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SOME RECENI' PROGRESS IN STEEP FRONT CALCULATIONS FOR POROUS FLOW 
, 

P. Concus, E. Kostlan, and J.A Sethian 

Lawrence BerkeleyLaboratory 
and 

Department of Mathematics 
University of California 

Berkeley, California 94720 
U.S.A 

A modification to the random choice method is investigated for solving the equations 
for multidimensional immiscible displacement in a porous medium. The principal 
feature of the modification is to represent multidimensional flow correctly by incor
porating local properties of the flow into the one-dimensional Riemann solvers of the 
split random choice method. Advancing fronts are kept accurate and sharp. We per
form a numerical experiment using the method to study the stabilizing effect of a 
small amount of physical capillary pressure on a case for which the advancing front is 
unstable. 

INTRODUCTION 

A central' problem in· petroleum reservoir simulation is to model the displacement of one fluid 
by another within a porous medium. Such problems may be characterized by the injection of a 
wetting fluid (e. g. water) into the reservoir at one or more points, displacing the non-wetting 
fluid (e.g. oil), which is being withdrawn at one or more recovery points. The nature of the 
front between the non-wetting fluid and the wetting fluid is of primary importance; one would 
like to withdraw as much oil as possible before water reaches the recovery points. A particu
larly troublesome phenomenon associated with the above procedure is fingering, in which small 
channels of water push through towards the recovery points, leaving oil behind. 

In the design of numerical techniques to model petroleum reservoir flow, one is faced with the 
problem that the solution to the equations describing the fluid saturation within the reservoir 
can develop sharp fronts or discontinuities. Finite difference approximations to these equations 
smear out the front and may distort the nature of the interface, unless expensive mesh 

'c refinement is used. One can instead attempt to track the front between the two fluids; however, 
such techniques usually contain an intrinsic smoothing and thus can predict a stable interface 
in regimes where fingering should occur. One alternative to the above techniques, which serves 
as a foundation for the work presented here, is the random choice method, in which the gen
eration of the solution at each time step is based on the exact solution of a collection of local 
Riemann problems. . 

In this paper, we apply a recently developed generalized version of the one-dimensional ran
dom choice method to two-dimensional reservoir simulation. In this improved technique, while 
the multi-dimensional solution is obtained through a sequence of one-dimensional problems, 
information about the two-dimensional solution is used to ensure that each of the one
dimensional problems correctly interprets the nature of the propagating fronts. The algorithm 
was first used in [5] to study the nature of fingering instability in the absence of capillary 
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pressure. It was applied subsequently to a five-spot waterflood for the case of a stable inter
face, also without capillary pressure [12]. 

We apply the technique here to a two-dimensional five spot waterflood problem for the case of 
an unstable interface and permit the inclusion of capillary pressure. Our numerical results 
indicate that the advancing front is kept sharp, and that the method is sufficiently free of 
artificial numerical stabilization so that the effects of including a small amount of capillary 
pressure can be observed numerically. We repeat here without change much of the material 
presented in [12], but include in greater detail a discussion of the modifications to the random 
choice method. 

EQUATIONS OF MOTION 

We consider the equations 

as - + q·V'[f(s)] - EV'·[h(s)V's] = 0 at 
V'.q = 0 

q = -'A(s )V'p , 

(1) 

(2) 

(3) 

which in nondimensional form (see [2]) are, respectively, the Buckley-Leverett equation, 
incompressibility relation, and Darcy's Law. These equations describe the flow of two immis
cible, incompressible fluids through a homogeneous porous medium in the absence of gravita
tional effects (see [10,11]). The quantity s = s(x,y,t) is the saturation (the fraction of 
available volume at. the point (x ,y) and time t filled with wetting fluid, e.g. water), 
q = q(x ,y ,t) is the total velocity of the fluid, and p = p (x ,y ,t) is the global pressure [3]. 
The quantities I (s), h (s), and 'A(s) are functions of the relative permeabilities and capillary 
pressure, which are empirically determined functions of saturation, and of the viscosities 
(which are assumed constant). The parameter E >0, which we shall take to be small, meas
ures the relative magnitude of the diffusive (capillary pressure) forces. For immiscible fluids, 
we take the total mobility 'A(s) to be represellted by 

'A(s) = s2 + (1 - s)2/1-', (4) 

where I-' is the ratio of the viscosity of the non-wetting fluid to that of the wetting fluid. The 
corresponding fractional flow function I (s) is 

I(s) = s2/'A(s) , (5) 

and we take h(s) = 1. (1-s)3/(s). 
I-' 

Equations (2) and (3) together form an elliptic equation. For our problems of interest, (1) is 
hyperbolic (E = 0) or nearly hyperbolic (E« 1) and as such can develop discontinuities or 
steep fronts in s, even for arbitrarily smooth initial data. To analyze the nature of the discon
tinuities, we consider (1) in one space dimension E = 0, namely, 

St + (/(s»x = St + I'(s)sx = o. (6) 

Here, we have taken the velocity as unity for simplicity. 

