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Biodiversity of mudflat intertidal viromes
along the Chinese coasts

Mengzhi Ji 1, Jiayin Zhou1, Yan Li1, Kai Ma 1, Wen Song1, Yueyue Li1,
Jizhong Zhou 2,3 & Qichao Tu 1,4

Viruses constitute the most diverse and abundant biological entities on Earth.
However, our understanding of this tiniest life form in complex ecosystems
remains limited. Here, we recover 20,102 viral OTUs from twelve intertidal
zones along the Chinese coasts. Our analysis demonstrates high viral diversity
and functional potential in intertidal zones, encoding important functional
genes that can be potentially transferred to microbial hosts and mediate ele-
mental biogeochemical cycles, especially carbon, phosphate and sulfur. Virus-
host abundance dynamics vary among different microbial lineages. Viral
community composition is closely associated with environmental conditions,
including dissolved organic matter. Concordant biogeographic patterns are
observed for viruses and microbes. Viral communities are generally habitat
specific with low overlaps between intertidal and other habitats. Environ-
mental factors and geographic distance dominate the compositional variation
of intertidal viromes. Overall, these findings expand our understanding of
intertidal viromes within an ecological framework, providing insights into the
virus-host coevolutionary arms race.

Microbes are ubiquitous in the Earth biosphere, forming the most
abundant and diverse group of living organisms1. Although tiny in size,
they are central to driving the biogeochemical cycling of various ele-
ments, and maintaining ecosystem stability2. Over the past decades,
great progress has been made to unravel the diversity, function, bio-
geography and underlying mechanisms of microbes in various eco-
systems, largely advancing our knowledge of the unseen majority on
the Earth3,4. Compared to the breakthroughs achieved for prokaryotes,
much less attention has been paid for the tiniest viral communities5.
Progress in viral ecology has been relatively slow for a long period
owing to the absence of effective technologies, such as the lack of
universal marker genes5,6. More recently, the development of high-
throughput sequencing technologies and meta-omics approaches
have greatly facilitated viral ecology studies, allowing scientists to
more efficiently unravel the mysterious viral communities and their
carrying functional potential7,8.

Viruses inhabit almost all environments, shaping the composition
and assembly of microbial communities through lysis9. Furthermore,
they can also reprogram host metabolism via encoding auxiliary
metabolic genes (AMGs) and regulatemicrobial dynamics by releasing
host nutrients, thereby affecting elemental biogeochemical cycles in
various ecosystems8,10. Viruses are also important drivers of microbial
evolution, owing to their specific mechanisms including lysogenic
conversion and transduction9. Similar to what has been observed for
macro-organisms and microbes (e.g., prokaryotes and micro-
eukaryotes), large-scale metagenomic studies have demonstrated that
viral communities in natural ecosystems such as soil and marine also
follow typical biogeographic patterns and are influenced by multiple
environmental factors11,12. Despite the rapid development of viral
ecology, our comprehension of the immense viral world in the Earth’s
biosphere still remains very limited, especially for viral diversity and
functional potential in complex ecosystems9,13.
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Intertidal zones are critical ecological ecotones located between
marine and terrestrial ecosystems, constituting one of the most
widespread coastal ecosystems14. Tidal oscillations induce frequent
switches between aerobic and anoxic/suboxic conditions in intertidal
sediments, representing a major stressor for microbial communities
therein15. In response, intertidal microbes have developed flexible and
diverse adaptive strategies (e.g., adjusting competitive and symbiotic
relationships), resulting in more variable community structures com-
pared to other natural ecosystems16. The dynamic environmental
conditions and host communities are expected to significantly influ-
ence viral communities, as previously observed in acidmines and high-
altitude watershed soil7,17. In turn, viruses can also drive the population
and evolutionary diversity of microbial hosts via their unique life
strategies9,18. Therefore, intertidal zones serve as a favorablehabitat for
exploring the virus-host ecological and evolutionary dynamics. How-
ever, the restricted viral genomic datasets available in current inter-
tidal studies impede comprehensive understanding of viral
biodiversity, both taxonomic and functional. Large scale sampling and
investigation of intertidal viromes are desired to resolve their ecolo-
gical mechanisms, linkages with microbial hosts, and contributions to
different elemental biogeochemical cycles.

In this study, viral communities from mudflat intertidal zones
spanning from the southmost to the northmost of the Chinese coasts
are recovered and analyzed using shotgun metagenomic sequencing
and state-of-the-art bioinformatics approaches, aiming to address the
following questions related with the diversity, function and ecological
mechanisms of mudflat intertidal viromes: (i) How diverse aremudflat
intertidal viromes? (ii) How do they potentially contribute to the bio-
geochemical cycling of various elements? (iii) Do viruses follow typical
biogeographic patterns as microbes? (iv) What is the relative impor-
tance of deterministic vs stochastic processes in structuring mudflat
intertidal viromes? The results demonstrate high viral diversity in the
intertidal zones, with significant associations with elemental biogeo-
chemical cycling processes, and comparable biogeographic patterns
and assembly mechanisms with their host microbes. The findings
expandour understanding of the viral communities in complex natural
ecosystems, providing mechanistic insights into the diversity and
ecology of mudflat intertidal viromes.

Results
An overview of the intertidal viromes and microbiomes
In this study, 96mudflat intertidal sediment sampleswere subjected to
shotgun metagenomic sequencing, covering twelve coastal zones in
China (Fig. 1a and Supplementary Data 1). The sampling sites spanned
from the southernmost (Sanya) to the northernmost (Dandong),
representing typical mudflat intertidal zones in the Chinese coasts.
High quality contigs (minimum length of 5 kb) generated from multi-
sample-assembly were screened by Virsorter219, DeepVirFinder20, and
VIBRANT21, resulting in 21,964 viral contigs. By clustering at 95%
average nucleotide identity, approximately corresponding to the
species delineation cutoff of prokaryotes22, a total of 20,102 viral
operational taxonomic units (vOTUs) were obtained. The genome size
of vOTUs ranged from 5 kb to 230 kb, and ~96% of themwere between
5 kb and 50kb (Supplementary Data 2). Notably, 239 complete viral
genomeswere recovered in the intertidal dataset, with aminimum size
of only 5.1 kb (SupplementaryData 2). In addition, the 302,424 protein-
coding genes carried by 21,964 viral genomes were clustered at 80%
coverage and 60% identity7, generating 238,445 viral protein clus-
ters (vPCs).

Taxonomic assignment of vOTUs showed that 16,027 of 20,102
vOTUs (~79.7%) could be classified to known taxa using the Lowest
Common Ancestor algorithm (Fig. 1b). Among these, intertidal viral
taxonomy covered four major DNA viral realms, including Duplodna-
viria (15,543 vOTUs), Monodnaviria (14 vOTUs), Varidnaviria (465
vOTUs), and Adnaviria (1 vOTUs) (Supplementary Data 2).

Caudoviricetes (15,540 vOTUs) belonging to Duplodnaviria largely
represented the taxonomic diversity of DNA viruses in the intertidal
zones (Fig. 1b). The majority of classified vOTUs (14,154) could only be
resolved at class level (Fig. 1b). Only 8.5% (1367) vOTUs canbe resolved
at family level, such as Autographiviridae, Kyanoviridae, Demerecvir-
idae, and Zobellviridae (Fig. 1b). Notably, we observed 409 vOTUs
assigned to nucleocytoplasmic large DNA viruses (NCLDVs), primarily
comprising the clades of Mimiviridae and Phycodnaviridae (Fig. 1b).
Moreover, 16 vOTUs were classified as Lavidaviridae (virophage)
(SupplementaryData 2),which act asparasites of NCLDVs and hold the
capability to inhibit their replication23.

