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NULL STRUCTURES AND DEGENERATE DISPERSION RELATIONS IN TWO

SPACE DIMENSIONS

YUQIU FU AND DANIEL TATARU

Abstract. For a dispersive PDE, the degeneracy of its dispersion relation will deteriorate dispersion of

waves, and strengthen nonlinear effects. Such negative effects can sometimes be mitigated by some null

structure in the nonlinearity.
Motivated by water-wave problems, in this paper we consider a class of nonlinear dispersive PDEs in

2D with cubic nonlinearities, whose dispersion relations are radial and have vanishing Guassian curvature
on a circle. For such a model we identify certain null structures for the cubic nonlinearity, which suffice

in order to guarantee global scattering solutions for the small data problem. Our null structures in the

power-type nonlinearity are weak, and only eliminate the worst nonlinear interaction. Such null structures
arise naturally in some water-wave problems.

1. Introduction

We consider the following model Cauchy problem

(1)

 ∂tu− ih(D)u = A(D)(|P≤Mu|2P≤Mu)

u(0, x) = u0 ∈ L2(R2).

with a cubic nonlinearity.
Here h(ξ) is a radial dispersion relation on R2 which is degenerate on the unit circle, i.e. its Hessian is

degenerate there. P≤M is a cutoff in the frequency space selecting an annulus near the unit circle; this is
where the strongest nonlinear interactions are occuring.

The interesting object here is the multiplier A, whose symbol A(ξ) vanishes to some order on the same
circle. We observe that without A(D), the worst trilinear interaction of waves in the power-type nonlinearity
occurs when waves have equal frequencies on the unit circle. Therefore intuitively the Fourier multiplier
A(D) provides a null structure1 in (1) by eliminating the worst nonlinear interaction. The placement of the
multiplier A(D) in the equation is less important. The same result holds if A(D) applies instead to any of
the factors in the cubic nonlinearity, e.g. as in P≤M (A(D)uP≤MuP≤Mu), etc. In either case, the multiplier
A will still be effective in controlling the leading nonlinear effects.

We will show that such types of null structures are indeed effective in controlling the long time dynamics,
provided that the order of vanishing of A(ξ) on the unit circle is no less than half of that of the order of
degeneracy there for the Hessian of H. Under these conditions, we will prove that small data leads to global
scattering solutions.

We now describe our model in more detail. First, we suppose there exists δ ∈ (0, 1) and a smooth function
γ : (1− δ, 1 + δ)→ R such that h(ξ) = γ(|ξ|). We make the following assumptions on γ:

A) Transversality: |γ′(r)| ≈ 1 for every r ∈ (1− δ, 1 + δ).
B) Degeneracy: There exists β ∈ Z+ such that |γ′′(r)| ≈ |r − 1|β for every r ∈ (1− δ, 1 + δ).

The first condition guarantees the transversality of waves with angularly separated frequencies, and the
second condition gives a finite order β of dispersion degeneracy on the unit circle. Under these conditions,
the worst cubic nonlinear interactions will turn out to occur between equal frequencies on the unit circle.

Department of Mathematics, Xi’an Jiaotong University, Xi’an, China 710049
Department of Mathematics, UC Berkeley, Berkeley, CA 94720

E-mail addresses: tataru@math.berkeley.edu.
1 Traditionally, the expression “null structure” is used in connection with bilinear resonant interactions. In our problem the

nonlinearity is cubic, so our focus is instead on the worst trilinear interactions.
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The Fourier multiplier P≤M is a smooth cutoff in the frequency space selecting the region |ξ| ∈ (1 −
2M+1, 1 + 2M+1), where the integer M < −100 is chosen such that 2M+4 < δ. This is introduced so that
we restrict our attention to the frequency region where the most interesting part of nonlinear interactions
occur.

Last but not least, the Fourier multiplier A(D) is given by a symbol A(ξ) with the property that

(2) |A(ξ)| . ||ξ| − 1|β/2

for |ξ| ∈ (1− δ, 1 + δ), and

(3) suppA(ξ) ⊂ {ξ ∈ R2 : 1− 2M−1 < |ξ| < 1 + 2M−1}.
One motivation for considering the Cauchy problem (1) comes from the study of long-term dynamics

for water-wave systems. For an incompressible, inviscid and irrotational fluid occupying a time-dependent
domain

Ωt = {(x, y) ∈ R2 × R : −H0 ≤ y ≤ h(x, t)}
for some function h(x, t) and for t in some interval It ⊂ R, the water-wave problem can be reduced (see for
example [11]) to the following formulation for unknowns h, φ : R2

x × It → R :

(4)

∂th = G(h)φ

∂tφ = −gh+
(G(h)φ+∇h · ∇φ)2

2(1 + |∇h|2)
− 1

2
|∇φ|2 + σdiv

(
∇h

(1 + |∇h|2)1/2

)
,

where σ ≥ 0 is the surface tension coefficient, g is the gravitational constant, and

G(h) :=
√

1 + |∇h|2N (h).

Here N (h) is the Dirichlet-Neumann map associated to the domain Ωt, and φ(x, t) is the restriction of the
velocity potential to the boundary surface y = h(x, t).

The dispersion relation for the linearized equation of (4) around the zero solution is given by

Λ(ξ) = ±
√
|ξ|(g + σ|ξ|2) tanh(H0|ξ|).

For simplicity of computation we consider the infinite depth case H0 → ∞, in which case the dispersion
relation becomes Λ = ±

√
g|ξ|(1 + σ|ξ|2/g). If we are considering gravity-capillary water waves, that is

σ, g > 0, then away from the origin, det(∇2Λ) vanishes exactly on a circle, which implies that we will not
have optimal dispersion of waves. This motivates (and is an example of) our general dispersion relations
considered above. Another such example occurs in the case of the Euler-Poisson problem for ions [6].

Our nonlinearity has been chosen to be of cubic type, as for this type of dispersion relations, nonlin-
ear interactions in quadratic nonlinearities involving frequencies near the circle are either non-resonant or
transversal2. Because of this, one expects that the long-time dynamics at velocities close to the group veloc-
ities associated to frequencies on the circle are in fact primarily governed by cubic nonlinear interactions.

Returning to our model problem, we begin by observing that, because of the frequency localization in the
nonlinearity, by Hölder’s inequality and Bernstein’s inequality we have

‖A(D)(P≤Mu1P≤Mu2P≤Mu3)‖L2
x
. ‖u1‖L2

x
‖u2‖L2

x
‖u3‖L2

x
.

From this estimate one can easily establish local wellposedness of (1) in L2(R2) using a standard fixed point
argument (see Section 5):

Theorem 1 (Local well-posedness). For every R > 0, there exists T = T (R) > 0 such that for every
u0 ∈ L2(R2) with ‖u0‖L2

x
≤ R, there exists a unique strong solution u ∈ C0([0, T ), L2

x) to the Cauchy
problem (1), and the solution map

BL2
x
(0, R)→ C0([0, T ), L2

x), u0 7→ u

is Lipschitz continuous.

The local well-posedness result above does not use at all the dispersive properties of the equation. This,
however, becomes crucial if one consider the global in time well-posedness question. This is the main goal
of this paper. Our result is as follows:

2 For a complete computation in the gravity/capillary case see [1].
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Theorem 2 (Global wellposedness for small data). There exists ε0 > 0 such that for every u0 ∈ L2(R2)
with ‖u0‖L2

x
≤ ε0, there exists a unique strong global solution u ∈ X0([0,∞))∩C0([0,∞);L2

x) to the Cauchy
problem (1), and the solution map

BL2
x
(0, ε0)→ X0([0,∞)) ∩ C0([0,∞), L2

x), u0 7→ u

is Lipschitz continuous.
Furthermore, the solutions are scattering, i.e. for each small data u0 ∈ L2(R2) there exist u+ ∈ L2(R2),

small, with Lipschitz dependence on u0, so that

lim
t→∞

(
u(t)− eith(D)u+

)
= 0 in L2(R2).

Remark 1. The above wellposedness and scattering result also holds for small solutions that are backward
in time. Indeed if u(t, x) is a solution to (1), then u(−t, x) is a solution to (1) with A(D) replaced by A(−D),
and initial data u0.

The function space X0 captures the dispersive properties of the solutions, and we have the embedding

X0([0,∞)) ⊂ L∞t L2
x([0,∞)× R2).

This is introduced in Section 2 and is defined using U2 type spaces associated to the corresponding linear
flow.

A key role in the proof of our result is played by localized Strichartz estimates and bilinear L2 estimates
for solutions to the linear homogeneous flow. These are derived in Section 3; we hope they will also be of
independent interest due to the optimal treatment of the degeneracy.

The linear and bilinear estimates are transferred to the X0 space in Section 7. This in turn allows us to
conclude the proof of our small data result in Section 5.

In what follows f̂ will denote the spatial Fourier transform of the function f ,

f̂(t, ξ) =
1

2π

∫
R2

f(t, x)e−ix·ξdx,

and qg will denote the inverse Fourier transform, such that (f̂)q= f . We denote the standard inner product
on L2 by 〈 , 〉, that is

〈f, g〉 =

∫
fg.

If X,Y are two subsets of Rn, then X b Y means that X is contained in a compact subset of Y , and
X + Y denotes the set {x + y : x ∈ X, y ∈ Y }. 1X will denote the indicator function of the set X. The
diameter of X is defined as

diamX = sup
x,x′∈X

|x− x′|.

We let A . B denote the statement there exists a constant c > 0 such that A ≤ cB, and let A & B be the
statement B . A. We also let A ∼ B be the statement A . B and B . A. We need to be careful what those
implicit constants depend on. Unless otherwise specified, they depend only on γ (and related parameters
appeared in this section), and χ which is chosen in Section 2. We call those constants admissible. We will
also sometimes describe the dependence explicitly.

2. Function Spaces

To prove Theorem 2, we will use a perturbative argument. Our function spaces will be of Up, V p type,
see [9]. Since most results in this section concerning Up, V p type spaces have already been well developed,
we will usually only provide references but no proofs for them. A detailed exposition of those spaces can be
found in [10]. Unless otherwise stated, we assume p ∈ (1,∞).

