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Brain imaging of the cortex in ADHD: A coordinated analysis of 
large-scale clinical and population-based samples

A full list of authors and affiliations appears at the end of the article.

Abstract

Objective: Neuroimaging studies show structural alterations of various brain regions in children 

and adults with ADHD, although non-replications are frequent. Our aim is to identify cortical 

characteristics related to ADHD using large-scale studies.

Methods: Cortical thickness and surface area (based on the Desikan–Killiany atlas) were 

compared between cases (n=2246) and controls (n=1934) for children, adolescents, and adults 

separately in ENIGMA-ADHD, a consortium of 36 centers. To assess familial effects on cortical 

measures, cases, unaffected siblings, and controls in the NeuroIMAGE study (n=506) were 

compared. Associations of the attention scale from the Child Behavior Checklist with cortical 

measures were determined in a pediatric population sample (Generation-R, n=2707).

Results: In ENIGMA-ADHD, lower surface area values were found in children with ADHD, 

mainly in frontal, cingulate, and temporal regions; the largest effect was for total surface area 

(Cohen’s d=−0.21; pFDR=<0.001). Fusiform gyrus and temporal pole cortical thickness was also 

lower in children with ADHD. Neither surface area nor thickness differences were found in the 

adolescents/adult groups. Familial effects were seen for surface area in several regions. In an 

overlapping set of regions, surface area, but not thickness, was associated with attention problems 

in Generation-R.

Conclusion: Subtle differences in cortical surface area are widespread in children, but not in 

adolescents and adults with ADHD, confirming involvement of frontal cortex and highlighting 

regions deserving further attention. Importantly, the alterations behave like endophenotypes in 

families and are linked to ADHD symptoms in the population, extending evidence that ADHD 

behaves as a continuous trait in the population. Future longitudinal studies should clarify 

individual lifespan trajectories that lead to non-significant findings in adolescent/adult groups 

despite presence of an ADHD diagnosis.

Keywords

ADHD; cortical thickness; cortical surface area; lifespan; meta-analysis; imaging

INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) is a common neuropsychiatric disorder 

characterized by age-inappropriate levels of inattention and/or hyperactivity and impulsivity. 

ADHD occurs in around 5-7% of children and 2.5% of adults (1, 2). ADHD can negatively 

Georgii Karkashadze received payment for the authorship of the article and speaker fees from Sanofi and from Pikfarma.
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affect multiple aspects of daily life of patients, and represents a major public health 

challenge (3). Neuroimaging studies in ADHD show differences between the brains of 

people with ADHD and those of healthy individuals in structure (4-9), function (8, 10, 11), 

and connectivity (12-14), albeit with small effect sizes (9). While informative, existing 

studies have several major limitations. First, most ADHD neuroimaging studies have been 

cross-sectional and performed during childhood; studies that either consider ADHD 

throughout the lifespan or have a longitudinal design are rare. In one such lifespan study, we 

recently showed that differences in intracranial volume (ICV) and subcortical volumes 

between patients and healthy individuals were largely restricted to childhood (9). 

Furthermore, an earlier longitudinal study showed slower, delayed development of cortical 

thickness and surface area in children with ADHD, especially in frontal-temporal regions 

(15). Nonetheless, large-scale studies of cerebral cortical architecture throughout the lifespan 

are lacking.

A second major limitation in the neuroimaging literature is that most studies on ADHD have 

small sample sizes and show limited reproducibility (16). Combining data from existing 

research by means of meta-/mega-analysis can produce more reliable results. For ADHD, 

meta-/mega-analyses of structural brain phenotypes are available for subcortical structures 

(9, 17), but the cortex has only been assessed in meta-analyses of brain-wide voxel-based 

morphometry (VBM) studies (5-8). The largest VBM study (931 patients and 822 controls) 

reported case-control differences for anterior cingulate, medial prefrontal cortex, 

ventromedial orbitofrontal cortex, and the insula (8). Here, we further the field by providing 

the first large-scale, mega-analytic examination of cortical measures across the lifespan in 

ADHD. We analyzed cortical surface area and thickness separately, as recent large-scale 

studies show that the biological mechanisms underlying such measures overlap only 

partially (18). Our large sample size also provides the power needed to examine clinical 

factors such as common comorbid disorders.

