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Approaches to the function of object recognition areas of the visual cortex 

Matthew S. Caywood 

Abstract 
 

This dissertation describes recent theoretical and experimental efforts to understand the areas of the 

visual cortex and the neural coding underlying our ability to see and recognize objects. The first chapter 

is theoretical, describing a computer model of color processing in macaque primary visual cortex (V1). 

This previously published study shows that the apparent complexity of V1 neurons’ responses to color 

grating stimuli may arise from the statistics of the natural visual world in combination with a learning 

rule under which neurons reduce the redundancy of their responses to natural stimuli. The second 

chapter is a hybrid of theoretical work and preliminary experimental data. We ask how one could begin 

to study the function of higher visual areas for which simple stimuli are insufficient. We suggest a 

“bottom-up” approach that starts with the visual area below the area of interest, and uses knowledge 

about the lower area to define a basis set of stimuli for studying the higher area. Since neurons in higher 

visual areas respond invariantly to stimuli, we introduce a computational topology method that allows 

us to rigorously study known invariances and indentify unanticipated invariances. The third chapter is a 

significant new experimental contribution, a method for defining and describing the functional maps in 

individual visual areas of the cortex. We adapt the continuous intrinsic signal imaging technique of 

Kalatsky and Stryker to characterize multiple functional maps, including ocular dominance, direction, 

spatial frequency, and temporal frequency, in primary visual areas 17 and 18 and extrastriate visual area 

21a of the cat. We show that the functional architecture of area 21a is distinct from earlier visual areas, 

and that its function is closely linked with other ventral stream visual areas involved in object 

recognition. Finally, we provide a systematic classification, inspired by machine learning theory, of 

attempts to study the selectivity of neurons in object recognition areas of the visual brain, and discuss 

what the functional architecture of a visual area implies about its neural responses. 
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Introduction 

The cortex is a several-millimeter-thick sheet of cells on the convoluted outer surface of 

the brain, responsible for complex human visual behaviors such as reading, recognizing 

objects and faces, and higher cognitive functions such as language use, planning and the 

processing of abstract information. Much of what is happening in your mind as you read 

this thesis takes place somewhere in your cortex.  During the evolution of modern 

humans, the expansion of the cortex is believed to be responsible for increased 

intelligence and complex behavior (Marino, 2002; Sherwood et al., 2008). 

In the quest to understand intelligence and the human brain, neuroscientists have 

concentrated their research efforts on specific areas of the cortex. Many of these areas 

represent input from the senses, since it is easy to change sensory input experimentally 

and study the correlates in the brain. For example, an experimenter can present simple 

video images to an animal while simultaneously monitoring the visual cortex.  Another 

advantage of studying the visual cortex is its relatively simple arrangement into streams 

of connected visual areas – visual information from the eye goes first to a single area, 

the primary visual cortex (known as V1), then sweeps out along multiple streams 

(Ungerleider & Pasternak, 2004). This relatively simple hierarchy, which may pass 

information unidirectionally in some visual recognition tasks (Riesenhuber & Poggio, 

2004) is likely to be easier to decipher than other brain circuits connected in recurrent 

loops. 

1



The function of V1 is relatively well understood. It has been known for nearly 50 years 

that its neurons fire tiny electrical spikes tens of times a second in response to an 

oriented edge in a particular location in visual space – for example, when you view a 

pencil held vertically at arm’s length, hundreds or thousands of cells in V1 will fire 

(Hubel & Wiesel, 2004).   

These cells are not distributed randomly throughout V1, but are organized into clusters 

called columns. Columns extend through the full thickness of the cortex, and are about 

0.5 mm wide; cells within a column share similar response properties and stimulus 

preferences. Columns define the functional map of the area – for any visual stimulus, 

this map will predict where to find cells that will respond to it. Since mammals’ brains do 

not develop identically, no two animals will have identical maps, but certain organizing 

principles always hold (Hübener & Bonhoeffer, 2002). These principles include 

retinotopic organization (considering again the example of a pencil, its location in the 

two-dimensional image seen by the eyes directly corresponds to a location in the two-

dimensional sheet of V1), orientation (pencil vertical or horizontal), spatial frequency 

(width of the pencil), direction (which way it is moving). 

Although V1 has been thoroughly studied, vast areas of the visual cortex remain poorly 

understood since elementary stimuli such as the pencil evoke a much weaker response 

than they do in V1. There is not even agreement on the number of visual areas in the 

cortex; humans have 25-40; monkeys have fewer, and cats fewer still (Van Essen, 2004; 

Scannell et al., 1999).  Thus, one open question is how to demarcate areas, by 
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identifying distinguishing functional or structural properties. Another is identifying 

areas’ specific function: what unique role does a given area play? A final question is 

functional architecture: how are the neurons within an area organized, and what does 

this organization tell us about the function of the cortex? 

This dissertation describes recent theoretical and experimental efforts to understand 

the neural coding underlying our ability to see and recognize objects. It is divided into 

three stand-alone papers and a concluding discussion of previous studies of object 

recognition with an exposition of this work’s contribution to the field. 

The first paper is theoretical, describing a computer model of the processing of color in 

V1 in the primate (macaque monkey). In order to understand neurons’ complex and 

diverse visual responses, and the complex functional architecture of the cortex, it is 

important to identify whether simple developmental rules and statistical regularities in 

the natural world can interact to produce complexity. This study shows that the 

apparent complexity of V1 neurons’ responses to color stimuli may arise from fairly 

simple causes: post-natal exposure to the natural visual world in combination with a 

rule under which neurons learn to respond differentially to natural stimuli.  

The second paper is a hybrid of theoretical work and some preliminary experimental 

data. It asks how we could begin to study the function of higher visual areas for which 

simple stimuli are insufficient. We suggest a “bottom-up” approach that starts with the 

visual area below the area of interest, and uses knowledge about the lower area to 

define stimuli for studying the higher area. Since neurons in higher visual areas often 
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respond invariantly to stimuli (i.e. they are not sensitive to exact stimulus positioning), 

we propose a method of rigorously studying these invariances and identifying new ones. 

Although the experimental portion of this study is preliminary, the theoretical work 

points toward a possible future of neuroscience experiments that can be performed 

semi-automatically by computers, freeing experimenters to theorize more abstractly.  

The final paper is a significant new experimental contribution, explaining a method for 

defining and describing the maps in individual visual areas of the cortex. I use the 

technique of intrinsic signal imaging to observe, through a high-speed camera, the 

metabolic response that correlates with local neuronal activity in the cortex.  I 

characterize multiple visual areas of the cat simultaneously, specifically demarcating and 

characterizing area 21a, an intermediate visual area with previously uncertain 

boundaries; we show that its properties are distinct from earlier visual areas, and that 

its function is closely linked with other visual areas that recognize objects. We find that 

cortical maps in individual cats can be rapidly characterized, demonstrating that even in 

the anesthetized cat, optical imaging techniques can be used to study intermediate 

visual areas.  
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Caywood, Matthew S., Benjamin Willmore, and David J. Tol-
hurst. Independent components of color natural scenes resemble V1
neurons in their spatial and color tuning. J Neurophysiol 91: 2859–2873,
2004. First published January 28, 2004; 10.1152/jn.00775.2003. It has
been hypothesized that mammalian sensory systems are efficient
because they reduce the redundancy of natural sensory input. If
correct, this theory could unify our understanding of sensory coding;
here, we test its predictions for color coding in the primate primary
visual cortex (V1). We apply independent component analysis (ICA)
to simulated cone responses to natural scenes, obtaining a set of
colored independent component (IC) filters that form a redundancy-
reducing visual code. We compare IC filters with physiologically
measured V1 neurons, and find great spatial similarity between IC
filters and V1 simple cells. On cursory inspection, there is little
chromatic similarity; however, we find that many apparent differences
result from biases in the physiological measurements and ICA anal-
ysis. After correcting these biases, we find that the chromatic tuning
of IC filters does indeed resemble the population of V1 neurons,
supporting the redundancy-reduction hypothesis.

I N T R O D U C T I O N

The mammalian visual system is believed to efficiently
encode natural visual information. One way in which it
might do this is by reducing the redundancy of the repre-
sentation at successive stages of processing (Attneave 1954;
Barlow 1959). Natural visual input contains features such as
edges and homogenous color patches, which make the pat-
terns of light falling on the retina highly redundant and
which give rise to statistical dependencies between neigh-
boring regions of the visual image (Field 1987). To reduce
redundancy, the visual system might use these features as a
basis for representing visual input (Barlow 1989).
Independent component analysis (ICA) (Comon 1994) is

a widely used method for finding a redundancy-reducing
encoding of data (such as natural visual scenes). Although
the resulting independent components (ICs) are often only
approximately independent, when ICA is applied to achro-
matic natural images, it produces ICs that are strikingly
similar to the achromatic spatial receptive fields (RFs)
of simple cells in primary visual cortex (V1) (Bell and
Sejnowski 1997). Sparseness maximization (Olshausen and
Field 1996) is conceptually similar to ICA and produces
similar results; Ringach (2002) has argued that it better
models the diversity of spatial RFs in V1. However, ICA

has been validated by many rigorous comparisons with V1:
van Hateren and van der Schaaf (1998) quantified the com-
parison between achromatic ICs and macaque V1 simple
cells and found that the distributions of all RF measure-
ments except optimal spatial frequency (SF) were well
matched. When a temporal dimension is added and simple
cells are compared with the IC filters of achromatic natural
movies, the SF similarity improves (van Hateren and Rud-
erman 1998).
Because the ICA model successfully explains the spatial

tuning of V1 simple cells to achromatic stimuli, the model
may also explain other response properties such as color
tuning. To test this hypothesis, ICA has been applied to
colored natural scenes to produce spatiochromatic ICs (Doi
et al. 2003; Hoyer and Hyvärinen 2000; Tailor et al. 2000;
Wachtler et al. 2001). However, these studies used varying
methodologies and found conflicting sets of ICs. Addition-
ally, none of the studies has quantitatively compared ICs to
a standard set of physiological measurements of V1. Finally,
a richer understanding of V1 color coding has recently been
developing: the view that color sensitivity is infrequent in
V1 and restricted to weakly orientation-tuned neurons in
cytochrome oxidase blobs (Livingstone and Hubel 1984;
Lennie et al. 1990) has given way to a more diverse picture,
in which oriented cells also have a rich variety of color
sensitivities (Conway 2001; Johnson et al. 2001).
In this study, our goal was to rigorously test the hypothesis

that ICA can account for the chromatic tuning of neurons in
V1. We have controlled for the methodological variations
between previous color ICA studies and have chosen the most
biologically realistic set of ICs for analysis. Treating the ICs as
though they were real neuronal RFs, we use the cone-opponent
grating stimuli of Derrington et al. (1984) to determine their
color tuning. We then directly, quantitatively compare the
color tuning with the Lennie et al. (1990) classic V1 data. To
further test the hypothesis, we compare the structure of ICs’
model cone inputs with recent V1 data from Conway (2001)
and Johnson et al. (2001). At first sight, the color tuning of ICs
of natural scenes does not look very similar to V1 neurons, but
we will show that, in fact, there is considerable similarity, once
appropriate ICA methodology is employed, and the limitations
of real experimental protocols are considered.
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FIG. 1. (See text for full legend.) A and B: IC �lters generated from RGB input (A) and 
from JPEG-encoded RGB input (B). C: IC �lters generated from images encoded 
using human LMS cone sensitivities, shown in pseudocolor so that L is red, M green, 
and S blue. D: LMS IC basis functions, matched to the �lters in C. E: absorption 
spectra of human L, M and S cones. F: R, G and B absorption spectra of a typical 
digital camera.

7



M E T H O D S

Colored natural scenes
We analyzed a “hyperspectral” set of 25 distinct colored natural

scenes (Párraga et al. 1998). Each 256 � 256-pixel scene was pho-
tographed through 31 filters covering the human visible spectrum
(centered at wavelengths 400, 410 . . . 700 nm, bandwidth: �10 nm);
thus it was not limited by the spectral sensitivity of a standard RGB
(Red-Green-Blue) camera. Each plane was digitized to 12 bits of
intensity. We aligned the color planes of each scene with subpixel
accuracy by maximizing cross-correlation of adjacent planes; then, to
ensure proper alignment, we averaged pixels together in 2� 2 blocks.
We encoded the scenes in three ways that encompass previous

work. Wachtler et al. (2001) transformed the Párraga et al. (1998)
hyperspectral images into the human visual colorspace defined by the
absorption spectra of L, M, and S cones. Hoyer and Hyvärinen (2000)
used uncompressed images encoded in a digital camera’s RGB col-
orspace, while Tailor et al. (2000) used JPEG-compressed RGB
images taken from the Internet.
In the LMS condition, we used the Smith-Pokorny cone-sensitivity

curves (Fig. 1E) (Smith and Pokorny 1975) to transform the 31-plane
hyperspectral scenes into 3-plane LMS space. These human psycho-

physical curves are consistent with, but more precise than, the phys-
iological absorption spectra of macaque photoreceptors (Baylor et al.
1987). In the RGB condition, we converted the 31-plane hyperspectral
scenes into 3-plane RGB images, using the sensitivity curves (Fig. 1F)
of the red, green, and blue detectors of a typical digital camera (Nikon
Coolpix 950; C.A. Párraga, unpublished observations). In the JPEG
condition, we applied JPEG compression to these RGB-encoded im-
ages to mimic the Tailor et al. (2000) dataset. JPEG images were
encoded at quality setting 90 [using Matlab’s (the MathWorks) IM-
WRITE function]. This is conservative compared with the quality
setting of between 50 and 75, which we estimate (from the encoded
file sizes) was used in the Tailor et al. (2000) image set. After
performing ICA, we linearly transformed the resulting RGB ICs into
the LMS colorspace for comparison with neurophysiological data.
We pseudorandomly extracted a set of 12 � 12-pixel fragments

from the scenes in each image set, excluding the calibration reference
(a white card) from each scene. The number of fragments was 200
times the fragment dimensionality (i.e., 86,400 for 12 � 12-pixel,
3-plane images).
In the LMS and RGB conditions, each image fragment was log-

transformed. The log transform is commonly applied as ICA prepro-
cessing (e.g., van Hateren and van der Schaaf 1998) because it

FIG. 1. Sample of independent compo-
nents (IC) filters and IC basis functions gen-
erated by running IC analysis (ICA) on dif-
ferently encoded input, and RGB (Red-
Green-Blue) and LMS (Long-Medium-Short)
absorption spectra used in encoding. ICs,
which contain positive- and negative-valued
pixels with arbitrary range, were normalized
so that a value of 0 is displayed as medium
intensity (0.5) and all pixels of an IC are
between 0 and 1. A and B: IC filters gener-
ated from RGB input (A) and from JPEG-
encoded RGB input (B). Filters were manu-
ally separated into approximate color oppo-
nency type (blue-yellow versus red-green).
Within color groups, they are subdivided by
spatial structure (full-field, Gabor-like,
checkerboard (present in B only), and small
noisy patches. Finally, within these groups,
they are arranged in descending order by
variance. C: IC filters generated from images
encoded using human LMS cone sensitivi-
ties, shown in pseudocolor so that L is red, M
green, and S blue. LMS filters are divided
into 2 groups (short vertical white line): sig-
nificant and artifactual, using the criteria of
van Hateren and van der Schaaf (1998).
Within groups, they are shown in decreasing
order by variance. D: LMS IC basis func-
tions, matched to the filters in C. E: absorp-
tion spectra of human L, M and S cones. F:
R, G and B absorption spectra of a typical
digital camera.

, ,
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improves the convergence of ICA learning algorithms (see Willmore
et al. 2000 for analysis of its effects). The raw luminance variation
within our set of natural scenes, which covers three orders of magni-
tude, badly skews the data distribution and breaches the linear super-
position model assumed by ICA (see next section). There are other
remedies for this problem: while raw LMS images yield poorly
converged ICs, standardizing the mean and variance of those images
produces ICs similar to those of log-transformed images (data not
shown). We chose to use the log transform, however, because it makes
our results comparable with other studies.
From a functional point of view, the log transform has a clear

biological correlate in retinal luminance adaptation (Field 1994; van
Hateren and van der Schaaf 1998), a process that also compensates for
the luminance changes (of many orders of magnitude) occurring in the
natural environment. Our investigations of color tuning (in the fol-
lowing text) are conducted in the equivalent of laboratory conditions
and always modulate cone contrast (at fixed mean luminance) rather
than raw luminance. Therefore we did not apply log transformation to
our “grating stimuli.”
In the JPEG condition, we did not apply the log transform, because

our aim was to replicate the results of Tailor et al. (2000), where the
transform was not used.

ICA: algorithm and preprocessing
Each image fragment rj was converted into a one-dimensional

vector, and these comprised the columns of the 432 � 86,400 data
matrix R. The mean of each vector was set to zero. As a computational
convenience for the ICA step, we whitened the data vectors; this
transformation was inverted before the ICs were analyzed, so it has no
effect on the final results. Our whitening method was based on
principal component analysis, and produced a whitened data matrix

X � D�1/2ETR

where the columns of E are the eigenvectors of the covariance matrix
RRT (i.e., its principal components) and D is a diagonal matrix
containing the corresponding eigenvalues.
The assumption behind the ICA algorithm is that each whitened

image fragment xj is composed of a weighted sum of a fixed set of
underlying source vectors ai, the activities of which are given by
scalars si

xj � �
i�1

n

aisi

This can be rewritten as a matrix equation, x � As, where A is the
matrix of sources and s is the vector of activities.
These sources, also called basis functions, are identified as inde-

pendent sources of variance of the image data, which produce image
fragments by mixing together linearly. Along with the basis functions,
one can also derive a set of IC filters that reverse the process: they
“unmix” the image fragment to yield activity values si, which corre-
spond to individual sources and which should also be maximally
independent. The set of filters produced by ICA is directly analogous
to a population of V1 neurons, each analyzing part of the incoming
visual stimulus.
There are a number of ICA algorithms, which make slightly dif-

ferent assumptions about the distribution of the underlying sources,
but for ICA of colored natural scenes most algorithms yield similar
results (Wachtler et al. 2001). We used an implementation of the
information-maximization ICA algorithm with natural gradient fea-
ture (Bell and Sejnowski 1997; Delorme and Makeig 2003). This
algorithm uses gradient ascent to find vectors in the distribution that
give us the IC filter matrix F, which is the inverse of the sources: F �
A�1.
IC filters were similar over multiple runs of the algorithm with

different random seeds and different sets of image fragments. As a
control for artifacts due to misalignment of the spectral planes, we
performed extra analyses where we subsampled the LMS images in
blocks of 2� 2, 3� 3, and 4� 4 before extracting fragments; at each
block size, the character of filters was preserved, which shows that the
color planes were sufficiently aligned to prevent artifacts.

Spatial tuning
To find the best spatial stimulus for each IC, we exploited the

equivalence between the Fourier transform of an RF and its responses
to grating stimuli. We took the two-dimensional discrete Fourier
transform of each IC, identified the highest amplitude Fourier com-
ponent, and computed its orientation and spatial frequency.
These measurements were limited in precision by the 12 � 12

patch size because only discrete values corresponding to integer
harmonics are possible. This patch size enabled us to measure
orientation with precision of �10°, and to measure SF with pre-
cision of 1 octave at low SFs (near 0.1 cycles/pixel) and �0.3
octaves at high SFs (near 0.5 cycles/pixel).
We also assessed other spatial properties of each IC. Using the best

achromatic stimulus, we computed orientation bandwidth, SF band-
width, length, and width by measuring full width at half-maximum
(FWHM) for band-pass functions or twice the half-width at half-
maximum for low- and high-pass functions. SF bandwidth was com-
puted as the log of the SF ratio between the half-heights in the
amplitude spectrum along the radius corresponding to peak orienta-
tion following van Hateren and van der Schaaf (1998). Orientation
tuning bandwidth was measured as the difference between half-
heights along the circle corresponding to peak SF. For a small number
of very high-SF oblique filters, some measurements fell outside the
boundary of the Fourier transformed patch; in these cases, we took the
measurement at the boundary, which caused a slight narrowing of
their bandwidth. Aspect ratio was computed as the ratio of the length
and width, where the length is the RF envelope FWHM in the
low-pass direction and width is the envelope FWHM in the band-pass
direction (Field and Tolhurst 1986).