The potential lifestyles associated with vOTUs were determined
by identifying lysogenic hallmark genes (e.g., integrase) and employ-
ing a deep-learningmodel24. As a result, 6680 vOTUs were determined
as lysogenic viruses, of which 5503 were temperate viruses and 1177
were proviruses (integrated temperate viruses) (Supplementary
Data 2). The relative proportion of lytic viruses (65.4 ± 4.64%) was
significantly higher than that of lysogenic viruses (34.6 ± 4.64%) across
the sampling sites (Student’s t test, df = 22, t = 15.55, P = 2.34e-13, 95%
CI = [26.7, 34.9]) (Fig. 1c).

To establish the virus-host linkages, metagenome-assembled
genomes (MAGs) were also recovered from the assembled contigs. A
total of 2703MAGswereobtained and further clustered at95%average
nucleotide identity, yielding 2259 microbial operational taxonomic
units (mOTUs) (Supplementary Data 3). Taxonomic assignment
showed that these mOTUs were classified as 2228 bacteria and 31
archaea (Supplementary Data 3). The bacterial mOTUs covered 48
phyla, of which Proteobacteria was the most abundant (960 mOTUs),
followed by Bacteroidetes (202 mOTUs) and Chloroflexi (201 mOTUs)
(Fig. 1d). The archaeal mOTUs belonged to 8 phyla, dominated by
Thaumarchaeota (11 mOTUs) and Bathyarchaeota (7 mOTUs) (Fig. 1d).
The numbers of vOTUs, mOTUs, and vPCs saturated between 20 and
40 samples, suggesting that more sequencing data and samples ten-
ded not to substantially improve the quantity of assembled con-
tigs (Fig. 1e).

Functional potential encoded by intertidal viromes
To investigate the functional potential encoded by intertidal viromes,
functional assignment of 302,424 predicted viral geneswas carried out
by searching against the eggNOGdatabase (Supplementary Data 4). As
a result, 69,661 viral genes were assigned to known orthologous
groups, of which 46.9% were functionally unknown (Fig. 2a). Func-
tional genes closely related with viral reproduction and transcription,
such as “replication, recombination and repair (L)”, “cell wall/mem-
brane/envelope biogenesis (M)”, and “transcription (K)”, were found
with high relative proportions (Fig. 2a). Remarkably, a number of viral
genes (1,583 of 69,661) were related with “carbohydrate transport and
metabolism (G)” (Fig. 2a), which has previously also been noted in
mangrove sediment25.

To disentangle the potential roles of viruses in contributing to
important biogeochemical cycles, 209 viral AMGs (vAMGs) associated
with targeted processes (e.g., carbon, nitrogen, sulfur, and phos-
phorous cycles) were further identified (Supplementary Data 5). Of
these, 113 vAMGs with viral hallmark genes on both flanks were cate-
gorized as high confidence, while the remaining were of low con-
fidence (Fig. 2b and Supplementary Data 5). Overall, intertidal vAMGs
that participated in 14 important metabolic functions belonging to
different biogeochemical cycles were identified (Fig. 2b, c), with the
most abundant being associated with phosphate starvation induction
(63 vAMGs). These phosphate starvation induction genes (phoH),
along with the vAMGs caring organic phosphoester hydrolysis (glpQ,
phoA/N/X, and phy), phosphate transport system (pstS/B), and oxida-
tive phosphorylation (atpC/G), may help provide ATP for viral DNA
replication and host cellular processes. In addition, we found that 20
vAMGs (gnl, gnd, prsA, and deoB) were involved in pentose phosphate
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pathway and its close relatives. Of these, deoB exclusively participated
in this metabolic pathway. A total of 27 vAMGs were identified as
carbohydrate-active enzymes (CAZymes), including one carbohy-
drates esterase (CE) family (4 vAMGs) and eight glycoside hydrolase
(GH) families (23 vAMGs). Inparticular, vAMGsencodingβ-glucosidase
(GH3), cellulase (GH5), α-amylase (GH13), and α-glucosidase (GH97)
were found, with the potential to help degrade complex poly-
saccharides into glucose10. This process may further affect the TCA
cycle and pentose phosphate pathway within the hosts. Similar to
previous findings in marine26, multiple vAMGs encoding sulfate
reduction genes were also observed, of which assimilatory sulfate
reduction genes (cysC/D/N/H) were the most abundant, followed by
dissimilatory sulfate reduction genes (dsrC/E/F and asrB). We also
found some virus-encoded nitrogenmetabolismAMGs, including glnA
and npd genes related to organic nitrogen degradation and synthesis
and amoC genes involved in ammonia oxidation. Among these, glu-
tamine synthase (glnA) can provide the substrate for host purine
metabolism. Notably, multiple gene families related with aerobic
methane oxidation and its close relatives were carried by vAMGs,
potentially contributing to energy acquisition and carbon metabolism
for host life activities.

Interestingly, vAMGs associated with methane oxidation were
more abundantly found in intertidal sediments with low total organic
carbon (TOC) content, showing significant negative associations with
TOC concentrations (R = −0.41, P =0.0008) (Fig. 2d).We alsoobserved
similar negative correlations between virus-encoded sulfate reduction
genes and sulfate (SO4

2-) concentrations (R = −0.31, P =0.004), as well
as between phosphate starvation induction genes and total

phosphorus (TP) concentrations (R = −0.29, P =0.004) (Fig. S1a, b).
These results indicated that viruses may contribute to host metabo-
lism by encoding abundant AMGs under oligotrophic conditions, ser-
ving as a potential strategy for viral survival and propagation. In
addition, 22 vAMGs involved in different metabolic pathways could
also be detected in microbial genomes by mapping vAMGs to the
contigs (Supplementary Data 5). Among these, one cysC gene and one
phoA gene were mapped to Proteobacteria contigs, one glucosidase
(GH97) was mapped to Chloroflexi contigs, and one amoC gene was
mapped to Thaumarchaeota contigs (Fig. 2e).

Virus-host relationships in intertidal zones
To explore the potential effects of viruses onmicrobial taxa,mOTUs
were linked to vOTUs through genomic features to assign prokar-
yotic host information for viruses. As a result, 2233 out of 20,102
vOTUs and 1078 out of 2259 prokaryotic mOTUs were determined
to be potentially linked (Supplementary Data 6). Among these,
Proteobacteria (~45.5%) was themost frequently predicted viral host
phylum (Fig. 3a). Notably, a strong virus-host correlation was
observed between the normalized abundances of viruses and pro-
karyotic hosts at the phylum level (R2 = 0.87, P < 2.2e-16) (Fig. S2a).
Significant associations (P < 0.05) were also observed between the
normalized abundances of viruses and their corresponding hosts
for most specific lineages (34 of 41 phyla), demonstrating high
confidence for the predicted prokaryotic hosts (Fig. S2b). For
intertidal lineages, higher normalized viral abundances than host
abundances were observed for 28 phyla (Fig. 3a and Fig. S2c). Of
these, Thermoplasmatota was found with the highest virus/host