Neuroimaging analyses of ADHD have also largely not addressed a major question: are the 

observed brain differences a consequence of living with the disorder, or do the brain 

differences reflect underlying risk for the disorder? Different study designs can help us begin 

to address this question. Family-based studies can indicate if cortical changes are present in 

unaffected siblings of cases to indicate the involvement of shared genetic and/or 

environmental risk factors that underlie the cortical characteristics associated with the 

disorder. Several family studies (e.g. (19)) suggest that at least some of the brain alterations 

seen in patients are also present in their unaffected siblings and are associated with symptom 

severity in healthy individuals. Population-based studies can determine whether individuals 

with traits of ADHD show similar cortical changes to those associated with the full 

syndrome. The largest population study published to date (n=776 children) showed that 

higher levels of ADHD symptoms were associated with a thinner cortex in caudal middle 

frontal, temporal, and occipital regions (20). While this and similar studies (21) showed that 

brain alterations extend beyond the clinical disorder, no attempts have yet been made to 

directly assess the overlap between studies in clinical samples and the general population. 

Combined, family and population-based findings suggest that the brain differences seen in 

those with ADHD are not simply markers of the disorder, but larger studies, directly 
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comparing brain phenotypes across different informative study designs, are needed to shed 

more light on this.

Here, we present a mega-analysis of cortical thickness and surface area in participants with 

ADHD and healthy controls across the lifespan from the ENIGMA-ADHD Working Group, 

a world-wide collaboration aiming to characterize the characteristics of the brain of people 

with ADHD. All partners used standardized methods (segmentation protocols and quality 

control procedures), limiting methodological heterogeneity more than in previous meta-

analyses. In addition to assessing case-control differences in children, adolescents, and 

adults, we investigated cortical brain correlates of clinical features, assessed familiality of 

effects, and mapped the dimensionality of affected cortical regions in the large, independent 

pediatric Generation-R population study (22).

MATERIALS AND METHODS

Contributing studies

The ENIGMA-ADHD Working Group currently consists of 36 cohorts from around the 

world (http://enigma.ini.usc.edu/ongoing/enigma-adhd-working-group/). All cohorts have 

structural imaging data available for individuals with an ADHD diagnosis, and most sites 

also include data from healthy controls. An overview of the sites is given in ST1; details of 

image acquisition and study protocols are provided in ST2 and SA1. The dataset for the 

cortical analysis comprised 4,180 individuals: 2,246 people with ADHD with mean age of 

19.22 years (SD= 11.31), age range of 4-62 years, 74.1% males; 1,934 healthy controls with 

mean age of 18.05 years (SD=11.26), age range of 4-63 years, 59.8% males.

For the analysis of dimensionally-assessed ADHD traits in the general population we used 

data from 2,707 individuals with mean age of 10.11 (SD=0.57) years, age range of 8.5-11.9 

years, 49.4% males (ST3) from the Generation-R cohort (22).

For all participating cohorts, approval for the analysis was available from the responsible 

ethics committees.

Neuroimaging

Structural T1-weighted brain MRI data were acquired and processed at the individual sites. 

The images were analyzed using standardized protocols to harmonize analysis and quality 

control processes (http://enigma.ini.usc.edu/protocols/imaging-protocols/ and SA2) (23-25). 

Fully-automated and validated neuroimaging segmentation algorithms based on FreeSurfer 

versions 5.1 or 5.3 were used (ST2). Regions based on the Desikan–Killiany atlas were 

segmented, which resulted in cortical thickness and surface area values for 34 left and 34 

right hemisphere regions. Two whole-hemisphere values for average thickness and average 

surface area were also computed. For further analysis, we used the mean of the bilateral 

values ((R+L)/2).

The Generation-R data were collected using a single, study-dedicated MRI scanner and 

processed using FreeSurfer version 6.0 on a high-performance computing system (Cartesius, 

surfsara.nl), for scanner sequence please see SA3. All imaging data were visually inspected 
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for inaccuracies in the surface-based reconstruction. Data not suitable for analysis were 

excluded (for a flowchart see SF1), providing n=2707. For a non response analysis, please 

see SA4.