Color tuning
Color tuning was quantified using the Lennie et al. (1990) cone-

opponent stimuli in the “DKL” colorspace developed by Derrington et
al. (1984) from the work of Macleod and Boynton (1979). In this
three-dimensional colorspace, the xy plane is equiluminant, similar to
the CIE colorspace, and so any changes along the x and y axes alter
stimulus color without affecting luminance. Increasing x increases
L-cone input while proportionally decreasing M-cone input (i.e., a
stimulus becomes more “red” and less “green”), leaving S cones
unaffected. Increasing y increases both L- and M-cone inputs while
reducing S-cone input (resulting in more “yellow” and less “blue”).
Increasing z increases input to all three cones, i.e., increases overall
luminance. Lennie et al.’s white point was set to cone input values
(0.311, 0.336, 0.353). Modulation from this point along the x axis to
(1, 0, 0) corresponds to LMS cone input changes of (0.074,�0.14, 0),
and modulation along the y axis to (0, 1, 0) corresponds to changes of
(0, 0, �0.84). Modulation along the z axis causes a change in lumi-
nance without a change in color so that modulation to (0, 0, 1) doubles
all three cones’ inputs. Because of the overlap of L and M cone
spectra (Fig. 1E), the effect of X axis modulation on L and M cones
is small (compared with the effect of y axis modulation on S cones) so
we followed Lennie et al. in scaling the x coordinate by 3.125.
In the DKL colorspace, as defined in Lennie et al. (1990), a linearly

summating neuron’s color tuning can be described using only two
parameters. To do this, we treat each set of coordinates (x, y, z) as a
vector and describe it in spherical coordinates (ø, �, �). The azimuth
ø is the preferred color within the equiluminant xy plane: A neuron
which is purely sensitive to R-G variation lies along the X axis and has
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an azimuth of 0°, whereas a neuron purely sensitive to B-Y variation
lies along the y axis and has an azimuth of 90°. The elevation � is the
angle the vector makes with the xy plane, and it describes the neuron’s
response to luminance change relative to chromatic change. A neuron
with elevation 0° responds best to chromatic stimuli, whereas a neuron
with elevation 90° responds best to luminance stimuli. The stimuli are
cone-opponent drifting gratings that are spatially modulated in color
and luminance along the line defined by (ø, �) and crossing the sphere
defined by fixed �. Thus a cell’s color tuning can be fully described
using only azimuth and elevations in the upper hemisphere (� � 0°).
We computed the color tuning of each IC by finding the elevation

and azimuth values that produce the maximal response, at a resolution
of 1°. We converted each (ø, �) pair into (x, y, z) coordinates and then
converted these coordinates into cone-specific luminance values (L,
M, S). To measure an IC’s response to a color grating, we multiplied
each cone luminance by the IC’s Fourier component for that cone,
summed the components over cones, and then took the amplitude.
Complementary to this cone-opponency analysis, we measured the

cone-isolating grating responses of single cone inputs. In each color
plane, we found the highest amplitude Fourier component and mea-
sured its phase, orientation, and SF.

Comparing color tuning distributions

The color tuning of each IC was thus represented by a single point
in the DKL colorspace, q(ø,�). The distribution of all 432 ICs, Q(ø,�),
was then compared with the distribution P(ø,�) of the 96 neurons
described by Lennie et al. (1990). To compare two DKL color tuning
distributions P(ø,�) and Q(ø,�), we needed a metric valid for arbitrary
two-dimensional distributions. We used the Kullback-Leibler (K-L)
distance from P to Q, which is also known as the relative entropy of
P with respect to Q

D�P�Q	 � � �,�P��,�	log
P��,�	

Q��,�	

K-L distance is not symmetric, that is, in general D(P�Q)
 D(Q�P).
However, when comparing physiological distributions P(ø,�) to IC
distributions Q(ø,�), we avoid this issue by consistently using it in one
direction: D(P � Q).
We binned the color tuning distribution into 30 � 30° bins,

centered at azimuths �30, 0, . . .150° and elevations 15, 45, and
75°. Some of the distributions had a small number n0 of zero bins
(oriented cells had 7, IC filters had between 1 and 4 depending on
condition); to avoid singularity, these bins must be assigned a
count. For each distribution, we wanted to calculate a zero-bin
count, which was as conservative (high) as possible. Therefore we
computed the maximum probability of data in each zero bin, p0,
such that the probability of no data falling in all n0 observed zero
bins was �0.5 (because, in our single trial, we observed n0 0 bins).
The relative order of K-L distances was robust, and our results did
not change substantially for other bin sizes, center locations, and
zero bin counts between 0.01 and 1.
Measurements of K-L distance, like other information-theoretic

measurements, cannot be assigned statistical confidence without
extensive prior information. Therefore these distances must be
referenced to another distance value. We chose our reference to be
the distance between Lennie et al.’s nonoriented and oriented cell
distributions (shown in Fig. 2, C and D), which represents a
substantial change between distributions, and is generally believed
to represent a difference between cell classes. Because of the
asymmetry of K-L distance, D(oriented�nonoriented) � 0.97 while
D(nonoriented�oriented) � 1.69, so we took as our reference the
average, 1.33. However, using either individual distance value
does not affect our results.

Artifactuality in ICs
In our spatial and color tuning analyses, we considered the influ-

ence of artifactual ICs on the distribution of color tuning. Because
ICA is a noisy optimization process with a finite data set, it will
inevitably produce some artifactual ICs. However, using low variance
as an indicator of artifactuality (as is commonly done) would intro-
duce a bias against color because color is a smaller source of variance
in natural images than luminance (Ruderman et al. 1998). Therefore
we used the van Hateren and van der Schaaf (1998) criteria: artifactual
ICs extend over only a few pixels and have nearly equal power in all
four corners of the power spectrum. These criteria are entirely spatial
and do not, a priori, introduce a color bias.
We also considered whether the limited size of image fragments

could cause artifacts in the color-tuning data. If spatial or spatial
frequency edge effects were a problem, we would expect to see more
artifactual bias at the smaller size. Notably, we obtained identical
results using two patch sizes: 8 � 8 and 12 � 12 (data not shown).
This suggests that edge effects do not significantly alter color tuning.

Spatial-chromatic separability assumption
We replicated the Lennie et al. (1990) study of V1 neurons in two

ways: under ideal conditions and under conditions that imitate their
exact methods, including experimental limitations. In the ideal case,
we simultaneously measured spatial tuning (optimal orientation and
SF) and color tuning (azimuth and elevation). In the imitation case, we
followed the Lennie et al. assumption that color and spatial tuning are
separable (i.e., regardless of stimulus color, a cell will have the same
optimal grating stimulus). Therefore in this case we first measured
spatial tuning using achromatic gratings and then used the orientation
and SF of the best achromatic grating to make chromatic gratings for
color tuning measurement. Lennie et al. sometimes re-optimized
spatial tuning with a colored grating and used colored gratings on
occasions when achromatic ones did not work well. However, we
excluded these heuristics, because they were not formalizable.

Effect of noise
A major difference between much modeling and real experiments is

the presence of noise in the experiments. Therefore when imitating the
Lennie et al. (1990) experiments, we tested the effect of noise on color
tuning. We assumed that each IC’s maximum amplitude of response
modulation equaled 75 spikes/s, a value typical of Lennie et al.’s
neuronal responses. For response modulations of that size, the ampli-
tude SD is �5.25 spikes/s (Levine 1995). We simulated 25 different
experiments in which each grating stimulus was presented for 20
trials. To each trial’s “grating response” (Fourier amplitude), we
added amplitude noise with a SD of 5.25 and a mean of zero. In each
experiment, we averaged responses over all 20 trials and took the best
stimulus as the color tuning. Then to assess whether noise caused an
overall bias, we computed the spherical mean of these color tuning
measurements across 25 experiments (Fisher 1987).

R E S U L T S

Starting with a set of hyperspectral images (Párraga et al.
1998), we constructed three different image sets with three
color planes each (LMS-encoded, RGB-encoded, and JPEG-
compressed RGB-encoded). We took each data set, performed
ICA, and obtained 432 IC basis functions and IC filters. Figure
1, A–C, shows equivalent samples of ICA filters for the RGB,
JPEG, and LMS image sets, whereas Fig. 1D shows a corre-
sponding sample of LMS basis functions (see figure legend).
Many of the filters look similar to the elongated Gabor function
RFs of V1 simple cells (e.g., Ringach 2002), and many have
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apparent red-green (L-M) or blue-yellow [S-(L�M)] oppo-
nency. However, there are significant differences between the
three sets of filters in spatial structure and color tuning.

JPEG encoding creates artifacts in ICs

Both Tailor et al. (2000) and Hoyer and Hyvärinen (2000)
have published ICA results from RGB images. Because the
Tailor et al. images were encoded using JPEG compression,
which is lossy (i.e., does not preserve all information in the
image), we investigated whether this had affected the ICs by
directly comparing the effect of the different encodings on IC
filters derived from our data set.
In the RGB condition, our IC filters (Fig. 1A) corresponded

fairly well to the basis functions of Hoyer and Hyvärinen,
whereas in the JPEG condition, our filters (Fig. 1B) were
similar to those found by Tailor et al. We found that the spatial
structure of the ICs found by Tailor et al. was indeed affected
by JPEG compression of the source images: JPEG filters con-
tained a large number of blue-yellow and red-green checker-
board patterns (e.g., rows 3–4, and 9–10 in Fig. 1B) that do not
correspond to any RGB filters. To ensure that these artifacts
were the results of JPEG compression, and not the absence of
the log transform, we also ran ICA on non-log-transformed
RGB images. The results (data not shown) are spatially similar
to the log-transformed RGB ICs, not the JPEG ICs.
These artifacts result from JPEG’s compression algorithm,

which divides images into 8 � 8 blocks and then discards
information within blocks. Because the image fragments used
for ICA are not aligned with block boundaries, the boundaries
become artifacts. JPEG encoding also produces chromatic ar-
tifacts because it imitates an idealized human visual system by
encoding images into luminance, red-green and blue-yellow
color planes. Thus ICA of JPEG images reveals mechanisms of
the JPEG compression algorithm rather than features of the
natural visual world.

RGB encoding also biases ICs

We next investigated the effect of using uncompressed
RGB-encoded images, compared with the more biologically
realistic LMS encoding. Hoyer and Hyvärinen (2000) justify
their use of RGB images from a digital camera by arguing that
the colorspace choice will make no difference. Because RGB
and LMS colorspaces are related by a linear transform, they
argue, the correlations in the data remain unchanged, thus ICA
should produce the same ICs for both image sets. However,
there are several nonlinearities in the digital camera’s imaging
process, such as color balancing and gamma correction, and
preprocessing also includes another nonlinear step, the log
transform. Because all of these nonlinearities may cause dis-
crepancies between the RGB and LMS conditions, we decided
to measure their influence on spatial and chromatic tuning.
The spatial structures of IC filters in the RGB condition (Fig.

1A) and the LMS condition (Fig. 1C) were very similar, insofar
as both sets contain mostly elongated Gabor-like features.
There was noise in the LMS filters that was not present in the
RGB filters, which was also true of the basis functions (data
not shown). This may have resulted from the substantially
greater overlap of L and M cone spectra (Fig. 1E) compared
with R and G detectors (Fig. 1F): a given color image will have

very similar L and M activations, and thus image noise within
the nonoverlapping spectral regions will have an exaggerated
effect on ICs in which L and M are opponent.
To compare color tuning in the RGB condition with the

LMS condition, we linearly transformed RGB filters into the
LMS colorspace, using the matrix of dot products between the
RGB and LMS spectra in Fig. 1, F and E. Color tuning was
summarized as the elevation (luminance sensitivity) and azi-
muth (chromatic preference) of the drifting sinusoidal grating
that evoked the greatest response (see METHODS). The color
tuning of RGB filters (Fig. 2A) differed substantially from
LMS filters’ color tuning (Fig. 2B): RGB filters fell into a small
number of line-like, continuous clusters corresponding to yel-
low (30° azimuth), magenta (135°), and blue (90°). LMS filters
clustered at red (0°) and blue-magenta (120°) and were much
more diffusely clustered. The shift in the centers of azimuth
clusters suggests that the difference between RGB and LMS is
not merely due to noise and that, contrary to the claim of Hoyer
and Hyvärinen (2000), RGB-encoded ICs are not appropriate
after all for comparison with the visual system. Therefore an
ICA model of the visual cortex should use the visual system’s
LMS encoding of the chromatic information in natural scenes.
Insofar as RGB filters are comparable to the visual cortex,

RGB encoding has one provisional advantage over LMS en-
coding: it reduces noise in the ICs, as explained above. Con-
sequently, although RGB encoding produces biased IC filters,
any similarity to V1 cells bolsters our claim (in the following
text) that IC filters resemble V1 cells.

LMS IC filters have similar spatial tuning to simple cells
and achromatic ICs

To examine whether color information affects the spatial
structure of ICs, we compared the spatial properties of LMS IC
filters with the spatial properties of achromatic IC filters (van
Hateren and van der Schaaf 1998) and macaque simple cells
(De Valois et al. 1982; Parker and Hawken 1988). We obtained
the distributions of best orientation, orientation bandwidth,
spatial frequency, spatial frequency bandwidth, and aspect
ratio (envelope length divided by envelope width), using the
best achromatic stimulus for each IC.
We identified artifactual ICs following the van Hateren and

van der Schaaf (1998) criteria; they constituted 29% (124/432)
of our ICs. However, some of these artifactual ICs had high
variances (i.e., they were robust sources for the image data), so
we also show, but do not discuss, spatial analyses for the full
set of ICs.
The orientation distribution of nonartifactual filters (Fig. 3A,

■) was similar to the distribution of achromatic filters, with
peaks at 0° (vertical), 45°, 90° (horizontal), and 135°. The
orientation bandwidth peak (Fig. 3B, ■) was near 60° in our
colored ICs, and the entire distribution seemed to be shifted
toward higher values compared with achromatic ICs and older
studies of macaque V1 (De Valois et al. 1982; Parker and
Hawken 1988), Interestingly, more recent physiological studies
have reported an orientation bandwidth distribution much like
ours (Ringach et al. 2002); in fact, Ringach (2002) comments
on the discrepancy between their data and achromatic ICA
data, which color ICA apparently resolves. The distribution of
color filter spatial frequencies (Fig. 3C) was qualitatively sim-
ilar to achromatic filters in that it increased exponentially with
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FIG. 2. The color tuning of IC filters and primary visual cortex (V1) cells is similar. The color tuning of each IC (A, B, and E)
was measured in the DKL colorspace following the methods of Lennie et al. (1990) except that we optimized the grating stimulus
over all spatial and chromatic gratings (the “ideal case”). The color tuning of V1 cells (C and D) is replotted from Lennie et al.
and assumes that spatial and chromatic tuning are separable, with separate stages for finding the optimal achromatic and chromatic
stimuli. Each plot’s marginal distributions indicate density, as a percentage of the total distribution. Following Lennie et al., azimuth
is plotted between �45 and 135° to better depict clustering near 0° and is taken modulo 180° to emphasize color opponency rather
than exact color preference. A: IC filters derived from RGB input and transformed into the LMS cone space. B: LMS filters. C:
oriented cells. D: nonoriented cells. E: IC basis functions from LMS filters.
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SF and peaked at the Nyquist frequencies for both horizontal/
vertical and diagonal filters. However, color filters were more
diverse in preferred SF than achromatic, and better resemble
the physiological data. The spatial frequency bandwidth distri-
bution of color filters (Fig. 3D) was similar to both achromatic
filters (van Hateren and van der Schaaf 1998) and simple cells
(De Valois et al. 1982). The aspect ratio distribution of color
filters (Fig. 3E) was centered at 1 (envelope length equal to
envelope width) as with achromatic filters and simple cells
(van Hateren and van der Schaaf 1998). Overall, with artifac-
tual ICs removed, the distributions of the spatial parameters of
colored IC filters were similar to the distributions reported for
achromatic ICs and fit the simple cell distributions about as
well. The fit between the spatial properties of colored IC filters
and simple cells was somewhat better for SF, marginally worse
for aspect ratio; and while colored IC filters fit the most recent
orientation tuning bandwidth data, achromatic IC filters fit the
older data.

LMS IC filters, but not basis functions, have similar color
tuning to oriented V1 cells

Because LMS IC filters are spatially similar to simple cells,
we compared the filters’ color tuning with V1. We used the
data of Lennie et al. (1990), who divided V1 cells into three
classes: oriented, nonoriented and complex. We first consid-
ered oriented cells, which roughly correspond to simple cells,
but because many ICs are chromaticity sensitive, we also
considered nonoriented cells, which Lennie et al. found to be
most color sensitive.
Comparing the color tuning of LMS filters (Fig. 2B) to

oriented V1 cells (Fig. 2C), we found similar classes of color
tuning in both. The azimuth distributions were bimodal, with a
red-green (L-M) opponent cluster near 0° azimuth and a
slightly larger blue-yellow [S-(L�M)] opponent cluster near
90°. However, the azimuth distribution of chromaticity-tuned,
S-cone-sensitive filters was actually centered near 120°; thus
filters are closer to (S�L)-M cone opponency (135°). In both
distributions, we found chromaticity-tuned and luminance-
tuned RFs. Chromaticity-tuned RFs (at lower elevations) were
bimodal with very few intermediates. However, filters seemed
substantially more chromaticity tuned than oriented V1 cells; a
large number of L-M opponent filters with azimuths near 0°
were purely chromatic, with elevations near 0°.
According to the Lennie et al. (1990) strict criteria, which

require a nonoriented cell to respond better to full-field mod-
ulation than to any grating, only one of our IC filters (a
full-field noise patch) was nonoriented. Nevertheless, a mod-
erately large population of filters had a center-surround-like
organization reminiscent of blob cells (Livingstone and Hubel
1984), so we also compared the filters to Lennie et al.’s

FIG. 3. Spatial tuning parameters of LMS IC filters resemble achromatic
ICs and simple cells. The spatial properties of each IC were measured using
each IC’s best achromatic stimulus. �, distributions for all ICs; ■, the distri-
bution of ICs that were nonartifactual by the van Hateren and van der Schaaf
(1998) criteria. F and —, the reported V1 distributions (De Valois et al. 1982;
Parker and Hawken 1988); E and - - -, the achromatic IC distributions (van
Hateren and van der Schaaf 1998). A: best orientation; 0° corresponds to
vertical. B: bandwidth (full width at half-maximum) of orientation tuning. C:
best spatial frequency. D: bandwidth of spatial frequency tuning. E: aspect
ratio of the receptive field (RF) envelope.
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nonoriented (presumed blob) cells (Fig. 2D). Like filters, non-
oriented cells were basically bimodal in azimuth with a red-
green (L-M) cluster near 0° and a blue-yellow [S-(L�M)]
cluster near 90°; however, the nonoriented cells’ L-M mode
was dominant, and azimuths between 30 and 60° were more
common. The elevation distributions of nonoriented cells and
filters were similar: both were bimodal, although nonoriented
cells were less sharply so.
Previously, LMS IC basis functions (rather than LMS filters)

have been compared with V1 (Hoyer and Hyvärinen 2000; Lee
et al. 2002). Although there are a priori reasons why basis
functions should not be analyzed this way (see DISCUSSION), we
have also observed that the color tuning of basis functions (Fig.
2E) was markedly different from both V1 cells and filters: the
distribution contained only a single cluster near azimuth 75°
and elevation 75°. This is somewhat surprising because basis
functions are apparently diverse in color; however, their cone
inputs were typically poorly balanced. Full-field modulation,
which is a poor stimulus for V1 cells, was the best stimulus for
73% of basis functions and �1% of filters; this empirically
confirms that IC filters are the correct comparison for V1 cells.