Fig. 1 | Overview of viruses and microbes in mudflat intertidal sediments.
a Geographic distribution of collected intertidal sediment samples. The sampling
provinces of China are colored in gray, including Liaoning (LN), Shandong (SD),
Jiangsu (JS), Zhejiang (ZJ), Fujian (FJ), Guangxi (GX), Guangdong (GD), and Hainan
(HN). The sampling regions are marked with orange squares. For each sampling
region, eight sedimental cores (0–15 cm) were subjected to shotgun metagenome
sequencing. b The proportions of classified and unclassified viruses (left) and the
proportions of viral lineages at family level (right). c Relative proportions of lytic
and lysogenic viruses in the intertidal sediments. The boxplots show the differ-
ences in the relative proportions of viruses with different lifestyles. The points in
boxplot represent the average values of eight samples across each sampling region.
The center lines of the boxes indicate themedian value of 12 sampling regions. The
bounds of the box represent the interquartile range, with the lower bound

corresponding to the first quartile and the upper bound to the third quartile. The
whiskers denote the lowest and highest values within 1.5 times the range of the first
and third quartiles. Statistical significance in difference was determined using a
two-tailed t test.dThe relative proportions of bacterial and archaeal taxa at phylum
level. Only the top ten phyla were presented, while the remaining phyla were
categorized as others. e Accumulation curves of viral operational taxonomic units
(vOTUs, orange), microbial operational taxonomic units (mOTUs, gray), and viral
protein clusters (vPCs, cyan). The mean ± SEM values are plotted. Dots represent
the average number of vPCs, vOTUs, and mOTUs, and the error bars represent the
SEM. The numbers of vPCs and vOTUs were respectively divided by 30 and 5 for
better visualization. Source data are provided as a Source Data file. Figure 1a is
plotted using the ‘geom_sf’ function in ggplot2. The geojson files of basemapwere
obtained from the public source http://xzqh.mca.gov.cn/map.
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abundance ratio (VHR), whereas Thaumarchaeota was the low-
est (Fig. 3a).

The relative quantification of metagenomic data revealed a
significant correlation between normalized viral abundances and
host abundances across the intertidal samples (R2 = 0.41, P = 1.54e-
11) (Fig. S2d). However, viral abundance did not increase linearly as
host abundance increased. Rather, a trend of decreasing VHRs with
increasing host abundances was observed for samples with high
host abundances (Fig. S2d). As previously described7, this pattern
might be due to the differences in the virus-host abundance
dynamics of some specific lineages. For example, Thaumarchaeota

and Planctomycetes were similar in host relative abundances
(Fig. 3a), but the virus-host abundance dynamics of Thaumarch-
aeotawas significantly weaker than that of Planctomycetes (two-way
ANOVA, df = 188, F = 144.38, P < 2.2e-16) (Fig. S2e). To further
investigate the effects of host density on viruses, we assessed the
relationships between the normalized abundances of each virus-
host pair (Fig. 3b). As a result, 1419 virus-host pairs exhibited sig-
nificant correlations (P < 0.05) (Fig. 3b). The VHRs of ~81.4% virus-
host pairs were negatively correlated with host abundances
(Fig. 3c), which may contribute to the overall virus-host abundance
pattern.

DNA replication

NH4
+ NO2

-

Progeny assembly

N2
N2 N2

NH2OH

NO O2

L-glutamine

CH4 CH4

CH4

CH3OH
15

16

CO2

HCHO

HCOOH
17

C1-H4F
Glycine

Glyxoxylate

18
Serine

Hydroxypyruvate

Glycerate

20
19

2PG 2115

Nitroalkane

SO4
2-

APS

24

PAPS
25

SO3
2- 26

H2S

27

Mercaptan 28

Phosphate esterPi Pi Pi

1

Pi Pi Pi
Pi Pi

2
3

PPi

PPPi

ADP

ATP

5

Cellular processes

Hexulose-6-P

α-D-ribose-1-
diphosphate-5P

Purine metabolism

Ribose-5-P

Frutose-6-P

Frutose-1,6-P2

23

Gyceraldehyde-3-P

22

Glucose

Glucose-
1.5-lactone

Gluconate

Gluconate-6P

Ribulose-5P

Ribose-1-PRibose-1,5-P

Nitrogen metabolism

Phosphorus metabolism

Methane metabolism

Sulphur metabolism

TCA cycle

Glucose
6

Carbohydrate esterase
Glycoside hydrolase
Carbohydrate metabolism4

7

8

9

10

11
12

1413

Pyruvate

NADH/
FADH2

Polysaccharide

Host metabolism
Phosphorus metabolism (virus)
Carbohydrate metabolism (virus)
Nitrogen metabolism (virus)
Methane metabolism (virus)
Sulphur metabolism (virus)

Metabolic pathways
1
2
3
6
8
9

11
14
16
20
22
23

25
26
27

phoA/N
pstS/B
phoH
GH13
gnd
prsA

glnA
pmoC
frmA
serA
pfkA
glpX

cysC
cysH
dsrC

24 cysD/N
High-confidence AMGs

1
4
5
6
7

10

12
13
15
17
18
19

27
28

glpQ phoX phy
ppa
atpC/G
GH3/5/97
gnl
deoB

amoC
npd
mdh
fdhB
glyA
hprA

dsrE/F asrB
sqr

21 gckA
Low-confidence AMGs

a

0

10

20

30

40

S L M K O F U T E G H D J Q N I V C P W Z A B
COG function classes

R
el

at
iv

e 
pr

op
or

tio
n 

(%
)

0

2000

4000

6000

S L M O K U F T E G H D J N Q V I C P W Z A B
COG function classes

# 
of

 v
ira

l g
en

es

b
Low confidence High confidence

0 10 20 30 40 50 0 10 20 30 40 50

Anaerobic oxidation of methane
Aerobic oxidation of methane

Nitrification
Organic degradation and synthesis

Sulphur oxidation
Dissimilatory sulphate reduction
Assimilatory sulphate reduction

Phosphate transport system
Oxidative phosphorylation

Organic phosphoester hydrolysis
Pentose phosphate pathway

Phosphate starvation induction
Ester degradation

Polysaccharide degradation

# of viral genes
Carbohydrate metabolism Phosphorus metabolism Sulphur metabolism Nitrogen metabolism Methane metabolism

c
R = -0.41, P = 0.0008

0

50

100

150

10 20 30
Total organic carbon (g/kg)

Ab
un

da
nc

e 
of

 m
et

ha
ne

 o
xi

da
tio

n 
ge

ne
sd

e
LN_DD_contig_5159297

GX_BH_bin_25 
(Proteobacteria)

cysC

00.0.001.000 1.000.9111.01.011.9.9

000000.0.000...00001.000.01 0.99.0.000.9. 0.931.01.0111111949400009999.9.9

94.90.9

00.90 8390999990.80.8

SD_QD_contig_19111385

JS_YC_bin_63 
(Chloroflexi)

ZJ_WZ_contig_21932960

JS_YC_bin_221 
(Thaumarchaeota)

ZJ_NB_contig_2101842

JS_YC_bin_156 
(Proteobacteria)