Case-control differences in cortical thickness and surface area in children, adolescents, 
and adults

Based on the age-specificity of earlier findings (9), three age groups were assessed: children: 

4-14 years, 1081 cases, 1048 controls; adolescents: 15-21 years, 432 cases, 347 controls; 

adults: 22-63 years, 733 cases, 539 controls. As there are marked developmental changes 

across the 4 to 14 year age range, we also performed supplemental analyses on age tertiles of 

the childhood group. For each of the age groups we determined differences between 

participants with ADHD and healthy controls using mixed-effect models with ‘site’ as a 

random factor in the nlme package in R. Age and sex were included as additional covariates; 

for the surface area analysis, intracranial volume (ICV) was also added, as surface area 

scales with head size (24-26). We also included analyses without ICV as a covariate given 

the debate over whether it should be included or not (see SA5). To calculate Cohen’s d effect 

size estimates, adjusting for the appropriate covariates, we used the t-statistic from the 

Diagnosis (ADHD=1, control=0) predictor in the equation(27). To correct for multiple 

comparisons, we used a false discovery rate (FDR) at q=0.05.

Split-half validation of case-control findings

To ensure stability of effects, we performed a validation of our mega-analysis in age groups 

with significant results. Data were split into two halves, statistically matched for age, sex, 

and ICV within each site. Validation was defined as pFDR<0.05 in the first half and 

puncorrected<0.05 in the second half, with matching effect directions(28).

Exploration of the influence of sex, IQ and clinical factors on cortical regions affected in 
ADHD

For regions and age groups showing validated case-control differences, we examined 

potential effects of sex, IQ, comorbid disorders, medication use and ADHD symptoms 

(severity) (see details in SA6). Given the exploratory nature of these analyses, we report 

uncorrected p-values in the Results section.

Family study

Two subsets of the ENIGMA-ADHD sample (NeuroIMAGE Amsterdam and Nijmegen 

(29)) had collected brain data from patients (n=211), their unaffected siblings (n=175), and 

unrelated controls (n=120). To determine familial effects on ADHD-affected cortical 

regions, unaffected siblings were compared with healthy controls in those cortical regions. 

Levels of ADHD symptoms in the unaffected siblings had been shown to not differ from 

those of controls (19). Multiple comparisons correction was performed based on the 

effective number of independent tests (Meff) (30); differences between unaffected siblings 

and controls were considered significant at p<0.01 (Meff=5, for details please see SA7).
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Association between ADHD symptoms and the cortex in the general population

ADHD symptoms were assessed in children from Generation-R using the Child Behavior 

Checklist (CBCL)(31). Both attention problems (Syndrome Scale) and ADHD problems 

(DSM-oriented scale) were examined for associations with surface/thickness in regions with 

validated case-control differences in ENIGMA-ADHD. R statistical software (version 3.3.3) 

was used to fit multiple linear regressions to model these associations. Primary analyses 

were adjusted for age at MRI scan, sex, ICV and ethnicity. In supplemental analyses, models 

were additionally adjusted for non-verbal IQ, ADHD medication status, MR-scanner 

software version, and motion during scanning (SA8).

RESULTS

Case-control differences in cortical surface area and thickness in children, adolescents, 
and adults

In children with ADHD versus control children, lower values of cortical surface area were 

widespread, with 24 out of 34 regions and total surface area being smaller in patients (Table 

1, Figure 1, ST4). The largest effect was found for total surface area: d= −0.21, 

pFDR=<0.001. When the child group was further subdivided in post-hoc analyses, this effect 

size increased to d=−0.35, pFDR=<0.001 in the youngest tertile (4-9 years), which comprised 

317 cases and 340 controls (ST5). More generally, the youngest group showed the largest 

case-control differences (ST5). No case-control differences were found in the adolescent and 

adult groups (ST6 and ST7; ST8 shows combined analysis of age groups). For results of the 

model without ICV, please see ST9.

Cortical thickness was affected in four regions (fusiform, parahippocampal, and precentral 

gyrus and temporal pole) in children, all being thinner in patients than controls (Table 2, 

Figure 1 and ST10). Further subdivision of the child group retained significant effects for 

fusiform gyrus (d= −0.31, pFDR=0.002) and temporal pole (d=−0.25, pFDR=0.02) in the 

group of children aged 10 and 11 (356 cases, 365 controls); in younger (4-9 years) and older 

(12-14 years) children, effects did not survive multiple comparisons correction (ST11). In 

adolescents and adults, no case-control differences were found (ST12 and ST13; ST14 

shows combined analysis of age groups).

