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ABSTRACT

Conventional query processing techniques are aimed at queries which access
small amounts of data, and require each data item for ihe answer. In case the
database is used for statistical analysis as well as operational purposes, for some
types of queries a large part of the database may be required to compute the

. answer. This may lead to a data access bottleneck, caused by the excessive
pumber of disk accesses needed to get the data into primary memory. An exam-
ple is computation of statistical parameters, such as count, average, median, and
standard deviation, which are useful for statistical analysis of the database. Yet
another example that faces this bottleneck is the verification of the truth of a set
of predicates (goals), based on the current database state, for the purposes of
intelligent decision making. A solution to this problem is to maintain a set of
precomputed information about the database in a view or a snapshot. Statistical
queries can be processed using the view rather than the real database. A crucial
issue is that the precision of the precomputed information in the view
deteriorates with time, because of the dynamic nature of the underiying database.
Thus the answer provided is approximate, which is acceptable under many cir-
cumstances, especially when the error is bounded. The tradeofl is that the pro-
cessing of queries is made faster at the expense of the precision in the answer.
The concept of precision in the context of database queries is formalized, and a
data model to incorporate it is developed. Algorithms are designed to maintain
materialized views of data to specified degrees of precisicn.

1. Introduction

Conventional databases have focused mainly on the efficient execution of transaction
querics, found typically in banking and airlines applications. Such queries have following
properties: (i) they access small amounts of data, (i1) their answer is sensitive to each indi-

vidual data item, and most importantly, (iif) they can be answered from the the basic

t This work was dope while the first author was on leave from the CS. Division, U.C. Berkeley. .
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database, i.e. the stored relations. An example is,
Docs there ezist any account number in the bank

with a negative balance ?

There are many applications where the overall characteristics of an entire dataset are
required rather than individual data items. The required information does not exist in the
dat.al;ase, and therefore has to be computed. An example is the need to obtain some sta-
tistical parameter, say average age of Caucasian males in California, from a demographic
database. A typical query to derive this would be,

retrieve mean(PERSON.age)
where PERSON.state == Cali fornia
and PERSON.sez = male and PERSON.race == Caucasian

Yet another example is the real-time controller of a manufacturing process, produc-
ing machine parts of specified dimensions. A typical rule for controlling the process would
be’ .

If error(mean(part_sizc)) > mean-tolerance
or error(variance(part_size)) > variance-tolerance

then take some corrective action.

Applying such a rule requires computing the mean and the variance of part_ssze.
Queries which carry out such computations are called aggregate queries. Answering an
agsregate query requires extracting some feature from a number of data items, which in
turn leads to accessing large volumes of data. Features, aggregates, etc., measure some
characteristics of a set of data items, and thus are relatively insensitive to the value of
individual data items. Hence, estimates of such characteristics are acceptable instead of
their exact values. Conventional database systems incur prohibitive costs in providing
" accurate answers which are not essential. We believe that the cost of processing a query
can be reduced significantly if an approximate answer is acceptable. We therefore conclude
~ that efficient processing of aggregate queries is feasible if data management and query pro-
cessing techniques are designed to accept degree o f precision as a query parameter.

Researchers in the area of Statistical Databases [OLKE 86], [GHOS 85], [SHOS 82],
[VITT 84], have faced the problem of data access bottleneck, since they had to deal with
queries that calculated statistical aggregates of a set of data items. They realized the '

power .of estimation, and introduced the statistical technique of sampling [COCH 53] as a
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database operator. This has been very successful for statistical applications, dealing with
numeric data. We propose an alternative approach to this problem. As we indicate in a
later section, the usefulness of our approach lies in the fact that it can also be applied to
the framework of approzimate reasoning.

We propose the idea of materialized view maintenance as a technique to provide
efficient support for the applications mentioned above. The stored database, for example
the tuples of a relational database, is the basic database. All knowledge that can be
obtained from it is called its dersved information. If the entire derived information is
stored at all times, processing queries that require it will be extremely fast. However, all
possible derived information for any database is extremely large, making its storage
infeasible. QOur idea is to store the derived information that is interesting to a user, and
process his/her queries on it. On top of the basic database, views [ULLM 82] are defined.
A copy of each view, called its materialization (or MatView), is stored. Views are defined
by the user and are specific to his application. They are defined by predicates which can
be both logical and arithmetic.