Quantitative comparison between IC filters and V1 shows
significant similarity once experimental biases are removed

The color tuning of the LMS filters showed some qualitative
similarities with the Lennie et al. (1990) V1 cells; still, the raw
filters contained two notably chromatic groups, near 0 and 120°
azimuth, which were not strongly evident in the raw V1 data.
However, comparing raw color tuning is misleading because it
fails to take account of three discrepancies between the V1 data
and the filters. First, the raw ICA data included a subpopulation
of artifactual low-variance ICs. Second, the V1 data assumed
that spatial tuning can be determined achromatically before
determining color tuning; that is, it assumes the best chromatic
stimulus is spatially identical to the best luminance stimulus.
This spatial-chromatic separability assumption might have bi-
ased measurements of color tuning. Third, the firing rates of V1
cells are subject to noise; this could also have biased estimates
of cells’ color tuning. Because we could not test the effects of
noise and separability on actual neurons, we measured their
effects on the color tuning of the model IC filters.
Using the van Hateren and van der Schaaf (1998) criteria,

we found that 29% of color ICs are artifactual compared to the
25% of achromatic ICs they report. In terms of color tuning,
these artifactual ICs (Fig. 4A) tended to have very low eleva-
tions. Eliminating them made the color tuning of the remaining
filters more similar to V1 in addition to improving spatial
tuning.
To test what difference the spatial-chromatic separability

assumption makes for our dataset, we compared chromatic
tuning when spatial tuning was measured achromatically with
chromatic tuning when spatial and chromatic tuning were
simultaneously determined. Measuring spatial tuning achro-
matically did bias color tuning. It caused elevations to increase
and azimuths to decrease; that is, filters apparently became
more luminance sensitive and red-green opponency became
more prominent (Fig. 4B). Thus the physiological data’s higher
elevations, as well as its azimuth cluster at 90° rather than 120°
(Fig. 2, C and D), may have been partly caused by this
separability assumption.

Noise in neuronal responses is another possible source of
bias. In Lennie et al.’s spherical coordinate system, there is a
nonlinear relationship between elevation and stimulus contrast.
In essence, because z-axis modulation strength dominates the x
and y axes, cone contrast changes little with changes at low
elevations and much more with changes at medium elevations.
For most cells, contrast determines the firing rate (and there-
fore noise level). Because noise increases with elevation, stim-
uli with higher elevations are more likely to be experimentally
misidentified as the optimal stimulus, which could cause a
systematic upward elevation bias.
We measured the distance between the color tuning of

noiseless IC filters and their mean color tuning with noise
added and found that noise biased the color tuning toward
higher elevations (Fig. 4C), causing a mean elevation overes-
timate of 7.6° and a number of severe overestimates. Thus
some of the higher elevations seen in the physiological data
(Fig. 2, C and D) compared with the noiseless LMS IC filters
(Fig. 2B) may have arisen from noise in the physiological
responses.
Thus the assumption of spatial-chromatic separability,

and the presence of noise in real V1 neuronal responses,
both result in experimental biases that make cells appear
dissimilar to IC filters. Furthermore, the inclusion of low-
variance artifactual ICs in the comparison with real neurons
also makes the IC filters look dissimilar to the real cells.
Figure 4D shows how the color tuning of our IC filters (from
Fig. 2B) changes once we account for these three biases; it
shows more similarity to the color tuning distributions of
real V1 neurons (Fig. 2, C and D).
To make the comparison between IC filters and V1 cells

more rigorous, we measured the Kullback-Leibler (K-L) dis-
tance between the color tuning distribution of filters and the
distributions of oriented cells (Fig. 2C), nonoriented cells (Fig.
2D), and both cell types pooled (i.e., all noncomplex V1 cells).
K-L distances were normalized relative to a reference distance,
which we took to be the distance between the distributions of
oriented and nonoriented cells (see METHODS).
We measured these normalized K-L distances for raw IC

filters, filters corrected for each individual bias, filters cor-
rected for noise and separability, and filters corrected for all
three biases. Although raw IC filters best resembled the
pooled V1 cells, they were not especially similar to this
group or to the oriented or nonoriented groups since all K-L
distances were near 1 (Table 1, column 1). However, every
single bias correction improved the fit between filters and all
types of cells (Table 1, columns 2–4); correcting the noise
bias had the largest effect. Noise and separability correc-
tions appeared to be most important; subsequent to these,
the effect of removing artifactual IC filters was only mod-
erate (Table 1, column 5). When all three biases were taken
into account (Table 1, column 6), the filters revealed a
strong similarity to the pooled cells and substantial similar-
ity to oriented and nonoriented cell groups.
Even after all biases were corrected, some residual differ-

ences between filters and V1 cells remained, contributing to the
K-L distance. The low-elevation S-cone cluster fell at higher
azimuths in filters than cells (120 rather than 90°) even after
correction of the spatial-chromatic separability assumption.
Also, there were nonoriented cells, but not filters, at interme-
diate azimuths (30–75°).
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Ultimately, in all analyses of our filters, we found that the
closest match (smallest K-L distance) was with the pooled V1
cells (Table 1) rather than with either subpopulation, such as
the more chromaticity-preferring nonoriented cells or the more
Gabor-like oriented cells. It seems that IC filters are a hetero-
geneous group most similar in color tuning to the pool of
oriented and nonoriented V1 cells.

Dependence of chromaticity on orientation selectivity is
consistent with experimental observations

Because it has been widely believed that responsiveness to
purely chromatic stimuli is concentrated among nonoriented
cells (Livingstone and Hubel 1984; Lennie et al. 1990), we
examined the relation between orientation tuning bandwidth

and chromaticity sensitivity (elevation in DKL space). Figure 5
shows that, indeed, filters with broad orientation tuning tend to
be chromaticity sensitive and have low elevations. Filters with
narrow orientation tuning are more diverse but have a tendency
toward higher elevations. Nonartifactual filters are primarily
responsible for this observation since almost all artifactual
filters have elevations near zero. Because most filters have
relatively sharp orientation tuning, we can thus account for the
physiological observation that nonoriented cells tend to be
more chromatic without inferring that oriented cells are nec-
essarily achromatic. In fact, our results are also consistent with
the Johnson et al. (2001) recent report that 79% of color-
responsive neurons, stimulated with cone-isolating gratings
(see following text), had oriented RFs. Because most filters are
well tuned for orientation, it emerges that most chromaticity-
preferring filters do have fairly narrow orientation tuning.

FIG. 4. Experimental biases strongly affect the comparison between ICs and physiological data, but correction greatly improves
the correspondence with V1. Three sources of bias were considered: low variance artifactual ICs, the assumption of spatial-
chromatic separability, and physiological noise. A: color tuning (plotted as in Fig. 2) of the LMS filters that were artifactual
according to the van Hateren and van der Schaaf (1998) criteria. Marginal distributions indicate density as a percentage of the total
distribution. B: inferred bias in physiological color tuning data due to assuming separability, inferred from comparing measurements
of filter color tuning made under ideal and experimental conditions. The open circle represents the example in Fig. 7. C: inferred
bias in physiological data due to noise. The displacement shown is between the mean of 25 color tuning estimates and the ideal
tuning. D: distribution of LMS IC filters after all biases—artifactual ICs, separability, and noise—are taken into account. Marginal
distributions are as in A.
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Filters fall into two strongly double-opponent clusters

To compare ICs to more recent physiological data (Conway
2001; Johnson et al. 2001), we simulated the LMS IC filters’
responses to cone-isolating stimuli. These stimuli avoid some
of the confounds of cone-opponent stimuli by modulating only
one cone type at a time. For instance, in an L-cone isolating
grating, the light stripe increases L-cone excitation relative to
background, whereas the dark stripe decreases L-cone excita-
tion. Although physiological cone-isolating measurements are
often noisy and difficult to calibrate because of the overlap
between cone absorption spectra (Conway 2001), in our model,
this measurement is trivial: we simply look at the filter’s three
color planes, which represent the individual LMS inputs.
For each IC filter, we measured its response amplitude to the

optimal L-, M-, and S-isolating gratings, which indicates the
relative strength of different cone inputs. We also measured its
response phase to each grating because this determines the
spatial relationship between the cone inputs. For example, a
cell could have L and M inputs with identical best orientation
and SF, and if those inputs are in phase with each other (0°
apart) the cell will be (L�M) or yellow sensitive. However, if
they are 180° apart in phase, it will be L-M or red-green
double-opponent. Figure 7A shows a schematic RF containing
a double-opponent component (Livingstone and Hubel 1984;
Michael 1978), which responds fairly specifically to a border

between two colors (yellow and blue) because its inputs from
the corresponding cones are opposite in sign.
The response amplitude of all our IC filters to L-, M-, and

S-isolating gratings of optimal orientation and SF is shown in
Fig. 6A (E). Filters fell into three clusters: one elongated cluster
with high S response, some M response, and little L response;
another elongated cluster with L and M response but little S
response; and a diffuse cluster near zero. These roughly cor-
respond to the modes of the cone-opponency data in Fig. 2B.
To quantify the double-opponency of the different clusters,

we compared the response phases of cone pairs. Among
strongly L- and M- responsive filters (L and M amplitudes
�100), L and M cones were almost always 180° apart in phase
(94%, Fig. 6B). Moreover, even though the optimal cone-
isolating stimuli were not constrained by orientation and SF,
94% of L and M cone-isolating stimuli did have identical
orientations and 95% did have identical SFs. Thus for these
double-opponent ICs, the spatiochromatic tuning to an L-cone-
isolating stimulus predicts the tuning to the M-cone-isolating
stimulus, which is consistent with Johnson et al. (2001) phys-
iological SF measurements.
Conway (2001) reported that, in a population of weakly

oriented L-M cells studied with cone-isolating pixel stimuli,
most S responses were in phase with M responses. These cells
could therefore be called red-cyan [i.e., L-(M�S)]. Among our
L-M responsive filters, the amplitude of S response indeed
correlates with M response (lower cluster in Fig. 6A), but the
M and S inputs were phase opponent (Fig. 6C) when measured
at the M-isolating grating’s best orientation and SF. Thus our
filters tend to show magenta-green [(L�S)-M] opponency,
which was atypical but occasionally seen in Conway’s data.
This tendency of our filters may arise from the spectral overlap
of M and S cones, which ICA will attempt to decorrelate even
within L-M opponent IC filters.
Although there is little physiological data on S-cone double-

opponency in V1, we measured its prevalence in our filters.
Among S-responsive filters (S amplitude �20 units), we found
double-opponency between M and S when measured at the
S-isolating grating’s best orientation and SF (Fig. 6D). We
might have expected that these S-cone driven filters would be
opponent to yellow (L�M). However, in the majority of filters,
L and S actually have similar phase (Fig. 6E), whereas the
remainder are phase opponent. This is probably also due to the
spectral overlap described in the preceding paragraph. Thus
our strongly S-responsive filters are also mostly magenta-green
opponent, although a few are red-cyan. This prediction of our
model has not yet been explicitly tested, although it does
appear consistent with Lennie et al.’s data.

TABLE 1. Normalized Kullback-Leibler distances between color tuning distributions of V1 cells and IC filters

V1 Cell
Class

IC Group

Raw
Non-

artifactual
Separability
corrected

Noise
corrected

Separability
� noise

All
corrections

Oriented 1.02 0.84 0.88 0.89 0.72 0.58
Nonoriented 0.88 0.79 0.84 0.64 0.50 0.48
Pooled 0.79 0.66 0.71 0.59 0.44 0.37

All distances are normalized relative to the Kullback-Leibler distance between oriented and nonoriented cell classes (see METHODS). Pooled class contains both
oriented and nonoriented cells. All corrections indicates that high variance independent components (ICs) have been corrected for both separability and noise.
V1, primary visual cortex; IC, independent component.

FIG. 5. Width of orientation tuning correlates with preference for chroma-
ticity. Color tuning elevation, measured with optimal chromatic gratings, is
shown as a function of orientation tuning bandwidth. F, nonartifactual LMS IC
filters; E, artifactual filters.
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D I S C U S S I O N

The colored IC filters of LMS-encoded natural scenes are
similar to primate V1 cells in their color tuning and are
spatially similar to both simple-cell RFs and achromatic ICs.
This is a surprising result, given that V1 cells have often been
reported to be mostly achromatic, especially those with ori-

ented RFs (Hubel and Wiesel 1968; Lennie et al. 1990; Liv-
ingstone and Hubel 1984), whereas ICs have been reported to
be unbiologically chromatic and double-opponent (Tailor et al.
2000). However, it emerges naturally from a biologically re-
alistic set of LMS IC filters when care is taken with the ICA
methodology to make proper comparisons between V1 cells

FIG. 6. LMS IC filter responses to cone-isolating grat-
ings fall into distinct double-opponent groups. LMS IC
filter responses were measured in each color plane, using
cone-isolating gratings, and the spatial relationship be-
tween cone inputs was determined. A: response ampli-
tudes of each filter to its optimal L, M and S-isolating
gratings (E). F, the projections of the E onto the cardinal
(L� 0, M� 0, S� 0) planes. Axes are in arbitrary units;
the L and M axes are much greater in magnitude than the
S axis because of the overlapping absorption spectra of L
and M cones. To make those 2 dimensions independent,
the filter must be stronger along those axes. B–E: phase
difference between the optimal cone-isolating gratings
for pairs of cones. A peak at 180° indicates phase oppo-
nency, whereas a peak at 0° indicates phase coherence.
Among the strongly L- and M-sensitive filters, B shows
the phase difference between M and L and C the differ-
ence between M and S. Among the strongly S-sensitive
filters, D shows the phase difference between S and M
and E the difference between S and L.
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and ICA output and when the reality of physiological experi-
ments (such as response noise) is taken into account.
It is methodologically essential to use LMS encoding of

natural scenes (as was also done by Doi et al. 2003; Lee et
al. 2002; Wachtler et al. 2001); this accurately represents the
chromatic information available to the cortical, experience-
dependent stages of the visual system. Colored images en-
coded in the usual ways for transmission over, say, the
internet (RGB or even JPEG encoding) produce filters that
are not appropriate for comparison; moreover, they are
unlike real cells. Additionally, it is important to compare IC
filters, not basis functions, with the physiological data.
Although some previous studies (Hoyer and Hyvärinen
2000; Lee et al. 2002) have focused on basis functions, there
is no theoretical justification for this (see following text);
additionally, we find that basis functions are dominated by

properties (such as their strong response to full-field illumi-
nation) that have no counterpart in visual neurons.
The other major factor in this comparison is the correction of

biases both in the IC analysis and the physiological data. A
simplistic, uncorrected comparison between the IC filters and
V1 cells (Lennie et al. 1990) suggests only a weak similarity
(Fig. 2, B and C). The ICs appear to be more chromatically
tuned than the real neurons. However, we find that this com-
parison is skewed by several biases. Some of the IC filters are
highly chromatic noisy structures; when these are eliminated,
the remaining filters better resemble simple cells, spatially and
chromatically. Similarly, we estimate that the Lennie et al. V1
data are biased by their assumption of spatial-chromatic sepa-
rability and by the effect of cortical noise.
Cortical noise is a particularly important source of bias in the

Lennie et al. physiological data. We find that, in a simulated
neurophysiological experiment, luminance (high-elevation)
stimuli, which modulate all cones in concert, tend to produce
noisier responses than chromatic (low-elevation) stimuli,
which modulate contrast between two cone types. This skews
measurements of color tuning, so that even cells’ averaged
responses make them appear much less chromaticity sensitive
than they actually are. Any method of finding the best color
direction will be swayed by this noise, especially if it interpo-
lates between stimuli (as do many experiments) or picks the
best stimulus (as does our simulation). Johnson et al. (2001)
speculate that one reason for the lack of chromaticity-tuned
cells in Lennie et al.’s study is that their stimuli only weakly
modulate chromatic neurons. For modulation strength to di-
rectly influence tuning in the DKL colorspace, however, a
nonlinearity is necessary; we suggest that noise is a very
significant source of nonlinearity.
Analysis of these biases suggests that simple cells, which are

generally not considered the substrate for color coding, are in
fact more chromatically sensitive than has often been depicted.
This result is independent of the correctness of our model and
aids in reconciling the Lennie et al. study with a growing body
of recent neurophysiology (Conway 2001; Johnson et al.
2001).
The similarity between IC filters and V1 cells suggests that

chromatic and spatial information are distributed across cells in
V1 in a way that is compatible with theoretical principles of
independence and sparse representation. In other words, the
spatial and chromatic response properties of neurons in V1 can
be accounted for by the redundancy-reduction hypothesis (At-
tneave 1954; Barlow 1959).
Some systematic differences between IC filters and V1

cells remain. Even the corrected filters shown in Fig. 4D are
somewhat more chromaticity sensitive than the pool of
oriented and non-oriented cells in V1. Filters are also prob-
ably more double-opponent than simple cells. Some limita-
tions of our study, which may account for these differences,
are discussed in the following text.

Limitations of the IC analysis

ICA is not a guaranteed method for finding an independent
code for a data set. It is designed to discover independent
sources of variability (basis functions), assuming these are
linearly superposed to form the observed data. Natural images
break this assumption, because they are not formed by a linear

FIG. 7. Assuming separability may cause severe biases when measuring
double-opponent cells. The problem with assuming separability of spatial and
chromatic RFs is illustrated, schematically and with an example IC filter. For
clarity, we describe stimuli using RGB terms, even though the filter is LMS-
encoded. A: schematic double-opponent cell with 4 subfields. The leftmost
subfield is inhibited by red, and the rightmost is excited by green. The middle
2 subfields are yellow-blue double-opponent; the middle left subfield is excited
by red and green (R� and G�) and inhibited by blue (B�), whereas the
middle right is inhibited by red and green (R� and G�) and excited by blue
(B�). B: a filter from our data set (open circle in Fig. 4B) that is modeled by
the schematic cell. It is shown in full color (left), and then separated into color
planes for clarity (right). In all figures, medium gray indicates 0 input. C: the
true best cone-opponent grating. Note that it is spatially aligned with the filter
and shows the influence of its L and M cone inputs. D: false “best” cone-
opponent grating, assuming spatial-chromatic separability. Note that the grat-
ing is completely misaligned and shows little evidence of the filter’s strong L
input.
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superposition of sources (occlusion would be a better model
than superposition). Under these circumstances, ICA can only
discover sources that appear (by their non-Gaussianity) to be
independent; these may be unrelated to the underlying structure
of the data set.
Another limitation of our study is that the number of IC

filters is capped by the dimensionality of the input data, which
can artificially limit our ability to capture the structure of the
input distribution. This limitation may become more critical as
dimensionality increases as when going from achromatic to
chromatic images. Generating an overcomplete basis set (e.g.,
Lewicki and Sejnowski 2000; Olshausen and Field 1996) from
colored natural scenes would likely change the distribution of
spatial tuning and may also change the distribution of color
tuning.
Although we consider the effects of noise on neurophysio-

logical experiments, we do not consider its effects on the
redundancy-reduction hypothesis. Atick and Redlich (1990)
have shown that, under noisy conditions, the RFs need to be
more correlated (less independent) to preserve information
about the image. We do not yet have an ICA model that allows
us to take this into account.
Finally, ICA produces a strictly linear encoding; real neu-

rons exhibit output nonlinearities and contrast normalization
(e.g., Heeger 1992a,b), which are not part of our ICA model.
There is evidence that nonlinearities play a role in V1 color
processing (De Valois et al. 2000; Hanazawa et al. 2000).
However, these nonlinearities primarily seem to sharpen a
cell’s tuning across color stimuli (De Valois et al. 2000). We
surmise that this kind of sharpening nonlinearity might en-
hance the effect of noise and separability bias in studies of V1.