Validation of case-control findings

The split-half validation analysis showed seven regions for surface area and two regions for 

thickness to be significant in both halves (Table 1 & 2, ST15 & ST16, Figure 1). For all 

other regions, the direction of effects was the same in both split-halves.

Effect sizes of the validated cortical differences across the age groups are plotted in Figure 1, 

together with the effect sizes of subcortical brain volumes from our earlier work (9). Post-

hoc analysis by adding the term Agegroup*Diagnosis to the main model indicated 

differences in effect sizes across the lifespan for surface area of the superior frontal gyrus 

and thickness of the fusiform gyrus (ST17).
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Exploration of effects of sex, IQ, comorbidity, psychostimulant medication, and ADHD 
severity

Extending the main findings, we investigated several factors linked to ADHD, which have 

shown to influence brain volume in their own right. No significant interaction effects of 

diagnosis-by-sex were found (ST18). Correcting for IQ in surface area analyses only led to 

minor changes in the level of significance in the case-control comparisons. In all thickness 

analyses, IQ was a non-significant contributor (ST19).

For comorbidity analyses, we had information on cases of the childhood subset (n=1081) 

available (comorbidity ever versus never, lifetime) for almost 50% of participants (ST20). In 

total, 194 children with ADHD (39%) were ever or currently diagnosed with a comorbid 

psychiatric disorder. The three most frequently co-occurring disorders were oppositional 

defiant disorder (ODD, present in n=79 cases (16.0%)), anxiety disorders (observed in n=39 

(8.6%)), and mood disorders (seen in n=13 (3.0%)). Presence versus absence of comorbid 

disorders did not affect cortical surface area; a nominal effect of ever being diagnosed with a 

comorbid psychiatric disorder was found for fusiform gyrus thickness, with a thinner 

fusiform gyrus in cases with an additional disorder in the past or present (ST21).

Current stimulant use versus no current use had a nominally significant association with 

surface area of two regions in frontal cortex, with those taking medication having lower 

surface areas (ST21).

Hyperactivity/impulsivity severity ratings on Conners’ questionnaires, available for n=240 

childhood patients, but not inattention, showed nominally significant correlation with surface 

area in rostral anterior cingulate cortex (r=−0.18, p=0.01), superior frontal gyrus (r=−0.19, 

p=0.01), and with total surface area (r=−0.15, p=0.03) (ST22).

Family study

Among the validated ADHD-associated cortical features, surface area of caudal middle 

frontal, lateral orbital frontal, and superior frontal gyrus and the total surface area were 

significantly smaller in the unaffected siblings as compared with controls (Figure 2, ST23), 

indicating familial effects. A similar trend was seen for the majority of the other cortical 

measures (SF2).

Effects of ADHD symptoms in the general population on the validated brain phenotypes

Population-based analysis showed caudal middle frontal gyrus, middle temporal gyrus, and 

total surface area to be associated with the attention problems scale of the CBCL (Table 3, 

SF3); higher levels of dimensional ADHD symptoms were associated with smaller surface 

areas. No associations were found with the two cortical thickness measures (Table 3). To 

ensure a linear fit was optimal and that the more severe end of the symptom continuum was 

not driving findings, models with quadratic and cubic symptom terms were also tested. AIC 

and BIC values were highly similar across models, suggesting little to no improvement over 

the simpler linear term (ST24).

Adding non-verbal IQ or ADHD medication status to the analysis model of the attention 

problems, did not influence results (ST25). Results also remained stable when we tested the 
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effect of MRI scanner software version and image quality (ST25). The quantitative amount 

of motion in the T1-weighted scan (32) did not seem to affect analyses (ST26).

DISCUSSION

Here, we report the largest study to date of ADHD and cortical surface area and thickness in 

clinical samples and a pediatric population sample. Compared with healthy controls, 

children with ADHD showed smaller surface area in frontal, temporal, and cingulate 

regions, with the effects being most prominent in the youngest children (4-9 years). Case 

control differences had small effect sizes, but survived validation. Differences in thickness 

were limited to the temporal pole and fusiform gyrus, which were thinner in children with 

ADHD. These differences were most prominent in the group aged 10 and 11 years. The 

influence of comorbidity and symptom ratings, available from subsamples, appeared limited. 

None of these covariates of interest showed effects surviving multiple testing correction. 