Let Z be the collection of finite partitions of the real line

Z = {(t0, . . . , tK) : −∞ < t0 < · · · < tK =∞}.
3



Definition 1. We call the function a : R→ L2(R2) a Up−atom if

a =

K∑
i=1

1[ti−1,ti)φi−1

for some partition (tj) ∈ Z, and some φi ∈ L2(R2) satisfying
∑K−1
i=0 ‖φi‖

p
L2(R2) = 1. We then define

Up(R, L2(R2)) to be the space of functions u : R→ L2(R2) such that

‖u‖Up := inf


∞∑
j=1

|λj | : u =

∞∑
j=1

λjaj , λj ∈ C, aj are Up-atoms

 <∞,

with norm ‖ · ‖Up . Here we adopt the convention that inf ∅ =∞.

Definition 2. V p(R, L2(R2)) is defined to be the space of functions v : R→ L2(R2) for which

‖v‖V p := sup
(tk)k∈Z

(
K∑
k=1

‖v(tk)− v(tk−1)‖pL2(R2)

)1/p

<∞,

where we use the convention that v(tK) = 0 if tK =∞. We let V prc(R, L2(R2)) be the subspace consisting of
right-continuous functions v : R→ L2(R2) in V p such that limt→−∞ v(t) = 0.

Remark 2.

• Up(R, H), V p(R, H) spaces can be similarly defined for functions from the real line to any complex
Hilbert space H, but for our application in this paper we will only consider functions with H =
L2(R2). We will usually omit the space L2(R2) and domain R in the notation, writing Up, V p

instead.
• For 1 ≤ p < q <∞, we have the embeddings

(5) Up ↪→ V prc ↪→ Uq ↪→ L∞t L
2
x,

a proof of which can be found in [10].
• Up, V p spaces are Banach spaces. V prc is a closed subspace of V p, which can be seen immediately

from definitions and the embedding V prc ↪→ L∞t L
2
x.

• U2, V 2 spaces behave well under time truncation and frequency truncation. More precisely we have

(6) ‖1[a,b)u‖U2 . ‖u‖U2

‖Pku‖U2 . ‖u‖U2 ,

where the implicit constants are independent of [a, b) or k. For the definition of Pk see Definition 4
below. The same inequalities hold if U2 is replaced by V 2. These estimates can be easily checked
using definitions.

Definition 3. We let Uph(D) be the space

Uph(D) :=
{
eith(D)u : u ∈ Up

}
with the norm

‖u‖Up
h(D)

= ‖e−ith(D)u‖Up .

We similarly define spaces V ph(D), V
p
h(D),rc corresponding to V p, V prc respectively.

Those spaces are Banach spaces since the original spaces are, and eith(D) is unitary on L2.
As can be seen in the next few sections, our strategy is to perform a dyadic decomposition around the

singular set |ξ| = 1. To make this precise, we let χ : R→ [0, 1] be a smooth function satisfying

χ(r) =

{
1 if |r| ≤ 1/2,

0 if |r| ≥ 3/4.
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Definition 4 (Dyadic decomposition around the unit circle). For k < 0, we let P≤k be the Fourier multipliers
given by symbols

(7) P≤k(ξ) = χ
(
2−k(|ξ| − 1))

)
.

We then define Pk = P≤k −P≤k−1. Also expressions like Pk1<·≤k2 are defined in the obvious way. We let P0

be the Fourier multiplier with symbol

P0(ξ) := 1− P<0(ξ).

Remark 3. We observe that Pk(ξ) is supported on the disjoint union of two annuli

{1− 2k < |ξ| < 1− 2k−2} ∪ {1 + 2k−2 < |ξ| < 1 + 2k}.

We write Pk(ξ) = P+
k (ξ) + P−k (ξ) where P+

k and P−k are supported on 1 + 2k−2 ≤ |ξ| ≤ 1 + 2k and

1−2k ≤ |ξ| ≤ 1−2k−2 respectively. We can of course do the same decomposition to Pk1≤·≤k2 . It is sometimes
convenient for us to consider the + part and the − part separately, and usually the same argument works
for both.

We also observe that projections Pk are almost orthogonal, and therefore we have

(8) ‖u‖L2(R2) ∼

(
0∑

k=−∞

‖Pku‖2L2(R2)

)1/2

.

Now we can introduce the function spaces we will use in the fixed point argument.

Definition 5. Let Y 0 be the space of functions v : R→ L2(R2) such that Pkv ∈ V 2
h(D),rc and

‖v‖Y 0 :=

(
0∑

k=−∞

‖Pkv‖2V 2
h(D)

)1/2

<∞,

endowed with the above norm. Let X0 be the space of functions u : R→ L2(R2) for which Pkv ∈ U2
h(D) and

‖u‖X0 :=

(
0∑

k=−∞

‖Pkv‖2U2
h(D)

)1/2

<∞,

endowed with the above norm.

Remark 4. We first observe that ‖ · ‖L∞t L2
x
. ‖ · ‖Y 0 , ‖ · ‖X0 , which is an immediate consequence of (5)

and (8), and both spaces are Banach spaces under respective norms. Moreover using (8) we can check the
embeddings

(9) U2
h(D) ↪→ X0 ↪→ Y 0 ↪→ V 2

h(D).

Also, X0, Y 0 behave well under time truncation and frequency truncation in the sense of (6), since U2, V 2

spaces do.

We can also consider the time restricted spaces X0([a, b)), where we allow b to be infinity.

Definition 6. We let X0([a, b)) be the space of functions u : [a, b)→ L2(R2) such that the zero extension ũ

ũ(t) =

{
u(t) if t ∈ [a, b)

0 otherwise.

belongs to X0. We put norm ‖u‖X0([a,b)) = ‖ũ‖X0 on the space X0([a, b)).

Since ‖ · ‖L∞t L2
x
. ‖ · ‖X0 , we conclude that under the identification u 7→ ũ, X0([a, b)) is a closed subspace

of X0 and therefore X0([a, b)) is a Banach space with the norm ‖·‖X0([a,b)). If we write X0 without specifying

intervals, we always mean X0(R).

We also need the following duality property between Up and V p
′

spaces. This is a consequence of Theorem
2.10 and Remark 5 in [7], and Lemma 4.32 in [10].
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Proposition 1. Suppose u : R → L2
x(R2) is absolutely continuous on compact intervals and u′(t) = 0 on

(−∞, 0). Then we have

(10) ‖u‖U2 = sup
v∈V 2

rc:‖v‖V 2=1

∣∣∣∣∫
R

∫
R2

u′(t)v(t)dxdt

∣∣∣∣ ,
by which we mean if the right hand side of (10) is finite then u ∈ U2 and (10) holds.

Suppose T ∈ [0,∞]. We let IT be the linear operator given by

(11) IT (f)(t, x) =

∫ t

0

1[0,T )(s)e
i(t−s)h(D)f(s)ds.

We claim that if f ∈ L1
t,locL

2
x, then e−ith(D)IT (f) satisfies the conditions in Proposition 1. To show that

e−ith(D)IT (f) is absolutely continuous on compact intervals we notice that

∂t

(
e−ith(D)IT (f)

)
= 1[0,T )(t)e

−ith(D)f(t),

and by the assumption on f we have 1[0,T )(t)e
−ith(D)f(t) ∈ L1

t,locL
2
x. Therefore by the fundamental theorem

of calculus for Banach space valued functions we have that e−ith(D)IT (f) is absolutely continuous on compact
intervals. The previous computation also shows that

∂t

(
e−ith(D)IT (f)

)
= 0 on (−∞, 0).

As an application of Proposition 1 we prove the following estimate.

Proposition 2. If f ∈ L1
t,locL

2
x, and T ∈ [0,∞], then we have

‖IT (f)(t, x)‖X0 . sup
‖v‖Y 0≤1

∣∣∣∣∣
∫ T

0

∫
R2

f(t, x)v(t, x)dxdt

∣∣∣∣∣ .
Proof. Fix σ > 0. Observe that since

‖IT (f)(t, x)‖X0 =

∥∥∥∥(‖PkIT (f)‖U2
h(D)

)
k≤0

∥∥∥∥
l2
,

there exists a sequence (bk)k≤0 in R such that ‖(bk)‖l2 = 1 and

‖IT (f)(t, x)‖X0 =
∑
k

bk‖PkIT (f)‖U2
h(D)

.

Note that PkIT (f) = IT (Pkf) and Pkf ∈ L1
t,locL

2
x. By Proposition 1, there exists vk ∈ V 2

rc with ‖vk‖V 2 = 1
such that

‖IT (Pkf)‖U2
h(D)
≤
∫
R

∫
R2

1[0,T )(t)e
−ith(D)Pkf(t)vk(t)dxdt+ 2kσ

=

∫
R

∫
R2

1[0,T )(t)f(t)eith(D)Pkvk(t)dxdt+ 2kσ.

where we have used Plancherel’s theorem to move the Fourier multiplier e−ith(D)Pk to act on vk. Now we
let v =

∑
k bke

ith(D)Pkvk. Then we have

‖IT (f)(t, x)‖X0 =
∑
k

bk‖IT (Pkf)‖U2
h(D)

+ σ

≤
∑
k

∫
R

∫
R2

1[0,T )(t)f(t)bkeith(D)Pkvk(t)dxdt+ 2σ

=

∫ T

0

∫
R2

f(t)v(t)dxdt+ 2σ.

6



Also note that PNv = PN

(∑N+2
k=N−2 Pkvk

)
is right continuous since by assumption vk are, and by the

triangle inequality and (6) we have

‖v‖2Y 0 =
∑
N

∥∥∥∥∥PN
(

N+2∑
k=N−2

bke
ith(D)Pkvk

)∥∥∥∥∥
2

V 2
h(D)

.
∑
N

(
N+2∑

k=N−2

b2k‖eith(D)vk‖2V 2
h(D)

)

.
∑
N

(
N+2∑

k=N−2

b2k‖vk‖2V 2

)
. 1.