Maintaining MatViews is a critical issue. Since the basic database is constantly
updated the derived information changes as well, and the MatView, which is a part of the
latter, has to be updated. A simple approach is to consider each individual change to the
basic database and propagate its eflects to all the MatViews that depend on it. However,
this is prohibitively expensive due to the large number of updates to the basic database,
and a correspondingly larger number of updates to the MatViews. Our approach to this
problem is to maintain approzimate MatViews. The definition of each MatView specifies
not only the predicate defining it, but also a degree of precision, which determines its
accuracy. The main idea is that updates to MatView need not be made as long as it stays
within the bounds of the degree of precision attached to it. This approach reduces the

total aumber of updates to the MatView drastically and brings it in a manageable range.

We present the tradeofl between precision and time as a paradigm for database
management and query processing. MatViews are maintained at their specified degree of
precision and are used to answer queries. The principal idea is that it costs less to main-
tain data that is less precise, and hence queries which do not require a very high degree of
precision will not be forced to pay the price for it. This paradigm affects all components
of a database system, namely the query language, data storage and access methods, query

processing and optimization, and data distribution and replication.
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In this paper we focus on the problem of maintaining derived information to its
desired degree of precision. Specifically, we discuss the following: (¢) a definition for preci-
sion of data and queries, (i) materialized views as a mechanism for providing data with a
specified degree of precision, and (iii) efficient automatic maintenance of views to their
specified degree of precision. For clarity in exposition the examples in this paper define
precision only in terms of the number of tuples of the database. However, our methods are
applicable to other statistical parameters as well. Yet another application of these tech-
niques is in the domain of approximate reasoning and deduction, which is based on fuzzy

logic [ZADE 65]. This area has been rapidly gaining interest in the recent past.

A Real-Life Example: The idea of automatic maintenance of materialized views,
defined in an application dependent manner, is especially attractive in a distributed
environment. Each site stores only the views defined by the applications residing on it.

The degree of precision of each view depends on the nature of the application.

We now present a real-life example Fig. 1.1 to introduce the problem that we shall

be formalizing and addressing in subsequent sections.

Consider the population data collected by the Census Bureau every time a census is
carried out. Data about individuals is collected at the district level and is precise since it
contains the individuals' exact age, height, weight, income, etc. Districts are grouped
together to form cities, cities to form counties, counties to form states, and states to form
the country. The lowest level of the hierarchy in Fig. 1.1 may consist of a standard data-
base, which is used for all sorts of local applications. However, the applications at the
higher levels seek aggregate features of the data rather than the raw data itself. These
various levels of geographic aggregation are logically equivalent to levels of information
aggregation. From an information content viewpoint, it is not necessary to store any data
at any level other than the lowermost. Higher levels of information can be derived from it.
However, as we go upwards, the multiplicative increase in the volume of data makes it

impossible to process raw data to obtain the required information on demand.

Our solution is to store, at each level of the hierarchy, the information required.
Information at all levels but the lowermost, consists of vicws, which are defined in terms
of the réw data, or other views, by ussing aggregation operations. Thus, we model the
various levels of geographical aggregations, i.e. district, city, county, state and country,

seen as a hierarchy of views defined on top of each other. The information that flows



COUNTRY
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Fig. 1.1 Hierarchy of Views in Census Data Collection.

upwards is only the aggregate characteristics of the original data.

An important feature of the propagation of aggregates in such a manner is that the
degree of precision required at higher levels is less than that at lower levels. The error
introduced in the information in going up each level is modeled by the notion of degree of
precision in our model. The advantage of the model presented is that it enables us to
come up with efficient algorithms to maintain the various views in the hierarchy to their
desired degrees of precision, at a minimum possible expense. Thus, updates need not pro-
pagate upwards, and flood the system, unless they are absolutely necessary.

This paper is organized as follows. Sections 3 and 3 discuss our definition of preci-
sion and the logical data model. Section 4 introduces a stochastic model for the problem of

materialized view maintenance, and derives policies that maintain a MatView to its
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specified degree of precision. Section 5 provides a summary of the issues that future

research efforts need to address, and section 8 lists our conclusions.

2. Definition of Precision

This section discusses the definition of precision which shall be used as a running
example to illustrates our view maintenance algorithms. However, the approach presented
here does not depend on the definition of precision chosen. To make the discussion more
concrete, we illustrate our algorithms by considering the higher level abstraction to be a
counter. As an example we assumé the counter under consideration is the size of a view.