There were no significant associations between cortical alterations and either stimulant 

treatment or IQ. Family-based analyses revealed familial effects for four surface area 

regions, but not for any of the thickness measures. A set overlapping with family-based 

analyses (caudal middle frontal gyrus, total surface area) and/or severity rating analyses 

(total surface area) showed associations with CBCL-based ratings of attention problems, in 

the population-based sample; no such effects were found for thickness.

The regions affected in ADHD were widespread across the cortex. The frontal cortex 

differences in orbital, middle, and superior regions nicely confirmed earlier work (e.g. (8, 

15)). These regions play a key role in cognitive processes related to reward and punishment, 

emotional processing, response inhibition, and attention - all known to be deficient in 

ADHD (33-35). Few studies yet have implicated structural differences in the cingulate 

cortex, an important structure linked to executive functioning and emotion (36), in ADHD 

(7, 37). Findings for the temporal cortex are particularly interesting, because both surface 

area and thickness were affected. The functions of this region are diverse, as it seems to be 

involved in semantic memory and processing of abstract concepts, attention, emotion 

processing and regulation (38). Integrating the current findings with our earlier subcortical 

results (9), the multitude of findings for brain regions involved in emotion processing is 

intriguing. In view of this, the network of orbito-frontal cortex, cingulate, and amygdala 

could be particularly interesting for future research (39, 40), as they may underlie the 

deficient emotional self-regulation often observed among ADHD patients (33).

Effect sizes of the observed brain differences were small, which is at a similar level as our 

earlier findings for subcortical volumes and ICV in ADHD (Figure 1) and comparable to 

effect sizes seen in other psychiatric disorders studied within the ENIGMA consortium (23, 

24). Whether this reflects phenotypic heterogeneity, with only a subgroup of patients 

showing reduced brain structure of large(r) effect size, or homogeneously small effects 

existing in the majority of patients remains to be investigated. Effects were not driven by IQ. 

Findings in several areas seemed to scale with the severity of hyperactivity/impulsivity in 

patients, but the heterogeneity of assessment instruments limited the power of this analysis. 

As in our earlier analysis of subcortical volumes and ICV, we did not find any significant 

associations between psychostimulant medication and cortical dimensions, neither in case-
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control nor in population-based designs. However, given our observational design and 

reliance on legacy data, we would not want to draw any firm conclusions from those results.

Looking across the lifespan, all case-control differences were most pronounced in children 

and non-significant in adolescents and adults. The same phenomenon, albeit attenuated, was 

seen in our recent cross-sectional study of ICV and subcortical structures (9) (Figure 1). 

Post-hoc analysis of potential differences in effect sizes across the three age groups in the 

current study confirmed age-related attenuation of effects for several structures. Those 

findings are in line with an earlier longitudinal study, where case-control differences in 

cortical thickness observed in children attenuated with increasing age, suggesting a delayed 

cortical maturation (41). An alternative explanation for the age-related differences might be 

the existence of subgroups; the childhood patient group is likely to consist of a mix of 

individuals who will persist and remit in adulthood, while the adult group consists largely of 

persisters. We cannot yet rule out low power as a reason for not detecting significant effects 

in the older subgroups, which were half the size of the children’s group, and these initial 

findings concerning apparent differences across the lifespan should be confirmed in 

longitudinal studies.

The case-control differences observed in the childhood sample did not seem to be influenced 

by comorbidity. However, we noticed that the comorbidity rate in this subset was relatively 

low (39%). There could be several reasons for that. First, the sample we used in our analysis 

of comorbidity was very young (4-14 years), as we only focused on the subsample with 

significant case-control differences. The relatively young age could explain the lower than 

expected comorbidity rate, as children might simply not yet have developed some of the 

frequent comorbid psychiatric disorders (e.g. substance use disorders). In comparison, 

Taurines and coworkers (2010) (42) described in their review that 73% of 6-18 year olds 

with ADHD had one or more comorbid disorders. A second reason could lie in the fact that 

we are dealing with research diagnoses, in which comorbidity assessments were often 

limited to checking inclusion and exclusion criteria for a specific study aim. This is a clear 

limitation of dealing with legacy data from multiple different sites, where different protocols 

and different instruments of assessment of comorbidity and symptom severity were used. We 

adjusted our design accordingly and concentrated only on the three most frequent 

comorbidities, defining those as ever or never experienced.