Since we can always normalize v (in a way that is independent of σ) such that ‖v‖Y 0 ≤ 1 and σ is arbitrary,
we obtain the desired result. �

Remark 5. The proof also shows that if f ∈ L1
t,locL

2
x, then for every T ∈ [0,∞],

‖IT (f)‖X0 . ‖f‖L1
t ([0,T ),L2

x),

and the implicit constant is independent of T. This is because of Hölder’s inequality and the embedding
Y 0 ⊂ L∞t L2

x.

3. Localized Linear and Bilinear Estimates

In this section we consider linear and bilinear Strichartz estimates for our problem, localized to dyadic
anuli {||ξ| − 1| ≈ 2k}. We begin with the following localized Strichartz estimate.

Proposition 3. Suppose k ≤M + 1. Then we have

(12)
∥∥∥eith(D)Pku0

∥∥∥
L4
t,x

. 2−βk/8 ‖Pku0‖L2
x
.

As a consequence, for k ≤M + 1 we have

(13)
∥∥∥eith(D)Pk≤·≤M+1u0

∥∥∥
L4
t,x

. 2−βk/8 ‖Pk≤·≤M+1u0‖L2
x
.

Before proving this proposition, we first establish the following localized dispersive estimate.

Lemma 1. Let χk(D) be the Fourier multiplier Pk−2≤·≤k+2. Then we have

(14)
∥∥∥eith(D)χ2

k(D)u0

∥∥∥
L∞x

.
2−βk/2

|t|
‖u0‖L1

x
.

Proof. We have χk(D) = χ+
k (D)+χ−k (D) where χ±k (D) are Fourier multipliers with symbols P±k−2≤·≤k+2(ξ).

We will only establish (14) for ‖eith(D)(χ+
k (D))2u0‖L∞x . The other part ‖eith(D)(χ−k (D))2u0‖L∞x can be es-

timated in the same way and the triangle inequality will give the estimate (14), as χ+
k (D)χ−k (D) = 0. For

simplicity of notation we will still write χk(D), omitting the + sign. We first observe that

eith(D)χ2
k(D)u0 = K ∗ u0

where

K(t, x) = eith(ξ)χ2
k(ξ) =

∫
R2

eix·ξeith(ξ)χ2
k(ξ)

dξ

(2π)2
.

Therefore by Young’s inequality if suffices to show that

(15) ‖K(t, x)‖L∞x .
2−βk/2

|t|
.

Since

∇ξ(th(ξ) + x · ξ) = tγ′(|ξ|) ξ
|ξ|

+ x,

7



by our assumption (B) on γ in Section 1, there exists a small admissible constant c > 0 such that

(16) |∇ξ(th(ξ) + x · ξ)| ≥ c|x|
for every |t| ≤ c|x| and |ξ| ∈ [1− 2M+3, 1 + 2M+3], and

(17) |∇ξ(th(ξ) + x · ξ)| ≥ c|t|
for every |t| > c−1|x| and |ξ| ∈ [1− 2M+3, 1 + 2M+3].

Write x = (x1, x2), and ξ = (ξ1, ξ2). To prove (15), we split our discussion into three cases.

1). 0 < |t| ≤ c|x|. We integrate by parts and obtain

K(t, x) =

∫
R2

eix·ξeith(ξ)χ2
k(ξ)

dξ

(2π)2

= −i
∫
R2

(
tγ′(|ξ|) ξ

|ξ| + x
)
· ∇ξei(x·ξ+th(ξ))∣∣∣tγ′(|ξ|) ξ
|ξ| + x

∣∣∣2 χ2
k(ξ)

dξ

(2π)2

= i

∫
R2

ei(x·ξ+th(ξ))∇ξ ·


(
tγ′(|ξ|) ξ

|ξ| + x
)

∣∣∣tγ′(|ξ|) ξ
|ξ| + x

∣∣∣2 χ2
k(ξ)

 dξ

(2π)2
.

For every 0 < |t| ≤ c|x| and ξ ∈ suppχk, by (16) we have for j = 1, 2∣∣∣∣∣∣∣∂ξj
(
tγ′(|ξ|) ξj|ξ| + xj

)
∣∣∣tγ′(|ξ|) ξ

|ξ| + x
∣∣∣2
∣∣∣∣∣∣∣ .
|t|+ |x|
|x|2

+
|t|2 + |x|2

|x|3
.

1

|t|
.

Therefore for 0 < |t| ≤ c|x|,

(18)

∣∣∣∣∣∣∣
∫
R2

ei(x·ξ+th(ξ))

∇ξ ·
(
tγ′(|ξ|) ξ

|ξ| + x
)

∣∣∣tγ′(|ξ|) ξ
|ξ| + x

∣∣∣2
χ2

k(ξ)
dξ

(2π)2

∣∣∣∣∣∣∣ .
1

|t|
.

By definition
χk(ξ) = χ

(
2−k−2(|ξ| − 1))

)
− χ

(
2−k+3(|ξ| − 1))

)
.

If we abuse our notation by writing χk(r) = χk(|ξ|) for |ξ| = r (note that χk is radial), then we have

(19)

∫
|χ′k(r)| dr . 1,

which implies that ∫ ∣∣∇ξχ2
k(ξ)

∣∣ dξ . 1.

Hence again by (16) we conclude that for 0 < |t| ≤ c|x|,

(20)

∣∣∣∣∣∣∣
∫
R2

ei(x·ξ+th(ξ))

(
tγ′(|ξ|) ξ

|ξ| + x
)

∣∣∣tγ′(|ξ|) ξ
|ξ| + x

∣∣∣2 ·
(
∇ξχ2

k(ξ)
) dξ

(2π)2

∣∣∣∣∣∣∣ .
1

|t|
.

Combining (18) and (20) we obtain

|K(t, x)| . 1

|t|
for every 0 < |t| ≤ c|x|.

2). |t| > c−1|x|. We repeat the argument in Case 1 with slight modifications and use (17) in the place
of (16) to obtain

|K(t, x)| . 1

|t|
for every |t| > c−1|x|.
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3). c|x| < |t| ≤ c−1|x|. We write the integral K(t, x) in polar coordinate ξ = reiθ as

K(t, x) =
1

(2π)2

∫ 2π

0

∫ ∞
0

ei(r(x1 cos θ+x2 sin θ)+tγ(r))χ2
k(r)rdrdθ,

where as before we have abused our notation by writing χk(r) for χk(reiθ). Making a change of
variable in θ, we have

K(t, x) =
1

(2π)2

∫ 2π

0

∫ ∞
0

ei(r|x| cos θ+tγ(r))χ2
k(r)rdrdθ.

Let ψ1(θ) : S1 = R/2πZ→ [0, 1] be a smooth 2π−periodic function on R such that ψ1|[−π,π] = 1
on [−π/4, π/4] and suppψ1|[−π,π] ⊂ [−π/2, π/2], and let ψ2(θ) be the function ψ1(θ + π). Let
ψ3 = 1− ψ1 − ψ2.

We now write K(t, r) as the sum (I1 + I2 + I3) /(2π)2, where

Ii =

∫ 2π

0

∫
R
ei(r|x| cos θ+tγ(r))χ2

k(r)ψi(θ)rdrdθ.

We estimate the three integrals separately.
a). Estimate of |I1| and |I2|. We will only estimate |I1| since the same argument applies to |I2|.

Suppose (t, x) = λ(t0, x0) with λ = |(t, x)|. Note that |t0| ∼ |x0| ∼ 1 and λ ∼ |t| by our
assumption c|x| < |t| ≤ c−1|x|. We write I1 as∫ π

−π

∫
R
eiλ(r̃|x0| cos θ+t0γ(r̃))χ2

k(r̃)ψ1(θ)r̃dr̃dθ.

Due to the support properties of χk and ψ1, we can make the change of variable{
r = r̃

θ = 2 arcsin
(
α
√

(1/2r)
) (

or α2 = r(1− cos θ)
)

in the integral and obtain

|I1| =
∫ √1+2M+3

−
√

1+2M+3

∫ 1+2M+3

1−2M+3

e−iλα
2

eiλ(r|x0|+t0γ(r))χ2
k(r)rψ1

(
2 arcsin

(
α
√

1/(2r)
)) 2√

2r − α2
drdα.

Therefore by the Van der Corput lemma (see e.g. [15]) applied to integration in α we have

|I1| ≤
C

λ1/2

∫ √1+2M+3

−
√

1+2M+3

I1,αdα .
C

λ1/2
sup

|α|≤
√

1+2M+3

I1,α

where C is a universal constant and

I1,α =

∣∣∣∣∣
∫ 1+2M+3

1−2M+3

eiλ(r|x0|+t0γ(r))χ2
k(r)r∂α

(
ψ1

(
2 arcsin

(
α
√

1/(2r)
)) 1√

2r − α2

)
dr

∣∣∣∣∣ .
To estimate I1,α, noting that

∣∣∂2
r (r|x0|+ t0γ(r))

∣∣ & 2βk on suppχk, we apply Van der Corput
lemma again to the integration in r and obtain

I1,α .
C2−βk/2

λ1/2

∫ 1+2M+3

1−2M+3

∣∣∣∣∂r (χ2
k(r)r∂α

(
ψ1

(
2 arcsin

(
α
√

1/(2r)
)) 1√

2r − α2

))∣∣∣∣ dr.
Recalling (19) and support properties of χk(r) and ψ1(θ) we conclude

sup
|α|≤
√

1+2M+3

I1,α .
2−βk/2

λ1/2
,

which implies

|I1| .
2−βk/2

λ
.

2−βk/2

|t|
.
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b). Estimate of |I3|. Since in the support of ψ3(θ) we have | sin θ| & 1, using integration by parts
we obtain

|I3| =
∣∣∣∣∫ 2π

0

∫
R

∂θ(e
ir|x| cos θ)

−ir|x| sin θ
eitγ(r)χ2

k(r)ψ3(θ)rdrdθ

∣∣∣∣
=

∣∣∣∣∫ 2π

0

∫
R
eir|x| cos θ∂θ

(
eitγ(r)χ

2
k(r)ψ3(θ)

i|x| sin θ

)
drdθ

∣∣∣∣
≤
∫ 2π

0

∫
R

∣∣∣∣∂θ (ψ3(θ)

sin θ

)∣∣∣∣ χ2
k(r)

|x|
drdθ

.
1

|x|

Therefore when c|x| < t ≤ c−1|x| we conclude

|I3| .
1

|t|
.