The theory developed, however, is applicable to any counter.

We use the following notation:
N,: Size of the view after last refresh.
N: Size of the view at some later instant.
p: Degree of precision.
g: Degree of confidence.
Degree of precision of data: N has (p,q)-degree of precision, with respect to N,, if
the probability of the difference between N and N,, expressed as a fraction of N,, being

less than (1—p) is at least g.

Formally,
I[N = Nyl
No

Note: Intuitively, p is the precision of N (w.r.t. No)andg is the degree of confidence in the

P <1-p} 24

statement,
IN = Nl
R =
Usually, ¢ will be fixed at some high value, say 0.99, so as to have a high degree of
confidence in the answer obtained. The precision requirement of a query is defined as fol-
lows.

Precision Requirement of a Query: A query with precision (p,g), requires that it

be processed using copies of data having degree of precision > (p,g). ¢

t(p.g) 2 (pg)=(p 2 p)and (¢ 2 q)
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Given a query and the set of data .items it accesses, there are many ways to process
it. The decisions that have to be made are, (1) in what order should the subtasks of the
query be performed, (i1) what algorithm should be used to perform each subtask, (i5:) how
should a particular data item be accessed, and (iv) how should the data be buffered. If
data items are replicated, the additional decision of which copy to access has to be made.
A set of decisions, one along each dimension, called a gquery plan, is a unique way of exe-
cuting the query.

Given the above definitions, we can identifly two kinds of queries.

Let,
Q: A query.
(p.q): Precision requirement of Q.
qp;: i query plan for Q.
QP={gp,, qp2, ---» qPa}: Set of possible query plans to execute Q.
cost (Q, gp;): cost of executing query Q using query plan gp;.
Precision Query: Answer query Q, in the shortest possible time, such that each
copy of data used to process it has degree of precision > (p,q),

ie.,

Jnin cost(Q, qp)

subject to for each data copy D; used, (p;9:) 2 (p.9)
Deadline Query: Answer query Q, using maximum precision data, such that it
takes no more than T time units to process it.

ie.,

choose qpe¢QP such that, data copies with mazimum possible precision are chosen

subject to 0 < cost(@,qp)<T

3. Logical Data Model

The paradigm of tradeoffl between precision and time is independent of the data
model chosen. However, exemplifying our techniques requires us to make a specific choice.
Further discussions assume the underlying data model to be the relational model with

some extensions. Our choice of the model is motivated by the fact that it is both well

accepted and easy to understand.
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Any particular application finds only a subset of the database interesting. We

further assume that such an interesting subset can be specified by a view definition.

View

~_

View

Buic Basic
Relation Relation

Fig. 3.1 View Hierarchy. -

A view can be defined in terms of the base relations, in terms of other views, or both.
This creates an entire hierarchy of views as shown in Fig. 9.1. We also assume that views

are limited to those definable by the following operators.t

Relational Algebra: Relational algebra operations like aclect;'on, projection, join,
union, di fference, etc.
Example: (A view definition using relational algebra): Let,

EMP = (E.Id# E.name,E.age E.sez E.salary E.med_hist)
be a relation. A view defined using relational algebra is,

EMP_HEALTH = %149 Eage.Emed_rist(020K < Essiary < s0x{EMP)).
Aggregation: Aggregation Operations like count, sum, square-sum, data-grouping etc.
Example: (4 view definition using aggregate functions): Considering the same EAP
relation as above, '

SUM_EMP = (sum(E.age),sum(E.salary))

Each view has a degree of precision attached to it, which is is one of the parameters
specified during view-definition. The degree of precision depends on the requirements of

the application defining the particular view. At all times, the degree of precision of the

t Our choice of the set of operators allowed for defining views is more powerful than the relational
model, since it allows aggregation operations. Thus our assumption is not simplistic or unrealistic
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view has to be maintained within the limits specified during view-definition.

4. Creation and Maintenance of Materialised Views
This section describes the maintenance of materialized views and develops a stochas-
tic model for it. It also describes periodic policies for the maintenance of a view to its

specified degree of precision.

4.1. Maintenance of Materialized Views

A materialized view (MatView) is a stored copy of the view which is created at the
time of view definition. Any changes made to the base relations have to be reflected in the
MatView. This is done by means of a periodic maintenance process or re/resh process.
The mechanics of MatView maintenance can be described by the files that exist in the sys-

tem and the processes that manipulate them.