Although our study was not designed to study causality, our results may shed some light on 

the issue of whether brain differences are a consequence of living with the disorder or a risk 

factor for the disorder. Our family analysis showed unaffected siblings of cases, i.e. those 

without a diagnosis and with levels of ADHD symptoms comparable to healthy controls, to 

have similar surface area differences from controls as their affected siblings. In addition, the 

relationship between ADHD symptoms and cortical phenotypes also held in the general 

population. Here, the dimensional assessment of attention problems was related to brain 

morphology in a linear fashion, suggesting the phenotype and underlying brain morphology 

to be independent of clinical diagnosis, operating along a continuum. The two different 

approaches show cortical alterations in ADHD-related regions to occur independent of 

diagnosis. The overlap between the findings from the different approaches was, however, not 

complete. Future studies could perform more direct comparisons between case-control and 
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population samples using e.g. conjunction analysis (43). The two different approaches show 

cortical alterations in ADHD-related regions to occur independent of diagnosis, indicating 

that they are neither necessary nor sufficient to cause the disorder. The overlap between the 

findings from the different approaches was, however, not complete. Future studies could 

perform more direct comparisons between case-control and population samples using e.g. 

conjunction analysis (41). In such a design it would be interesting to test the liability-

threshold model, to better understand which factors contribute to liability for the disorder. 

Also, whether the observed brain differences relative to controls are indeed risk factors for 

ADHD, remains to be investigated in prospective longitudinal designs. Future imaging 

genetics studies might further clarify the neurobiological pathways and mechanisms 

underlying cortical differences in ADHD. While genetic information is not available in 

sufficient numbers from ENIGMA-ADHD, the ENIGMA Genetics Working Group recently 

identified genetic factors determining cortical surface area and thickness in a largely healthy 

population (18). Those genetic factors might in turn constitute risk factors for ADHD given 

recent finding of genetic overlap between the genetic contribution to ADHD and to the total 

surface area of the cortex. As we have recently shown for subcortical volumes and 

intracranial volume, further work might delineate the individual genes or gene networks 

underlying such genetic overlap (Klein et al., Am. J. Psychiatry, in press; see also (44)).

The current study has several strengths and limitations. Our major strength lies in the large 

sample sizes in both the clinical (n=4180) and population-based (n=2707) samples, along 

with the use of harmonized segmentation protocols, which provided unprecedented power to 

detect effects. Another strength is the split-half validation combined with stringent multiple 

comparison correction, showing that our findings – despite small effect sizes – are stable. 

Also, results from the population study suggest little effect of motion during scanning on our 

cortical regions of interest. The combination of case-control with family- and population-

based designs to identify mechanisms is an additional strength. A limitation is that we relied 

on legacy data in ENIGMA-ADHD, so the participating studies differ somewhat in their 

aims, methods, and assessments. Given this heterogeneity, our findings might underestimate 

the true effects, and we may have missed effects of comorbidity, medication, and symptom 

severity due to insufficient power. The limited sample size of the family study together with 

the small effect sizes for brain differences are probably the reason why the results of the 

family study found the expected staircase effect, at a trend level only.

In light of the findings from the current and the earlier (9) ENIGMA studies of ADHD, what 

should future neuroimaging studies in ADHD look like? Effect sizes observed are small (i.e. 

Cohen’s d=−0.21), with largest effects for measures of total brain volume and surface area in 

this and our previous study (9). Also, effects are restricted to childhood despite persistent 

ADHD diagnosis in adolescents and adults. Future studies should answer the question, 

whether (regional) effect sizes are comparable in everyone, or whether subgroups exist, in 

which certain regional effect sizes are more pronounced. This could be examined using 

clustering algorithms, such as community detection, and machine learning (45). An analysis 

of particular interest would be the comparison between children who remit in adulthood and 

those who persist. In-depth analysis of adult persisters versus adult remitters could add to 

our understanding of the null findings in adults, as it seems counterintuitive that the adult 

persisters, believed to be more severely affected, show no apparent signs of brain differences 
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in adulthood, but the childhood group, which is likely to be a mix of remitters and persisters 

when they are adults, does. Subgroups may also provide information on comorbidity and 

links to symptom severity in the different behavioral domains of ADHD. Most importantly, 

longitudinal studies are needed to study the processes that lead to the apparent reductions of 

case-control effects from childhood to adolescence and adulthood; only very few 

longitudinal samples for ADHD are currently available (15, 29). We should also not forget 

that the segmentation used in the current study is based on classical neuroanatomical 

divisions rather than a partitioning based on biological functions (44, 46). Other cortical 

phenotypes such as gyrification (47), or more sophisticated methods to define regional gray 

matter structure, and analyses of other brain measures to be captured by neuroimaging in 

large sample sizes (e.g., white matter integrity (48); resting state functional MRI (49)) may 

help us find the presumed case-control differences in adults (50, 51).