Hence we have

‖K(t, x)‖L∞x ≤ |I1|+ |I2|+ |I3| .
2−βk/2

|t|
.

Therefore (15) is proved and so is the original lemma. �

Proof of Proposition 3. We first observe that by construction we have

χk(D)Pk(D) = Pk(D).

Therefore it suffice to prove the estimate

(21)
∥∥∥eith(D)χk(D)u0

∥∥∥
L4
t,x

. 2−βk/8‖u0‖L2
x

for every u0 ∈ L2
x. By the standard TT ∗ argument (see for example [15], [16]) applied to the operator

eith(D)χk(D) we conclude that the estimate (21) is equivalent to the following estimate∥∥∥∥∫ ei(t−s)h(D)χ2
k(D)F (s)ds

∥∥∥∥
L4
t,x

. 2−βk/4‖F‖
L

4/3
t,x
.

By duality it suffices to show

(22)

∣∣∣∣∫ ∫ (∫ ei(t−s)h(D)χ2
k(D)F (s)ds

)
G(t, x)dtdx

∣∣∣∣ . 2−βk/4‖F‖
L

4/3
t,x
‖G‖

L
4/3
t,x
.

We can interpolate the trivial estimate∥∥∥eith(D)χ2
k(D)u0

∥∥∥
L2
x

. ‖u0‖L2
x

with the dispersive estimate (14) to obtain

(23)
∥∥∥eith(D)χ2

k(D)u0

∥∥∥
L4
x

.
2−βk/4

|t|1/2
‖u0‖L4/3

x
.

Therefore by Hölder’s inequality and Plancherel’ theorem we have∣∣∣∣∫ ∫ (∫ ei(t−s)h(D)χ2
k(D)F (s)ds

)
G(t, x)dtdx

∣∣∣∣ =

∣∣∣∣∫ ∫ (∫ ei(t−s)h(D)χ2
k(D)F (s)G(t)dx

)
dsdt

∣∣∣∣
.
∫ ∫

2−βk/4

|t− s|1/2
‖F (s)‖

L
4/3
x
‖G(t)‖

L
4/3
x
dsdt.

Since
1

2
+

3

4
+

3

4
= 1+ 1, by Hardy-Littlewood-Sobolev inequality we obtain the desired inequality (22). (13)

follows from (12) and the triangle inequality. �
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Remark 6. Observe that the weighted restriction estimate

(24)
∥∥∥eith(D)κ1/8P≤M+3u0

∥∥∥
L4
t,x

. ‖P≤M+3u0‖L2
x
,

where

κ(ξ) =
γ′(|ξ|)γ′′(|ξ|)

|ξ|(1 + (γ′(|ξ|))2)2

is the Gaussian curvature of the surface τ = h(ξ), will imply the localized Strichartz estimates in Proposi-
tion 3. There are some prior results in this direction. If our curve γ is convex (or concave), then the weighted
restriction theorem proved in [13] immediately implies (12). Given our assumption (B) in the introduction,
this only happens in our setup if β is even, which excludes the most interesting case β = 1. Other such
weighted restriction theorems have been considered for some radial surfaces in R3 [12] [4]. See also [8] for
some weighted restriction estimates in Rn. For more general hypersurfaces in Rn, see [14] [5]. Conversely, for
a radial surface in R3 given by a curve γ satisfying our assumptions, (24) is an easy consequence of (12) and
the bilinear estimate (25) proved later. One may also prove (24) directly by modifying our proof for (12).

By the atomic structure of Up spaces, and embedding (5), we obtain the following.

Corollary 1. For every k ≤M + 1, we have

‖Pk≤·≤M+1u‖L4
t,x
. 2−kβ/8‖Pk≤·≤M+1u‖U4

h(D)
,

and
‖Pk≤·≤M+1u‖L4

t,x
. 2−kβ/8‖Pk≤·≤M+1u‖V 2

h(D)
.

The second part of the section is devoted to bilinear L2 estimates, which exploit transversality in the
bilinear interaction of waves, rather than dispersion. As a starting point for our analysis, we utilize the
following well-known bilinear estimate. The proof given here is adapted from [2].

Proposition 4. Suppose h(ξ), h̃(ξ) are smooth functions on some open subset Ω of R2 and Ω′ b Ω. Let
Ω1,Ω2 be two open subset of Ω′. Suppose

θ := inf
ξ∈Ω1,η∈Ω2

|∇h(ξ)−∇h̃(η)| > 0

and
l = sup

(τ0,ξ0)∈R×R2

meas1{(h(ξ), ξ) : ξ ∈ Ω1, ξ0 − ξ ∈ Ω2, τ0 − h(ξ) = h̃(ξ0 − ξ)} <∞.3

Then we have
‖(eith(D)u)(eith̃(D)v)‖L2

t,x
≤ θ−1/2l1/2‖u‖L2

x
‖v‖L2

x

for every u, v ∈ L2
x with supp û ⊂ Ω1, supp v̂ ⊂ Ω2.

Proof. By Plancherel’s theorem and the Cauchy-Schwartz inequality (applied to the measure δ0(τ − h̃(ξ −
ξ̃)− h(ξ̃))dξ̃), we have

‖(eith(D)u)(eith̃(D)v)‖2L2
t,x

= ‖
∫
δ0(τ − h̃(ξ − ξ̃)− h(ξ̃))û(ξ − ξ̃)v̂(ξ̃)dξ̃‖2L2

τ,ξ

≤
(∫ ∫ ∫

|û(ξ − ξ̃)|2|v̂(ξ̃)|2δ0(τ − h̃(ξ − ξ̃)− h(ξ̃))dξ̃dξdτ

)
× sup

τ,ξ

(∫
1Ω1(ξ̃)1Ω2(ξ − ξ̃)δ0(τ − h̃(ξ − ξ̃)− h(ξ̃))dξ̃

)
≤ ‖u‖2L2

x
‖v‖2L2

x
sup
τ,ξ

(∫
h̃(ξ−ξ̃)+h(ξ̃)=τ

1Ω1
(ξ̃)1Ω2

(ξ − ξ̃) dµ(ξ̃)

|∇h̃(ξ − ξ̃)−∇h(ξ̃)|

)
.

3The previous condition gurantees that the set being measured, which is the intersection of the graph of h over Ω1 and an

inverse translate of the graph of h̃ over Ω2, is a 1-dimensional submanifold in R3. So here the 1-dimensional Haussdorff measure
meas1 just means the length of the curve.
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By our assumption we have

sup
τ,ξ

(∫
h̃(ξ−ξ̃)+h(ξ̃)=τ

1Ω1
(ξ̃)1Ω2

(ξ − ξ̃) dµ(ξ̃)

|∇h̃(ξ − ξ̃)−∇h(ξ̃)|

)
≤ θ−1l.

Therefore we obtain the claimed estimate. �

We now apply the above general bilinear estimate to our problem. For simplicity of exposition we assume
without loss of generality that if k1 ≤ k2 − 10, then |γ′′(r1)| ≤ |γ′′(r2)|/3 whenever |r1 − 1| ≤ 2k1+2 and
2k2−2 ≤ |r2 − 1| ≤ 2M+3. In general we choose a sufficiently large admissible integer in the place of 10.

Proposition 5. Suppose k1 ≤ k2 − 10 and k2 ≤M + 1. Then we have

(25)
∥∥∥(eith(D)P≤k1u)(eith(D)Pk2v)

∥∥∥
L2
tL

2
x

. 2−βk2/42(k1−k2)/4
∥∥P≤k1u‖L2

x
‖Pk2v

∥∥
L2
x

.

As a consequence we have∥∥∥(eith(D)P≤k1u)(eith(D)Pk2≤·≤M+1v)
∥∥∥
L2
tL

2
x

. 2−βk2/42(k1−k2)/4
∥∥P≤k1u‖L2

x
‖Pk2≤·≤M+1v

∥∥
L2
x

.

Remark 7. Since taking complex conjugation preserves L2 norms, we immediately deduce that the propo-
sition still holds if both eith(D) are replaced by e−ith(D). The above proposition also holds if either eith(D)

on the left hand side is replaced by e−ith(D), in which case the following argument goes through with little
modification.

Proof. The second estimate follows immediately from the first one by the triangle inequality. For (25) we
will only estimate

∥∥(eith(D)P≤k1u)(eith(D)P+
k2
v)
∥∥
L2
tL

2
x

since other combinations can be similarly estimated,

and an application of the triangle inequality will give the desired result. As before we will omit + in the
notation. For simplicity of notation we will also abuse our notation by writing u in place of P≤k1u and v in
place of Pk2v. û and v̂ are supported on Ω1 and Ω2 respectively where

Ω1 = {ξ ∈ R2 : 1− 2k1+2 < |ξ| < 1 + 2k1+2}(26)

Ω2 = {ξ ∈ R2 : 1 + 2k2−2 < |ξ| < 1 + 2k2+2}.
We let Rk be the Fourier multiplier given by the symbol 1k2k1≤|ξ|−1<(k+1)2k1 (ξ). Then we can write

v =

2k2−k1+3∑
k=2k2−k1−3

Rkv.

We let Ωk be the annulus (k−1/3)2k1 < |ξ|−1 < (k+4/3)2k1 . By Plancherel’s theorem if for every ξ, ξ′ ∈ Ω1

and η ∈ Ωk, η′ ∈ Ωk
′
we have h(ξ)+h(η) 6= h(ξ′)+h(η′) then 〈(eith(D)u)(eith(D)Rkv), (eith(D)u)(eith(D)Rk′v)〉 =

0. By our assumption (B) on γ we conclude the following almost orthogonality relation

(27) ‖(eith(D)u)(eith(D)v)‖2L2 .
∑
k

‖(eith(D)u)(eith(D)Rkv)‖2L2 .