GH97

amoC

phoA

2.5 kb

Viral genes
Carbohydrate metabolism
Phosphorus metabolism

Sulphur metabolism
Nitrogen metabolism
Other functions

Virion release

SO4
2-

SO4
2-

Fig. 2 | Functional genes and auxiliary metabolic genes (AMGs) encoded by
intertidal viruses. a The relative proportions (abundances of specific functional
class/abundances of all functional genes) of viral functional genes categorized by
COG classes. The center lines of the boxes indicate the median values of 96 inter-
tidal samples. The bounds of the box represent the interquartile range, with the
lower and upper bounds respectively corresponding to the first and third quartiles.
The whiskers denote the lowest and highest values within 1.5 times the interquartile
range. The detailed descriptions of COG function classes were: ‘S’ (Function
unknown), ‘L’ (Replication, recombination and repair), ‘M’ (Cell wall/membrane/
envelope biogenesis), ‘K’ (Transcription), ‘O’ (Posttranslational modification, pro-
tein turnover, chaperones), ‘F’ (Nucleotide transport and metabolism), ‘U’ (Intra-
cellular trafficking, secretion, and vesicular transport), ‘T’ (Signal transduction), ‘E’
(Amino acid transport and metabolism), ‘G’ (Carbohydrate transport and metabo-
lism), ‘H’ (Coenzyme transport andmetabolism), ‘D’ (Cell cycle control, cell division,
chromosome partitioning), ‘J’ (Translation), ‘Q’ (Secondary metabolites biosynth-
esis, transport and catabolism), ‘N’ (Cell motility), ‘I’ (Lipid transport and

metabolism), ‘V’ (Defensemechanisms), ‘C’ (Energy production and conversion), ‘P’
(Inorganic ion transport and metabolism), ‘W’ (Extracellular structures), ‘Z’
(Cytoskeleton), ‘A’ (RNAprocessing andmodification), ‘B’ (Chromatin structure and
dynamics). b The number of viral AMGs involved in different metabolic functions.
Different colors represent the metabolic pathways of these functions. c A con-
ceptual diagram depicting the potential viral regulation of host metabolism via
AMGs. Different colors (excluding black) of arrows indicate different metabolic
pathways that viralAMGsmayparticipate in. The solid anddashed arrowswere used
to distinguish whether viral AMGs were exclusively involved in that metabolic
pathway. d The relationship between total organic carbon and normalized abun-
dance of viral AMGs related to methane oxidation. The shaded gray region reflects
95% confidence intervals of the fitted regression line. The Pearson’s correlation
coefficient of the linear regression is presented. Statistical significance of themodel
was evaluated using a two-sided F test. e Comparative genomic analysis of viral and
microbial AMGs. Only genes with > 90% identity and > 90% coverage were con-
catenated. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-52996-x

Nature Communications |         (2024) 15:8611 4

www.nature.com/naturecommunications


As critical components of the ecosystem, the relationships
between viruses and their hosts are not self-driven, but may also be
affected by the environmental conditions10. For example, we found
that the VHRs of several different lineages exhibited significant asso-
ciations with the changes of surrounding environmental conditions,
such as NO2

--N, pH, salinity, and moisture (Fig. 3d). Specifically, the
abundances and VHRs of sulfate-reducing bacteria within Deltapro-
teobacteria and Thermodesulfobacteria, as well as ammonia-oxidizing
archaea within Thaumarchaeota, demonstrated significant correla-
tions with SO4

2- and ammonium nitrogen (NH4
+-N) concentrations,

respectively (Fig. 3d). Notably, opposite patterns with SO4
2- were

observed for Deltaproteobacteria and Thermodesulfobacteria (Fig. 3d
and Fig. S3a), possibly due to their different ecological niches in the
intertidal ecosystem, as also supported by the fact that Thermo-
desulfobacteria are generally more adapted to high temperature
environments, whereas Deltaproteobacteria have better sulfate
reduction efficiency at ambient temperatures27,28. Accordingly, sig-
nificant associations were also observed for the VHRs of these lineages
with environmental factors (Fig. 3d and Fig. S3b). Strikingly, the pat-
terns with environmental parameters for VHRs and hosts may not
always the same, and sometimes opposite (Fig. S3a, b). Such different
patterns were partially linked to the relationships of VHRs with their
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host abundance (Fig. S3c), but also reflected a complex biological and
ecological procedure that environmental factors such as SO4

2- and
NH4

+-N not only affectedmicrobes, but also their viruses and the virus-
host relationships.

Significant associations were also observed between viral com-
munities and dissolved organic matter (DOM) components (Mantel’s
r =0.34, P <0.001). Pairwise correlation analyses showed that 12,995 of
20,102 vOTUs and 8436 of 20,980 DOM molecules were significantly
correlated (absolute Spearman’s ρ > 0.7 and P <0.05), generating a
network with 304,760 correlations (Fig. S4). Aliphatic- (~33.8%) and
lignin-like (~20.3%) compounds were the dominant classes associated
with vOTUs (Fig. S4). Further analysis of viruses assignedwith host and
DOM molecules showed that the proportions of DOM classes asso-
ciated with different viral lineages were generally consistent (Fig. 3e).
Although the vOTUs infecting Cyanobacteria were not abundant, they
were found to be the most relevant viral lineage to DOM molecules
(7563 of 31,717 correlations) (Fig. 3a, e). Mantel test suggested that the
VHRs of 15 lineages were significantly correlated with DOM compo-
nents (Fig. S5a), and most of them (12 of 15 lineages) exhibited high
VHRs (Fig. 3a and Fig. S5a). Interestingly, 9.6% of the DOM composi-
tional variations could be purely explained by VHRs,much higher than
that by environmental factors (2.5%) and geographic distance (3.1%)
(Fig. S5b). Such results suggested that viral lysis of host microbes may
have largely contributed to the DOM pools in intertidal zones.

Diversity and biogeographic patterns of intertidal viromes
along the latitudes
The composition of both viral (R =0.982, P = 0.001) and microbial
(R =0.97, P = 0.001) communities from different sampling regions
clearly differed from each other (Fig. S6a and b). Only 9 core viruses
(mean relative abundance > 0.1% and existed in more than 80% of
samples) were detected (1.64% in relative abundance), corresponding
to the situation of core prokaryotes (Fig. S6c and Supplementary
Data 7). Of the 9 core viruses detected, 7 were found to infect Gam-
maproteobacteria (Fig. 4a).

We also investigated whether intertidal viromes followed similar
biogeographic patterns asmicrobes, especially their hosts. Two typical
biogeographic distribution patterns, including latitudinal diversity
gradients (LDGs) and distance-decay relationships (DDRs), were
investigated. The richness of viruses (vOTUs), viral genes (vPCs) and
prokaryotes (mOTUs) all peaked at midlatitude (Fig. 4b and Fig. S6d),
showing a latitudinal pattern different from conventional LDG pat-
terns. At the meanwhile, strong DDR patterns were observed for the
community similarity of viruses, viral genes and prokaryotes (Fig. 4c).
The slope coefficients of DDRs were similarly steep for vOTUs
(S = −0.937, P <0.001) and mOTUs (S = −0.998, P < 0.001) (Fig. 4c).
Such similarly strong DDR patterns were also observed for viruses and
their hosts (Fig. S7). In contrast, muchweaker slope coefficient of vPCs
was observed (Fig. 4c), reflecting more similar functional gene com-
position than taxonomy across geographic distance.

Linkages of intertidal viromes with other habitats
As one of the most complex ecosystems, intertidal zones are located
between terrestrial and marine environments and are often under
strong pressure from human activities14. Here, we analyzed the lin-
kages between intertidal viromes and the viromes in other habitats
using a weighted network that can cluster viruses approximately at
genus level (Fig. S8). In the network, the shared viral genes from dif-
ferent habitats were closely linked to generate 13,008 viral clusters
(VCs), including 7363 viruses from intertidal zones, 15,746 viruses from
marine, 13,828 viruses from soil, 15,105 viruses from freshwater, 17,506
viruses from human, and 3807 known viruses fromRefSeq (Fig. S8 and
Supplementary Data 8).

Of the 2566 VCs present in intertidal zones, 2259 ( ~ 88%) were
intertidal exclusive, showing a high degree of habitat specificity of
viromes (Fig. 4d and e). Of the VCs co-occurred in intertidal zones and
other habitats, ~50.6% coexisted in the marine habitat, followed by
freshwater (26.3%), soil (15.7%), and human (2.2%) (Fig. 4d, e). Impor-
tantly, 3 VCs classified as Caudoviricetes and may infect Proteobacteria
taxa were detected in all habitats/sources (Fig. 4e), suggesting that
some viral taxa might be widely distributed across various habitats.