Filters versus basis functions

To compare the ICs of natural visual input with the RFs of
real neurons, it is necessary to decide whether the IC filters or
the IC basis functions are comparable to real RFs. For achro-
matic images, the basis functions and filters are very similar to
one another, and this decision is not very significant (van
Hateren and van der Schaaf 1998). For color data, however,
there are substantial differences between the spatial and chro-
matic structure of the basis functions and filters (compare the
color tuning of filters in Fig. 2B to the equivalent basis func-
tions in 2E), which makes the choice critical. There has been
some disagreement about this question in the color ICA liter-
ature: Hoyer and Hyvärinen (2000) and Lee et al. (2002) focus
on basis functions, whereas Tailor et al. (2000) and Doi et al.
(2003) focus on filters.
The mathematical formulation of ICA is unambiguous that

IC filters are the correct choice for comparison with neuronal
RFs. Basis functions represent sources of variability in the data
set; they are notional image patches that can be superposed to
generate the data set. IC filters, on the other hand, are simply
linear filters designed to extract information from the data set;
in this way, they are completely compatible with the popular
linear-filtering model of simple cells (e.g., Field 1987).

Retinal cone mosaic

There is a discrepancy between our results and those of Doi
et al. (2003), who also analyzed LMS IC filters but used a

model featuring a fixed preprocessing stage mimicking the
distribution of cones in the retinal mosaic. Their results, how-
ever, compare rather poorly to their choice of V1 data
(Hanazawa et al. 2000), in both the prevalence of color selec-
tivity (54% in V1 vs. 5% in their filters) and color tuning
distribution (broad in V1 vs. extremely peaked in their filters).
In addition, their model’s retinogeniculate stage developed
many fewer S-preferring cells (3%) than koniocellular/parvo-
cellular LGN (12%). The likely explanation for these differ-
ences is that Doi et al. only modeled the fovea (actually
foveola), so that just 3% of the cone inputs to their model
cortex were S-type. Most primate studies of color, including
the data they use for comparison, have been done in the
perifovea, where the proportion of S cones is much higher:
Lennie et al. (1990) studied cells within the central 3° of the
visual field, and in fact Hanazawa et al.’s cells were between
0.8 and 2.4°. Within the central 2° (excluding the foveola), S
cones represent �10% of the population (de Monasterio et al.
1985). Therefore the Doi et al. results may be most valid for
minute foveolar RFs that are acutely sensitive to the structure
of the cone mosaic.
Our present model, which assumes that S-cone density does

not constrain RFs’ spatial structure, compares better with ex-
isting physiological data. However, if the model were to in-
corporate a retinal mosaic stage with a normal perifoveal
concentration of S cones, we would expect an increase in the
proportion of luminance-preferring filters (given the Doi et al.
results), and possibly improvement in the fit between the model
and V1.

Double-opponency and separability

An interesting feature of our IC filters is that the vast
majority is double-opponent. This double-opponency has two
components: first, each cone type’s excitatory and inhibitory
inputs balance across the RF; second, the inputs from opponent
cones are exactly opposite in phase. The balance of excitatory
and inhibitory inputs is a natural outcome for ICA primarily
because unbalanced filters would be correlated. The phase
opponency, however, arises from a fixed property of the early
visual system: the overlap in the absorption spectra of L and M
cones, as well as S and M cones, forces the filters to decorrelate
those input pairs as much as possible. The color statistics of
natural scenes may also contribute significantly to opponency
(Lee et al. 2002).
Double-opponency seemed rare in Lennie et al. (1990)’s

study. This is likely to be an underestimate because they used
achromatic gratings to measure the optimal SF and orientation
of the cells in their sample. This reflects an assumption of
spatial-chromatic separability and generates especially mis-
leading results for double-opponent cells. Figure 7A shows a
schematic double-opponent cell the preferred stimulus of
which contains a yellow-blue edge. When an achromatic grat-
ing (of optimal orientation and SF) is presented at any position,
its light stripe will drive the yellow (R�G) and blue (B) inputs
in one subfield equally, causing them to cancel out. Its dark
stripe will do the same, and thus the response will not modu-
late. As a result, the estimates of preferred SF and orientation
will be inaccurate; achromatic gratings cannot be used to
estimate the tuning of double-opponent cells.
This effect can be demonstrated in our ICA data. An IC filter
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that responds poorly to achromatic gratings, much like the
schematic cell in Fig. 7A, is shown in Fig. 7B. Its true best
color grating stimulus, which has the filter’s dominant orien-
tation and shows the influence of its L and M inputs, is shown
in Fig. 7C. However, if one assumes separability and stimu-
lates this filter with an achromatic grating, the orientation and
SF measurement is confounded by the double-opponency, and
the resulting “best” grating (Fig. 7D) bears no relation to the
RF; it seems primarily influenced by spatial noise, and gives
rise to arbitrary color tuning (with error shown by the open
circle in Fig. 4B).
More recent studies, using reverse correlation (Conway

2001) and cone-isolating stimuli (Johnson et al. 2001), have
found a population of double-opponent cells in V1. How-
ever, it is likely that the nearly obligatory double-opponency
of our filters exceeds that of cortical cells. One possible
reason is that the cortex, being subject to noise, does not
decorrelate its RFs to the same degree as our noise-free IC
filters. Another possible reason is that our image prepro-
cessing excludes some known properties of the precortical
visual system, such as chromatic aberration, the lower spa-
tial resolution of the S-cone system, and the scattered color
tuning of LGN cells. It may be that such considerations also
help explain why our filters show magenta-green opponency
rather than the red-cyan reported by Conway (2001).

Nonoriented cells

It has often been supposed that nonoriented cells in V1 are
the substrate for color tuning rather than oriented simple and
complex cells (Livingstone and Hubel 1984). However, ICA
generates few nonoriented, center-surround filters because ori-
ented features are more significant sources of variance in
natural scenes than center-surround features. This would seem
to make ICA a poor model for the center-surround color-
selective cells in cytochrome oxidase blobs. However, we did
find many small, chromatically double-opponent filters, espe-
cially among the lower-variance ICs. These resemble the side-
by-side double-opponent subunits found by Johnson et al.
(2001) and the wide-band orientation tuned cells of Conway
(2001), both of which probably occur in blobs. Also, consistent
with the traditional understanding of blobs, we found that
preference for chromaticity correlates with weakness of orien-
tation tuning. ICA might therefore be able to partially model
color selectivity within blobs, however a complete model for
V1 will require additional organizing principles such as topog-
raphy (Barrow et al. 1996; Hyvärinen et al. 2001).

Conclusions

The similarity between the color-independent components of
natural scenes and RFs in V1 suggests that redundancy reduc-
tion (by ICA in particular) provides a plausible account of
spatiochromatic RF structure in V1. This similarity is not
apparent from inspection largely because some filters that
appear colored are often very sensitive to luminance variations.
It is likely that a similar effect is present in V1, where simple
cells are conventionally thought to be luminance-dominated,
but we find that they are likely to have substantial color tuning
that would be evident if their inputs were visualized.
We predict that, as our understanding of V1 color coding

improves, the color sensitivity of oriented cells will assume a
more important role. In place of a clear division between
luminance and color coding, our results suggest that simple
cells may multiplex spatial and color information. Similarly,
our results highlight the importance of double-opponency,
which is advantageous for coding of colored borders and, as we
have shown, for redundancy reduction. Finally, the success of
ICA in accounting for spatiochromatic RF structure in V1
suggests that redundancy reduction will also prove to be a
fruitful hypothesis in other sensory systems.
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Detecting topological invariances of visual 
neuron receptive fields with persistent homology 

Abstract 

We introduce a new methodology for detecting and identifying arbitrarily complicated 

invariances in the receptive fields (RFs) of cortical neurons throughout the visual 

pathway, utilizing techniques of computational algebraic topology to obtain qualitative 

descriptions of these invariances. The portion of the parameterized stimuli space which 

causes a neuron to respond forms a manifold. By computing the persistent homology of 

this manifold we can identify invariances in the RF. To validate this methodology, we 

present a series of experiments with simulated cells and with real neurophysiological 

data recorded from the primary visual cortex. The method successfully detects various 

invariances in the data (corresponding to physically plausible invariances in the early 

stages of the visual pathway) and is able to handle noisy and sparse data. 

Introduction 

Visual processing in humans, primates, and cats involves two divergent networks: a 

dorsal stream that represents the location and movement of objects, and a ventral 

stream that recognizes the form and identity of objects. Knowledge about the ventral 

stream is strikingly incomplete. On the one hand, we know a great deal about the 

responses of the lowest stage (primary visual cortex or V1) to lines and edges, and a 

considerable amount about representation of faces in the highest stages 

(inferotemporal areas). On the other hand, relatively little is known about intermediate 
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visual areas such as V4 and TEO, which are presumed to respond to stimuli of 

intermediate complexity.  

Two properties that are believed to progressively develop over the ventral stream are 

invariance and feature selectivity: neurons simultaneously increase in their preference 

for complex stimuli over simple stimuli, and in their tolerance for variation in the 

positioning of their preferred stimuli. Within V1, a minimal kind of position invariance 

develops — the initial layer of simple cells prefer an oriented bar at a specific position, 

while the subsequent layers of complex cells respond to oriented bars in several 

positions. Much richer invariances are observed to occur in the higher visual cortex, 

including translation and three-dimensional rotation invariance of entire objects (Wallis 

& Rolls, 1997). Again, little is known about the development of invariance and feature 

selectivity through the intermediate stages; for instance, fundamental uncertainties 

remain about the transition between two and three-dimensional object 

representations. The purpose of this paper is to introduce a new methodology for 

studying invariances present in intermediate levels of the visual pathway.  

The invariances of the response surfaces of neurons in the ventral stream are reflected 

in the topological signatures of their response manifolds. We study these by 

parameterizing the stimulus space and then computing the persistent homology groups 

(Zomorodian & Carlsson, 2005) associated to the portion of the stimulus space to which 

a neuron responds. The parameterization of the stimulus space we employ follows a 

“bottom-up” approach, motivated by biological constraints and our experimental focus 
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on lower and intermediate visual areas. It is inspired by studies in V1, and in primate V4 

(Pasupathy, 2006); however, our approach and algorithms generalize to arbitrary 

choices of parameterization and are suitable for use at various stages of the visual 

system.  

We will illustrate our method with a simple example. Suppose that we are recording 

from a vertically oriented complex cell, and present it with bar stimuli of fixed length, 

width and y position, but varying orientation and x position. The total stimulus space 

can be parameterized as (x, θ). The neuron is selective for orientation, but has a 

translation-invariant response along part of the x axis. Thus, the neuron will respond 

above threshold only to stimuli of the form (α, θ) for some range of α1…α2 and θ1...θ2. 

We apply a window to the stimulus space, so that only α ∈ α1…α2 exist, and then “glue” 

the edges of the window so that α1 = α2. This makes the stimulus space cylindrical, and 

now the subspace of the stimuli space to which the neuron responds is a circle around 

the cylinder. The presence of this circle precisely reflects the translation-invariance of 

the RF. The techniques of computational algebraic topology allow us to reconstruct this 

circle even from noisy and incomplete data. More importantly, by computing the 

topological signatures of the positive response surface we can identify invariances which 

are considerably more complicated; for instance, invariances which involve multiple 

axes in the parameter space simultaneously.  

To validate our algorithm, we simulated a series of neurons with specified invariances in 

their RFs that reflect known invariances in primary visual cortex and higher visual areas, 
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specifically, translation, rotation, and scale invariances. Our algorithm successfully 

detected all of these invariances. It was also successful in detecting the translation 

invariance of real V1 complex cells, and in distinguishing them from simple cells. The 

experiments with real neurophysiological data indicate that the algorithms are 

sufficiently robust to cope with the noisy and sparse samples produced by typical 

experimental regimes. However, the true benefits of a topological approach will likely 

be manifested when studying the very complicated invariances that are likely to turn up 

in the later stages of the visual pathway. The parameter spaces that stimulate such 

neurons are high-dimensional (consisting of multiple independent bars, for example) 

and as a consequence extremely difficult to visualize. To this end, we studied simulated 

neurons with complicated RFs and invariances. In this case also, our algorithm was able 

to detect the invariances.   

2 Methods  

2.1 Parametric representation of visual receptive fields (RFs)  

It is known that neurons in intermediate visual areas integrate numerous V1 inputs. By 

analogy with V1, which builds RFs similar to Gabor functions by conjoining circularly 

symmetric RFs, we would expect higher areas such as V4 to conjoin its Gabor-like inputs 

from V1. Thus, the characteristic parameter space over which its invariant response 

manifolds are defined is comprised of wavelet-like stimuli, as opposed to the pixelated 

image space of reverse correlation. We identify the response surface of a neuron within 

a wavelet-like basis space to explore the topology of these neurons’ RFs.  
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The stimulus parameter space is parameterized by Bn, where B is a single wavelet 

subunit and n is the number of (unordered) subunits in the stimulus. In bar stimuli, each 

subunit has 5 parameters: x position, y position, orientation, length, and width. When 

the parameterized stimuli are rendered as images, bar contrast is set to +1. A Euclidean 

distance metric is used within the parameter space, in which the dimensions are 

weighted inversely based on the range; also, the orientation is regarded as an 

intrinsically circular parameter. In physiological experiments, the spatial extent of a 

cell’s RF is not completely known a priori; this is especially true for neurons with spatial 

invariance. Therefore, the spatial extent of stimuli was set to roughly 3x the size of the 

RF, in simulations and experiments.  

2.2 Neural responses  

In physiological experiments, we recorded from neurons in V1 (area 17) of the cat visual 

cortex. The neuron’s dominant eye was determined using square grating stimuli. 

Subsequently, subunit stimuli from B1
 were presented to the dominant eye, with flash 

duration 200 ms and inter-stimulus interval 100 ms. Spikes were isolated using an 

analog window discriminator, and recorded from 35 ms after stimulus onset to 35 ms 

after offset, accounting for visual transmission delays. Between batches of 

approximately 100-200 stimuli, square gratings were presented, to monitor changes in 

the neuron’s ongoing responsiveness; however no changes were observed.  

Our simulations were designed to be roughly equivalent to experimental conditions, 

except that simulated neuron responses were continuous values rather than discrete 
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spike counts. Simulated neurons either responded linearly based on the product of its 

RF with a stimulus, or took the maximum of several linear input neurons. Noise was 

always added, with variance = mean.  

In order to apply the topological algorithms, we binarized the response data, that is, 

transformed the data from a response surface to a distribution of high-response points. 

To do this, we thresholded the responses as a fraction of the maximum response, 

beginning at 0.15 and increasing it until a persistent homology feature was seen or a 

maximum of 0.5 is reached. For experimental data, the threshold was set to 0.25 of 

maximum; this corresponded to all responses with 2+ spikes.  

2.3 Topology and persistent homology  

The techniques of algebraic topology assign algebraic quantities (e.g. numbers or 

groups) to geometric objects, and study the properties of the objects via the more 

tractable algebraic data. These associated algebraic structures are insensitive to 

continuous deformations of the geometric object. This latter property makes this 

approach seem felicitous for analyzing the qualitative properties of the neuron’s 

receptive fields.  

A standard topological invariant of a space X is the collection of homology groups. Given 

a choice of coefficients R (in our case, the field Z/2, i.e. binary integers), for each natural 

number there is a homology group Hn(X;R). Loosely speaking, the nth homology group 

measures the number of holes of dimension n in the space X. When R is a field, e.g. 

rational numbers (Q) or integers modulo p (Z/p), the homology groups are in fact vector 
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spaces and it is sensible to speak of their rank. The rank of the nth homology group is 

called the nth Betti number. Generators of the homology groups (called cycles) have a 

geometric interpretation. For instance, for a torus T the rank of H1(T), the first homology 

group of T, is 2. One cycle corresponds to a circle wrapped through the hole of the 

torus, and the other to a circle that goes around the torus. More generally, in our 

situation the cycles will correspond to invariant submanifolds of the positive response 

surface.  

Traditionally, homology groups of a space X are computed based on some analytic 

presentation of X, such as a set of equations. In recent years, there has been interest in 

the problem of computing homology groups from a set of points which have been 

sampled from some underlying space. Typically, one hopes to recover the homological 

information of the underlying space from the computations done using the sampled 

points.  

There are now a variety of algorithms and techniques for computing topological 

features from such a point cloud. The basic idea is to build a simplicial complex from the 

points and estimate the topological features of the underlying space from the 

topological features of the simplicial complex. Recall that a simplicial complex is a set of 

simplices (a 0-simplex or vertex is a point, a 1-simplex is a line segment, a 2-simplex is a 

triangle, and so forth) along with instructions for gluing these simplices along edges. To 

build a simplicial complex from a set of sampled points, roughly one proceeds by 

choosing a fixed radius ε, and assigning points which are “close together” to the same 
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simplex. It is possible to prove that in the limit of large numbers of points the simplicial 

complex built from the points faithfully captures the topological information of the 

underlying space.  

In practice, the correct choice of ε for a given underlying space and sampling regime is 

in principle unknowable (and extremely sensitive to noise). To deal with this problem, 

much effort now focuses on a related invariant called “persistent homology” 

(Edelsbrunner et al., 2002; Zomorodian & Carlsson, 2005). Here, the idea is to look at 

how the homology of the simplicial complexes associated to a set of points changes as ε 

is varied. Features which appear and remain in the persistent homology over long 

intervals of variation of ε reflect topological features in the underlying space.  

It is important to note that homological data will not completely identify the underlying 

manifold; in general, no such classification of manifolds exists in dimensions 3 and 

higher. Instead, persistent homology tells us about submanifolds embedded in the 

response surface which encode the invariances of the receptive field. In fact, this 

“limitation” is actually an advantage, as the problem of manifold learning is extremely 

difficult whereas computing persistent homology is quite tractable.  

2.4 Windowing  

Neurons are invariant over only a certain range; for instance, a translation-invariant 

neuron will respond invariantly over only a certain spatial extent. Given our choice of 

parameterization of the stimulus space, certain invariances naturally give rise to 

topological equivalence classes; specifically, a fully orientation-invariant neuron will give 
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rise to a manifold which is circular in the orientation parameter. But most neurons are 

only invariant over a restricted range of parameter space, such as the translation-

invariant cell in the example above. Thus, in order for different invariances to give rise 

to different topological equivalence classes, we must apply a window in the parameter 

space, and connect the boundaries of the window (by adjusting the metric on the 

space). We employed two broad classes of windows: “cylindrical/toroidal” windows, 

where we identified (“glued”) edges in the parameter space, and “spherical” windows, 

where we collapsed circles in parameter space to a point. Windows were determined by 

choosing a subspace of the parameter space in which the window would be applied, and 

progressively shrinking the windows until features appeared in the persistent homology.  

2.5 Technical details of our experiments  

We employed “weak witness” complex techniques (Carlsson & de Silva, 2004; 

Zomorodian & Carlsson, 2005) for the computation of persistent homology of point 

cloud data, and in particular the Plex 2.0 implementation (Perry et al., 2005). This 

approach takes as input a set of points in some ambient space M and a distance metric. 