Resd Qury
Msernimd View

(Vs Viaw)
Patresh Preas
(]
Diftwestinl Flls
(Turrplie)
Update Quary / R Baes Ralnsion
(Upchase) (Baallel)
(a)
R R

tel ot

s 144 = o -
i i !
i i 1

u rF U U r

Came:
]
8

|
i
| 4

Can of emarting Updase (U) in Tempifie
Com of merging TemplMia ane Mt Vaw

Com of provessing Read () on Mt View

)

Fig. 4.1 Mechanics of Materialized View Maintenance.
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Files: Fig. 4.1(a) shows the files existing in the system. The base relations from
which the view is derived are stored in the file BascRe! and the materialized view in the
file MatView. If MatView is refreshed as soon as a change is made to BaseRel, then these
are the only files required. However, deferring the refreshing of MatView has advantages
of being more efficient under certain conditions, [ROUS 86, HANS 87]. Thus another file,
the TempFile, is required to store the changes between successive refreshes to the
MatView.

Processes: There are three kinds of processes in the system which are of interest to
us, as shown in Fig. 4.1(a). First are Read Queries (R), that are directed to the MatView
and processed using it. Second are the Update Queries (U), that can be directed either to
the MatView or to the BaseRel. These are handled by making appropriate changes to the
BaseRel t and also recording it in the TempFile. If the Update is an insert, delete, or
change on the MatView, the appropriate action is taken on the BaseRel and the change is
recorded in the TempFile. Handling Updates directed to BaseRel requires more care.
Only some of these Updates affect MatView and are the only ones that have to be
accounted for. This is done by screening each Update to the BaseRel against a filter (i.e.
' the logical predicate defining the view), to determine if it does indeed change the view too,
[BLAK 86]. The ones that do so are recorded in the TempFile in addition to being
changed in the BaseRel. From now on we will only consider those updates that affect the
MatView. The third kind of processes are the Refreshes (F), which are executed periodi-
cally and whose function is to refresh the MatView using the contents of TempFile and
bring it up-to-date with respect to BaseRel. This involves changing all tuples that appear
in TempFile. No changes have to be made to BaseRel when a Refresh occurs, since the
former is always up-to-date. Also,‘ every occurrence of Refresh updates MatView with the

contents of TempFile, and the latter is deleted.

4.2. A Stochastic Model of View Maintenance

Operation of the materialized view maintenance mechanism is modeled by the arrival
of stochastic processes. The arrival of a Read or an Update, or the creation of a Refresh is
the arrival of a job for service, and the times required for their execution are their service

times, respectively. Fig. 2.1(b) gives a pictorial representation of the model.

t Changes 1o BaseRel are done anyway and not because of maintaining materialized views.
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Nature of the Processes: The Reads and Updates are both assumed to be stochas-
tic processes. The Updates are assumed to have the Poisson t distribution [ROSS 85] while
“the Reads can have any distribution. The arrival rate of Updates is \y. Thus,

Read = G (general distribution).
Update =~ Poisson (M\y).

Costs associated with processes: The cost associated with a process is the
pumber of disk accesses made during its execution. For a fair comparison of materialized
view maintenance algorithms we have developed a cost model that measures preciselj the
eztra overhead that a database system incurs in supporting the materialized view, i.e.
maintaining MatView and TempFile. Consider the effort required to handle insertions/
deletions to BaseRel. This would be requix;ed even if there were no materialized views, and
thus we do not include its cost. There is a cost associated with screening each tuple to
decide if it affects the view; and if it does, there is the additional cost of inserting it in the
TempFile. Given below are the costs associated with the three processes in our model.

Cost of Read: The cost of accessing a single record t from MatView.

Cost of Update: If the update is to MatView, the only relevant cost is of recording it

in TempFile. When the ipdate is to BaseRel, it also has to be screened to see if it

affects MatView. From our point of view only the relevant updates [BLAK 86, i.e.

the ones that affect the view, are of interest. Since screening is done in main memory,

its cost is negligible and is henceforth ignored. Thus, the cost associated with an

Update is that of recording it in TempFile regardless of whether it is directed to

MatView or BaseRel.

Cost of Refresh: The cost of updating MatView with the contents of TempFile to

bring the former up-to-date.