Now we fix k ∈ [2k2−k1−3, 2k2−k1+3] ∩ Z. To estimate terms on the right hand side of (27), we consider the
following two cases.

1). k1 ≥ (β + 1)k2. We let L = (β + 1)k2. For L ≤ m ≤ −2 we let Qm,j be the Fourier multiplier given
by the symbol

1j2m2π≤θ<(j+1)2m2π(ξ), ξ = |ξ|eiθ.
Then by the triangle inequality we have

(28)∥∥∥(eith(D)u)(eith(D)Rkv)
∥∥∥
L2
≤
−2∑
m=L

2−L−1∑
j=0

∑
j′:1<|j′−j|<min{6,2−m−1}

‖(eith(D)Qm,ju)(eith(D)Qm,j′Rkv)‖L2

+

2−L−1∑
j=0

∑
j′:|j′−j|≤1

‖(eith(D)Qm,ju)(eith(D)Qm,j′Rkv)‖L2

12



We define

Um,j := {ξ ∈ Ω1 : (j − 1/3)2m2π < ξ/|ξ| < (j + 4/3)2m2π}

Vm,j′ :=
{
ξ ∈ Ωk : (j′ − 1/3)2m2π < ξ/|ξ| < (j′ + 4/3)2m2π

}
.

Then Um,j , Vm,j′ contain the support of Qm,j(ξ)û(ξ) and Qm,j′(ξ)Rk(ξ)v̂(ξ) respectively.
Note that when ξ ∈ Ω1 and ξ′ ∈ Ωk we have

|∇h(ξ)−∇h(ξ′)| =
∣∣∣∣γ′(|ξ|) ξ|ξ| − γ′(|ξ′|) ξ′|ξ′|

∣∣∣∣
=

∣∣∣∣γ′(|ξ|)( ξ

|ξ|
− ξ′

|ξ′|

)
+ (γ′(|ξ|)− γ′(|ξ′|)) ξ′

|ξ′|

∣∣∣∣
&

∣∣∣∣ ξ|ξ| − ξ′

|ξ′|

∣∣∣∣+ 2(β+1)k2

because γ′(|ξ|), γ′(|ξ′|) ∼ 1 and

|γ′(|ξ|)− γ′(|ξ′|)| =

∣∣∣∣∣
∫ |ξ|
|ξ′|

γ′′(r)dr

∣∣∣∣∣ ∼ 2(β+1)k2 .

So if we let θ be the parameter in Proposition 4 for Um,j and Vm,j′ then when 1 < |j − j′| < 6 and
L ≤ m ≤ −4,

θ &

∣∣∣∣ ξ|ξ| − ξ′

|ξ′|

∣∣∣∣ & 2m

and when |j′ − j| ≤ 1 and m = L,

θ & 2(β+1)k2 = 2L.

We let l be the parameter in Proposition 4 for Um,j and Vm,j′ . Since h has bounded C3−norm on
the annulus ||ξ| − 1| ≤ 2M+3, we have

l ∼ sup
τ,η

meas1 {ξ ∈ Um,j : η − ξ ∈ Vm,j′ , h(η − ξ) + h(ξ) = τ}.

We let γτ,η be the curve

{ξ ∈ Um,j : η − ξ ∈ Vm,j′ , h(η − ξ) + h(ξ) = τ}.

Fix η ∈ R2 and τ ∈ R. To estimate the length of γτ,η we examine its defining function

f(ξ) := h(η − ξ) + h(ξ).

Then

∇f(ξ) = γ′(|ξ|) ξ
|ξ|
− γ′(|η − ξ|) η − ξ

|η − ξ|
(29)

= (γ′(|ξ|)− γ′(|η − ξ|)) ξ
|ξ|

+ γ′(|η − ξ|)
(
ξ

|ξ|
− η − ξ
|η − ξ|

)
.

We write ∇f = ∇rf +∇θf where

∇rf(ξ) =

(
∇f · ξ

|ξ|

)
ξ, ∇θf = ∇f −∇rf

are the radial and tangential parts of ∇f respectively. Note that when ξ ∈ Um,j and η − ξ ∈ Vm,j′ ,

−γ′(|ξ|) + γ′(|η − ξ|) ∼ 2(β+1)k2 , γ′(|η − ξ|) ∼ 1

So by (29) and our assumption k1 ≥ (β + 1)k2 we know that when 1 < |j − j′| < 6

|∇rf(ξ)|
|∇θf(ξ)|

. 1 if k1/2 + (β + 1)k2/2 < m ≤ −4,

&
2k2(β+1)

2m
if L ≤ m ≤ k1/2 + (β + 1)k2/2.
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for every ξ ∈ Um,j satisfying η − ξ ∈ Vm,j′ . So if we let l be the parameter in Proposition 4 for Um,j
and Vm,j′ , then4 when 1 < |j − j′| < 6,

l .

2k1 if k1/2 + (β + 1)k2/2 < m ≤ −4,
2m

2k2(β+1)
2m if L ≤ m ≤ k1/2 + (β + 1)k2/2

and when |j′ − j| ≤ 1 and m = L = (β + 1)k2,

l . 2L = 2(β+1)k2 .

Applying Proposition 4 we obtain when 1 < |j − j′| < 6,∥∥∥(eith(D)Qm,ju)(eith(D)Qm,j′Rkv)
∥∥∥
L2

.

{
2k1/22−m/2‖Qm,ju‖L2‖Qm,j′Rkv‖L2 if k1/2 + (β + 1)k2/2 < m ≤ −4,

2m−k2(β+1)/22−m/2‖Qm,ju‖L2‖Qm,j′Rkv‖L2 if L ≤ m ≤ k1/2 + (β + 1)k2/2

=

{
2k1/22−m/2‖Qm,ju‖L2‖Qm,j′Rkv‖L2 if k1/2 + (β + 1)k2/2 < m ≤ −4,

2m/22−k2(β+1)/2‖Qm,ju‖L2‖Qm,j′Rkv‖L2 if L ≤ m ≤ k1/2 + (β + 1)k2/2

and when |j′ − j| ≤ 1 and m = L,∥∥∥(eith(D)Qm,ju)(eith(D)Qm,j′Rkv)
∥∥∥
L2
. 2L/22−L/2‖Qm,ju‖L2‖Qm,j′Rkv‖L2

. ‖Qm,ju‖L2‖Qm,j′Rkv‖L2

. 2−βk2/42(k1−k2)/4‖Qm,ju‖L2‖Qm,j′Rkv‖L2

where we have used our assumption k1 ≥ (β + 1)k2.
When 1 < |j−j′| < min{6, 2−m−1} and −3 ≤ m ≤ −2 we can easily see that θ & 1. By Lemma 2

below we have l . 2(k1−k2)/2. So Proposition 4 gives

(30)
∥∥∥(eith(D)Qm,ju)(eith(D)Qm,j′Rkv)

∥∥∥
L2
. 2(k1−k2)/4‖Qm,ju‖L2‖Qm,j′Rkv‖L2 .

Therefore combining the above estimates, (28), and the Cauchy-Schwartz inequality yields∥∥∥(eith(D)u)(eith(D)Rkv)
∥∥∥
L2

.

 ∑
k1/2+(β+1)k2/2<m≤−4

2k1/22−m/2 +
∑

L≤m≤k1/2+(β+1)k2/2

2m/22−k2(β+1)/2

+2(k1−k2)/4 + 2−βk2/42(k1−k2)/4
)

sup
m

∑
j

‖Qm,ju‖2L2

1/2∑
j′

‖Qm,j′Rkv‖2L2

1/2

.
(

2k1/22−(β+1)k2/4−k1/4 + 2(β+1)k2/42k1/42−k2(β+1)/2 + 2−βk2/42(k1−k2)/4
)
‖u‖L2‖Rkv‖L2

. 2−βk2/42(k1−k2)/4‖u‖L2‖Rkv‖L2 .

4To be completely rigorous we need to show that the number of components of γτ,ξ is bounded by some admissible constant.

See the proof of Lemma 2 below.
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2). k1 < (β + 1)k2. We let L′ = k1/2 + (β + 1)k2/2 (without loss of generality we may assume that k2

is even). By the triangle inequality we have

(31)∥∥∥(eith(D)u)(eith(D)Rkv)
∥∥∥
L2
≤

−2∑
m=L′

2−m−1∑
j=0

∑
j′:1<|j′−j|<min{6,2−m−1}

‖(eith(D)Qm,ju)(eith(D)Qm,j′Rkv)‖L2

+

2−L
′
−1∑

j=0

∑
j′:|j′−j|≤1

‖(eith(D)Qm,ju)(eith(D)Qm,j′Rkv)‖L2 .

Arguing as before and noting the assumption k1 < (β + 1)k2, we have when 1 < |j − j′| < 6 and
L′ ≤ m ≤ −4,∥∥∥(eith(D)Qm,ju)(eith(D)Qm,j′Rkv)

∥∥∥
L2

.

((
2k1
)1/2

(2m)−1/2 +

(
2(β+1)k2

2m
2k1
)1/2

2−(β+1)k2/2

)
‖Qm,ju‖L2‖Qm,j′Rkv‖L2

. 2k1/22−m/2‖Qm,ju‖L2‖Qm,j′Rkv‖L2 ,

and when |j′ − j| ≤ 1 and m = L′ = k1/2 + (β + 1)k2/2,∥∥∥(eith(D)Qm,ju)(eith(D)Qm,j′Rkv)
∥∥∥
L2
.
(

2(β+1)k2/22k1/2
)1/2 (

2(β+1)k2
)−1/2

‖Qm,ju‖L2‖Qm,j′Rkv‖L2

. 2−βk2/42(k1−k2)/4‖Qm,ju‖L2‖Qm,j′Rkv‖L2 .

Therefore combining the above estimates, (30) and the Cauchy-Schwarz inequality, we deduce from
(31) that∥∥∥(eith(D)u)(eith(D)Rkv)

∥∥∥
L2
.