Deterministic vs stochastic processes in structuring intertidal
viromes
Both deterministic and stochastic processes mediate the composi-
tional variation ofmicrobial communities29,30. Here, multiple statistical
approaches were employed to explore the relative importance of
deterministic vs stochastic processes in structuring the intertidal vir-
omes. First, partial mantel test demonstrated significant associations
between multiple environmental factors and the viral communities
(Mantel’s r = 0.27, P < 0.001), as well as viral hosts (Mantel’s r =0.33,
P <0.001) and microbial communities (Mantel’s r = 0.31, P < 0.001)
(Supplementary Data 9). In general, the same set of environmental
factors, including NH4

+-N, total nitrogen (TN), total phosphorus (TP),
pH, TOC, SO4

2-, salinity, and moisture were significantly associated
with the compositional variations of viral, prokaryotic host, and
microbial communities (Fig. 5a). Second, the effects of environmental
factors on viral communities were further assessed by linking com-
munity similarity with environmental heterogeneity, showing sig-
nificant decay pattern with increasing environmental heterogeneity
(Fig. S9). Third, variation partitioning analyses suggested that envir-
onmental factors and geographic distance together explained the
major compositional variation of viral, prokaryotic host, andmicrobial
communities (Fig. 5b). Fourth, the neutral community model only
explained a small fraction (R2 < 0.5) of the relationships between the
occurrence frequency and relative abundances of viral, prokaryotic
host, and microbial communities, demonstrating weak neutral pro-
cesses on the viral and host communities (Fig. 5c). Fifth, the RCbray

metric (Raup-Crick index based on Bray–Curtis dissimilarity) showed
greater community turnover than null expectations, suggesting that
deterministic processes mainly accounted for the compositional

Fig. 3 | Virus-host relationships and their linkages with environmental factors
and dissolved organicmatter (DOM) in intertidal zones. a Virus/host abundance
ratios (VHRs) of specific lineages. The bar graph represents the relative abundances
of hosts, the dot (orange) represents the VHRs, and the cyan vertical line represents
the 1:1 ratio. Values in the brackets indicate the numbers of predicted viruses
belonging to that lineage. Only viral lineages with ≥ 0.2% relative abundances are
shown. b Histograms of the frequency of Pearson’s correlation coefficient (r)
between normalized abundances of virus-host pairs. cHistograms of the frequency
of Pearson’s correlation coefficient (r) between normalized host abundances (log-
transformed) and VHRs (log-transformed). d The relationship between normalized
host abundances, VHRs and environmental factors. Themetabolicpathways ofhost
microbial operational taxonomic units (mOTUs) belonging to Deltaproteobacteria,
Thermodesulfobacteria, and Thaumarchaeota were assessed using the KEGG-
Decoder module. Only the Deltaproteobacteria and ThermodesulfobacteriamOTUs

involved in the sulfate reduction, and the ThaumarchaeotamOTUs involved in the
ammonia oxidation were used for correlation analysis. The color gradient in
heatmap represents the values of Pearson’s correlation coefficient (r). The stars in
heatmap represent the significance levels: * (P <0.05), ** (P <0.01), and ***
(P <0.001). e The consensus network representing the correlations between DOM
and viral operational taxonomic units (vOTUs) of different lineages. The correla-
tions between DOM and vOTUs were determined using Spearman’s correlation
coefficients (ρ), and the statistical significance was adjusted using Bonferroni cor-
rection for multiple comparisons (P-adjust). Only the correlations with absolute
Spearman’s correlation coefficient (ρ) > 0.7 and P-adjust <0.5 were retained for
network construction. The vOTUs were classified according to their host lineages,
and only the top ten lineages were displayed. All statistical tests were two-tailed.
Source data are provided as a Source Data file.
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variations (Fig. 5d). Finally, stochastic ratio analysis was also carried
out, showing that the assembly of both viral and microbial commu-
nities were highly deterministic (Fig. 5e), consistent with the above
results. Such results demonstrated that the intertidal viral commu-
nities and their corresponding host microbiome were similarly mainly
structured by deterministic processes.

Discussion
As the tiniest and most abundant lifeform in natural ecosystems,
resolving the mysterious viral communities has been almost
impossible, until recent advances in high throughput metagenomic
sequencing technologies and associated bioinformatics
approaches5,6. Multiple studies have been recently carried out,
uncovering the diversity of viral communities in complex natural
ecosystems7,8,26. In this study, the viral communities and their pro-
karyotic hosts in mudflat intertidal sediments were comparatively
investigated, largely expanding our understanding of the viral

diversity, biogeography, and functional potential in complex eco-
systems. A diverse set of intertidal viruses were recovered, poten-
tially infecting a broad range of prokaryotic hosts. Consistent with
previous findings in marine and soil ecosystems11,12, Caudoviricetes
was the most abundant DNA viruses in the intertidal sediments. As
the most widespread, abundant and diverse group of viruses on
Earth6, Caudoviricetes are thought to infect hosts from almost all
bacterial lineages6, as also supported by the current study. Inter-
estingly, Thermoplasmatota, a globally distributed and ecologically
important archaeal phylum31, was found with the highest VHR,
despite of its low relative abundance. Also, NCLDVs were frequently
detected, demonstrating their wide distribution in intertidal eco-
systems. Although these NCLDVs were only genomic fragments, the
majority of them could be identified by multiple pipelines, ensuring
their accuracy. To offer additional insights into the phylogenetic
diversity of intertidal NCLDVs, further approaches like binning are
required to obtain more complete viral genomes32.
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Fig. 4 | Biogeographic patterns of intertidal viromes and their linkages with
other habitats. a The taxonomic diversity of core vOTUs and mOTUs in the
intertidal sediments. The taxonomy of viruses was determined according to their
predicted hosts. b Latitudinal diversity patterns for vOTUs, mOTUs, and vPCs. The
relationship between absolute latitude and richness was analyzed. The numbers of
vPCs and vOTUs were respectively divided by 20 and 5 for better visualization. The
best polynomialfit was determined between first- and second-order polynomialfits
based on the corrected Akaike Information Criterion (AICc). The R2 values repre-
sent the proportion of variance explained by the polynomial regression model.
c Distance-decay relationships for vOTUs, mOTUs, and vPCs. The relationships

between geographic distance (log-transformed) and community similarity (log-
transformed) were analyzed. The Pearson’s correlation coefficients of the linear
regression model are presented. d The consensus network representing shared
viruses across different habitats. The circos illustration was employed to show the
proportion of shared viral clusters (VCs) across different habitats. The Sankey
diagram was used to show the proportions of VCs shared between intertidal zones
and other habitats. e The numbers of shared VCs among intertidal zones, marine,
soil, freshwater, and human. Statistical significance of each regression model was
evaluated using a two-sided F test. Source data are provided as a Source Data file.
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Previously, the virus-host dynamics are typically estimated using
the virus-to-microbe ratio derived from the counts of viruses and cells
employing epifluorescence microscopy or flow cytometry33. Recently,
shotgun metagenome/metavirome have been utilized as a routine
approach for viral ecology studies, in which virus-host relationships
are analyzed based on relative abundances11,18,33,34. Comparatively, dif-
ferent limitations are present for these different technologies33,35. For
instance, absolute-abundance-based approaches like flow cytometry
quantifies the overall virus-to-microbe ratio based on counts, but lacks