The distance metric reflected the any windowing that was applied. We first apply a 

density filter, removing outlying points with kth nearest-neighbor distances in the 

lowest 10-25% (k = 25). A greedy optimization algorithm selects a set of 20-50 

“landmark points” as the basis for the complexes to be built. Both of these tunable 

parameters are initially set to a minimum value, and then increased until persistent 

homology features are found.  
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Based on the landmark points, the weak witness complex is built and the persistent 

homology is computed. As one would expect, the results are sensitive to the choice of 

the number of landmark points, and so we used rough heuristics based on the number 

of points and then automatically varied the number of landmark points to find sets 

which led to significant topological features (as discussed below).   

2.6 Invariance detection  

In order to interpret the results of the persistent homology computations, we 

performed control experiments when possible, but we also employed an absolute 

measure of significance. Associated to a particular choice of landmark points is a “mesh 

size” m, which reflects the coverage of the space of points by the landmarks (like a 

measure of sampling density). On theoretical grounds, features in persistent homology 

which are present at values of ε roughly proportional to m are likely to correspond to 

real underlying topological features. Pragmatically, experience with the Plex suite by a 

variety of research groups suggests that features which appear at values of ε > 0.1m 

are likely to be significant.  

Next, there is a statistical question of interpreting the significance of the results. 

Essentially, there is a problem in nonparametric statistics — to determine to what 

degree the persistent homology computations based on a particular choice of landmark 

points reflect the persistent homology of the entire set. Given the nature of the setup, 

the appropriate procedure appears to be to compute the mean over the “topological 

significance” scores discussed above over repeated trials (choices of landmark points).  
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Invariance type was detected based on which windows produced cycles (in the new 

windowed space), relative to the (unwindowed) controls. It would be extremely useful 

to be able to extract representatives of these detected cycles for visualization purposes. 

Although this is currently not possible with the Plex toolkit, recent work (Zomorodian & 

Carlsson, 2007) is likely to lead to this capability in the near future.  

3 Invariance in simulated simple and complex neurons  

Initially, we tested whether we could identify known invariances in simulated cells 

modeling the cells which arise in the first stages of the visual pathway. We compared 

the topology of a (noninvariant) simple cell and a modestly translation-invariant 

complex cell (modeled by taking the maximum response over four linear simple cells, 

arranged in quadrature), using a cylindrical spatial window (Figure 1). Each data set 

contained 10,000 stimulus-response pairs, with stimuli chosen from a uniform 

distribution in all parameters. This was a fairly sensitive test, as the width over which 

the complex cell was invariant was only 3-4x the width of the simple cell’s ON subfield.  

Denote the length of the longest bar (corresponding to a cycle in the first homology 

group) by b1. In the majority of the complex cell runs, b1 > 0.1m. Similarly, in almost all 

simple cell runs, b1 < 0.1m. The distributions of b1 (over 100 runs with randomly chosen 

landmarks) are easily distinguishable, indicating that the complex cell contains 

invariance not present in the simple cell. When the spatial window is removed in the 

control case, the invariance disappears; this confirms that the invariance is translational. 

In addition, although we cannot currently visualize the actual homology cycles, we can 
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confirm translation invariance by inspecting the distribution of landmark points (not 

shown).  

Occasionally, simple cells yielded large b1 values. This is a problem with data density, as 

the simple cells are more feature selective than the complex cells and produce sparser 

data for the same number of uniformly distributed stimuli. In sparse data, occasional 

spurious circles can arise when building complexes. Note that obtaining the distinction 

between the cells required averaging over many runs of the persistent homology 

computation (which takes on the order of a second per iteration). Also note that in 

windowed runs, the mesh size parameters m and ε were larger than in control runs. 

Windowing tends to eliminate sparse, non-responsive regions of space from 

consideration, and decreases the distance between many pairs of points near the newly 

wrapped or collapsed boundary.  

4 Invariances in real V1 simple and complex neurons  

We tested whether the algorithm was robust enough to work on real data recorded 

from cat V1, in the presence of physiological noise and with the number of stimuli 

(1200-1500) limited by recording time and experimental conditions (Figure 2). Stimuli 

were chosen by an adaptive sampling process; they were initially randomly chosen from 

a uniform distribution, but as information about the neuron’s response accumulated, 

they were chosen from a distribution biased towards responsive stimuli. Since complex 

cells are translation invariant over a limited spatial range, we compared the translation 

invariance of a simple cell (with a classical odd-symmetric linear RF as determined by 
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without windowing (right).
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noise mapping, and F1/DC modulation ratio = 0.8) and a complex cell (without a linear 

RF, F1/DC = 0.09).   

The complex cell showed a cycle in the first homology group, when windowed along its 

orthogonal axis. In the control non-windowed case, no such cycles were found above 

the noise level, indicating that the cycle derives from translation invariance. The simple 

cell typically showed no cycles for any value of ε, indicative of point topology. Overall, 

this data set improved on the synthetic data set above, mainly because of the efficacy of 

adaptive stimulus presentation. This is encouraging, since in later stages of the visual 

pathway adaptive stimulus presentation techniques will be necessary due to the high 

dimension of the stimulus space.  

5 Higher-order invariances  

We also tested our algorithm on simulated rotation- and scale-invariant neurons which 

occur in higher areas of the visual pathway, although they are not present in V1. We 

modeled these simulated neurons similarly to the complex cell, by taking the maximum 

response over four (orientation) and twelve (scale) linear simple cells.  

Again, we were able to directly detect the invariances in the “bar code” plots (Figure 3). 

The fully (180°) orientation invariant RF has a natural cycle in the first homology group 

in the orientation dimension and does not require windowing. The partially (45°) 

orientation invariant RF has a cycle when windowed, but not in the control case.  
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The scale invariant RF presents an interesting case (Figure 4). In the first homology 

group, it has two cycles (corresponding to length and width invariance). However, based 

on that information alone, these two cycles could be disjoint, or they could indicate the 

presence of a torus. We can look at the second homology group, where (after projecting 

onto the “length-width” subspace) we find a long bar at ε values overlapping those in 

the first group. This confirms that the homology is generated by this torus in response 

space. Thus, we can use windowing and analysis of higher homology groups to identify 

invariances known to occur in later stages of the visual cortex.  

6 Highly feature selective RFs (with simple stimuli)  

It is possible to use topological information to help identify the feature selective 

properties of neuron’s RF. In particular, topological properties can distinguish between 

neurons which are selective to different vertex and edge geometries, since vertices of 

different degree will give rise to different numbers of “holes” between edge segments 

when a spatial boundary around the response region is collapsed to a point. Indeed, we 

could discriminate between vertices of degree 2 and degree 3 based on the presence of 

cycles after collapsing a spherical boundary (Figure 5).  

This information can be obtained even when more components are present in the RF 

than the stimulus, provided the nonlinearity of feature selectivity is not too extreme. 

This can be advantageous because representations with fewer components are lower 

dimensional, and can thus be explored in a reasonable amount of time, using 

optimization methods. We may also be able to exploit the fact that as we increase the 
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threshold levels for binarization, complicated receptive surfaces will simplify and split 

into disconnected regions. This kind of filtration is essentially the basis for Morse theory, 

and so there is a great deal of machinery to assist in analyzing such data. This approach 

could be used to identify components of a RF selective to multiple features, and, in 

theory, to say something about features’ functional contribution to the RF.  

7 Conclusions and future directions  

We have demonstrated that it is possible to exploit persistent homology calculations to 

detect invariances in the receptive fields of neurons. A major strength of the topological 

approach is that it is not limited to identifying invariances which derive from rigid or 

even affine transformations. Arbitrarily complicated invariances can be detected using 

this methodology.   

Beyond extension to further stages of the visual cortex and more complicated 

invariances, there are a variety of possible extensions of this work which are in progress. 

We assume static spatial response surfaces. However, the method can be adapted to 

handle temporally varying receptive fields; invariances in object motion, such as might 

be found in the dorsal stream, can be identified by adding temporal dimensions to the 

parameter space and employing appropriate windowing. In addition, we expect that this 

method will be well-suited to “adaptive sampling” techniques for exploring the space of 

stimuli to which a cell responds. We intend to run experiments in which samples to 

confirm or falsify hypotheses about candidate invariances detected in persistent 
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homology, thus allowing us to use the limited time for physiological data acquisition 

more efficiently.  
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Functional maps of  cat visual area 21a reveal a 
role in processing spatial form 

Abstract 

Visual area 21a of the cat is an extrastriate visual area with known physiological 

properties but uncertain topography and homology to primate visual areas. Using 

optical imaging methods, we were able to locate and characterize the area in multiple 

subjects. We found it to be topographically organized for orientation and spatial 

frequency. Its orientation columns were progressively larger than area 18 and area 17. 

Its spatial frequency, temporal frequency, and velocity preferences were similar to area 

17 and distinct from area 18, suggestive of a close functional connection and a role in 

spatial vision as opposed to motion perception, similar to primate area V4.  

Introduction 

The cat has long been one of the standard model systems for studying vision because of 

its high visual acuity, visually dominated behavior, relatively smooth visual cortex, small 

size and tractability. These properties have enabled many seminal discoveries about the 

visual cortex, especially primary visual cortex (Hubel and Wiesel, 2005). Comprehensive 

atlases of the visual areas of the cat’s cortex have been developed (Tusa et al., 1978, 

1979; Tusa & Palmer, 1980; Heath & Jones, 1971).  

However, progress in understanding the cat’s visual brain has been impeded by 

uncertainty about the integrity and function of the higher cortical areas in the cat visual 
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pathway and the correspondence between cat and primate visual areas. Unlike the 

primate, the cat has two primary visual areas, area 17 and area 18, which both receive 

their major input from the lateral geniculate nucleus of the thalamus. Area 18 appears 

specialized for motion processing; its neurons have larger receptive fields than 

equivalent neurons in area 17, and they prefer faster moving stimuli (Payne & Peters, 

2002). 

The primary visual cortex notwithstanding, recent studies using reversible inactivation 

of cortex have shown that the functional distinction between dorsal and ventral visual 

streams, corresponding to spatial form and motion processing, is as clear in the cat 

(Lomber et al., 1996) as in the primate, where the dissociation was first identified 

(Ungerleider & Mishkin, 1982). The cat ventral stream includes areas 21a, 21b, 20a, and 

20b, while the dorsal stream includes area LS and anterior areas of the middle 

suprasylvian sulcus (Payne, 1993). 

Visual area 21a sits at a crucial junction for spatial form vision. It is the lowest visual area 

in the ventral stream that receives no afferents from the LGN. Its dominant input is 

thought to be from X retinal ganglion cells via the supragranular layers of area 17 and, 

to a lesser degree, area 18 (Dreher et al., 1993, Michalski et al., 1993).  Compared to 

area 17, single neurons in area 21a are reported to be less motion selective, less 

direction selective, and equally or slightly more orientation selective (Toyama et al., 

1994; Dreher et al., 1993). Area 21a’s specialization for form vision is consistent with its 

45



representation of the central upper visual hemifield, similar to primate V4 (Tusa & 

Palmer, 1980).   

Understanding the functional architecture of area 21a would allow us to better 

understand its role in the visual pathway of the cat, and more generally how the cortex 

transforms visual signals between two levels of a visual hierarchy. However, little has 

been reported about the functional organization of area 21a or any non-primary visual 

area in the cat. One study has measured the spacing of orientation columns observed 

using episodic imaging in area 21a (Huang et al., 2006), but it used few stimuli, did not 

control for individual variability, and did not characterize the global organization of the 

orientation map. While some neurons in area 21a have been shown to respond better 

to one eye than another, the presence of an ocular dominance (OD) map has not been 

determined. In addition, there is no information available about whether spatial 

frequency is organized in columns, as it is in areas 17 and 18.  

One persistent difficulty with studying area 21a has been the difficulty of locating its 

boundaries in individual animals. It has traditionally been identified by its histology, 

although some studies have shown it can be identified with laborious systematic 

electrophysiological mapping (Toyama et al., 1994). However, techniques such as optical 

imaging can rapidly define the extent of a visually responsive area on the exposed 

surface of the cortex, facilitating the characterization of areas with variable location. 

The speed of optical imaging also allows for comparisons of different areas within single 

animals, removing a major source of variability in the study of functional architecture. 
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Methods 

Surgery 

The surgical preparation and maintenance procedures are similar to those described 

previously (Dadvand et al., 2006; Kalatsky & Stryker, 2003). All experimental procedures 

were approved by the UCSF Institutional Animal Care and Use Committee. 

Cats were initially sedated with intramuscular ketamine (25 mg/kg) and midazolam 

(0.07 mg/kg) and then anesthetized with the inhaled anesthetic isoflurane (3%-4% in 

O2). After the placement of a femoral catheter, barbiturate anesthesia was substituted 

(sodium pentobarbital, 2.5 mg/kg bolus). Glycopyrrolate (0.02 mg/kg) was given 

intramuscularly to reduce tracheal secretions, antibiotic (cefazolin, 22 mg/kg) was given 

intravenously to prevent infection, and dexamethasone (2 mg/kg) was given 

intravenously to prevent edema. Core temperature was maintained at 37.5° C using a 

feedback-regulated heating pad. A tracheotomy was performed, and the animal was 

placed in a stereotaxic apparatus and ventilated with 67% N2O, 33% O2. Eyedrops 

containing 1% ophthalmic atropine sulfate and 10% phenylephrine hydrochloride were 

applied to dilate the pupils and retract the nictitating membrane. Contact lenses of the 

appropriate strength were fitted with the aid of a streak retinoscope.  

The level of anesthesia was continually monitored with core temperature, 

electrocardiogram heart rate, pulse oxygen saturation, expired CO2, and peak airway 
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pressure. The absence of reflexes was regularly checked, and pentobarbital was 

administered as necessary to maintain a surgical plane of anesthesia.  

A craniotomy was made over one hemisphere to simultaneously expose areas 17, 18 

and 21a. The typical extent was from 5 mm anterior to 7 mm posterior, midline to 15 

mm lateral, relative to stereotaxic zero.  

To prevent eye movements, neuromuscular blockade was induced by continuous 

infusion of pancuronium bromide (0.055 mg/kg/hr) mixed with lactated Ringer’s 

solution with 2.5% dextrose (total volume of fluid infused was 5 ml/kg/hr). The animal 

was maintained on ventilation for the duration of the experiment. For better control 

over anesthesia, EEG wires were placed between the occipital and temporal edges of 

the craniotomy. The optic disks were mapped with an ophthalmoscope, and the center 

of the visual field was determined. Finally the dura mater was reflected, and agarose 

(3% in saline) at body temperature was placed over the exposed cortex, and sealed with 

a glass cover slip. The EEG was maintained in slow-wave or mixed slow-wave/fast 

activity for the duration of the experiment. 

Imaging Procedure 

Optical images of the cortical intrinsic signal were obtained using a Dalsa 1M30P CCD 

camera controlled by custom software (Kalatsky & Stryker, 2003). Using a tandem lens 

“macroscope” (Nikon) in two different configurations (50 mm over 50 mm, 85 mm over 

50 mm) we could image areas of 12 mm x 12 mm or 7.2 mm x 7.2 mm. The surface 

vascular pattern was recorded under green (546 ± 10 nm) illumination, and the intrinsic 
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signal was recorded under illumination with either broad spectrum light filtered at 610 ± 

10 nm or LED illumination (Luxeon LXHL-NH94, 617nm), and a red filter (610 ± 10 nm) 

was inserted between the camera lenses. The focal plane was 0.6 mm below the 

vasculature on the cortical surface. During imaging, frames were acquired at 30 fps, 

1024 x 1024 pixels and were binned 2x2 spatially and by 4 frames temporally for a final 

image size of 512 x 512 pixels, final sampling rate of 7.5 Hz, and 16 bit well depth. 

Imaging stimuli 

Optical imaging stimuli were generated by custom software and displayed on a high 

refresh rate monitor (Nokia Multigraph 445X; 1024 x 768, 120 Hz) with screen size 40 

cm x 30 cm, at a distance of 40cm from the eyes. Stimuli were presented at 100% 

contrast (gamma-corrected), to the eye contralateral to the recording hemisphere 

(unless otherwise specified). 

The primary stimulus employed was the “drifting rotating grating,” a square- or sine-

wave drifting grating that fully rotates around the center of the visual field with a period 

of 30 s, presented continuously for 6 or 8 minutes. To find responsive visual areas, 

compute ocular dominance, and orientation and direction maps, we used a square-wave 

grating with spatial frequency=0.2 cycles/° and temporal frequency=2.0 cycles/s 

(velocity 10 °/s). Sinusoidal gratings at this spatial frequency produce a strong intrinsic 

signal response in areas 17 and 18 (Issa et al., 2000), and a square-wave grating includes 

higher spatial frequencies and should stimulate neurons preferring a wide range of 

spatial frequencies. For spatial frequency and temporal frequency maps, we used 
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sinusoidal gratings and held one parameter constant while we varied the other. In 

experiments using spatial frequencies > 0.4, artificial pupils were always placed in front 

of the animal’s eyes to better ensure that stimuli were in focus. 

Imaging analysis 

We fit the response of each individual pixel with a sinusoid of the same period as the 

stimulus to obtain a robust estimate of the best phase and amplitude (Kalatsky & 

Stryker, 2003). These phases and amplitudes formed the direction map, and the phases 

and amplitudes fit using a sinusoid with half the period formed the orientation map. To 

eliminate artifacts from the orientation map, we centered each phase-amplitude 

distribution to a vector mean of zero. This corresponds to the assumption that all 

phases are represented with equal strength over the map, which is accurate for 

direction and orientation maps of any reasonable size. To reduce noise, maps were 

usually smoothed, after averaging or combining, with a Gaussian kernel with σ = 100μm. 

Each map was demarcated by a manually stenciled template, with borders based on the 

orientation phase and amplitude maps, as well as vessels in the surface image. Large 

vessels with a large solid area of hemodynamic artifact were excluded from the 

template, but small vessels (which did not disrupt the orientation maps) were not. The 

border between area 17 and 18 was identified based on the different amplitudes of the 

two areas’ maps at different spatial frequencies; typically area 18 was stronger at 0.05 

cycles/°, while area 17 was stronger at 0.2 or 0.4 cycles/° (Issa et al., 2000). 
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Delay correction of imaging maps 

If the intrinsic signal response were instantaneous, every pixel’s response peak phase 

would correspond to one drift direction (and orientation), and this would define the 

orientation map. However, the intrinsic signal has a variable hemodynamic delay, which 

must be removed or it will bias the orientation estimate.  

The standard procedure for correcting the delay is to run experiments rotating the 

grating in both clockwise and counterclockwise directions, in separate acquisition 

periods. By adding the two angle estimates together, we obtain an estimate of the 

doubled delay angle 2d (modulo 2π). Previous studies (Kalatsky & Stryker, 2003) have 

divided by 2 to obtain the delay angle d (modulo π) for each pixel, but this is a noisy 

computation even after local smoothing and is inherently ambiguous. When the 

stimulus period is 15 s, for example, the delay angle will be ambiguous ± 7.5 s. If the 

signal is locking to the late bloodflow response, the natural distribution of delays may be 

approximately Gaussian, centered at 9 s with an SD of 2 s. Using the older technique, 

delay angle estimates will frequently be off by π, causing errors of π radians in our 

estimation of the preferred phase. 

Instead, we compute a histogram of all responsive pixels in the visual area, and for each 

pixel we take dtarget = whichever of d or d+π shows a peak around 9 s, corresponding to 

the standard hemodynamic response peak. Taking the distribution of dtarget over the 

region of interest, we calculate the mean and use it as the delay angle to rotate each of 
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the clockwise and counterclockwise maps. Finally the two maps are vector averaged 

together to produce a best estimate. 