Suppose for a given problem the fractional flow function satisfies Iss >0 and thus I is con
cave up. It can easily be shown that the characteristics for (6) are straight lines leaving the 
x-axis with slope 

v 
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~~ = f' (S) , (7) 

Since f ss >0, then f' (s) is an increasing function of s, Consider the initial data 

{
Sf' x<O 

s(x,O) =. Sr ' x>O' (8) 

where sf and Sr are constants, If Sf <sr' then f'(Sf)<f'(sr) and information from the left is 
propagating slower than information from the right. The entropy condition, which requires 
that all characteristics reach back to the initial data, thus dictates that a rarefaction wave will 
form between the two (see Fig. 1). Conversely, if sf >sn then f'(sf»f'(sr), and informa
tion from the left propagates faster than information from the right; the entropy condition 

h di h ~ , f h k "h df(sr)-f(sf) (F' 2) t us ctates t e lormatlon 0 as oc propagatmg Wit spee Ig, . 
. ~-~ 

f(S) 

dx , S ) - = f( t 
dt 

~ 

x 

Figure 1 
Riemann problem solution, convex f (S), sf <Sr' 

dx f(S t )-f(Sr) 
f( S) -= 

dt 

Shock 

x 
S 

Figure 2 
Riemann problem solution, convex f (S), Sf > Sr' 

it: 
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In the case of more general f, one has the generalized entropy condition (Oleinik's condition 
E), which determines the type of admissible shocks: Given s _ and s +, where s _ and s + are 
the limiting values to the left and the right of a discontinuity, respectively, a solution to (6) 
exists, is unique, and depends continuously on the initial data if the following holds 

1) if s_ < s + then 
f(s+)-f(sJ 

-< 
f(s+) -f(s) 

s +-s_ s+ - s 

for all sE[s_,s +1. 

2) if s + < s_ then 
f(s+) -f(sJ 

> 
f(s+) -f(s) 

s +-s_ s + - s 

for all s E[s +,s J. 

Geometrically, this condition translates into the statement that admissible shocks are those 
such that (1) if s_<s+, then the chord connecting (s_,J(sJ) and (s+,f(s+» must lie 
below f, (2) if s + <s _, then the chord connecting (s +,J (s +» and (s -,J (s _» must lie 
above f. In the case of a purely convex f, the above produces the situations described ear
lier; in particular, a shock cannot be allowed to connect the left state with the right state in 
Fig. 1. For non-convex f, the above condition also rules out such waves as shocks which move 
faster or slower than the characteristics on both of their sides. 

In our problem, the fractional flow function (5) contains one inflection point (see Fig. 3). 
Thus the wave connecting the left and right states will be either a shock, rarefaction, or com
bination of the two. We· determine the appropriate wave as follows. Given Sf and Sr' the left 
and right states respectively, 

f(S) 
I II 
1/ 

II 
// I 

I I 
/ / I 

/ I I 
/ / I 

/ V I 
I I 

I I 
II I 

I 

S· 
S 

Figure 3 

I 

II 
/ I 

I I 
II I 

I 

Fractional flow function with convex and concave hulls 
for compound wave solution, Sl >sr. 

~, 

v 



5 

1) If the chord connecting (s/,f(s/» and (s,,f(s,» does not intersect /, then the curve is 
convex up or down between the two points. If /'(s/»/'(s,), then by the generalized 
entropy condition a shock must connect s/ with s,; if /'(s/)</'(s,), then a rarefaction 
connects the two states. 

2) Suppose the chord connecting the left and right states intersects /. Then there exists a 
point s· between s, and s/ such that the chord from (s,,f(s,» to (s·,f(s·» is tangent 
to / at (s·,f (s·» (the case s, <5/ is shown in Figs. 3, 4). The wave connecting s, to 
s· is a shock and the wave connecting s· to s/ is a rarefaction. 

The above choices apply to the case in which the advection speed q is unity. If q is positive, 
but not 1, the wave speeds are merely scaled by q. If q is negative, the roles of s/ and s, are 
interchanged in the above arguments. 

