signal, E. normalized H3K27ac histone mark ChIP-Seq signal, F. normalized H3K27ac 
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histone mark ChIP-Seq signal, G. normalized eccDNA sequencing signal, and H. average % 
methylation of cytosines for genomic deletions in MoO and MoT, as compared to baseline. 
Genomic baseline values were generated by shuffling the deletions throughout the portions of 
the genome that were not deleted in any isolate. Statistics describing distributions and 
statistical comparisons between these statistics are listed in Additional File 12. 

 

Fig. S8. Correlation coefficients for variables included in the MoO random forest classifier. Heat 
map representing A. Phi coefficient between binary variables, B. Spearman rank correlation 
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coefficient between continuous variables, and C. Point-Biserial correlation coefficient between 
continuous and binary variables. 

 

Fig. S9. Dependence matrix of variables included in the MoO random forest classifier. A model 
was trained to predict each variable used in our MoO random forest classifier using the 
remaining variables. A. Heatmap representing the F1 statistic of each model when trained to 
predict categorical variables and decrease in F1 when predictive variables were permuted in the 
testing data. B. Heatmap representing the R2 statistic of each model when trained to predict 
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categorical variables and decrease in R2 when predictive variables were permuted in the testing 
data. 

 

Fig. S10. Confusion matrices for the MoT random forest classifier and the MoO random forest 
classifier trained on a subset of features. A. Confusion matrix showing predictions of the MoT 
random forest classifier when tested on MoT genes that it was not trained on. B. Confusion 
matrix showing predictions of the MoO random forest classifier trained on a subset of features 
when tested on MoO genes that it was not trained on. 

Additional File 2: List of accessions for MoT genomes. 

Additional File 3: List of accessions for MoO Illumina data. 

Additional File 4: List of accessions for MoT Illumina data. 

Additional File 5: List of genomic deletions called using MoO Illumina sequencing data. 

Additional File 6: List of genomic deletions called using MoT Illumina sequencing data. 

Additional File 7: Table of median upstream and downstream distances to nearest PAV gene, 
TE, and gene for MoO and MoT. The p-values shown are two-tailed p-values resulting from 
permutation tests for the differences in medians between PAV and conserved genes for each 
pathotype with 1,000 permutations. 

Additional File 8: Table showing the number of PAV and conserved genes that are near PAV 
genes, near TEs, near genes, have a TM domain, have a signal peptide, are predicted 
effectors, have a GO annotation, and have a PFAM domain annotation for MoO and MoT. The 
p-values shown were the results of Chi-squared tests used to test for indepedence between the 
PAV/conserved gene label and each feature for each pathotype. 

Additional File 9: Table showing the number of PAV and conserved genes that are near PAV 
genes, near TEs, near genes, have a TM domain, have a signal peptide, are predicted 
effectors, have a GO annotation, and have a PFAM domain annotation for MoO and MoT. The 
p-values shown were the results of Chi-squared tests used to test for indepedence between the 
pathotype and each feature for each PAV/conserved gene label. 

Additional File 10: Table showing the mean, median, standard deviation, 25th percentile and 
75th percentile for the distributions of various continuous variables that describe PAV and 
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conserved genes in MoO and MoT. The p-values shown are two-tailed p-values resulting from 
permutation tests for the differences in each statistic between PAV and conserved genes for 
each pathotype with 1,000 permutations. 

Additional File 11: Table showing the mean, median, standard deviation, 25th percentile and 
75th percentile for the distributions of various continuous variables that describe PAV and 
conserved genes in MoO and MoT. The p-values shown are two-tailed p-values resulting from 
permutation tests for the differences in each statistic between pathotypes for PAV and 
conserved genes with 1,000 permutations. 

Additional File 12: Table showing the mean, median, standard deviation, 25th percentile and 
75th percentile for the distributions of various continuous variables that describe genomic 
deletions and baseline genomic regions in MoO and MoT. The p-values shown are two-tailed 
p-values resulting from permutation tests for the differences in each statistic between deletions 
and baseline for each pathotype with 1,000 permutations. 

Additional File 13: List of accessions for MoO RNAseq data. 
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Chapter 5 

Extended Discussion and Conclusions of Chapter 4 and Overall Future Outlooks 
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In Chapter 4, I analyzed gene PAV in the rice and wheat infec�ng pathotypes of M. oryzae. I 
began this work by designing robust tools to label PAV orthogroups in the fungus. When I 
started this project, other researchers that had looked at PAV in M. oryzae were simply using 
the outputs from the OrthoFinder so�ware as a PAV matrix [25,26,96]. For my project, this 
method had a serious disadvantage: it did not account for annota�on errors. As previously 
discussed in Chapters 1 and 3, I was interested in characterizing PAV in M. oryzae as a proxy for 
the genera�on of structural varia�on and genomic dele�ons. Therefore, while I used 
OrthoFinder to generate a list of candidate missing genes, I also used a TBLASTN and BLASTP-
based approach to verify that the sequence of the gene was fully missing from the genome.  
This helped me verify that the genes that I was labeling missing were fully deleted from the 
genome; they were not missed by the annota�on so�ware, and the genomes did not have 
par�al or mutated copies of the gene within them. This approach ignores gene silencing 
through processes like muta�on but allowed me to take a focused look at gene PAV generated 
by structural varia�on.  