more detailed information such as the taxonomy of viruses and hosts,
hindering further statistical analyses at fine levels, albeit the potential
false positive counting of viral particles in soils and sediments33,34.
Metaviromes usually recover more viruses than metagenomes36,
though with some exceptions37, but require metagenomes in different
batches for virus-host relationship analyses, introducing other sys-
tematic artifacts. Considering various issues, shotgun metagenomes
were employed in this study, aiming to provide insights into the
complex virus-host relationships and their potential function in
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Fig. 5 | Ecological mechanisms driving intertidal viromes and their hosts.
Analyses were performed for vOTUs, mOTUs, vOTUs assigned with hosts, and
microbial hosts. a Partial mantel tests showing the relationship between environ-
mental factors and viral/microbial communities. The edge color and width repre-
sent the Mantel’s r and p value, respectively. The color gradient in heatmap
represents the Pearson’s correlation coefficients between different environmental
factors. The stars in the heatmap indicate significance levels: * (P <0.05), **
(P <0.01), and *** (P <0.001). All statistical tests were two-tailed. b Variation parti-
tioning analysis showing the contributions of geographic distance and environ-
mental factors to the compositional variations of viral and microbial communities.
c Neutral community model analyses based on the predicted occurrence fre-
quencies and their relative abundances. The solid blue lines indicate the best fit to

the neutral community model and the dashed blue lines represented 95% con-
fidence intervals. Nm represents the community size times immigration, R2 repre-
sents the fit strength to this model. d The Raup-Crick proportion of viral and
microbial communities showing the contribution of different processes in com-
munity assembly, including deterministic processes (|RCbray | > 0.95), and sto-
chastic processes (|RCbray | ≤0.95). e Stochastic ratio analyses of viral andmicrobial
communities. The normalized stochastic ratios were calculated based on 1000 null
models, using a threshold of 50% to distinguish between deterministic and sto-
chastic processes. The mean ± SEM of stochastic ratio values calculated from 4560
pairwise comparisons among 96 intertidal samples were plotted. Source data are
provided as a Source Data file.
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intertidal ecosystems38. Similar to several studies in marine and soil
habitats11,39, a sublinear relationship was observed for the relative
abundances of viruses against microbial hosts in intertidal sediments,
in which the peaked VHRs tended to decrease when microbial host
further increased. In addition, we found that the virus-host abundance
dynamics significantly differed among different microbial lineages,
which may contribute to the observed sublinear relationship. Never-
theless, the virus-host relationships in this study were analyzed based
on the relative abundances derived from metagenomic data, absolute
quantification approaches at fine taxonomic levels are desired to
determine the viral predation models in complex environments.

As the most abundant biological entities in the Earth’s biosphere,
viruses also execute critical ecosystem functions and maintain eco-
system stability8,10,26. Although viruses are usually not directly involved
in biogeochemical cycles, they can promote the release of nutrients
from hosts by lysis and enhance host metabolism by encoding critical
functional genes8,26. A number of studies have demonstrated that
viruses frequently carry AMGs to regulate the corresponding biogeo-
chemical cycling processes in different habitats7,8,10,26. In this study,
vAMGs related to carbon, nitrogen, phosphorus, and sulfur metabo-
lism were detected. Importantly, the results demonstrated that inter-
tidal viruses carried multiple AMGs related with aerobic methane
oxidation and its close relatives, as also observed in a recent study40.
Among these, pmoC and fdhB genes were exclusively specific to
aerobic methane metabolism. We anticipated that viral regulation of
host metabolism may have imposed important impacts on intertidal
methane metabolism, particularly in terms of methane oxidation40. In
addition, the relative abundances of vAMGs involved in specific
metabolic pathways and the VHRs for lineages with specific functions
were significantly correlated with corresponding environmental fac-
tors, providing compelling evidence for the contribution of intertidal
viromes in various biogeochemical cycling.

Insightswere also gained for the involvement of intertidal viromes
inmediating DOM,which is the largest reservoir of organic carbon and
is the source of recalcitrant DOM (RDOM), impacting global carbon
cycling and climate change41. It is estimated that approximately 96% of
DOM isdifficult to bedegraded andutilized bymicrobes and is present
in the ocean as RDOM42. Viral shunt is reported as an important source
of DOM and RDOM production41,43. Significant associations between
intertidal viruses and DOM components were observed in this study.
Viral lysis of Cyanobacteria is considered a major driving force in
shaping DOM components44, as also supported by our findings in
intertidal sediments. Aliphatic-like compounds consistently emerged
as the most relevant DOM class to intertidal viruses infecting different
lineages. Most of these compounds are highly bio-labile45, making
them bioavailable and significant contributors to biogeochemical
processes in intertidal sediments. In addition, lignin- and phenolic-like
compounds were the other two classes that strongly correlated with
viruses, suggesting that intertidal virusesmay have also contributed to
the accumulation of RDOM45. Notably, VHRs explained much higher
proportion of the compositional variation of DOM pools than geo-
environmental factors. Such results suggested important contribution
of viral communities to intertidal DOM composition, providing
insights into the role of viral shunt in intertidal DOM pools.

Finally, the biogeographic patterns and community assembly
mechanisms for the intertidal viromes revealed several interesting
mechanistic patterns along the latitudes. First, similar biogeographic
patterns were followed by viral and microbial communities, demon-
strating interconnected relationships between them7. Second, much
weaker spatial scaling pattern was observed for the viral functional
genes than taxonomic groups, suggesting functional redundancy
despite of dissimilar communities46,47. Third, deterministic factors
mainly mediated the compositional variation of intertidal viromes and
microbial communities, as evidenced by multiple statistical

approaches. Both environmental heterogeneity and geographic dis-
tance strongly influenced the compositional variations of intertidal
viromes. Such results demonstrated that patterns followed by micro-
bial communities can also be conveyed to viral communities, or vice
versa7.

In conclusion, this study demonstrated the biodiversity, func-
tional potential, biogeography, and ecology of intertidal viromes along
the Chinese coasts. An extensive dataset of intertidal viral genomes
and their microbial hosts was recovered. A sublinear relationship
between viral and microbial host relative abundances was observed,
with varied virus-host abundance dynamics among different microbial
lineages. Furthermore, diverse AMGs that may potentially enhance
host metabolisms were encoded by viruses, which may serve as a
complimentary life strategy for intertidal viruses. The results also
suggested close interconnected relationships between viral and
microbial communities, by sharing similar ecological patterns and
mechanistic processes. Our findings contribute a comprehensive
understanding of intertidal viromes within an ecological framework,
and provide novel perspectives for investigating the interaction and
coevolution between viruses and their host microbes.

Methods
Study locations and sample collections
In this study, mudflat intertidal sediments were collected in twelve
coastal regions spanning from the southmost (Sanya, 18.27o N, 109.68 o

E) to the northmost (Dandong, 39.81 o N, 123.69 o E) in China. Samples
were collected from April (South) to June (North) in 2021, balancing
the sampling temperature differences in South and North China. For
each sampling site, fifteen different homogenized sedimental samples
were collected. Of them, eight were subject to shotgun metagenome
sequencing. For each sample, five sedimental cores were collected
from 0–15 cm within 1m2 and then homogenized as one sample. The
collected samples were stored on ice, and immediately transported to
the laboratory. All samples were stored at −80 °C before subject to
DNA extraction and environmental factor measurement.