In some weaker maps, instead of tracking the peak, the sinusoid fit will lock to the initial 

hemodynamic dip (∼2 s) instead of the repolarization phase (∼9 s; Kalatsky, personal 

communication), and the original delay angle estimate d will be correct. We can detect 

these maps by orientation-orientation scatterplot comparisons to other experiments in 

the same area, because instead of having identical orientations, one of the maps will be 

offset by π overall. Once this is detected, the map’s delay angle can be corrected 

accordingly. This correction is important for analyses that depend exclusively on the 

signal phase, such as when comparing intrinsic signal imaging data with 

electrophysiological data; for analyses that depend only on the signal amplitude, such as 

ocular dominance maps, the correction has no effect. 

Map similarity 

The similarity of orientation maps was quantified using the canonical correlation 

(Mardia & Jupp, 1999), a measurement of the correlation between two circular variables 

based on the correlation of their direction sines and cosines. Because we were 

interested in the structure of the map rather than its strength, only phases, not 

amplitudes, were used in this comparison. In simulations, canonical correlation has a 

nearly inversely linear relationship with the amplitude of vector noise added to a map 

(not shown), which makes it ideal for comparing continuous intrinsic signal maps. 
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Ocular Dominance maps 

We mapped the ocular dominance of each pixel by comparing its amplitudes when 

stimulated through the contralateral and ipsilateral eyes. Although the contralateral and 

ipsilateral maps were acquired in sequential runs, the map amplitude fluctuated from 

run to run. Making the assumption that high amplitude pixels (e.g. the centers of OD 

columns) should have similar strengths in contralateral and ipsilateral maps (Cheng et 

al., 2001) we multiplicatively rescaled amplitude values in each map (excluding the top 

5%) to the range 0-1, and set the top 5% to 1. We then computed an ocular dominance 

index for each point, ODI = (AmplitudeContra – AmplitudeIpsi)/( AmplitudeContra + 

AmplitudeIpsi). 

Spatial and Temporal Frequency maps 

Since the drifting rotating grating yields strong orientation maps in areas 17, 18 and 21a, 

we used it to obtain spatial and temporal frequency maps for each area. We ran 

orientation maps at logarithmically spaced spatial frequencies s = [0.05, 0.1, 0.2, 0.4, 

0.6, 0.8, 1.2, 1.6] cycles/°, in randomized order. At each pixel, the best-fit phase ps and 

amplitude as were taken to be vectors vs, and averaged to find the consensus phase for 

that pixel c.  

From the rectified dot product of the consensus phase and the phase of a single spatial 

frequency map, we obtained a measurement of map quality for each pixel at that spatial 

frequency, ws = <ps,c>. This reflects the fact that, while amplitudes were often variable 

between maps and only somewhat predictive of quality, good maps at near-optimal 
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spatial frequencies all showed similar best orientations, while maps at suboptimal 

spatial frequencies were noisy and orientation was more variable. These weights 

formed a spatial frequency profile, w = [w1…wn]. This profile can be thought of as a 

(noisy) spatial frequency tuning curve for the intrinsic signal at a given pixel. To obtain a 

single best spatial frequency, we took the dot product di=<w,fi> with a series of filters fi, 

which corresponded to a tuning curve for a different peak spatial frequency. These 40 

filters were Gaussians with constant maximum value, linearly spaced over the range of 

spatial frequencies, with tuning width of σ=0.6 octaves. The peak spatial frequency 

yielding the maximal di was taken as the spatial frequency for that pixel. 

Temporal frequency maps were constructed similarly to spatial frequency maps. Instead 

of varying the spatial frequency of the drifting rotating grating, the drift temporal 

frequency was changed between runs, to values [0.5, 1, 2, 3, 4] cycles/s. Since we had 

fewer samples in the temporal frequency spectrum than the spatial frequency 

spectrum, we weighted the maps by their amplitude without utilizing phase consistency; 

this method minimized error in simulated data (not shown). 

Pinwheels 

Pinwheels in orientation maps were identified as in Löwel et al. (1998). The polar phase-

amplitude vector was transformed into Cartesian coordinates zx and zy, and the contour 

lines zx = 0 and zy = 0 were plotted on top of the orientation map. Points where those 

lines intersected were visually inspected, and those that showed clear evidence of 

radially organized orientation domains were included in the analysis. If there were 
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multiple intersections within 0.2 mm of each other, only the location showing clearest 

radial organization was analyzed. 

Column spacing 

We quantified the spacing of orientation columns using a wavelet fitting technique 

(Kaschube et al., 2000). Maps were scaled from 0 to 1 and filtered to remove 

wavelengths > 3.0 cycles/mm. At each pixel in the map, wavelets of 8 different wavelet 

orientations and 8 wavelengths logarithmically spaced between 0.4 and 3.0 cycles/mm 

were tested, and the best wavelength was taken from the wavelet that produced the 

maximum response regardless of wavelet orientation. 

Because orientation is a circular, continuous variable, we discretized orientation into 8 

sub-maps, each of which represented a single orientation preference, and the same 

wavelet analysis was applied to each map. For example, the 22.5° map contained all 

points with orientation preference 0°-45°, cosine weighted by similarity so that points 

with orientation 22.5° had value 1 and points with orientation 0° had value 0. The best 

wavelength for all points with orientation preferences 11.25°-33.75° was set to the 

wavelength from the 22.5° map, and the same was done for other orientation 

preferences. 

The column spacing for each area was computed as the mean over all pixels in the area. 

The variability of spacing was estimated by calculating a standard error, σ/√N, using the 

standard deviation of all pixels and estimating N, the number of independent columnar 

units in the area, as (total area / πr2) where r is half the estimated spacing. 
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Physiological Recording 

After imaging, in some experiments we replaced the solid cover slip over the chamber 

with one with a small (∼2 mm) circular aperture. Using a tungsten microelectrode 

(Microprobe, impedance ∼2 MΩ) we targeted random sites within the strongly 

responsive areas of visual cortex. Penetrations were made at the same angle as the 

camera, relative to the brain, generally within 10 degrees of the surface normal. 

Stimuli were generated in Matlab using the Psychophysics Toolbox extensions (Brainard, 

1997; Pelli, 1997). Orientation stimuli were sinusoidal drifting gratings (8 different 

orientations, spatial frequency 0.2 cycles/°, temporal frequency 2.0 cycles/s, 100% 

contrast), presented to the contralateral eye. At the most responsive multi-unit 

orientation, a spatial frequency tuning curve was constructed by varying the spatial 

frequency (0.05 to 1 cycles/° in 8 log-spaced steps). 

Extracellular signals were acquired using a System 3 workstation (Tucker-Davis 

Technologies), filtered from 0.7 to 7 kHz and sampled at 25 kHz. Spiking events were 

detected on-line by voltage threshold crossing, and a 1 ms waveform sample was 

acquired around the time of threshold crossing. Spike sorting was performed as in Niell 

and Stryker (2008), and the orientation and spatial frequency tuning curves for each unit 

were constructed from the mean firing rate during stimulation. Orientation selectivity 

Index (OSI) was computed from the orientation tuning response curves as (rpreferred – 

rnull)/ (rpreferred + rnull). Direction Selectivity Index (DSI) was computed as (rpreferred – ranti-

preferred)/ (rpreferred + ranti-preferred). 
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Results  

Location of area 21a in optical maps 

Figure 1a shows a representative example of three smoothed optical maps of the 

intrinsic signal response to stimulus orientation that were simultaneously acquired in 

areas 17, 18, and 21a of one animal. Imaging higher visual areas under barbiturate 

anesthesia is more difficult than imaging early visual areas 17 and 18. However, in 

animals where we obtained any orientation maps in area 17 or area 18, we were also 

able to obtain such maps in area 21a in 13 of 14 cases.  Area 21a is apparently early 

enough in the visual pathway that it can still reliably yield optical maps under 

anesthesia. 

In hemispheres where areas 17 and 18 failed to yield orientation maps, we never 

successfully imaged area 21a. Since these are the input areas to 21a, their good 

physiological condition appears to be a prerequisite for normal function in 21a. Ideally, 

we would like to simultaneously image all three areas in the same hemisphere. 

However, because of brain curvature, the limited depth of field of the macroscope, and 

the sensitivity of optical imaging to angle of illumination, it can be difficult to find an 

imaging window and camera position permitting simultaneous imaging of all three 

areas, especially in larger brains. We attempted simultaneous imaging in 8 experiments, 

and succeeded in 6 of those. 
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We observed that the position of area 21a varied between animals, along both the 

lateral-medial and the anterior-posterior axes. Of these two axes, lateral-medial 

variability is more problematic for the experimenter because of the presence of the 

lateral suprasylvian sulcus; if a 21a map were positioned very laterally it would extend 

into the sulcus, making it challenging to image and more difficult to map 

electrophysiologically. We observed at least 3 mm of lateral-medial variability. The 

mappable area of 21a was always adjacent to the lateral suprasylvian sulcus. In some 

cases, it covered most of the gyrus, extending 3/4 of the way to the lateral sulcus; in 

others, it extended less than halfway.  In two animals, relatively little of the map was 

exposed on the gyrus, but there were indications the map extended down into the 

lateral suprasylvian sulcus. In stereotaxic coordinates, the medial border was L6-L10, 

and the center of the visible map fell between L9-L12. The lateral border could not be 

precisely ascertained since it was in the lateral suprasylvian sulcus and the sulcus is 

located on a steeply slanting part of the brain not well described by stereotaxic 

coordinates, but the position of the sulcus varied from approximately L12-L14. 

Anterior-posterior variability poses a less significant difficulty for imaging and 

microelectrode recordings than does lateral-medial variability, because area 21a’s 

position along the surface of the gyrus has little effect on its accessibility. Anterior-

posterior variability was of the same magnitude as lateral-medial variability. The center 

of the map was located 4 ± 2 mm anterior to the bend at the posterior end of the lateral 

suprasylvian sulcus; relative position seemed a more reliable landmark for the center of 

the area than stereotaxic coordinates. 
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We did not observe any adjacent maps either medially, on the medial lip of the lateral 

suprasylvian gyrus, or posteriorly, at the bend of the gyrus. Both of these locations are 

predicted to be the central visual field representation of area 19 (Tusa et al., 1979). We 

also did not observe maps to the anterior in parietal area 7, which is usually reported to 

be unresponsive under anesthesia (Payne, 1993). 

Size of area 21a in optical maps 

The size of the exposed map varied from 3.5 mm2 to 26.6 mm2, and the distribution of 

map sizes was bimodal, with modes at ∼8 mm2 and ∼22 mm2. The smaller mode 

probably resulted from our experimental procedure; when we were unable to see a 

map high on the surface of the gyrus, we would try to align the camera to focus down 

into the sulcus, yielding a number of small maps. 

Our full-screen stimulus extended to approximately 25° along the horizontal axis of the 

visual field and 20° along the vertical axis; since area 21a only represents the central 

visual field, this stimulus encompasses the full extent its visual field according to Tusa 

and Palmer (1980)’s standardized map. Since area 21a is organized retinotopically, our 

stimulus should have activated nearly the entire area. The surface area of 21a is 25±2 

mm2, estimated from Hilgetag and Grant (2000). Thus, the largest maps we found 

represented almost the entirety of area 21a; the smallest maps invariably bordered (and 

presumably extended down into) the sulcus, thus representing only a small fraction of 

area 21a. 
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Corresponding visual field locations were imaged in areas 17, 18, and 21a, and the 

position of the monitor was never changed between imaging of the different areas. The 

imaged region of area 17 represents a narrow strip of the contralateral visual field along 

the vertical meridian from about 5° above the horizontal meridian to 10° below (Tusa et 

al., 1978), while the imaged region of area 18 represented the lower contralateral visual 

field, from 0° to -10°, extending out to 5-10° along the horizontal meridian (Tusa et al., 

1979). Similarly, the exposed region of area 21a represents a quadrant-shaped region of 

the contralateral visual field from 25° above the horizontal meridian to about 5° below, 

extending out to 20° from the vertical meridian (Tusa & Palmer, 1980). Because the 

cortical magnification factor enlarges the representation of the central visual field, the 

majority of the imaged regions in all three areas fell within 5° of the center of the visual 

field. Functionally, inactivation or stimulation of the exposed area 21a map affects the 

response in the exposed areas 17 and 18 maps (Huang et al., 2004), confirming that the 

retinotopic correspondence between exposed areas is quite close.  

The exposed portion of area 21a is frequently portrayed as a wedge pointed towards 

the lateral sulcus, based on the atlas of Tusa and Palmer (1980). We rarely observed this 

shape; the visible map was generally rectangular. In a minority of maps the anterior and 

posterior borders of area 21a were angled so as to converge medially. In cases where a 

large part of the map dove into the sulcus, the overall shape of the area may have been 

occluded, and some of the map may lie posterior to the visible portion. 
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Orientation columns in area 21a are larger than in areas 17 and 18. 

The spacing of orientation columns appears to increase from area 17 to area 18, and 

from area 18 to area 21a (Figure 1a). We quantified this trend by measuring the spacing 

between orientation columns preferring identical orientations, using wavelet analysis to 

determine the period (local wavelength) of the orientation map. Figure 1b shows the 

trend of increasing spacing across areas, plotted across all animals for which we have 

multiple maps. On average, column spacing was 5% larger in area 18 than area 17 and 

18% larger in area 21a than area 18. Note that, while all individual animals show an 

increasing trend from 17 to 18 to 21a, the column spacing varies significantly between 

animals, by as much as 25% (∼0.4 mm). 

A paired comparison (Figure 1c) eliminates the effect of inter-animal variability and 

shows that the column spacing in 21a is larger than in area 17 (N=5, sign test p < 0.06), 

and the spacing in area 21a was not quite significantly larger than area 18 (N=6, p < 

0.11). The spacing in 18 is larger than in area 17 (n=7, p < 0.01), as has been previously 

observed (e.g. Löwel & Singer, 1987).  

In some animals, the column spacing in area 21a seems to be much larger than area 18; 

in others, it was only somewhat larger.  This variability was real, and was not explained 

by the correlations in column spacing within single animals. Using the wavelet analysis, 

we estimated the local column spacing at all pixels in all area 21a maps, and analyzed 

the variability of this measure. Column spacing was normalized so that, in each animal, 

area 18 corresponded to 1.0. Figure 1d shows that, while the column spacing in area 17 
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Figure 1a. Orientation maps of area 17, 18, and 21a acquired simultaneously in a 
single cortical hemisphere. 
(Left) Imaging exposure with sulci labeled and imaged areas marked. Lat. Sup. S = 
Lateral suprasylvian sulcus; LS = Lateral sulcus; IHF = Interhemispheric fissure. 
(Right) Orientation maps, with best orientation shown by key. Scale bars = 1 mm. 
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Figure 1b. Trend in orientation column spacing across areas 17, 18, and 21a. For each 
area, overall spacing is the maximum of a Gaussian fit to the distribution of wavelet 
periods over all pixels. 
Single animals are joined by lines (only one hemisphere shown per animal) and 
horizontally staggered for clarity.  Error bars are SEM for n = number of column units in 
each map.
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Figure 1c. Paired comparison of orientation column spacing across areas.  Diagonal 
line indicates equal period.  Each animal is shown as a point; error bars are SEM as in 
Figure 1b.
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Figure 1d. Orientation column spacing comparison including all image pixels across 
all animals. The local column spacing at every pixel is normalized by the mean 
spacing in area 18 in the same animal. The mean normalized spacing is then taken 
over each area. The distribution shown is this mean normalized spacing, over all 
animals.
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is relatively consistent relative to area 18, column spacing in area 21a is variable relative 

to area 18, with the two middle quartiles ranging from 1.1 to almost 1.5 times the 

spacing of columns in area 18.  

Within a single visual area of one animal, column spacing was relatively constant across 

all pixels. The amount of variation did not seem to differ between areas 17, 18, and 21a, 

as shown by the size of error bars in Figure 1b. There did not appear to be multiple 

subareas within the maps of 21a, and no gradient of column spacing across the map was 

evident. This evidence, along with the homogeneity of the other types of map in area 

21a, indicates that we are observing a unitary area rather than multiple neighboring 

areas.  

Orientation column spacing in areas 17, 18 and 21a was uncorrelated with animal 

weight in the normal range of 2-4 kg for ages 6 months-2 years, with the caveat that in 

two very large (male) animals with weights over 6 kg, the column spacing in area 17 and 

18 was larger. Kaschube et al. (2002) have reported a similar lack of correlation between 

ocular dominance columns in area 17 and animal weight. Column spacing was also not 

correlated with the sex of the animal.  

Area 21a prefers higher spatial frequencies than area 18 

The difference between the spatial frequency preferences of areas 17 and 18 can be 

easily identified from their different orientation map amplitudes at a single spatial 

frequency; area 18 was visibly stronger at 0.05 cycles/°, while area 17 was stronger at 
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0.2 and 0.4 cycles/°. This consistent amplitude difference between 17 and 18 was useful 

for identifying their border, as described by Issa et al. (2000).  

It is nearly always possible to directly compare the amplitudes of area 17 and area 18 

because the two neighboring areas are usually imaged in the same run, are similarly 

illuminated because the surface of the lateral gyrus is very flat, and have similar levels of 

intrinsic signal activity. In contrast, the imaging conditions of areas 17 and 18 and area 

21a often differed: they could not always be captured in a single imaging plane, so they 

were imaged in separate runs with different camera and lighting positions. Since 

intrinsic signal is dependent on animal state, and the imaging conditions were different, 

the raw response amplitudes of areas 17 and 18 and area 21a were often not directly 

comparable.  

Thus, to compare area 21a to the other areas, we computed combined spatial frequency 

maps by averaging multiple orientation maps acquired at different spatial frequencies, 

as described in Methods. Figure 2a shows a representative set of spatial frequency maps 

across areas 17, 18, and 21a in one hemisphere. Spatial frequency maps were generally 

consistent across multiple runs and contrast levels (50% vs. 100%). 

The mean preferred spatial frequency across maps of areas 17, 18, and 21a showed a 

consistent trend: area 21a preferred higher spatial frequencies than area 18, but similar, 

or slightly higher, spatial frequencies to area 17. Figure 2b shows these trends in mean 

preferred spatial frequency, plotted across all animals for which we have spatial 

frequency maps in multiple areas. These trends were robust and did not depend on the 
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exact shape of the spatial frequency distribution; they were identical for pixel means, 

geometric means, and medians (not shown). The effect stands out in the paired 

comparisons (Figure 2c). 

Grouping all animals together, the median preferred spatial frequency of pixels in area 

21a was 0.48 cycles/°, higher than in area 17 (0.34 cycles/°) and considerably higher 

than in area 18 (0.23 cycles/°). These differences were all highly significant (p < 0.0001). 

This spatial frequency distribution was similar to the distribution of single unit optimal 

spatial frequencies recorded by Tardif et al. (1996), although ours was shifted slightly 

towards lower frequencies, possibly because we always stimulated through the eye 

contralateral to the hemisphere we were imaging. Single units in area 21a stop 

responding at a lower spatial frequency when stimulated through their nondominant 

eye (Tardif et al., 1996) compared to their dominant eye. The observed distribution was 

not similar to that reported by Morley & Vickery (1997), which peaked at 0.15 cycles/°. 