Addi�onally, to perform sta�s�cal comparisons between PAV and conserved genes, I wanted to 
establish a stronger defini�on of what a PAV orthogroup was. Previously, researchers had simply 
reported the presence of extensive gene PAV in M. oryzae without clearly defining PAV 
orthogroups [25,26]. To this end, I focused on the clonal lineages of M. oryzae and came up with 
a strict defini�on for PAV orthogroups. In my project, these orthogroups were ones that showed 
evidence of at least two independent loss events. Independence of dele�on events was defined 
using the genome phylogeny and relied on the assump�on that the genomes were non-
recombining. Therefore, when a gene was lost in two isolates that were not directly connected 
in the phylogeny, I assumed that this represented two independent genomic dele�ons. I believe 
that this robust defini�on of PAV orthogroups allowed me to conduct a more precise and 
thorough look at PAV in M. oryzae than what was previously possible and enabled the 
discoveries that I presented in Chapter 4. 

As previously men�oned in Chapter 3, I am concerned that genomic studies in M. oryzae and 
other fungal plant pathogens are too focused on effectors and not mindful of other genes that 
are important for their evolu�on. Knowing that the existence of differen�al PAV has been 
previously shown between rice-infec�ng lineages of M. oryzae [25,26], I dug deeper into this 
result and found that, while these PAV orthogroups are enriched in disease-causing genes, only 
a small frac�on of PAV orthogroups are disease-causing. When I looked at the rest of these 
orthogroups, I also found an enrichment in genes related to non-self-recogni�on and an�bio�c 
produc�on. To me this was a significant result that indicated that the evolu�on of 
geographically separated popula�ons of M. oryzae involves adapta�on to the local rice 
genotypes but also to the local microbiome. It would be interes�ng to sequence and 
characterize the rice and soil-associated microbiomes of each of the regions where clonal M. 
oryzae lineages are present and analyze how differences between them might relate to 
differences in an�bio�c produc�on and non-self-recogni�on genes between the isolates found 
there. This fascina�ng result goes back to my ini�al mo�va�on for this avenue of research: 
focusing too much on effectors can make us miss important insights into fungal plant pathogen 
genomics and biology. It also further mo�vated my efforts to look at the genomic contexts that 
are associated with all gene PAV in M. oryzae, rather than just looking at PAV of effectors. 
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One of the most significant findings that I describe in Chapter 4 was the discovery of clear 
differences in PAV between the rice and wheat pathotypes of M. oryzae. I observed differences 
in the genomic features associated with PAV genes in each pathotype. I also observed 
differences in the distribu�on of PAV and conserved genes throughout the genomes of each 
pathotype. In the rice pathotype, PAV genes appear to be �ghtly clustered in specific, well-
defined regions of the genome where no conserved genes are found. This is not the case in the 
wheat pathotype where many conserved genes are found next to PAV genes. Finally, I showed 
that wheat-infec�ng M. oryzae appears to experience gene PAV at an accelerated rate 
compared to the rice-infec�ng pathotype.  

These findings could have important implica�ons for the study of the wheat pathogen’s 
emergence and how it was able to spread and become a devasta�ng threat to agriculture so 
rapidly. It is possible that these differences in PAV are the result of changes in the way that its 
genome evolves, including poten�al changes to DNA repair mechanisms. This idea is supported 
by the decreased TE content that Anne Nakamoto and I found in the wheat-infec�ng lineage of 
M. oryzae [122]. EccDNA sequencing might help support this hypothesis as well, as 
modifica�ons in DNA repair would likely influence MoT’s eccDNA profile. On the other hand, 
accelerated evolu�on in MoT could also simply be the product of a substan�al influx of gene�c 
diversity which could have originated from a mul�-hybrid swarm [118]. If this was the case, it is 
possible that the wheat pathotype would eventually reach some sort of equilibrium in its 
evolu�on that resembles the rice pathotype. Regardless, these novel observa�ons could help 
explain why M. oryzae is such a successful pathogen and especially why the wheat pathotype 
has been so devasta�ng. My thesis work makes it clear that there are significant differences in 
evolu�onary history and genomics between the rice and wheat-infec�ng pathotypes of M. 
oryzae and it is possible that understanding these differences could lead to significant insights 
into the fungus’ evolu�on. 