Environmental factors and DOM measurement
A total of 11 environmental factors were measured for each sample
(Supplementary Data 9), including temperature, pH, salinity, total
organic carbon (TOC), total nitrogen (TN), total phosphorous (TP),
ammonia nitrogen (NH4

+-N), nitrate nitrogen (NO3
--N), nitrite nitrogen

(NO2
--N), sulfate (SO4

2-), and moisture. The temperature for each
sample was measured in situ using a mercury thermometer
(−50 °C ~ 50 °C)when the sedimentwas collected. ThepHof sediments
was measured using a pH meter (STARTER 300, OHAUS, Beijing,
China). The salinity of sediments was measured using a salinity meter
(WS-31, Xudu, Beijing, China). The TOC of sediments was measured
using TOC-L CPH meter (Shimadzu, Kyoto, Japan). The moisture of
sediments was determined by drying 5.0 g fresh sediment at −80 °C to
a constant weight. The concentrations of TN, TP, NH4

+-N, NO3
--N, NO2

--
N, and SO4

2- weremeasured by spectrophotometry (Cytation5, BioTek,
USA). DOM was extracted using a solid-phase method and analyzed
using Fourier transform ion cyclotron resonance mass spectrometry
(Solarix 15 T, Bruker, USA) at the Research Center for Eco-
Environmental Sciences, Chinese Academy of Sciences, Beijing,
China. Then, the DOM molecular formulas were assigned by For-
mularity software48 and the downstream data analysis was performed
with FtmsAnalysis (https://github.com/KaiMa-endeavour/DOM-in-
MicroEco)49. The DOM table can be obtained from https://zenodo.
org/records/10827260.

DNA extraction and bulk metagenomic sequencing
The total DNA of each sediment sample was extracted from 0.5 g
homogenized sediment after freeze-drying using a FastDNA SPIN kit
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for soil (MP Biochemicals, USA) according to the manufacturer’s
instructions. Subsequently, DNA quality was assessed based on ratios
of 260/280 and 260/230 using Nanodrop ONE (Thermo Fisher Scien-
tific, MA, USA). DNA with good quality was sequenced on the Illumina
NovaSeq 6000 platform (paired-end, 2 × 150bp, Inc., San Diego, CA,
USA), and each metagenomic sample had a raw data size of >20Gb.
High throughput sequencing was performed by NovoGene Co., Ltd.
(Tianjin, China).

Metagenomic assembly
Trimmomatic v0.39was used to remove adapters and filter low-quality
raw reads with a minimum base quality threshold of 20 and minimum
read length of 3650. Then, clean reads from eight sediment samples at
each sampling site were co-assembled (i.e., assembly of multiple
samples) using MEGAHIT v1.2.951 with k-mer sizes of 29, 39, 59, 79, 99,
109, 127.

Identification and clustering of viral genomes and genes
Three mainstream pipelines, including Virsorter2 v2.2.319, DeepVir-
Finder v1.020, and VIBRANT v1.2.121, were first used to identify viruses
from co-assembled contigs (≥5 kb). Then, a more precise procedure
wasused to screen and retain viral genomes according to the following
criteria: (i) high confidence level (score ≥ 0.7 and had hallmark genes)
of VirSorter2 (parameters: --keep-original-sequence), (ii) identified by
VirSorter2 (score ≥ 0.5), DeepVirFinder (score ≥ 0.7 and p ≤0.05), and
VIBRANT simultaneously. (iii) identifiedby any twoofVirSorter2 (score
≥ 0.5), DeepVirFinder (score ≥ 0.7 and p ≤0.05), and VIBRANT, and
further screened by CheckV v1.0.152 with at least one viral hallmark
gene. The proviral regions were extracted from recovered viral gen-
omes based on the CheckV contamination estimates.

The viral genomes after removing host contamination were de-
replicated and clustered into viral operational taxonomic units
(vOTUs) at 95%average nucleotide identity and85%alignment fraction
of the shortest genome using the python scripts in CheckV (https://
bitbucket.org/berkeleylab/checkv/src/master/scripts/)52. The repre-
sentative genome of each vOTU was used as input to CheckV to eval-
uate genome completeness52. The Prodigal 2.6.3 (-p meta)53 software
was used to predict viral genes in viral genomes after removing host
contamination. The proteins encoded by viral genes were further
clustered at 60% identity and 80% coverage using cd-hit v4.8.1 (para-
meters: -c 0.6 -aS 0.8 -n 4 -g 1) to get viral protein clusters (vPCs)54.

Lifestyles and taxonomy prediction of viruses
Viral lifestyles were first determined by identifying lysogenic signals
(including integrase, recombinase, provirus, transposase, and
repressor)26. The proteins of 20,102 vOTUs were annotated against
eggNOG database v5.0 using DIAMOND (bit score > 50 and e-value <
1e-5) and integrated database in VIBRANT21,55,56. The viruses without
lysogenic signals were further detected with PhaTYP (default
parameters)24 to distinguish lifestyles (lysogenic or lytic).

To assign taxonomic lineages to viral genomes in accordancewith
the latest ICTV classification, geNomad v1.7.4 (score ≥ 0.7) was adop-
ted based on the taxonomic rank of annotated proteins57. Subse-
quently, the viral genomes classified as NCLDVswere further validated
using Virsorter2 v2.2.3 (--include-groups NCLDV)19 and Viralre-
call v2.158.

Recovery and clustering of microbial genomes
The recovered viral genomes (excluding proviruses) were first
removed fromco-assembled contigs7. ThemetaWRAP v1.3.2 pipeline59,
an integrative pipeline of multiple binning methods, were used to bin
metagenome-assembled genomes (MAGs) from co-assembled contigs
(≥1.5 kb) for each sampling site. All MAGs were further consolidated
into a final bin set using Bin_refinement module (>50% completeness

and <10% contamination) withinmetaWRAP59.MAGs in the final bin set
werede-replicated and clustered intomicrobial operational taxonomic
units (mOTUs) at 95% average nucleotide identity using dRep v3.4.060.
CheckM v1.0.1261 was then used to assess the genome quality and
features of mOTUs with the lineage_wf module. Taxonomic informa-
tion of mOTUs was assigned using GTDB-tk v2.1.162 based on the
Genome Taxonomy Database R07-RS207 v2. The classification results
were further refined by NCBI taxonomy using the GTDB-tk script
(https://github.com/Ecogenomics/GTDBTk/tree/master/scripts) for
downstream analysis. The KEGG-Decoder module63 was used to eval-
uate the metabolic pathways of sulfate-reducing bacteria within Del-
taproteobacteria and Thermodesulfobacteria, as well as ammonia-
oxidizing archaea within Thaumarchaeota.

Identification of viral functional genes and AMGs related to
biogeochemical cycles
Viral proteins were searched against eggNOG database v5.0 using
DIAMOND with an e-value cutoff of 1e-5 and a bit score of 5055,56. The
functions of viral genes were categorized according to COG function
classes. Subsequently, viral genes assigned KEGG_ko numbers by
eggNOG were considered as potential AMGs and were further sear-
ched against various databases targeting specific biogeochemical
processes using DIAMOND (identity > 30%, e-value > 1e-5, and bit
score > 50), including NCycDB (nitrogen metabolism)64, SCycDB (sul-
fur metabolism)65, PCycDB (phosphorus metabolism)66, MCycDB
(methane metabolism)67, and dbCAN2 (carbohydrate metabolism)68.
To ensure the accuracy of AMGs, only the consistent annotations
between eggNOG and these specific databases were retained. Further,
AMGs were screened based on previously proposed criteria (Supple-
mentary Data 5)69: (i) glycoside hydrolase family (e.g., lysozyme) rela-
ted to viral infection were removed; (ii) AMGs related to nucleotide or
amino acid metabolism (e.g., GlycosylTransferase and multiple phos-
phorus metabolism families) were removed; (iii) AMGs neighbored to
viral hallmark gene (the viral hallmark genes were determined by
searching against viral RefSeq and geNomad_dbwith e-value > 1e-5 and
bit score > 50) were retained and only AMGs with viral hallmark gene
on both the left and right flankswere considered as of high confidence.
For AMGs related to amo/pmo gene families, both database searching
against NCycDB and phylogenetic analyses using the maximum like-
lihood algorithm were conducted to clarify their homology. All pro-
teins encoded byAMGswere then compared to the proteins ofmOTUs
with identity and coverage > 90% to determine the source of AMGs.
The comparative genomic analyses and visualization of viruses were
performed using clinker v0.0.2370.