~ = f'(S ) 
dt j. 

~ 

x 

Figure 4 
Riemann problem solution, compound wave, s/ >s,. 

NUMERICAL ALGORITHM 

We consider as an example the standard diagonal geometry quarter five spot problem. That is, 
we assume a square domain D, centered at (lj2,~), with sides of unit length, and (1)-(3) hold
ing inside the domain. At (0,0) we place a source of unit strength; at (1,1) we place a sink of 
unit strength. We have the initial conditions 

s(X,y,O) =0 for (x,y) *(0,0), 

together with the boundary conditions 

s(O,O,t) = 1 

as .E.2.. - = = 0 on the edges of the square , all all 

(9) 

(10) 

(11) 

where " is the normal to the boundary. The above problem may be summarized by saying that 
we inject wetting fluid (s =1, water) into the lower left corner with strength so that the flux is 
equal to unity, and withdraw non-wetting fluid (s =0, oil) from the upper right corner at the 
same rate; at no other points can fluid enter or leave the domain. 
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The numerical algorithm used to solve the equations of motion is based on a generalized ran
dom choice method for the hyperbolic or nearly hyperbolic equation (1) coupled to a succes
sive over-relaxation method for the elliptic equation (2),(3). The random choice method is a 
numerical technique developed in [4] and is based on a constructive existence proof intro
duced in [9]. We briefly describe the technique below. 

Consider the equation 

St + u [f (s)]x = 0 . (12) 

Place a uniformly spaced grid of mesh length h along the x axis and let sr be the value 
s (ih ,n ill); thus we view s as a piecewise constant function, constant within each interval 
[(i -lh)h ,(i +V2)h]. This produces a collection of initial value Riemann problems of the form 

= {Sl ' x <(i +V2)h . 
s s" x >(i +V2)h ' (13) 

where Sl = sr and s, = sr+l' The solution is then updated in time by solving each Riemann 
problem exactly, with the type of wave used to connect the two states (shock, rarefaction, 
compound) determined as discussed above. The solution is then sampled to produce new 
values of s; we use a sampling based on a van der Corput sequence, see [4]. The time step at 
is chosen to be the largest possible value such that the separate Riemann problems do not 
interact; that is, 

illlqlmaxf'(sr) <h. 
i 

(14) 

This technique was first applied to porous flow problems in [5]. 

A natural way to extend the above one-dimensional technique to two dimensions is to split the 
two-dimensional hyperbolic equation (E = 0) 

St + q·V'[f(s)] = 0 

into two steps; first a one-dimensional problem in the x direction 
. a 

St + u-(f(s)) = 0 ax 
is solved, followed by a one-dimensional problem in the y direction 

St + v..i...(f(s)) = 0, ay 

(15) 

(16) 

(17) 

where q = (u,v). Unfortunately, a front not parallel to either the x ory axis can be misin
terpreted during one of the sweeps, as may be seen by considering the .following example. Sup
pose the interface between water and oil is lying diagonal to the grid, and the velocity vector 
at a point on the front is as shown in Fig. 5. It is clear that water is displacing oil, however if 

Figure 5 
Obliquely propagating discontinuity front. 

v 
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one looks simply at the component of the velocity vector in the x direction, oil seems to be 
displacing water and hence the solution to the one-dimensional problem will not accurately 
portray what is happening. Errors due to the above phenomenon can be significant; examples 
of their effect may be found in [8]. The technique we use, introduced in [5], first determines 
the correct orientation by analyzing the tw~dimensional situation, and uses this information 
in each of the one-dimensional sweeps. 

The details of the modified Riemann problem solutions are illustrated in Figs. 6-8. For the 
purely convex case, the modified (entropy violating) solutions corresponding to Figs. 1 and 2 
are depicted in Figs. 6 and 7, respectively. Note that the configuration of the rarefaction 
shown in Fig. 7 depends on the time al at which the solution is to be sampled. The modified 
solution corresponding to the compound wave with s,. <sl for the porous flow! (s) (Fig. 3) is 
shown in Fig. 8; the concave hull in Fig. 3, rather than the convex hull, is used in its con
struction. The compound wave for sl <s,. is constructed analogously. Further discussion of 
the algorithm can be found in [5]. 

x 

Figure 6 
Modified Riemann problem solution, convex!(s), sl <s,.. 

dx - = t/{S)) 
dt 

"'" 

dx - = t/{S) 
dt r 

Figure 7 

t = M 

-.... dx = t/{S ) 
dt r 

x 

Modified Riemann problem solution, convex! (s), sl > s,.. 