The work done in maintaining the files MatView and TempFile is exclusively for the
purpose of view materialization. Thus the extra cost incurred by the database system
should be borne by the queries made to the view. Hence, the cost of a Read is augmented
by the expected cost of handling all the Updates since the previous Read. Table 4.1 lists

the various parameters of the model.

t The assumption of arrival processes having a Poisson distribution is widely used by almost all
researchers in the analysis of stochastic models.
t For simplicity we assume exactly one record is accessed by a Read.
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I Symbol |  Meanin _"
ea Read Process (Query)
Update(U) Update Process (Query)
Refresh(F) Refresh Process
Mg \us AF arrival rates of
’ * | processes R, U, F respectively
probabilities of
Pu. PF arrival of U, F respectively
N, value of counter (MatView size)
° at last refresh
N value of counter (MatView size)
at a later instant
P degree of precision
q degree of confidence

Table 4.1 Summary of Notation.

4.3. Materialized View Creation

Q

User
Site

o u
Site

U

U: Update on Main Database
Q: User’s Query on View

Fig. 4.2 Propagation of Updates Between Copies.

When a user defines a view, its materialized copy (MatView), is created using the
basic database. It consists of records (if relational algebra operators are used in its

definition), or aggregate information (if aggregation operators are used). It is then stored
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at the site of the user creating it. As shown in Fig. 4.8, npdém made to the main data-
base have to be propagated to the view. If the view was required to be complgtely precise,
i.e. reflect all changes in the main database, there would be no choice but to propagate
each update on the main database immediately to the view. This is called the immediate
refresh policy. However, for the applications we are looking at, some imprecision in data
is tolerated. This enables us to design periodic refresh policies which propagate updates
from the main database to the view periodically. Table 4.2 compares periodic refresh poli-

cies with immediate ones.

[ Cost Factor | Immediate Policies l Periodic Policies ||
Transmission ‘
Cost of Data High Low

Contention
on Data High Low

Table 4.2 Comparison of Refresh Policies.

4.4. Nature of View Updates

In this paper we have assumed that all the updates to the MatView are insertions.
Since the precision of a materialized view has been defined as the fraction of tuples that it
is out-of-sync with the main database, it suffices to consider each update as an arrival of a
random variable, U;, with a constant value 1. Formally the Update process can be
specified as,

PU;=1)=1; im123, -
If T, is the time of arrival of U,, then

(Tipr = T;) = Ezponential(\y), i=1,2,3, ---
Thus, U,’s are Possson arrivals.

One way to model a database with both additions and deletions is to consider them
separately, and then combine the effect by adding up the errors. However, addition of
errors leads to bounds that are weak and do not adequately capture the quality of the
data. A better model for such a database is to consider the updates U; as both increasing
or decreasing the counter (database size). We are currently working with the following
model for U;’s.

PU =1)=r, PU;= ~1) = 1=r; i=1,2,3, ---
(Tiyr = T:;) = Ezponential(\y), i=1,2,3, --
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4.5. Periodic Time Refresh Policy

tisl

‘v

L

i
|
!
v U U F, U U©U U U F._ U U
i+l

Fig. 4.3 Updates Collecting Over Time.

In this section we consider the design of a periodic time refresh policy which main-
tains the view MatView to a desired degree of precision. Fig. 4.8 illustrates the arrival of
various processes. From the definition of degree of precssion we have,

N‘No
Ny

<=> P(N — Ny < (1=p)No) 2 ¢
(1=p)Ng=1 ,=NBe(y  As)
Z e ( UA ) > q

P( <(1-p))2¢

<=>

' ——
(=m0 5

The expression on the left hand side can be approximated by the Normal distribu-

tion for large values of \yAt [FELL 68]. Formally,
(N = No) = Myt
(\vat)?

(N = Ny) = Myart (1-p)Ny = MyAt
(wat)2 T (wat)s
(1-p)N, = Ayt
(vat)”?
(F(q) : 2(1-p)No (at) +

v

= Normal(0,1)

24

<=> P

<m=> > F(q)'

(1-p)N, |}

2 .
o >0 (4.1)

<=> (At} -
<=> At = 5.571 21=p)No + (FY(9)f % [(F~Y(q))* + 4(1=p)No(F(q) |2 ]

As shown in Fig. {.4, the quadratic form of Eqn. 4.1 is non-negative in the regions
(=00, ATy} and [At, 00). The value of At (call it T) required is such that the quadratic
form of Egn. 4.1 is non-negative for all At < T. This limits the choice to be,

t F)(q) is the inverse function of the Normal distribution that gives the value of the standard nor-
mal random variable, to the left of which the probability is q.