However, only 30% of the cells they recorded were responsive to gratings, compared to 

85% of Tardif et al.’s, and 83% (54 of 65) of our microelectrode sample, so their sample 

population may not be representative. When area 21a is activated or silenced, area 17’s 

responses to gratings of spatial frequency 0.5 cycles/° are most affected (Huang et al., 

2004); this is the average spatial frequency we observed in area 21a, suggesting that the 

feedback projection to area 17 may be representative of the general area 21a 

population. 
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Figure 2a. Spatial frequency maps acquired in a single hemisphere in one animal.  
Color indicates preferred spatial frequency (as shown on key). Scale bar = 1 mm.
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Figure 2b. Trend in mean spatial frequency across areas for each animal. Error 
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Figure 2d. Orientation map (left) and spatial frequency map (right) of area 21a in one 
animal. Pinwheels, marked with crosses on both maps, colocalize with the high SF 
domains (blue and purple areas, at right). 
Note that, on the orientation map (at left), the marked pinwheels do not exactly coin-
cide with the boundaries of orientation domains when the map is globally normalized 
(as displayed here), since each pinwheel is marked when the map is locally normalized 
around it. Scale bar = 1 mm. 
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Intriguingly, 3 of the 6 spatial frequency maps of area 21a had the largest fractions of 

high spatial frequencies (> 0.7 cycles/°) we had seen in any of the 16 spatial frequency 

maps we made in all visual areas. This is likely significant, since there are a number of 

reasons why the area might seem to prefer spuriously low spatial frequencies (e.g. poor 

optics or poor responsiveness in early visual areas) but preference for high spatial 

frequencies is less likely to be artifactual. These maps were normal in strength and 

organization, and 2 of the 3 were imaged simultaneously with area 17 or 18 maps 

preferring normal (lower) spatial frequencies, so this result was not caused by a 

singularly strong imaging run. This observation is consistent with reports of such high 

peak spatial frequencies in 25% of recorded cells in 21a (Tardif et al., 1996).  

Orientation pinwheels in area 21a may correlate with high spatial 

frequencies 

The overall organization of spatial frequency maps in areas 17, 18, and 21a is similar (as 

shown in Figure 2a). Larger regions of medium spatial frequencies, with slowly changing 

spatial frequency gradient, are interspersed with patches of higher and sometimes 

lower spatial frequency, with linear discontinuities at the patches’ borders.  

Orientations in area 21a are distributed randomly and continuously with no evidence of 

long range order, even at the visible borders of the area. Therefore, like in areas 17 and 

18, orientation pinwheels are by mathematical necessity present in the map (Schwartz, 

1977). We observed mean pinwheel densities of 1.71 ± 0.17, 2.31 ± 0.07, and 1.50 ± 

0.34 pinwheels/mm2 in areas 17, 18, and 21a respectively. These were lower than the 
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densities reported by Huang et al. (2006) of 2.29 ± 0.14 pinwheels/mm2 in area 17, and 

2.87 ± 0.37 pinwheels/mm2 in area 21a, as well as Löwel et al.’s (1998) estimate of 2.7 ± 

0.1 pinwheels/mm2 in area 17, but higher than Bonhoeffer and Grinvald’s (1993) 

estimate of 1.2  pinwheels/mm2 in area 18. However, our measurements were 

performed over relatively small maps and were subject to border effects. 

In area 17 and 18, orientation pinwheels coincide with areas of high spatial frequency 

preference.  Figure 2d shows, for one area 21a map, the orientation map with pinwheels 

marked and those pinwheels overlaid on a spatial frequency map. Note that the 

pinwheels seem to fall within or near the borders of the high spatial frequency zones. 

Pooling the data from areas 17 and 18, we observed that pinwheel density was elevated 

in the high spatial frequency regions (3.07 ± 1.85 for spatial frequencies > 0.6+ cycles/°, 

compared to 2.06 ± 0.94 for 0.3 - 0.6 cycles/°; p < 0.05). It was also elevated in area 21a, 

but not significantly (2.27 ± 1.63 for > 0.6 cycles/°, compared to 1.85 ± 0.93 for 0.3 - 0.6 

cycles/°; p = 0.16). Issa et al. (2000) have proposed that pinwheels colocalize with the 

small fraction of high spatial frequency domains in areas 17 and 18 to ensure that all 

orientations are represented at these relatively rare spatial frequencies; this 

colocalization may still be important in area 21a. 

Area 21a may prefer lower temporal frequencies than area 18 

Temporal frequency maps were obtained by combining data from several orientation 

maps made at different temporal frequencies, similar to the procedure for spatial 

frequency maps. When these maps were averaged over each area, the trend for mean 
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preferred temporal frequency was the inverse of the trend for spatial frequency. Area 

17 clearly prefers lower temporal frequencies than area 18, as expected; this is evident 

in the line plot (figure 3a, top) and is significant in the box plot (figure 3a, bottom). Area 

21a may prefer lower temporal frequencies than area 18, although this trend is not 

significant in the data or the paired plots (Figure 3b). There is no significant difference in 

the temporal frequency preference of area 17 and area 21a.  

The temporal frequency distribution we observed in area 21a was consistent with the 

distribution of low-pass and band-pass single cells reported by Morley and Vickery 

(1997). It was very different from the surprisingly high distribution, with mean 7.0 ± 4.0 

cycles/s, reported by Tardif et al. (1996).  

We did not observe reproducible temporal frequency structure in our maps of area 21a. 

The existence of temporal frequency maps in primary visual cortex is still an open 

question (Issa et al., 2008). Using optical imaging, Khaytin et al. (2008) find that 

orientation domains in bush baby V1 remain constant in position as the temporal 

frequency of a stimulus changes, suggesting that temporal frequency is distributed 

uniformly across the cortical representation. Any temporal frequency map in primary 

visual cortex is likely to be weak; DeAngelis et al. (1999) reported that, in pairs of single 

neurons in area 17 recorded simultaneously with a microelectrode, temporal frequency 

was more weakly correlated than spatial frequency, and much less correlated than 

orientation. The selectivity of temporal frequency tuning is even lower in area 21a than 
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in area 17 (Kayser & König, 2006), predicting that any temporal frequency map that 

exists would be even weaker. 

Area 21a’s combination of low temporal frequency preference and high spatial 

frequency preference indicates a strong preference for low grating velocities.  Our 

observation of a mean preferred temporal frequency of 0.5 cycles/s (at spatial 

frequency = 0.2 cycles/°) is consistent with a mean preferred velocity of 2.5 °/s. 

Likewise, our observation of a mean preferred spatial frequency of 0.5 cycles/° (at 

temporal frequency = 2.0 cycles/s) is consistent with a similarly low mean preferred 

velocity of 4.0 °/s. Of course, we did not explicitly sample the space of velocities, so 

these should be interpreted as estimates. However, we never observed optical maps in 

area 21a in response to stimuli moving faster than 20 °/s (temporal frequency=4.0 

cycles/s, spatial frequency = 0.2 cycles/°). These measurements are consistent with the 

reported distribution of single neurons’ velocity preferences (Dreher et al., 1993; 

Wimborne & Henry, 1992). Both the peak velocity estimates and the maximum velocity 

are consistent with the hypothesis that area 21a is a spatial form vision area which 

responds poorly to fast-moving stimuli. 

Direction maps are weaker in area 21a than in area 18 

Using continuous optical imaging of responses to drifting rotating gratings, direction 

maps for a visual area can be acquired simultaneously with orientation maps (see 

Methods). In general the preferred direction of a pixel is expected to be perpendicular 

to the orientation of its optimal bar stimulus. The consistency between orientation and 
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direction maps can provide independent confirmation of the validity of both orientation 

and direction maps because they are derived from two independent signals that are 

independently fit by the continuous intrinsic signal analysis procedure. Figure 4a shows 

sample pairs of orientation and direction phase maps and their associated amplitude 

maps.  

Direction maps in area 21a were weaker than in areas 17 and 18, in the sense that the 

consistency between best orientation and direction was lower in area 21a than in 17 

and 18. (The absolute amplitude of direction maps is not a very reliable measure; see 

Discussion.) Figure 4b shows the consistency between orientation and direction 

preference in the three areas shown in Figure 4a. While consistency was low overall (see 

Discussion), the median correlation was higher in areas 17 (0.18) and 18 (0.19) than in 

area 21a (0.09). The difference was significant in the Mann-Whitney test in both cases (p 

< 0.05). Area Areas 17 and 18 have a substantially higher fraction of directionally 

selective cells than area 21a (55%, 42%, and 17% respectively; Dreher et al., 1993), 

which probably accounts for the weakness of the overall direction map. We observed 

that all 21a direction maps were less consistent than all but one of the area 17 and 18 

maps, indicating the consistency of this measurement across animals. 

Ocular dominance maps are not apparent in area 21a 

Orientation maps are very consistent from one eye to another (Figure 5a). In general, 

the highest amplitude areas of the orientation map are very stable from eye to eye, and 

run to run; but regions of the map in which responses are weaker amplitude sometimes 
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shift to the best orientation of a stronger neighboring region. This is a predictable result 

of looking at the cortical bloodflow signal, which is dominated by the most active nearby 

group of cells.  

Indeed, orientation maps in area 21a of one hemisphere are as consistent in preferred 

orientation between contralateral and ipsilateral eyes as they are between two separate 

maps using the contralateral eye. In area 21a, the median smoothed orientation 

correlation between contralateral and ipsilateral eyes was 0.55; between two 

contralateral eye runs, it was 0.52. These medians were not significantly different. 

Correlation values for valid maps ranged from 0.21 to 0.83. 

Comparing the amplitudes of orientation maps in areas 17 and 18 derived from the two 

eyes revealed spatially periodic stripes similar to the ocular dominance columns that 

have been shown by other means, such as episodic imaging (not shown). Such striped 

maps in 21a were not consistently observed. The lack of clear ocular dominance maps in 

area 21a was not the result of poor signal, since both high and low amplitude area 21a 

maps showed a similar lack of ocular dominance organization.  

Microelectrode recordings agree with imaging maps 

We used microelectrodes to record responses to different stimulus orientations from 

neurons in penetrations targeted based on imaging in three experiments, and in another 

experiment we recorded from stereotaxically defined 21a. We observed a strong 

correlation between the preferred orientation of neurons recorded with a 

microelectrode and the local preferred orientation in the optical maps (r = 0.59; figure 
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6a). To test the significance of this observation, we measured the correlation between 

the preferred orientation estimated from imaging and electrophysiological data and 

compared it to the correlation after randomly permuting the imaging orientation of cells 

while holding their electrophysiological preferred orientation constant (10,000 times). 

The observed data was highly significant (p << 0.0001; outside the distribution of the 

bootstrap).  

The consistency of orientation tuning along single penetrations is similar to previous 

reports (Huang et al., 2006; Dreher et al., 1993). The single neurons studied were well 

tuned for orientation (median OSI = 0.51) but not for direction (median DSI = 0.28), as 

has been previously reported in area 21a (Toyama et al., 1994).  
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Discussion 

We have characterized a unitary visual area located on the posterior suprasylvian gyrus 

of the cat, consistent with the location of histological area 21a. By mapping it with 

intrinsic signal imaging and verifying our imaging findings with microelectrode 

physiology, we have confirmed its identity as area 21a. We have shown that the area’s 

preference statistics for spatial and temporal frequency, its lack of ocular dominance 

organization, and its weak direction selectivity are all consistent with its hypothesized 

role as the second area in the ventral stream object recognition hierarchy. 

Overall, there was substantial positional variability in area 21a. Its position along the 

anterior-posterior axis was generally consistent with most reports (Dreher et al., 1993; 

Tusa & Palmer, 1980) although somewhat anterior to the report of Toyama et al. (1994). 

This finding reemphasizes the need, when studying area 21a, to confirm its location, 

preferably by imaging, or alternatively by histology or systematic electrophysiological 

mapping.  

We were not successful in obtaining clear intrinsic signal maps of retinotopy despite 

numerous attempts. These would have been especially helpful in demarcating this visual 

area and in evaluating the accuracy of the standard retinotopic map provided by Tusa 

and Palmer (1980). The weakness of the retinotopic map in area 21a reflects a common 

problem when receptive fields are large and neurons highly selective for another 

stimulus property such as orientation. Indeed, topographic intrinsic signal maps at the 

scale of single hypercolumns have not been reported by most authors in area 17.  
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Our study suggests that area 21a does not have ocular dominance columns like those 

we observe in areas 17 and 18. Löwel and Singer (1987) observed OD columns in areas 

17 and 18 after injection of (3H)proline, and suggested they were variably present in 

area 19 and possibly in area 21a. The presence of OD columns would seem to imply the 

presence of strongly contralateral- and ipsilateral-preferring neurons. Wang and Dreher 

(1996) and Dreher et al. (1993) have shown that the distribution of OD values in area 

21a is peaked in the middle (binocular) category, narrower than the distribution of area 

17, and very few cells in 21a respond only to ipsilateral stimulation while a number 

respond only to simultaneous binocular stimulation. Such weak OD tuning does not 

seem consistent with the presence of columns. It is possible that weak OD tuning could 

exist in a weak OD map, but it seems unlikely and our imaging studies do not disclose 

one.  

In all areas, direction maps were weaker and less consistent than orientation maps, 

even in area 18, where the episodically imaged direction map is stronger than the 

episodic orientation map (Swindale et al., 2003).  This has two major sets of causes; the 

first is that our imaging protocol is optimized for orientation maps. The period of the 

orientation stimulus was optimized to be in a low-noise region of the time spectrum; the 

period of the direction stimulus was fixed relative to it. The noise power in the intrinsic 

signal falls off at higher frequencies (Kalatsky & Stryker, 2003) so direction maps, being 

lower frequency, will generally have higher noise. Also, the frequency of the orientation 

signal is higher, so the number of periods is also higher, which can improve the 

signal/noise ratio.  
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The second major cause is the difficulty of fitting direction maps acquired with the 

continuous intrinsic signal imaging technique. In theory direction maps can be 

computed from the same mapping stimulus as orientation maps, by using the first 

harmonic of the stimulus period to produce a direction map and the second harmonic to 

produce an orientation map. In practice, the situation is not that simple. While for 

orientation maps the continuous imaging procedure fits two periods of a sinusoid to the 

generally two-lobed orientation tuning curve of each image pixel, yielding a reasonably 

unbiased fit, for direction maps it fits a sinusoid to a signal which is at best Gaussian (on 

a circle, for a pixel with pure direction selective tuning) and at worst nonexistent (for a 

pixel with pure orientation selective tuning). This fitting decreases the amplitude of 

direction maps, which may be responsible for the overall weakness of these maps in all 

areas. While Swindale et al. (2003) provide a useful solution for episodic imaging by 

fitting Gaussian tuning curves to the response maps, applying their method to 

continuous imaging is nontrivial. 

Orientation column spacing 

Despite the relatively small size of area 21a, its orientation domains are relatively large. 

The surface areas of areas 17, 18, and 21a are approximately 284±7, 125±10, and 25±2 

mm2 (after 10-15% shrinkage from histological processing; Hilgetag & Grant, 2000).  

Thus, while area 17 contains ∼50 complete hypercolumns (representing all orientations), 

and area 18 contains ∼15, area 21a contains as few as 3. Since all combinations of 

retinotopy and orientation must be represented within the map, the constraint of 
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imposing a smooth retinotopic map on a very coarse-grained orientation map may 

constrain the complex retinotopy of area 21a (Tusa & Palmer, 1980).  

The column spacing we observed was larger than reported by Huang et al. (2006). 

Stimulating area 21a with 4 episodic gratings (0°, 45°, 90°, 135°) and cocktail normalizing 

the resulting maps (i.e. dividing by the overall average map), they found maps with a 

patchy, striated appearance similar to ocular dominance maps. They reported patch 

widths of 0.97 ± 0.12 mm in area 21a, smaller than in area 17 (1.04 ± 0.19 mm). 

However, with only four stimuli it is difficult to be certain about the true orientation 

preference of every pixel. This patch width measurement encompasses an orientation 

selective region the size of which depends on the number of stimuli, normalization, and 

the image enhancement used (histogram equalization). In contrast, our continuous 

measurement of orientation allows for any orientation preference. Likewise, our 

wavelet column spacing measurement measures orientation from the center of one 

orientation column to the next column with the same orientation preference and is not 

affected by the exact stimulus or image processing parameters.  

Primate homologues of area 21a 

The assignment of area 21a to object recognition has been historically controversial. 

Sherk and Mulligan (1993) argued that 21a might be a subpart of area LS (a motion 

vision area similar to primate MT) based on connectivity and the complexity of 

retinotopy in areas LS and 21a.  However, more recent work shows that the two areas’ 

thalamic afferents are distinct (Dreher et al., 1996a) and their cortical afferents originate 
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from different layers (Conway et al., 2000).  A controlled physiological experiment 

comparing areas LS and 21a at a single eccentricity showed a clear difference in RF size, 

ocular dominance, firing rate, direction tuning, velocity tuning, and response to visual 

noise (Dreher et al., 1996b). While area LS is located inside the sulcus and cannot be 

easily imaged, all of our results further confirm that area 21a’s properties are those of 

an object vision area, not a motion area. 

Primate area V4 is area 21a’s natural homologue (in the sense of Payne, 1993). V4 is also 

an intermediate visual area with no direct input from the LGN. Its orientation, direction, 

spatial frequency, and temporal frequency response properties are similar to area 21a 

(Payne, 1993; Lomber, 2001). However, there are intriguing differences between the 

functional architecture of area V4 and area 21a. Orientation maps have been observed 

by optical imaging in parafoveal V4, but not reliably at eccentricities larger than 3° 

(Ghose & Ts’o, 1997). This difference may reflect foveal specialization or a specialized 

temporal pathway as the authors suggest. However, although the cat lacks a specialized 

fovea, the representation of its area centralis in area 21a is highly magnified, so our 

observation that the entirety of 21a has orientation maps suggests a difference from V4. 

The trend of increasing column size along the visual pathway is also found in primates; 

orientation domains in V4 are three times larger than in V1, although they similar in size 

to V2. The relatively larger size of domains in V2 may reflect the complexity of its 

organization relative to cat area 18 (e.g. cytochrome oxidase stripes).  
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Differences between continuous intrinsic imaging of cats and rodents 

Our laboratory has recently published a number of papers using the continuous imaging 

technique to make highly replicable quantitative measurements of ocular dominance in 

juvenile rodents, in particular contralateral and ipsilateral response amplitude in mouse 

V1 near the time of the critical period (Cang et al., 2005). Under some anesthetic 

regimens, the amplitudes of mouse retinotopic maps are very consistent between runs 

and between experimental sessions. However, our response amplitude measurements 

in the cat are not nearly so consistent and vary substantially over intervals of just 15 

minutes. 

While some of this difference may be attributable to age and anesthetic factors, other 

aspects may be specific to larger animals like the cat. In comparison to the rodent, many 

more large sources of physiological noise are present at periods closer to that of the 

stimulus, including ventilation and heartbeat. Controlling the plane of anesthesia is also 

more difficult in the cat, especially over the course of long experiments. Pulsation of the 

cortex and the resulting changes in reflectivity are a much greater problem in the 

exposed stabilized cat brain than in the trans-cranial mouse preparation. Even if these 

sources of noise could be controlled, the simplicity of the mouse’s visual topography – a 

uniform, un-fractured retinotopic map – gives it signal/noise advantages compared to 

non-uniform and fractured cat functional maps. 
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Future directions 

To further elucidate the function of the different areas of the cat’s extrastriate visual 

cortex, it would be interesting to study functional maps in areas adjacent to 21a. Ideally, 

one would want to compare area 21a, part of the ventral stream, with its adjacent area 

LS, which is part of the dorsal stream and would be predicted to have direction and 

orientation maps similar to primate area MT (Malonek et al., 1994). However, almost 

the entirety of area LS falls within the lateral suprasylvian sulcus (Sherk & Mulligan, 

1993), and cannot be optically imaged using standard methods. As an alternative, one 

could try to image area 19, an intermediate visual area with dorsal stream-like response 

properties, suggested homology to primate V3, and extensive exposure along the 

posterior suprasylvian gyrus, representing the upper visual quadrant. While we did not 

observe maps in the part of area 19 bordering area 21a, stimulus parameters, camera 

positioning, and the visual field position of the stimulus were not optimized for area 19. 