Prokaryotic host prediction for intertidal viruses
The 451 intertidal vOTUs that infected eukaryotes based on viral
taxonomy were initially excluded, including vOTUs belonging to
Parvoviridae, Nanoviridae, Baculoviridae, Herpesviridae, Malaco-
herpesviridae, Nucleocytoviricota, Lavidaviridae, and Adintoviridae.
Subsequently, 19,651 vOTUs were linked to microbial genomes using
five different methods: (i) CRISPR spacers matches. CRISPR spacers
were recovered from 2259 microbial genomes using metaCRT71 and
PLIERCR72. The recovered spacers were then compared to viral gen-
omes using BLASTn with the following parameters: e-value ≤ 1e-5,
percentage identity ≥ 95%, and mismatch ≤ 2; (ii) tRNA sequence
matches. tRNA sequences in viral genomes were recovered with
tRNAscan-SE v2.0.9 (using general tRNAmodel)73 and then compared
to microbial genomes using BLASTn with identity ≥ 90% and cover-
age ≥ 90%; (iii) shared genomic sequence homology. Viral genomes
were compared to microbial genomes using BLASTn. Only the best
matches having ≥2 kb alignment length and ≥ 70% identity were
considered8. Short proviruses (≤5 kb) having ≥50% coverage over the
genome length and ≥ 70% identity can also be considered as effective
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hits; (iv) integrated phage host prediction (iPHoP)74. The 2259
recovered intertidal microbial genomeswere first added to the iPHoP
database. Then, iPHoP v1.3.2 was used to predict microbial hosts for
intertidal viruses with a minimum confidence score of 90 (i.e., false
discovery rate <10%). Only the predicted hosts that hit intertidal
microbes were retained; (v) oligonucleotide frequency. VirHost-
Matcher v1.0 was employed for calculating the oligonucleotide fre-
quency between viral and microbial genomes75. The best matches
with d2* values < 0.25 were retained.

Viral gene sharing network between intertidal zones and other
habitats
Thepredicted viral proteinswere clusteredwithNCBI Viral RefSeq v211
using vConTACT2 v0.11.3 to construct the gene sharing network76.
Specifically, 20,102 intertidal viral genomes were compared to the
same number of randomly selected high-quality viral genomes from
other habitats in IMG/VR v4 database77: (i) 20,102 from soil (grassland,
forest, and agricultural land), (ii) 20,102 from freshwater (lake and
river), (iii) 20,102 from marine, (iv) 20,102 from human (intestine and
oral cavity).

Calculating the normalized abundance of vOTUs, mOTUs,
and vPCs
Coverm v0.6.1 (https://github.com/wwood/CoverM) was used to cal-
culate the average read depths of representative genomes or genes.
Briefly, read mapping was performed using BWA-MEM78 with nucleo-
tide identity ≥ 95% and coverage ≥ 90% and the average sequencing
depths were calculated with ‘trimmed_mean’ (remove the top and
bottom 10% depths) coverage mode of Coverm. Then, the average
sequencing depths were further normalized to eliminate the differ-
ences in the average read length and read number of each sample
according to the following function:

Normalized coverage = coverage � Abillionof readnumber
readnumberof sample

� 150bpof read length
read lengthof sample

Here, the total read number and average read length of each sample
were recorded in Supplementary Data 1. The normalized results
represented the coverage of genomes/genes in each sample when the
sequencing depth is one billion reads and the average read length
is 150bp.

Statistical analyses
Statistical analyses were performedwithmultiple packages in R v4.2.0.
The cumulative curves were calculated using the ‘specaccum’ function
of veganpackage79. Bray–Curtis dissimilarity of communities andDOM
pools and Euclidean distances of geo-environmental factors and VHRs
were calculated using the ‘vegdist’ function of vegan package79. Ana-
lysis of similarity was used to test the significance between different
groupspresented in non-metricmultidimensional scaling (NMDS). The
geographic distances between different sites were calculated using the
‘geoXY’ function of SoDA package7. The partial mantel tests between
communities and environmental factors were performed by control-
ling the effects of geographic distance with 999 permutations. The
mantel tests between DOM pools and VHR of each lineage were per-
formed with the method of Spearman correlation and 999 permuta-
tions. The geographic variables used for variation partitioning analysis
were calculated by the principal coordinates of neighbor matrices
procedure of vegan package79. Then, the variation partitioning analysis
was performed with a forward selection procedure using the “ordi-
step” function of vegan packages to select geographic variables,
environmental variables, and VHRs of specific lineages for construct-
ing significant (P < 0.05) canonical correlation analysis models,
respectively47. The screened variables were divided into different

groups to get their variation using the “varpart” function of vegan
package79. The Spearman correlations between the relative abundance
of each vOTU and each DOMmolecular formula were calculated using
the ‘rcorr’ function of Hmisc package80. Then, the statistical sig-
nificance was adjusted by applying a Bonferroni correction.

To disentangle the relative importance of deterministic and sto-
chastic processes, multiple approaches including neutral community
model, RCbray metric, and normalized stochastic ratio were used.
For neutral community model, the correlations between
occurrence frequency and regional relative abundance were
calculated using the Rscript (https://github.com/Weidong-Chen-
Microbial-Ecology/Stochastic-assembly-of-river-microeukaryotes)
described previously81. The overall fit (R2) of the community to the
neutral model was determined. A well-fitted overall neutral model
indicated that the community was structured by the neutral theory,
whereas a low R2 value suggested the dominance of ecological niche
theory. For RCbray metric calculation, the R function “Raup_Crick_-
Abundance.r” (https://github.com/stegen/Stegen_etal_ISME_2013)29

was used. In the result, |RCbray | ≤0.95 suggests comparable commu-
nity turnover between the observed and null communities, meaning
that the compositional variations are dominated by stochastic pro-
cesses. RCbray values larger than 0.95 or smaller than −0.95 indicate
deterministic factors that lead to heterogeneous or homogeneous
communities could be the dominant process for the compositional
variations. For normalized stochastic ratio calculation, a total of 1000
null models were generated based on Bray–Curtis dissimilarity using
the NST package30. A normalized stochastic ratio below 50% indicates
that the deterministic factors dominate community variations, while a
ratio above 50% suggests the domination of stochasticity.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequencing data generated in this study have been deposited in
NCBI Sequence Read Archive (SRA) database under project ID
PRJNA957716 as well as in the NODE under project ID OEP004120
[https://www.biosino.org/node/project/detail/OEP00004120]. The
detailed information of sequencing data is provided in the Supple-
mentary Data 1. The representative sequences of vOTUs, mOTUs, and
vPCs andDOM tables generated from this work are available at https://
zenodo.org/records/10827260. Source data are provided with
this paper.

Code availability
R code used for generating figures and performing data statistics in
this study are publicly available on GitHub at https://github.com/
MengzhiJ/Biodiversity-of-mudflat-intertidal-viromes-along-the-
Chinese-coasts.
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