-15 -

Qudratic
Form of
Eqn. 4.1

v

-At

Fig. 4.4 Roots of Eqn. 4.1
At € (—00, Aty
The minimum cost refresh policy is to choose the largest possible value for At, i.e.
At = At,
<=>

At = =——[ 2(1~p)Ny + (Fq))* = [(F~*(q))* + 4(1=p)No(F'(q))* |/* ]

1
g
Therefore, the optimal refresh algorithm is a periodic time algorithm. Every At
time unit it is executed to refresh MatView by installing all the Updates that have arrived

since the last refresh.

Example: Time periods of the minimal policies were calculated for some values of

N, p: and ¢. The results are presented in Table 4.9(a) and Table 4.9(3).

As seen in Table 4.3(a), At, i.e. the frequency of refreshes, decreases with increase in
p, and also with increase in N,. As observed in Table 4.3(3), At decreases with increase in
N,, and with increase in q. For
N, = 1000; p == 0.90 and ¢ == 0.98,
At == 8.1453s
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0.90 0.85

14
N,
100 0.5279 0.2054
1000 8.1453 3.7287

10000 [l ©3.7093 | 45.6112

g = 0.98, Ay = 10/s

Table 4.3(a) Change in At with N, and p, fized gq.

0.95 0.98

q
N,
100 0.2434 0.2054

1000 3.9643 3.7287
10000 || 46.4545 | 45.6112

p = 0.95, \y = 10/s

Table 4.3(b) Change in At with Ny and q, fized p.

Ay = 10/s means that on the average, 81.453 updates are allowed between successive
refreshes. Since the precision required is only 0.90 it would seem that (1—p)N, = 100
updates should be allowed between refreshes. However, the refresh rate is higher (At is
smallef) because \yAt represents only the average number of updates in the interval At.
In fact there is a non-negligible probability of having more arrivals. Since our aim is to
provide 0.90 precision in the worst case (actually not quite since it is being done only with

0.98 confidence), the refresh rate is slightly higher.

4.8. A Stochastic Count Refresh Policy

AThe idea behind a stochastic count policy is to design a refresh process, Refresh,
based on the number of the updates (count) between successive refreshes. The refresh pro-
cess will be designed as a Poisson process. The important criterion here is that the proba-
bility that the count of updates between successive refreshes exceeds a certain threshold is
extremely small. From the definition of degree of precisson we have,

N =N,

P( N

<(1-p)) 24

Considering the mixture of Update and Refresh processes we have a process in which

the probability of any arrival being Update or Refresh is fixed, and is given by

Ay Ap
T em———— SER  ctveme——
Pu= Sotrr PFT Xotrr

The criterion mentioned above is equivalent to saying that the probability of the number

of Update arrivals between successive Refreshes being more than (1-p)N, is smaller than
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1—q. Thus,

P(# Updates between successive Refreshes > (1—p)N,) < 1—¢

<=> P(# Updates between successive Refreshes < (1—p)N,) 2 ¢

1
<=> pr+proy +prpl+ o +pppy T 020
<=>1-p5""" >
Nom B = S

Thus,

-l
Ar 2 Mgl(1=g) TN _ 1) (49)

Thus, the optimal refresh process is a Poisson process that has the rate )\, given in

Eqn. 4.2 above. Example: Update rates for the minimal refresh policies were calculated

for some values of Ny, p, and q. The results are presented in Table 4.4(a) and Table §.4(5).
W |
N 090 | 098

100 4.271 9.194
1000 0.395 | 0.797
10000 || 0.0392 | 0.0784

q = 0.98, \y = 10/s
Table 4.4(a) Change in \p with N,

and p, fized q.

wm |
L1095 | oss

100 6.475 | 9.194

1000  0.605 | 0.797
10000 |l 0.060 | 0.0784

p = 0.95, Ay = 10/s

Table 4.4(b) Change in \p with N, and g, fized p.