In conclusion, we identify, for the first time, cortical phenotypes affected in ADHD that are 

robust, and show an association with ADHD beyond narrowly-defined clinical diagnoses. 

Our work suggests them to behave as endophenotypes and thus extends the evidence for 

ADHD as a continuous trait in the population, shown for behavioral measures and genetics 

(52), and now for to neuroimaging phenotypes. Future studies should clarify individual 

lifespan trajectories and identify the underlying genetic and environmental factors shaping 

these trajectories.
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FIGURE 1. Subcortical and cortical brain differences across the lifespan.
A. Cohen’s d effect sizes with error bars showing the 95% confidence intervals for case-

control differences in ENIGMA-ADHD cortical and subcortical structural features stratified 

by 3 age groups: children of 14 years of age and younger, adolescents from age 15 to 21 

years, and adults older than 21 years. Structural features of all regions listed on the x-axis 

showed significant case-control differences in children; in analyses of cortical and 

subcortical features, no significant effects were seen in adolescents or adults. This is 

reflected in the effects sizes shown, all of which reached case-control statistical significance 

for children but not for adolescent and adult groups, except for the hippocampus, which 

shows a significant case-control difference in the adolescent group as well. B. Displayed are 

the heatmaps of validated case-control differences in the childhood subset for both surface 

area (left) and thickness (right) in each hemisphere.
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FIGURE 2. 
Bar graphs showing results of familiality analyses, comparing healthy controls, unaffaected 

siblings and cases, in the ADHD-affected cortical regions in the NeuroIMAGE datasets 

(n=506). Displayed are the cortical surface areas showing effects of familiality in the 

NeuroIMAGE datasets. For these regions, unaffected siblings differed from healthy controls 

(Meff-corrected results). Cortical values are adjusted for age, gender, ICV and site.
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Table 1.

Mega-analysis of case-control cortical surface area differences in children of 14 years of age and younger in 

ENIGMA-ADHD.

Cortical region Controls (N) ADHD (N) Cohen's d
(standard error)

95% confidence
interval

p-value FDR p-value

total surface area
a 1048 1081 −0.21 (0.04) −0.29 to −0.12 <0.001 <0.001

superior frontal gyrus
a 1044 1074 −0.19 (0.04) −0.28 to −0.11 <0.001 <0.001

lateral orbitofrontal cortex
a 1047 1081 −0.17 (0.04) −0.26 to −0.09 <0.001 <0.001

medial orbitofrontal cortex 1039 1070 −0.16 (0.04) −0.24 to −0.07 <0.001 0.002

posterior cingulate cortex
a 1042 1078 −0.16 (0.04) −0.25 to −0.08 <0.001 0.002

rostral anterior cingulate cortex
a 1041 1067 −0.16 (0.04) −0.25 to −0.08 <0.001 0.002

superior temporal gyrus 987 993 −0.15 (0.05) −0.24 to −0.07 <0.001 0.003

caudal middle frontal gyrus
a 1046 1077 −0.15 (0.04) −0.23 to −0.06 <0.001 0.003

fusiform gyrus 1043 1075 −0.13 (0.04) −0.21 to −0.04 0.004 0.01

isthmus cingulate cortex 1040 1079 −0.13 (0.04) −0.22 to −0.05 0.002 0.008

middle temporal gyrus
a 1001 1024 −0.13 (0.04) −0.22 to −0.04 0.004 0.01

rostral middle frontal gyrus 1044 1079 −0.13 (0.04) −0.21 to −0.04 0.004 0.01

supramarginal gyrus 1036 1063 −0.13 (0.04) −0.22 to −0.05 0.002 0.008

inferior parietal cortex 1041 1078 −0.12 (0.04) −0.20 to −0.03 0.009 0.02

inferior temporal gyrus 1041 1064 −0.12 (0.04) −0.21 to −0.04 0.005 0.01

lateral occipital cortex 1047 1078 −0.12 (0.04) −0.21 to −0.04 0.005 0.01

precuneus 1044 1080 −0.12 (0.04) −0.20 to −0.03 0.008 0.02

superior parietal cortex 1045 1073 −0.12 (0.04) −0.21 to −0.04 0.004 0.01

insula 1042 1078 −0.12 (0.04) −0.21 to −0.04 0.006 0.01

banks of superior temporal sulcus 974 999 −0.10 (0.05) −0.19 to −0.01 0.02 0.04

pars triangularis of inferior frontal gyrus 1048 1074 −0.10 (0.04) −0.18 to −0.01 0.02 0.04