A major goal of Chapter 4 was to understand the paterns that shape PAV in M. oryzae. Knowing 
that TEs had been in�mately associated with fungal plant pathogen genome evolu�on in the 
past, I started by analyzing whether TEs were near genes prone to PAV in M. oryzae and found a 
clear associa�on between the two. I then looked to see whether PAV genes were found in gene-
poor regions of the genome, which is another hallmark of the two-speed genome hypothesis. 
While I did find a nega�ve associa�on between PAV-prone genes and gene density, this effect 
was much weaker than the associa�on with TE density. These results showed that there were 
clear associa�ons between genomic context and PAV and drove me to analyze every possible 
gene feature that I could to further understand these associa�ons. Through comparing PAV and 
conserved genes, I found many addi�onal features that set genes prone to PAV apart from 
conserved genes including GC content, length, expression, eccDNA produc�on, and certain 
histone marks. The associa�on between eccDNAs and PAV was no surprise given the results I 
published in Chapter 2, and further supported the associa�on between PAV, eccDNAs, and M. 
oryzae genome evolu�on. Given the variety and strength of the evidence poin�ng to clear 
differences between genes prone to PAV and conserved genes, it was no surprise that I was able 
to train a machine learning model on these gene features that could predict whether a gene 
was prone to PAV in wheat and rice-infec�ng M. oryzae. 



120 
 

A significant caveat to these findings, however, is that the NGS datasets that I re-analyzed for 
Chapter 4 were only available for single isolates. This meant that I had to make many 
assump�ons and imputa�ons to fill in this data for other isolates, which likely resulted in many 
erroneous values in my dataset. However, many of the features I used do not rely on this 
imputa�on. I also show evidence in Chapter 4 that an RNA sequencing dataset for each isolate 
would likely be sufficient to generate an accurate predic�ve model. Despite this caveat, my 
results imply that, once a higher quality model is trained using one RNAseq dataset per isolate, 
we could quickly know which genes are prone to experience PAV in any emerging, par�cularly 
virulent strain of M. oryzae by simply sequencing its genome and its transcriptome, which is 
becoming more and more easy to do every year. 

Of course, the success of this approach in M. oryzae raises an important ques�on: could this 
approach be applied to other fungal plant pathogens? And if so, could we use it to predict which 
genes will be prone to being deleted in an emerging pathogen? I showed that a model trained 
on the wheat pathotype of M. oryzae could not be used to predict PAV in the rice pathotype 
and vice versa which appears to refute the idea that a general model that works well for all 
plant pathogens could be constructed. However, part of this result may be atributed to 
overfi�ng, and it is possible that more work could be done to generalize the model. 
Addi�onally, more complex models could be trained with data from other pathogens to see 
whether more general paterns that apply to all fungal pathogens could be used to construct 
such a model. Unfortunately, Zymoseptoria tritici is currently the only other fungal plant 
pathogen that has been sequenced to the same extent as M. oryzae [156]. Therefore, more 
genomes and transcriptomes of other pathogens need to be generated to see whether this 
approach is viable. Given the poten�al of this approach to predict gene PAV in an emerging 
fungal plant pathogen and help guide molecular biologists and gene�cists in designing robust 
resistant crops that cannot be overwhelmed by gene dele�on, construc�ng a general PAV 
predic�on model should be atempted once the data becomes available. 

While PAV gene predic�on models show great poten�al in these fungi, there is much more to 
effector evolu�on than PAV. According to both my models and my phylogene�c data, most 
effectors in M. oryzae are conserved, which would imply that, if PAV was the only way that it 
adapted to crops, it would be easy to engineer resistant crops. Of course, this is not the case. 
There are several hypotheses that could help explain this observa�on and complement the over 
simplified model that genomic context is the only thing that shapes PAV and adapta�on in M. 
oryzae. Firstly, while the loss of conserved genes is less likely than that of genes that my model 
labels “prone to PAV”, they can s�ll be lost from the genome. It is also very likely that my model 
was too conserva�ve in labeling genes prone to PAV and may also have been overfit. My model 
was op�mized to only predict genes that had been previously observed to experience PAV and 
not all possible PAV genes, which is an important dis�nc�on. Addi�onally, it is possible that 
large effec�ve popula�on sizes allow the fungus to generate enough gene content diversity to 
overcome disease resistance. Though I excluded them from my analysis, this could make 
recombining lineages of M. oryzae par�cularly hard to combat. Another hypothesis is the 
frequent exchange of genomic informa�on between pathotypes of M. oryzae [18,23]. According 
to this hypothesis, avirulent rice-infec�ng M. oryzae strains could obtain new effector alleles 
through sexual recombina�on, mini-chromosome exchange, or even asexual recombina�on 
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through heterokaryon forma�on [157] with other pathotypes. The hypothesis describing a 
mul�-hybrid host swarm that created the wheat-infec�ng pathotype could support these ideas 
[118]. 