After optimizing these parameters, one might observe orientation domains or 

luminance-modulation domains similar to those observed in owl monkey V3 (Kaskan et 

al., 2009). 

An extremely interesting direction would be to advance further down the ventral stream 

and study maps in visual areas 21b, 20a, and 20b of the cat using intrinsic signal 

imaging. These areas have retinotopic maps which are as well organized as 21a (Tusa & 

Palmer, 1980). However, it is not known whether they contain complex feature 

detecting cells such as face cells (although it seems likely given the observation of face 

cells in the temporal lobe of the sheep; Kendrick & Baldwin, 1987). It may be possible to 
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address the problem of complex feature selectivity in a targeted manner, by using 

optical imaging to identify face-selective regions to target with microelectrodes; in the 

primate, using fMRI to target electrophysiological recordings vastly enriches the 

population of face cells (Tsao et al., 2006). Much of area 20a is exposed on the cortical 

surface near the tail of the lateral sulcus ventral to area 19, although being on the 

underside of the brain it would have to be approached differently than earlier visual 

areas. It is possible to obtain optical maps using stimulus objects and faces in the 

inferotemporal cortex of anesthetized primates (Tsunoda et al., 2001), and these stimuli 

may also be effective in higher ventral stream areas of the cat. 
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Conclusion: experimental approaches to the 
visual ventral stream 

The visual cortex of the human brain allows us to perceive and recognize millions of 

objects, seemingly effortlessly.  How this happens is not just a profoundly interesting 

computational problem, but is more widely important, because object vision serves as a 

primary model for understanding both the functional circuitry of the entire cortex and 

the function of hierarchies of cortical areas.   

Visual processing in the cortex of many species involves two divergent networks: a 

dorsal stream that processes an object’s location and motion, and a ventral stream that 

processes and recognizes an object’s spatial form.  The dorsal stream has been studied 

extensively at all levels (Milner & Goodale, 2006), but it has not yielded much 

information about the specific function of the cortical circuit; the study of the ventral 

stream has lagged behind.  While we know a great deal about the response of primary 

visual cortex (V1) to simple stimuli and a considerable amount about inferotemporal 

cortex (IT)’s response to faces, we know much less about intermediate visual areas or 

intermediate stimuli. 

A rational strategy for understanding object recognition is to work forward from V1, 

discovering how successive ventral stream cortical areas represent and transform visual 

stimuli.  Since V1 is so well characterized, the natural next step is to investigate the 

transformation of stimulus information that takes place between V1 and successive 

ventral stream areas.  
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The function of ventral stream areas 

A key property of ventral stream areas is invariance: neurons that respond to a certain 

object will tolerate and continue to respond to that object in a variety of positions and 

three-dimensional orientations.  Invariance allows neurons to recognize an object 

regardless of its location, view, and illumination, and allows objects to be compared and 

categorized. In primary visual cortex, simple cells prefer one position of an object edge, 

while complex cells respond to the same edge in several positions.  More general 

invariances occur in higher visual cortex (reviewed in Wallis & Rolls, 1997).  How do 

these invariances arise?   

Most models of how the ventral stream might work are extensions of pre-existing 

models of V1.  Riesenhuber and Poggio (2004) propose a “standard model” of object 

recognition: a hierarchy of alternating simple-like and complex-like cells, in which the 

simple-like cells detect feature conjunctions and the complex-like cells group inputs 

from simple-like cells to permit invariance and flexibility in recognition.  While the 

implicit analogy to the “standard model” of particle physics is hyperbolic, this model 

does capture the intuitive understanding of many vision scientists. 

In this model, the role of an intermediate visual area such as primate V4 or cat 21a is to 

capture simple features of an object’s outline, such as contours, angles, and corners. 

These features are easy to build up conjunctively from edge detectors such as V1 

neurons; they are invariant to scale, and are highly informative about overall shape, 

forming a distributed “structural representation” of the parts of an object (Connor, 
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2004). This model is consistent both with the observation that cells in V4 and 21a are 

still quite responsive to the simple edges that maximally stimulate cells in V1, and with 

the complex contour selectivity found in some studies of area V4 (Pasupathy, 2006). 

The dimensionality problem in the ventral stream 

As experimenters, we would like to test the standard model and understand the 

function of the hierarchy of ventral stream visual areas, but there is a major obstacle: 

classical sensory physiology experiments will fail in higher ventral stream areas because 

of the high dimensionality of stimulus space.   

Consider first a V1 simple cell, with a receptive field well-fit by a Gabor wavelet.  For this 

cell, we find the optimal stimulus by exhaustively exploring the seven-dimensional 

parameter space defined by x position, y position, orientation, length, width, period, 

and phase.  In theory, we could exhaustively characterize the cell by showing it a few 

hours of pre-computed stimuli, but in practice even this is too cumbersome.  Instead, 

one fits a Gabor wavelet to a receptive field found by reverse correlation, and assumes 

(usually without testing) that this fit yields the optimal wavelet stimulus.   

Now, consider that neurons in higher visual areas integrate numerous V1 inputs.  For 

these neurons, exhaustive exploration of a parameter space is likely to prove 

impossible; if we tried to map a trivial V4 receptive field (with only two V1 inputs) by 

fitting multiple wavelets, we would need to exhaustively explore a space with 14 
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parameters, which would take an unfeasibly long time.  Exhaustive exploration methods 

do not scale with increasing receptive field intricacy.   

The problem dimensions: stimulus parameterization and search 

strategy 

The experimenter’s usual challenge is to find the stimulus to which a ventral stream 

neuron is maximally responsive.  While a variety of response functions could be 

maximized (firing rate, latency of spiking, mutual information about stimuli, even 

synchrony between pairs of neurons), we will assume that in general the experimenter 

is trying to maximize the neuron’s firing rate. (This is not always the most efficient 

strategy for characterizing a neuron; see Paninski, 2005.) This problem can be described 

as “active learning” – we observe the neuron’s responses, build a model, test it, observe 

the test results, then (sometimes) repeat the process. One classical example of active 

learning is an experimenter recording in V1 who first finds the best orientation of a 

neuron and then uses this knowledge about its orientation to characterize its spatial 

frequency tuning. For our purposes it is irrelevant whether the experiment is human- or 

computer-controlled; only the algorithm matters. 

There are two major dimensions to the experimental problem. The first describes the 

extent to which the stimulus is parametric or not. A wavelet can be described with a 

small number of parameters. An image of the natural world, however, can only be 

represented with a large number of pixels – forming a stimulus space so vast (106 pixels 

for a 1000x1000 image) that it is not useful to think in terms of its dimensions. (Note 
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that when using “natural scenes” stimuli, the dimensionality of the stimulus space is not 

proportional to the number of pixels; it is proportional to the large, but less vast, 

dimensionality of the manifold defined by natural scenes within that pixel space.) 

The second dimension is search strategy. In any optimization problem there is a tradeoff 

between exploration and exploitation (Thrun et al., 2005). A strategy can be thought of 

as either searching for new maxima even if it decreases the response (exploration), or as 

improving on or maintaining existing maxima (exploitation). A strategy can also do both 

sequentially. Since experimental time is always limited by how long a single cell can be 

recorded from, there will always be a tradeoff between strategies. (Once all data has 

been acquired, analyzing or fitting it with a model can be revealing, but it does not 

count as either exploration or exploitation because there is no way to test whether the 

model can extrapolate to new data.) 

As an illustration of this classification scheme, consider the ancient example of an 

experimenter qualitatively mapping a cat visual neuron with a light gun projected onto a 

tangent screen (Hubel & Wiesel, 2004). This is a parametric stimulus with five 

parameters: x position, y position, orientation, length and width. As he moves the gun 

across the screen looking for the neuron, he is exploring; when he finds a responsive 

region and adjusts the orientation, length, and width, he is exploiting a maximum (the 

responsive subfield he has identified). When he checks to see if other subfields are 

present, he is exploring again; when he finds one and optimizes its parameters, he is 

again exploiting. 
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Classification of previous studies 

We will describe and classify several attempts to study intermediate ventral stream 

areas. This classification is not normative, and the ideal exploration-exploitation tradeoff 

will depend on the nature of the study: an exhaustive characterization of a single 

neuron will require mostly exploitation, while a multielectrode study of coding in a 

neural population will necessarily rely mostly on exploration. Even so, we believe many 

studies would benefit from a more balanced combination of exploration and 

exploitation, or at least more explicit contemplation of the tradeoff. 

Since the computerization of neurophysiology in the 1970s, the standard quantitative 

approach has become systematic exploration, with little or no exploitation, within a 

parametric space. At one extreme is the work of Gallant and Van Essen (1996), who 

explored a parametric space of hyperbolic gratings, finding that some neurons seemed 

to prefer them to linear gratings. However, these preferences proved difficult to 

interpret, because the stimulus space was not very closely linked to shape perception. 

Pasupathy (2006) explored a parametric space of curved line segments and shapes, 

inspired by psychological theories of shape perception, while recording from primate 

V4. She found a number of highly responsive cells, some of which appeared to respond 

to stimuli with specific curvature in a specific position.  

The risk of the exploration-only approach is that it is possible to miss an optimal 

stimulus without realizing it; the possibility of experimental serendipity is foreclosed, 

and at the experiment’s end, the experimenter is faced with a data set suggesting 
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interesting directions that cannot be pursued because the neuron is gone. For an 

exploration-only approach to be successful, the neuron’s responses must be sufficiently 

invariant that some of the small set of predetermined samples will produce a significant 

response. The odds can be improved if exploration is seeded with stimuli that are highly 

likely to produce a response – either because they are experimentally overtrained (see 

below), or because they are part of the animal’s natural visual environment. 

One example of a primarily exploitation-based approach was pioneered by Tanaka 

(reviewed in Tanaka, 1996). This “decomposition” approach first uses a moderately 

large, fixed set of nonparametric “natural” exploration stimuli (e.g. faces, body parts, 

fruits). However, once a neuron is found that responds to some of these stimuli, its 

preferred stimuli are decomposed into quasi-parametric geometric primitives by the 

experimenter (using image manipulation software) in order to find minimal “critical 

features” that excite the cell.   

“Optimization” or “active learning” approaches (reviewed in Benda et al., 2007) are 

typically explicitly designed to balance exploration and exploitation. These methods 

attempt to explore until a good region is found; then it switches to exploit this region’s 

maximum. One parametric optimization approach was partially described in Chapter 2, 

and tested in recordings in cat area 21a (Caywood & Stryker, 2005). Using a parametric 

configuration of wavelets, it is possible to explore large regions of stimulus space, and 

once a response is found, to adjust the wavelets locally to maximize the response. 

Topological invariance detection, as described in Chapter 2, can be integrated into the 
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approach as one way to exploit response maxima. Along these lines, Yamane et al. 

(2008) have optimized the response of IT neurons by perturbing random solid shapes 

with bumps, dents and ridges (formally, non-uniform rational b-splines).  

A risk of a parametric approach is the assumption that the parameter space is the right 

one for the neuron. The experimenter’s understanding of the cortical area’s function 

may be incorrect, and so the stimulus space may be inappropriate for its neurons. Or a 

seemingly reasonable stimulus space may be subtly misleading (as described for color-

opponent gratings, in chapter 1, figure 7). Still, if an experiment with parametric stimuli 

produces an optimal stimulus with a high firing rate, and the neural response changes 

systematically as the stimulus is changed from the optimum, one can conclude that the 

parameter space is reasonably informative about the neuron. 

Non-parametric approaches to the problem have thus far been primarily exploration-

based. While pixel space is a vast parameter space, even compared to a high-

dimensional configuration space, restricting stimuli to the space defined by the Fourier 

statistics of natural scenes has been productive in early visual areas and some 

intermediate visual areas (reviewed in Wu et al., 2006), probably because stimuli within 

that subspace are effective in driving V1, which makes monosynaptically connected 

areas such as V2 and V4 reasonably responsive. The natural scenes approach, thus far, 

has not been productive in higher visual areas, which respond to more specific image 

correlations (and thus stimuli in a smaller subspace). 

105



Since non-parametric data are difficult to interpret as visual features, many of these 

studies attempt to fit a parametric model to the response data (David et al., 2006). The 

maximally informative dimension method (Sharpee et al., 2004) works along similar 

lines to fit a complex, pixel-based model with a large number of parameters that 

explains the spiking response, although it has not yet been applied to higher visual 

areas. 

Földiák (2001) describes a non-parametric exploitation-based approach. He optimizes 

neurons in primary visual cortex beginning with a random starting stimulus, then adding 

granular noise and measuring whether the response increases. His particular 

implementation of the approach is susceptible to nonstationarity or adaptation in the 

neuron’s response, and only yields a single maximum. However, it could be turned into 

a more general approach by performing his optimization technique several times from 

different starting points – a limited form of exploration. 

Evading dimensionality with training 

Another approach is to opt out of the dimensionality problem entirely. One popular 

technique is to pretrain an animal on an object recognition task (reviewed in Freedman 

& Miller, 2007). When an animal is rewarded for performing a certain visual task, 

neurons in the temporal lobe will begin to represent the class of stimuli used in that 

task, and will develop selectivity for individual stimuli. This has been observed for wire-

frame synthetic “paperclip” stimuli (Logothetis et al., 1995) as well as non-naturalistic 

stimuli resembling Rorschach blots (Sakai et al., 1994). While training significantly 
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enriches the fraction of cells in the higher ventral stream visual areas, it has not been 

shown to affect the statistics of intermediate areas such as V4. There is also a significant 

risk that what is learned will not generalize, because the task becomes “overtrained” – 

in other words, it takes the cortex from its normal operating mode to an impoverished 

state. (See Behrmann et al., 2005 for a fascinating observation of disruptive overtraining 

of a prosopagnosic human subject on an object recognition task.) 

Using functional maps to specify the parameter space 

Another approach that can reduce the effective dimensionality of the stimulus space is 

to use functional map information to target recordings. Using fMRI data from the 

primate, this has been used to successfully record from a highly enriched (97%) 

population of face-selective cells in the “middle face patch” of primate IT (Tsao et al., 

2006). This patch is probably an independent visual area, since it is seemingly too large 

(16 mm2) to be part of the columnar functional architecture of IT cortex. Knowing that 

nearly all neurons in this area prefer face-like stimuli allows an experimenter to study 

them using a relatively low-dimensional parameter space optimized for coding faces. A 

similar fMRI imaging approach has recently been used to reveal color selective areas in 

posterior IT (Conway et al., 2007). However, it is still an open question how well this 

approach generalizes; highly face and color selective areas represent a minority of the 

ventral stream, and the majority of IT cortex has no known specialization.  
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Using functional maps to constrain dimensionality 

In Chapter 3, we showed that functional maps of orientation and spatial frequency can 

be imaged in the cat’s intermediate visual area 21a, homologous to primate area V4. 

Retinotopic maps have also been recorded in area 21a (Tusa & Palmer, 1980). In primate 

V4, several parameters are reported to be functionally mapped, including retinotopy, 

orientation and surround suppression (Ghose & Ts’o, 1997). In V3, orientation, 

luminance and disparity maps have been found (Kaskan et al., 2009). What do all these 

mapped variables imply about the function of neurons in these areas? 

It is tempting to argue that understanding the parameters of an area’s map will be the 

key that unlocks the responses of its neurons. But knowing that an intermediate visual 

area like V4 has a strong orientation map does not necessarily mean that its primary 

function is edge detection.  Likewise, knowing that it has a retinotopic map seems 

relatively unhelpful, since the ventral stream appears to eliminate positional 

information fairly quickly, subject to the limited spread of anatomical connections 

between cortical areas. 

Indeed, it has recently been questioned whether maps have any functional consequence 

at all (Horton & Adams, 2005). This question is particularly applicable to ocular 

dominance maps, since ocular dominance domains are not preserved at higher levels of 

the visual system than V1 (or cat areas 17, 18 and 19). Ocular dominance maps may 

therefore simply recapitulate the structure of eye-specific layers in the LGN. Even 

orientation maps seem to be unnecessary for highly selective orientation tuning, at least 
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in animals with small visual cortices such as squirrels (Van Hooser et al., 2005) and mice 

(Ohki et al., 2005; Niell & Stryker, 2008). Perhaps orientation domains in cat area 21a 

merely recapitulate the structure of its major source of input, area 17. 

A different approach views functional maps as the inevitable outcome of self-organizing 

Hebbian developmental processes operating in a sufficiently large, cortical area with 

strong, competitive lateral connections (von der Malsburg, 1973; Miller, 1996). In this 

view, the presence of a cortical map for a certain parameter implies that certain 

correlations are present in the responses of neurons in that area, causing them to wire 

together into a map.  Likewise, its absence implies that such correlations are not 

present. For a map to self-organize with distinct domains for a certain parameter, the 

range of values for that parameter must be large relative to the selectivity of the 

neurons.  

It should be noted that self-organization rules are feedback systems, and thus tend to 

produce all-or-nothing results – i.e., either a strong map or none at all.  It is apparently 

rare for the relevant correlations to be so borderline that a “capricious” map with 

incomplete expression within or across animals is produced. By itself, the presence of a 

map for a certain parameter will not be a sensitive indicator of the absolute strength of 

that parameter’s correlations; in the presence of feedback, similar correlation values 

can produce different results. However, the relative strength and interleaving of maps 

of different parameters may be more informative; this may be an interesting question 

for future theoretical research. 
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As an example of how functional maps can constrain single-neuron studies, consider 

Chapter 3’s data showing cat area 21a prefers a temporal frequency of 2.0 cycles/s, 

responds to temporal frequencies from 0.5 to 4.0 cycles/s, and yet lacks a temporal 

frequency map. Based on this, one could (retroactively) predict the temporal frequency 

tuning of neurons in area 21a will be broad, probably including low-pass cells, and that 

even neurons with band-pass tuning will overlap. This is exactly what has been observed 

(Morley & Vickery, 1997). Thus, an experimenter could conclude that temporal 

frequency is unlikely to be an important parameter when maximizing the responses of 

neurons in area 21a. 

As another example, consider the observation that in IT cortex, certain stimuli (e.g. 

human heads) are represented so that as the view changes, the representation 

progressively moves along the cortical surface. This suggests that view position may be 

part of the functional architecture in these higher visual areas (Wang et al., 1998; 

Tsunoda et al., 2001; but see Sato et al., 2009). A recent model has proposed that such 

functional maps can be learned from the spatiotemporal correlations of natural objects 

(Michler et al., 2009). However, this body of research seems to introduce a paradox. 

View-invariant object recognition is theorized to be one of the fundamental operations 

of the ventral stream (Logothetis et al., 1995; although see Andresen et al., 2009), so 

why is view the only parameter known to be functionally organized into columns with 

smoothly varying tuning? Perhaps this map just recapitulates the structure of its less 

view-invariant input area. However, face and eye position are very important social and 

behavioral cues (Langton et al., 2000), and perhaps view is actually an important tuning 
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parameter of single neuron responses in IT cortex. It could be interesting to study the 

functional connections of these face columns with brain areas involved in social 

behavior, e.g. the limbic system. 

There are several other uses for data about the functional architecture of a higher 

cortical visual area beyond supporting inferences about the role of that area in the 

computations underlying vision, such as in developmental neurobiology, neuroanatomy, 

and studies of neural plasticity. However, these inferences, even if imperfect, can 

provide useful information about cortical function in areas that lack a clear basis set of 

optimal stimuli.  Functional architecture, as studied here, remains a powerful clue to 

function itself. 
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