2(k1−k2)/4 + 2−βk2/42(k1−k2)/4 +
∑

L′≤m≤−4

2k1/22−m/2

 ‖u‖L2‖Rkv‖L2

.
(

2k2/22−(β+1)k2/4−k1/4 + 2−βk2/42(k1−k2)/4
)
‖u‖L2‖Rkv‖L2

. 2−βk2/42(k1−k2)/4‖u‖L2‖Rkv‖L2 .

Combining the above two cases we therefore conclude that

‖(eith(D)u)(eith(D)Rkv)‖L2 . 2−βk2/42(k1−k2)/4‖u‖L2‖Rkv‖L2

for every k. Now the almost orthogonality relation (27) implies

‖(eith(D)u)(eith(D)v)‖L2 . 2−βk2/42(k1−k2)/4‖u‖L2‖v‖L2 ,

as desired. �

Lemma 2. Suppose k1 ≤ k2 − 10 and k2 ≤ M + 1. Let Ω1,Ω2 be the annuli defined by (26). For every
τ0 ∈ R, ξ ∈ R2 define

γτ0,ξ0 := {ξ : ξ ∈ Ω1, ξ0 − ξ ∈ Ω2, τ0 − h(ξ) = h(ξ0 − ξ)}.
Then

Θ := {θ ∈ [0, 2π] : there exists r such that reiθ ∈ γτ0,ξ0}
is a disjoint union of at most c many intervals, each of which has size less than C2(k1−k2)/2 for some
admissible constants c, C.

Proof. We fix ξ0, τ0. Without loss of generality we may suppose that in polar coordinates ξ0 = r0e
iθ0 = r0.

Let Ω be the set
Ω := {ξ : ξ ∈ Ω1, ξ0 − ξ ∈ Ω2}.

and let Ω′ be the set
Ω′ := {reiθ ∈ Ω : θ 6= 0, π}.
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So using the above notation we have

γτ0,ξ0 = {ξ ∈ Ω : τ0 − h(ξ) = h(ξ0 − ξ)}.
Writing down the inequalities defining annuli Ω1 and ξ0 − Ω2 we see that, depending on r0, Ω′ can have at
most two components, which we will denote by U ′ and U ′′. They satisfy

U ′ = {reiθ ∈ Ω : 0 < θ < π}, U ′′ = {reiθ ∈ Ω : −π < θ < 0}.
In the case when there is only one component, we put the other one to be the empty set. If Ω′ has no
component, we put both to be the empty set.

We first observe that U ′ satisfies

(32) U ′θ := {r : reiθ ∈ U ′}, U ′r := {θ : reiθ ∈ U ′}
are intervals, for every θ, r. U ′′ has the same properties (32) with U ′ replaced by U ′′. From now on we will
only consider the part of γτ0,ξ0 that lies in U ′, and the same argument will apply to the part lying in U ′′.

Let f(r, θ) be the defining function of γτ0,ξ0

f(r, θ) := γ(|reiθ − r0|) + γ(r).

Noting that

|reiθ − r0| =
√
r2 + r2

0 − 2rr0 cos θ,

we differentiate f with respect to r, θ respectively and obtain

(33) ∂rf(r, θ) = γ′(|reiθ − r0|)
r − r0 cos θ

|reiθ − r0|
+ γ′(r),

(34) ∂θf(r, θ) = γ′(|reiθ − r0|)
rr0 sin θ

|reiθ − r0|
.

Recall that under the assumption ξ = reiθ ∈ Ω, we always have

(35) γ′(r), γ′(|reiθ − r0|) ∼ 1.

Also note that in order for γτ0,ξ0 to be nonempty, we must have

(36) 2k2 . r0 . 1.

When reiθ ∈ U ′, we have
∂θf(r, θ) > 0.

Therefore due to property (32), for every r ∈ [1− 2k1+2, 1 + 2k1+2], there exists at most one θ ∈ (0, π) such
that reiθ ∈ U ′ and f(r, θ) = τ0. So we can parametrize

γ1 := γτ0,ξ0 ∩ U ′

by θ = θ(r). By the implicit function theorem we know that θ(r) is a smooth function defined on a union of
disjoint intervals I :=

⋃
i Ii in (1− 2k1+2, 1 + 2k1+2), and

(37) θ′(r) =
γ′(|reiθ − r0|)(r − r0 cos θ) + γ′(r)|reiθ − r0|

γ′(|reiθ − r0|)rr0 sin θ
.

We write Ii = (ai, bi) where 1− 2k1+2 ≤ ai < bi ≤ 1 + 2k1+2.
We fix i in the index set J of Ii and ri ∈ Ii By (37) we have

(cos θ)′(r) = −γ
′(|reiθ − r0|)(r − r0 cos θ) + γ′(r)|reiθ − r0|

rr0γ′(|reiθ − r0|)
,

which implies for r ∈ (ai, bi)

cos θ(r) = cos θ(ri)−
∫ r

ri

γ′(|reiθ − r0|)(r − r0 cos θ) + γ′(r)|reiθ − r0|
rr0γ′(|reiθ − r0|)

dr.

Since for every r ∈ (ai, bi) ∣∣∣∣γ′(|reiθ|)(r − r0 cos θ) + γ′(r)|reiθ − r0|
rr0γ′(|reiθ − r0|)

∣∣∣∣ . 2−k2
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and bi − ai . 2k1 , we therefore conclude that for every r ∈ (ai, bi)

|θ(r)− θ(ri)| . 2(k1−k2)/2.

To finish the proof we are left to show that the cardinality of the index set J is bounded by some admissible
constant c. Applying implicit function theorem to f(r, θ) on Ω′+B(0, 2k1), the 2k1 neighborhood of Ω′, we see
that for every j ∈ J, ajeiθ(aj), bjeiθ(bj) are contained in ∂Ω′, and for distinct j, k ∈ J, {ajeiθ(aj), bjeiθ(bj)} 6=
{akeiθ(ak), bke

iθ(bk)}. So it suffices to show that

K := {reiθ ∈ ∂Ω′ : τ0 − γ(r) = γ
(∣∣r0 − reiθ

∣∣)}
has cardinality no more than c for some admissible constant c. Note that ∂Ω′ is a subset of ∂Ω1 ∪ (r0 +
∂Ω2) ∪ {reiθ ∈ Ω1 : θ = 0, π}. Previous argument has already shown that

|K ∩ ∂Ω1| ≤ 2.

Similarly we have5

|K ∩ (r0 + ∂Ω2)| ≤ 2.

Setting θ = 0 in (33) yields

∂rf(r, 0) = γ′(|r − r0|)
r − r0

|r − r0|
+ γ′(r).

Therefore for rei0 ∈ ∂Ω′

∂rrf(r, 0) = γ′′(r) + γ′′(|r0 − r|)
is either always positive or always negative, as |γ′′(|r0 − r|)| ≥ |γ′′(r)|/3. Noting that {r : rei0 ∈ ∂Ω′} is an
interval, we therefore conclude that

|K ∩ {reiθ ∈ Ω1 : θ = 0}| ≤ 2.

Similarly we have

|K ∩ {reiθ ∈ Ω1 : θ = π}| ≤ 2.

Therefore |K| ≤ 8 and the proof is complete.
�

Using the extension property of Up spaces (Proposition 2.16 in [7]), we obtain

Corollary 2. Suppose k1 ≤ k2 − 10 and k2 ≤M + 1. Then we have

(38) ‖P≤k1uPk2≤·≤M+1v‖L2
t,x
. 2−βk2/42(k1−k2)/4 ‖P≤k1u‖U2

h(D)
‖Pk2≤·≤M+1v‖U2

h(D)
.

The right hand side of (38) is evaluated in U2−based spaces, which, as we shall see later, is insufficient for
our fixed point argument. However, we can use the following interpolation result from [7] to transfer from
Up−based estimates to V p−based estimates, provided we have an additional Uq−based estimate for some
q > p. Another way of transferring from Up to V p can be found in [3], which is not easy to implement here.

Proposition 6. Suppose 1 < p < q. Let E be a Banach space and T : Uq → E be a linear bounded operator
with operator norm Cq. Suppose in addition there exists Cp ∈ (0, Cq] such that the estimate ‖Tu‖E ≤ Cp‖u‖Up
holds for all u ∈ Up. Then we have for every u ∈ V prc

‖Tu‖E ≤ Cp,qCp
(

log
Cq
Cp

+ 1

)
‖u‖V p ,

where Cp,q is a constant depending only on p, q.

In our case we already have a U2−based estimate in Corollary 2. We can also obtain a U4−based estimate
from Proposition 3. Indeed, under the same condition as in Corollary 2, by Hölder’s inequality we have

‖Pk1uPk2≤·≤M+1v‖L2
t,x
. ‖Pk1u‖L4

t,x
‖Pk2≤·≤M+1v‖L4

t,x

. 2−β(k1+k2)/8‖Pk1u‖U4
h(D)
‖Pk2≤·≤M+1v‖U4

h(D)
.

5One way to see this is to repeat the previous argument in polar coordinates centered at ξ0.
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Therefore applying Proposition 6 twice6, and noticing the assumption that k1 ≤ k2 − 10, we obtain

‖Pk1uPk2≤·≤M+1v‖L2
t,x
. 2−βk2/42(k1−k2)/4|k2 − k1|2‖Pk1u‖V 2

h(D)
‖Pk2≤·≤M+1v‖V 2

h(D)

if Pk1u, Pk2≤·≤M+1v ∈ V 2
h(D),rc. Summing the above inequality over k1 and using the triangle inequality we

obtain the following corollary:

Corollary 3. Suppose k1 ≤ k2 − 10 and k2 ≤M + 1. If P≤k1u, Pk2≤·≤M+1v ∈ V 2
rc,h(D), then

(39) ‖P≤k1uPk2≤·≤M+1v‖L2
t,x
. 2−βk2/4‖P≤k1u‖V 2

h(D)
‖Pk2≤·≤M+1v‖V 2

h(D)

The localized linear and bilinear estimates discussed above allow us to obtain the following crucial estimate
on the nonlinear term, whose proof will occupy the next section. We recall that IT is the operator given by

IT (f) =

∫ t

0

1[0,T )(s)e
i(t−s)h(D)f(s)ds.