Of course, muta�ons could play a more important role in M. oryzae’s evolu�on than PAV and 
transcrip�onal silencing, epigene�cs, and TE inser�ons could be a big part of the story as well.  
It is very likely that machine learning models could be trained to predict which genes are prone 
to greater muta�on rates. Proximity to TEs is also associated with an increased muta�on rate 
[7,11], and my second chapter shows a clear associa�on between characteris�cs associated 
with the two-speed genome hypothesis and other genomic and epigenomic features. Models 
trained to predict genes prone to increased muta�on rates would therefore likely conclude that 
genes prone to PAV are also prone to muta�ons, which would result in the same problems as for 
the PAV model. Therefore, it is possible that the future of this type of modeling will need to 
involve much more complex models, that can not only iden�fy which genes are prone to being 
deleted or mutated but can also predict which specific amino acid residues might be prone to 
change, allowing the pathogen to escape detec�on. Kyungyong Seong’s work using 
computa�onal structural predic�ons to model NLR-effector interac�ons and ra�onally engineer 
beter NLRs could poten�ally lead to these types of models. Regardless, there is a lot of 
research that needs to be done to understand how each of these evolu�onary mechanisms 
contribute to the adapta�on of M. oryzae and other fungal plant pathogens to their hosts. This 
research will likely help guide predic�ve modeling efforts in the future. 

Though it is s�ll in early stages at the �me of wri�ng this disserta�on, Kyungyong Seong and I 
have started a project in collabora�on with Pierre Gladieux that seeks to develop our 
understanding of these evolu�onary mechanisms. Pierre’s group previously characterized the 
phenotypes of 45 rice varie�es when infected by 70 M. oryzae isolates and found that different 
lineages of M. oryzae caused disease in different rice varie�es [26]. Pursuing this goal of using 
computa�onal biology to find targets for robust disease resistance engineering, Kyungyong and I 
decided to sequence and analyze the genomes of these 70 M. oryzae isolates. In this project we 
are looking to combine our exper�se to find paterns in genomic features, PAV, structural 
variants, SNPs, or protein structures that might help further our understanding of disease 
resistance. We will be using methods such as genome-wide or k-mer associa�on studies, 
structural effectoromics, protein docking, and machine learning to look for paterns in our 
dataset, with the goal of iden�fying new effector targets for disease resistance engineering as 
well as mechanisms the fungus uses to escape detec�on by its host. Many of the rice varie�es 
that were tested against the 70 isolate panel also have genomic or NLR sequencing data 
available which could prove to be extremely valuable for these analyses. Of course, a goal of this 
research is to produce machine learning models that can predict disease phenotype from 
genomic sequences, which would be a significant breakthrough for the field. This could be used 
to iden�fy which rice varie�es should be planted in response to an outbreak of a par�cularly 
dangerous M. oryzae strain, for example. This type of project that combines various types of 
computa�onal approaches will likely be a big part of the future of disease resistance 
engineering. 
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Fungal plant pathogens pose a serious threat to agriculture and the pervasiveness of intensive 
monoculture farming and climate change has made this threat even worse [1,2]. Addi�onally, 
several major pandemics are on the horizon. For example, the rapid spread of the devasta�ng 
wheat blast fungus and the emergence of Fusarium oxysporum strains that infect the Cavendish 
banana could have massive economic impacts [3,4]. Current disease preven�on strategies are 
unfortunately insufficient. While pes�cides can keep fungal plant pathogens in check, they o�en 
only delay the spread of the fungi and result in significant environmental consequences [5,6]. 
Selec�ve breeding and disease resistant engineering in crops is likely to be a far more successful 
solu�on. Unfortunately, the deployment of gene�cally engineered crops is currently extremely 
slow, in part due to technical challenges. Addi�onally, once resistant crops are deployed, their 
resistance can o�en be short-lived, as pathogens con�nue to adapt to these crops [10]. A beter 
understanding of the plant immune system and its evolu�on will help accelerate the 
deployment of resistant crops and make these deployments more successful. Understanding 
fungal plant pathogen evolu�on will likely be equally important as this understanding will help 
determine which effectors make for good disease resistance engineering targets. It is clear that 
the partnership between these fields of studies will be essen�al to solving the plant disease 
crisis we face today and the key to sustainable agriculture in the future.
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