postcentral gyrus 1032 1060 −0.10 (0.04) −0.18 to −0.01 0.03 0.05

precentral gyrus 1041 1064 −0.10 (0.04) −0.19 to −0.02 0.02 0.03

temporal pole 1043 1075 −0.10 (0.04) −0.18 to −0.01 0.03 0.04

Note: Displayed are the significant regions surviving correction for multiple comparisons with FDR q-value<0.05. Regions are sorted based on the 
effect size of the difference between cases and controls (Cohen’s d), with the regions with the largest effects on top. Regions are the average of left 
and right hemisphere surface area. Model is adjusted for age, sex, intracranial volume (ICV), and site.

a
regions surviving validation (see also ST15). For the full results please see ST4.
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Table 2.

Mega-analysis of case-control cortical thickness differences in children of 14 years of age and younger in 

ENIGMA-ADHD.

Controls (N) ADHD (N) Cohen’s d
(standard error)

95%
confidence

interval

p-value FDR p-
value

temporal pole
a 1042 1075 −0.18 (0.04) −0.27 to −0.10 <0.001 0.001

fusiform gyrus
a 1044 1077 −0.17 (0.04) −0.25 to −0.08 <0.001 0.003

precentral gyrus 1040 1064 −0.16 (0.04) −0.25 to −0.07 <0.001 0.003

parahippocampal gyrus 1041 1076 −0.15 (0.04) −0.23 to −0.06 <0.001 0.008

Note: Displayed are the significant regions surviving correction for multiple comparisons with FDR q-value<0.05. Regions are sorted based on the 
effect size of the difference between cases and controls (Cohen’s d), with the regions with the largest effects on top. Regions are the average of left 
and right hemisphere thickness measures. Model is adjusted for age, sex and site.

a
regions surviving validation (see also ST16). For the full results please see ST10.
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Table 3.

Associations between validated cortical regions and CBCL syndrome scale attention problems in Generation-

R.

Cortical region B SE CI lower CI upper β p-value FDR p-
value

Surface area

caudal middle frontal gyrus −14.10 5.49 −24.87 −3.33 −0.04 0.01 0.03

lateral orbitofrontal cortex −8.28 5.01 −18.10 1.54 −0.02 0.10 0.11

middle temporal gyrus −13.63 5.86 −25.12 −2.14 −0.03 0.02 0.04

posterior cingulate cortex −5.02 2.42 −9.77 −0.27 −0.03 0.04 0.06

rostral anterior cingulate cortex −3.50 1.93 −7.29 0.29 −0.03 0.07 0.09

superior frontal gyrus −7.16 11.93 −30.55 16.24 −0.01 0.55 0.55

total surface area −323.79 77.50 −475.75 −171.82 −0.04 <0.001 <0.001

total surface area (residualized*) −291.62 77.43 −443.44 −139.79 −0.07 <0.001 <0.001

Thickness

fusiform gyrus 0.004 0.002 0.000 0.01 0.04 0.05 0.054

temporal pole 0.01 0.01 −0.001 0.03 0.04 0.07 0.07

Note: Regions are the average of left and right hemisphere surface area, and are the regions showing significant group differences in split-half 
analyses (ST15 and ST16). Model is adjusted for age, sex, and ethnic background. ICV is also included as a covariate in the surface area analysis. 
B is the unstandardized regression coefficient for the square root transformed CBCL syndrome scale attention problems score, and CI is the 95% 
confidence interval of that regression coefficient. β is the standardized regression coefficient.

*
Given the high correlation between total surface area and ICV, we also tested a model where total surface area was first regressed on ICV, and the 

resulting residuals were used in the model described above, but without entering ICV. This shows that multicolinearity is not driving the effects. p-
values in bold are considered significant, surviving correction for multiple comparisons with FDR q-value<0.05.
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