Proposition 7. For T ∈ [0,∞] we have

(40)
∥∥IT (A(D)

(
P≤Mu1P≤Mu2P≤Mu3

))∥∥
X0 . ‖u1‖X0‖u2‖X0‖u3‖X0 .

4. Proof of Proposition 7

If k1, k2, k3 are three nonpositive integers, then we let k̃1, k̃2, k̃3 be the increasing rearrangement of
k1, k2, k3, that is, k̃1 ≥ k̃2 ≥ k̃3. Observe that when u1, u2, u3 ∈ X0, we have

A(D)
(
P≤Mu1(s)P≤Mu2(s)P≤Mu3(s)

)
∈ L1

t,locL
2
x

because of Hölder’s inequality, the embedding X0 ⊂ L∞t L2
x, and Bernstein’s inequality. Therefore by Propo-

sition 2 we have

∥∥IT (A(D)
(
P≤Mu1P≤Mu2P≤Mu3

))∥∥
X0 = sup

‖v‖Y 0≤1

∫ T

0

∫
R2

∣∣(A(D)
(
P≤Mu1P≤Mu2P≤Mu3

))
vdxdt

∣∣ .
We fix v ∈ Y 0 with ‖v‖Y 0 ≤ 1. By Plancherel’s theorem we can move the Fourier multiplier A(D) to act on
v. Therefore we have

∣∣∣∣∣
∫ T

0

∫
R2

(
A(D)

(
P≤Mu1P≤Mu2P≤Mu3

))
vdxdt

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

∫
R2

(
P≤Mu1P≤Mu2P≤Mu3

)
A(D)vdxdt

∣∣∣∣∣
(41)

≤
∑
k≤M

∣∣∣∣∣
∫ T

0

∫
R2

(
P≤Mu1P≤Mu2P≤Mu3

)
A(D)Pkvdxdt

∣∣∣∣∣ .
Above we have used the support property of A(ξ) to restrict the sum over k ∈ Z to k ≤M.

To shorten notation, we let

fk1,k2,k3,k := Pk1u1Pk2u2Pk3u3A(D)Pkv.

We similarly define fk1≤M ;k2≤M ;k3≤M ;k and others in the obvious way.

6In fact we apply Proposition 6 twice to obtain the estimate for enlarged projections:

‖Pk1−2≤·≤k1+2uPk2−2≤·≤M+3v‖L2
t,x
. 2−βk2/42(k1−k2)/4|k2 − k1|2‖u‖V 2

h(D)
‖v‖V 2

h(D)
.

Then we substitute u and v by Pk1u and Pk2≤·≤M+1v respectively.
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We can split the last sum in (41) into four parts I1, I2, I3, I4, where

I1 =
∑
k≤M

∣∣∣∣∣∣
∫ T

0

∫
R2

∑
k−10≤k̃1,k̃2,k̃3≤M

fk1,k2,k3,kdxdt

∣∣∣∣∣∣
I2 =

∑
k≤M

∣∣∣∣∣∣
∫ T

0

∫
R2

∑
k−10≤k̃1,k̃2≤M ;k̃3<k−10

fk1,k2,k3,kdxdt

∣∣∣∣∣∣
I3 =

∑
k≤M

∣∣∣∣∣∣
∫ T

0

∫
R2

∑
k−10≤k̃1≤M ;k̃2,k̃3<k−10

fk1,k2,k3,kdxdt

∣∣∣∣∣∣
I4 =

∑
k≤M

∣∣∣∣∣∣
∫ T

0

∫
R2

∑
k̃1,k̃2,k̃3<k−10

fk1,k2,k3,kdxdt

∣∣∣∣∣∣ .
We estimate the four sums separately. Our general strategy will be to use Corollary 1 and Corollary 3 to

establish the estimates

Ii ≤ ‖u1‖X0‖u2‖X0‖u3‖X0

for i = 1, 2, 3, 4, and therefore conclude Proposition 7.

1). Estimate of I1. First we consider the near diagonal sum, that is, the sum over k1, k2, k3 ∈ [k−10, k+
10). In this case we use Hölder’s inequality and Corollary 1 four times to conclude that∣∣∣∣∣
∫ T

0

∫
R2

fk1,k2,k3,kdxdt

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

∫
R2

Pk1u1Pk2u2Pk3u3PkA(D)vdxdt

∣∣∣∣∣
. ‖Pk1u1‖L4

t,x
‖Pk2u2‖L4

t,x
‖Pk3u3‖L4

t,x
‖PkA(D)v‖L4

t,x

. 2−4kβ/82βk/2‖Pk1u1‖V 2
h(D)
‖Pk2u2‖V 2

h(D)
‖Pk3u3‖V 2

h(D)
‖Pkv‖V 2

h(D)

. ‖Pk1u1‖V 2
h(D)
‖Pk2u2‖V 2

h(D)
‖Pk3u3‖V 2

h(D)
‖Pkv‖V 2

h(D)
.

We then need to estimate the sum over the near diagonal region k1, k2, k3 ∈ [k − 10, k + 10). Using
the Cauchy-Schwartz inequality and the embedding U2 ⊂ V 2

rc, we have∑
k

k+9∑
k1,k2,k3=k−10

∣∣∣∣∣
∫ T

0

∫
R2

fk1,k2,k3,kdxdt

∣∣∣∣∣
.

(∑
k

‖Pku1‖2U2
h(D)

)1/2(∑
k

‖Pku2‖2U2
h(D)

)1/2(∑
k

‖Pku3‖2U2
h(D)

)1/2(∑
k

‖Pkv‖2V 2
h(D)

)1/2

. ‖u1‖X0‖u2‖X0‖u3‖X0‖v‖Y 0

. ‖u1‖X0‖u2‖X0‖u3‖X0 .

Now we consider the off-diagonal sum, that is, the sum over k̃1 ≥ k + 10. We will only consider
the sum over k1 = k̃1 ≥ k+ 10, since the remaining sum can be split into finitely many similar cases
and be similarly treated. Applying Hölder’s inequality, Corollary 3 once and Corollary 1 twice, we
obtain when k + 10 ≤ k1 ≤M∣∣∣∣∣

∫ T

0

∫
R2

fk1;k−10≤k2,k3≤M ;kdxdt

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

∫
R2

Pk1u1Pk−10≤k2≤Mu2Pk−10≤k3≤Mu3PkA(D)vdxdt

∣∣∣∣∣
. ‖Pk1u1PkA(D)v‖L2

t,x
‖Pk−10≤k2≤Mu2‖L4

t,x
‖Pk−10≤k3≤Mu3‖L4

t,x

. 2βk/22−βk1/42−2βk/8‖Pk1u1‖V 2
h(D)
‖Pkv‖V 2

h(D)
‖u2‖V 2

h(D)
‖u3‖V 2

h(D)

. 2(k−k1)β/4‖Pk1u1‖U2
h(D)
‖Pkv‖V 2

h(D)
‖u2‖X0‖u3‖X0 .
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Here we have also used the embedding (9). Therefore by the Cauchy-Schwartz inequality we conclude
that∑

k≤M

∑
k+10≤k1≤M

∣∣∣∣∣
∫ T

0

∫
R2

fk1;k−10≤k2,k3≤M ;kdxdt

∣∣∣∣∣
. ‖u2‖X0‖u3‖X0

∑
k≤M

∑
k+10≤k1≤M

2β(k−k1)/4‖Pk1u1‖2U2
h(D)

1/2

×

∑
k≤M

∑
k+10≤k1≤M

2β(k−k1)/4‖Pkv‖2V 2
h(D)

1/2

. ‖u1‖X0‖u2‖X0‖u3‖X0‖v‖Y 0

. ‖u1‖X0‖u2‖X0‖u3‖X0 .

2). Estimate of I2. We will only consider the sum over k3 = k̃3 < k − 10. Applying Hölder’s inequality,
Corollary 1 twice and Corollary 3 once, we obtain when k3 < k − 10,∣∣∣∣∣
∫ T

0

∫
R2

fk−10≤k1,k2≤M ;k3;kdxdt

∣∣∣∣∣ . ‖Pk3u3PkA(D)v‖L2
t,x
‖Pk−10≤k1≤Mu1‖L4

t,x
‖Pk−10≤·≤Mu2‖L4

t,x

. 2−βk3/42−2βk/82βk/2‖u1‖X0‖u2‖X0‖Pk3u3‖V 2
h(D)
‖Pkv‖V 2

h(D)

. 2β(k−k3)/4‖Pk3u3‖U2
h(D)
‖Pkv‖V 2

h(D)
‖u1‖X0‖u2‖X0 ,

Here we have again used the embedding (9). Now we sum the above estimate over k ≤M,k3 < k−10
using the Cauchy-Schwartz inequality as before to conclude that

I2 . ‖u1‖X0‖u2‖X0‖u3‖X0 .

3). Estimate of I3. We will only consider the sum over k2 = k̃2 < k − 10, k3 = k̃3 < k − 10. Applying
Hölder’s inequality and Corollary 1, 3, we obtain when k − 10 ≤ k1 ≤M,∣∣∣∣∣
∫ T

0

∫
R2

fk1;k2<k−10;k3<k−10;kdxdt

∣∣∣∣∣
.
(
‖Pk1u1P<k−20u2‖L2

t,x
+ ‖Pk1u1Pk−20≤·<k−10u2‖L2

t,x

)
‖P<k−10u3PkA(D)v‖L2

t,x

.
(

2−β(k+k1)/4 + 2−β(k1+3k)/8
)

2βk/2‖u2‖X0‖u3‖X0‖Pk1u1‖V 2
h(D)
‖Pkv‖V 2

h(D)

. 2β(k−k1)/8‖Pk1u1‖U2
h(D)
‖Pkv‖V 2

h(D)
‖u2‖X0‖u3‖X0 .