As observed in Table 4.4(a), the rate of the refresh process, \r, decreases on lowering
the precision requirement, p, while moving along a row. Also, the rate decreases along a
column as N, increases. As observed in Table 4.4(b), \p increases with q. For

N, = 1000; p = 0.90 and ¢ = 0.98,

10
o 0398 28317

This rate is higher than one would expect, reasons for which being similar to that for

the Periodic Time Refresh Policy. With the solution derived above there is a non-zero

probability of successive refreshes with no updates in between. A design which makes it
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mandatory for some updates to occur between successive refreshes decreases \s, thus mak-
ing the refresh policy cheaper. However, the analysis of such a policy is quite involved,

and is not presented here.

5. Other Considerations in Precision-Time Tradeoff

" Many challenging problems remain, and our future efforts will be directed towards

them. Specifically the following problems are important:

Logical Model: Extensions to the query language have to be provided to () enable
the user to define views, i.e. data copies, with desired degrees of precision, and (1) express
the precision requirement of a query. .

Query Processing & Optimizaﬁon: Query processing and optimization strategies
have to take into account the existence of data copies with diflering degrees of precision.
Processing queries from a copy with less precision will be cheaper due to lesser amount of
data contention on it. The query optimizer should generate an access path such that the

data accessed has no more degree of precision than is necessary.

Physical Model: The techniques, i.e. data structures and algorithms, developed
have to be implemented to see how well they perform on real data. The queueing model
v;-e bave developed for view maintenance has to be extended to include replicated copies of
views. New data storage techniques have to be devised, since conventional ones are

oriented towards small and simple queries.

Data Distribution: The problems of data fragmentation, i.e. does a database need
to be broken up into parts, and data placement, i.e. where should the units be placed,
have to be revisited. Data of different degree of precision may be located at different
nodes. A query arriving at a node is checked to determine its precision requirements, and

sent to the appropriate node to be processed.

Data Replication: How many data copies of each degree of precision are required?

It will depend on the requirements of the environment.

Fault Tolerance: If multiple copies of data exist in a distributed conventional data-
base, the failure of sites holding more than half the copies can cause the whole system to
stop. The reason for this is the need for complete precision of all copies. This approach is
called the pessimistic or the careful approach. Since we allow the precision of some of the

data copies to be less than complete, such a system can still continue operation. A



-19-

challenging problem is to model the tradeofl between the availability of the system (i.e.
how long after the failures the system is still operational), to the degree of imprecision

accumulated in the inactive data copies.

Extension to Knowledgebases: Our emphasis so far has been on views defined in
terms of relational and aggregate operations. Recent years have seen the rapid develop-
ment of fuzzy logic [ZADE 85] and possibdility theory [ZADE 78], and their applications to
approzimate reasoning. In this logical framework the truth or falschood of a proposition
is not a binarf value. Instead it is a real number, a, between 0 and 1, where a and 1-¢
are the degree of truth and degree of falschood of the proposition, respectively. The value
a depends on the evidence collected so far, both for and against the proposition. Each
new piece of snformation increases or decreascs o depending on whether st provides

evidence for or against the proposition.

Our model of abstraction maintenance is very well suited to support such a frame-
work of logic. Consider a set of propositions, representing fuzzy facts about some domain,
which are defined in terms of some premises, i.e. existing pieces of evidence. The former
correspond to the abstractions in our model while the latter correspond to the base data.
As more knowledge about the domain is gathered, additional evidence about the facts is
available and the corresponding a values have to be revised. For a specified degree of pre-
cision in the a's what is the most efficient way of maintaining them, is precisely the prob-

lem that our model provides an answer to.

8. Conclusions

Conventional databases are often not suitable for statistical applications, since they
do not fulfill many of the import;ant needs of the latter. Specifically, during calculating
statistical parameters, they provide results that are completely precise, and spend prohibi-
tive amount of resources in doing do. Almost all analysis in statistics can be done in the

-presence of imprecise data, as long as the error is bounded. Bearing this in mind we
present the idea of precision-time tradeoff as a new paradigm for processing queries that
evaluate statistical parameters from a database. The notions of precision of data and
precision-requirement of query were defined. The main idea is that the cost of processing
a query should be proportional to its precision-requirement, i.e. highest if full precision is
required. We described a data model which allows data with varying degrees of precision.

We next described materialized views as a mechanism (i.e. the physical model) to support



-20-

data with a specified degree of precision. We used a stochastic model to analyze the prob-

lem of view maintenance, and derived two efficient maintenance policies. Finally, we out-

lined the various issues that the new paradigm raises, and that need to be addressed.
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