We sum the above estimate over k−10 ≤ k1 ≤M, and use the Cauchy-Schwartz inequality as before
to conclude∑

k≤M

∑
k−10≤k1≤M

∣∣∣∣∣
∫ T

0

∫
R2

fk1;k2<k−10;k3<k−10;kdxdt

∣∣∣∣∣ ≤ ‖u1‖X0‖u2‖X0‖u3‖X0 .

Hence we obtain

I3 . ‖u1‖X0‖u2‖X0‖u3‖X0 .

4). Estimate of I4. Without loss of generality we only consider the sum over k1 ≤ k2 ≤ k3 < k− 10. We
let N > 0 be an admissible integer which will be chosen later. We let Ti be the Fourier multiplier
with symbol 12πi/N≤ξ/|ξ|<2π(i+1)/N (ξ) where we again use the identification S1 ∼= R/2πZ. Then∫ T

0

∫
R2

fk1,k2,k3,kdxdt =

N−1∑
i1,i2,i3,i=0

∫ T

0

∫
R2

(Ti1Pk1u1)(Ti2Pk2)(Ti3Pk3u3)(TiPkA(D)v)dxdt.
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We let Oi,k be the open set

Oi,k = {ξ ∈ R2 : 2π(i− 1/3)/N < ξ/|ξ| < 2π(i+ 4/3)/N, 2k−2 < ||ξ| − 1| < 2k+2}

By Plancherel’s theorem, in order for the integral∫ T

0

∫
R2

(Ti1Pk1u1)(Ti2Pk2u2)(Ti3Pk3u3)(TiPkA(D)v)dxdt

not to vanish, we must have

(42) {ξ1 + ξ3 : ξ1 ∈ Oi1,k1 , ξ3 ∈ Oi3,k3}
⋂
{ξ2 + ξ : ξ2 ∈ Oi2,k2 , ξ ∈ Oi,k} 6= ∅.

When k1, k2, k3 < k − 10, (42) implies that there exists an admissible integer N > 0 satisfying
N ∼ 2k/2 and an admissible constant d > 0 such that

(43)

∫ T

0

∫
R2

fk1,k2,k3,kdxdt =

N−1∑
i2,i=0

 ∑
|i1−i2|≤d

∑
|i3−i|≤d

+
∑

|i1−i|≤d

∑
|i3−i2|≤d


∫ T

0

∫
R2

(Ti1Pk1u1)(Ti2Pk2u2)(Ti3Pk3u3)(TiPkA(D)v)dxdt.

In particular (42) implies that if we let θ1, θ2 be the angles between ξ1, ξ3 and ξ2, ξ respectively, then

2(cos θ1 − cos θ2)|ξ1||ξ3| = |ξ1|+ |ξ3| − |ξ2| − |ξ| − 2 cos θ2(|ξ1||ξ3| − |ξ2||ξ|).

The above constraint implies that if we choose N large enough (still satisfying N ∼ 2k/2) then∫ T

0

∫
R2

(Ti1Pk1u1)(Ti2Pk2u2)(Ti3Pk3u3)(TiPkA(D)v)dxdt = 0

if |i1 − i3| ≤ 2, N/2− 2 ≤ |i1 − i2| ≤ N/2 + 2, N/2− 2 ≤ |i3 − i2| ≤ N/2 + 2 all hold.
We let l, θ be the parameters in Proposition 4 for Oi′,k′ , Oi′′,k′′ with k′ ≤ k′′, k′ < k − 10 and

2 < |i′ − i′′| ≤ d. Then the same argument in the proof of Proposition 5 combined with Lemma 2
shows that

l . 2k
′
+ 2(k′−k′′)/2 . 2(k′−k′′)/2, θ & 2k/2.

So Proposition (4) implies that

‖(eith(D)Ti′Pk′u)(eith(D)Ti′′Pk′′v)‖L2
t,x
. 2(k′−k′′)/42−k/4‖Ti′Pk′u‖L2

x
‖Ti′′Pk′′v‖L2

x

when 2 < |i′ − i′′| ≤ d. Similarly we have

‖(eith(D)Ti′Pk′u)(eith(D)Ti′′Pk′′v)‖L2
t,x
. 2(k′−k′′)/42−k/4‖Ti′Pk′u‖L2

x
‖Ti′′Pk′′v‖L2

x
.

when −N/2 + 2 < |i′ − i′′| < N/2 − 2. In particular 2(k′−k′′)/42−k/4 ≤ 2(k′−k)/42−βk/4. Therefore
arguing as in the proof of (5) and the argument deriving Corollary 3, we conclude from the above
analysis that when k1 ≤ k2 ≤ k3 < k − 10,∣∣∣∣∣

∫ T

0

∫
R2

(Pk1u1)(Pk2u2)(Pk3u3)(PkA(D)v)dxdt

∣∣∣∣∣
.
(

2(k1−k)/82(k2−k3)/8 + 2(k2−k)/82(k1−k3)/8 + 2(k3−k)/82(k1−k2)/8
)

× 2−βk/22βk/2‖Pk1u1‖V 2
h(D)
‖Pk2u2‖V 2

h(D)
‖Pk3u3‖V 2

h(D)
‖Pkv‖V 2

h(D)
.

Summing the above estimate over k1 ≤ k2 ≤ k3 < k − 10 and using the Cauchy-Schwartz inequality
yield

I4 . ‖u1‖X0‖u2‖X0‖u3‖X0 .
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5. Proof of the Main Theorem

We recall that IT is the linear operator given by

IT (f)(t, x) =

∫ t

0

1[0,T )(s)e
i(t−s)h(D)f(s)ds

where T ∈ [0,∞]. By Duhamel’s formula we know that u ∈ C0([0, T ), L2
x) is a strong solution to the Cauchy

problem (1) if and only if it satisfies the following integral equation

u(t) = eith(D)u0 + i

∫ t

0

ei(t−s)h(D)A(D)
(
|P≤Mu(s)|2P≤Mu(s)

)
ds

on [0, T ), which is implied by

(44) u(t) = 1[0,T )(t)e
ith(D)u0 + 1[0,T )(t)IT

(
A(D)

(
|P≤Mu|2P≤Mu

))
.

The identity (44) also implies that u(t) = 0 outside [0, T ).
We let NT be the (nonlinear) operator given by

(45) NT (u) = 1[0,T )(t)IT
(
A(D)

(
|P≤Mu|2P≤Mu

))
.

We will use a fixed point argument to the map7

φT : u 7→ 1[0,T )(t)e
ith(D)u0 +NT (u)

to obtain a strong solution u ∈ C0
t ([0, T ), L2

x). Such fixed point argument of establishing wellposedness results
has been a standard method (see for example [17] [16]).

Proof of Theorem 2. Let ε0, δ0 > 0 be small constants to be chosen later, and let T =∞. We let BL2
x
(0, ε0)

be the closed ball of radius ε0 in the space L2
x(R2), and similarly we let BX0(0, δ0) be the closed ball of radius

δ0 in X0. Because of the embedding X0 ↪→ L∞t L
2
x, BX0(0, δ0) ∩ C0([0,∞), L2

x) is a closed subspace of X0,
and we put X0−norm on it which turns it into a Banach space.8

Since the nonlinearity is of algebraic power type, we can show using ‖1[0,∞) · ‖X0 . ‖ · ‖X0 , Proposition 7
and the triangle inequality that

‖N∞(u)−N∞(v)‖X0 ≤ c1(‖u‖2X0 + ‖v‖2X0)‖u− v‖X0 ,

for some admissible constant c1 > 0. We also have

(46) ‖φ∞(u)‖X0 ≤ c2
(
‖u0‖L2

x
+ ‖u‖3X0

)
for some admissible constant c2 > 0, since ‖1[0,∞)(t)e

ith(D)u0‖X0 . ‖1[0,∞)u0‖U2 . ‖u0‖L2
x
. Therefore we

can choose δ0, ε0 > 0 small enough depending only on c1, c2 such that when u0 ∈ BL2
x
(0, ε0),

φ∞ : BX0(0, δ0) ∩ C0([0,∞), L2
x)→ BX0(0, δ0) ∩ C0([0,∞), L2

x)

and we have a strict contraction

‖φ∞(u)− φ∞(v)‖X0 ≤ 1

2
‖u− v‖X0 .

Therefore for every u0 ∈ BL2
x
(0, ε0), there exists a unique fixed point u ∈ BX0(0, δ0)∩C0([0,∞), L2

x) of φ∞,
which by Duhamel’s formula is a strong global solution to the Cauchy problem (1).

For fixed points u, v of φ∞ with initial data u0, v0 ∈ BL2
x
(0, ε0) respectively, we have

‖u− v‖X0 ≤ c2‖u0 − v0‖L2
x

+ 2c1δ
2
0‖u− v‖X0 .

If we choose δ0, ε0 sufficiently small then we can conclude the map

BL2
x
(0, ε0)→ BX0(0, δ0) ∩ C0([0,∞), L2

x), u0 7→ u

is Lipschitz continuous. Hence the solution map

BL2
x
(0, ε0)→ BX0([0,∞))(0, δ0) ∩ C0([0,∞), L2

x), u0 7→ u|[0,∞)

7Note that the map here depends on u0, although not indicated explicitly in the notation.
8By BX0 (0, δ0) ∩ C0([0,∞), L2

x) we mean the space of functions u ∈ BX0 (0, δ0) such that u is continuous on [0,∞) as a

function into L2
x.
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is Lipschitz continuous. Scattering of solutions is an immediate consequence of the fact that the limit
limt→∞ g exists for any function g ∈ U2.

To establish unconditional uniqueness of solutions in X0([0,∞)) ∩ C0([0,∞), L2
x), we will show that if

u, v ∈ X0([0,∞))∩C0([0,∞), L2
x) are two strong solutions to our Cauchy problem (1) with u(0) = v(0), then

u = v on [0,∞). By the time-translation invariance of our Cauchy problem (1) and a continuity argument,
it suffices to show that if u(0) = v(0), then the solutions u, v agree on a short time interval [0, T ′) for some
T ′ > 0. However this is immediate from local wellposedness of our Cauchy problem (1). �
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