8 

dx = f'(S) 
dt r 

\ 
dx 
dt = f'(SJ 

t = At 

x 

Figure 8 
. Modified Riemann problem solution, compound wave, sl >s,.. 

We now describe the algorithm for solving Equations (1)-(3). With time step At, let Si~j be 
the value of the saturation at s(ih,jh,nAt); here we assume that Si~j is defined on a square 
grid i ,j of mesh length h imposed on the domain. The pressures Pi~j are tak~n at the same 
grid points, and the velocities ui +Ifz,j' Vi ,j +Ifz are to be evaluated at the midpoints of the sides 
of a cell (see Fig. 9). Assuming Si~j is known, we now describe the algorithm used.to obtain 

n+l f n 
Si,j rom Si,j' 

U i- 1I2,i -- p .. 
I, J 
o 

S .. 
I, J 

t 
Vi, j-1I2 

Figure 9 

U i+1/2, i -

Staggered grid for p, s, and q. 

\l 

\' 

'J 
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The first step is to calculate pj~j from Sj~j. Substituting (3) into (2) yields the elliptic equa
tion for p 

V'.( -Xes )V'p) = o. (18) 

Corresponding to differencing a typical component of (3) as 

. _ (X(Sj+l.j)+X(Sj.j»(Pj+l.j-Pj.j) 
Uj +Yz.j - 2h (19) 

we approximate (18) with a centered difference scheme, which at a general interior point is 

(X(Sj +1.j) +X(Sj.j) )(pj +1.j -Pj.j) 

2h2 

(X(s. ,)+X(S'_1 .»(p. '-P'-I') + I.J I.J I .J I .J 

2h2 

(X(Sj.j +1) +X(Sj.j) )(Pj.j +1-Pj.j) 

2h2 

(X(s . . ) +A(s. '-I»(P' ._p. '-1) + I.J I .J I .J I.J 

2h2 

(20) 

:::::: o. 

This scheme conserves the flux -:-X(s )V'p through each cell, and consequently ensures that 
there are no fictitious sources or sinks introduced by the finite difference approximation into 
the calculation. 

Along the four sides, the discrete form of the boundary conditions (11) is used to modify 
(20). At the edges of the injection and production cells the flux is taken to be 1f4, appropri
ately directed. From the pressures, which are obtained by solving the resulting linear system, 
the velocity components are calculated using (19) and its counterparts. 

With un , v n , pn, and sn known, we now solve (1) to determine sn+l at the grid points. We 
first determine whether the two-dimensional advection velocity q = (u ,v) causes water to dis
place oil or oil to displace water, this can easily be accomplished by checking the angle 
between q and V'/. Then, we determine if the two one-dimensional sweeps for the advective 
term 

St + U a: (I (s» = 0 

St + v~(1 (s» = 0 
ay 

(21) 

(22) 

both interpret the situation in the same way as does the two-dimensional analysis. For exam
ple, if water is displacing oil, we check to see that the situation holds for both of the one
dimensional sweeps. If so, we may simply solve (21) and then (22) using the random choice 
method described earlier to obtain a new value In of s. Suppose, however, that one of the 
sweeps indicates an orientation different from the actual one described by the two-dimensional 
analysis, such as in Fig. 5, where, although water is clearly displacing oil, the x sweep indi
cates oil displacing water. In order to force the wave connecting the two states to be of the 
same type as that determined by the two-dimensional analysis, we switch the role of convex 
and concave hulls in our Riemann solution (this can be accomplished by interchanging Sf and 
s, in the Riemann solver). Although the one-dimensional solution constructed may violate the 
generalized entropy condition (e.g. we now allow rarefaction shocks), the proper two
dimensional information is represented in each of the one-dimensional problems, and the gen
eration of shocks and rarefaction waves due purely to grid orientation has been avoided. 
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To obtain the value of sn +1 from gn, one finally carries out a sweep 

St -EV·[h(s)Vs] = 0 

for the contribution of the diffusive capillary-pressure term. Since E is small, we take for our 
numerical experiments simply an explicit forward step 

sn+1 = gn ~h&{V.[h(s)Vs1}s=s~ , 

using the spatial discretization represented in (20). 

RESULTS 

Numerical results are presented for the standard diagonal geometry quarter five-spot test prob
lem discussed in the previous section for waterftood of a petroleum reservoir. A 40X40 spatial 
grid is placed on the unit square, and the viscosity ratio for the first test problem is taken to 
have the value J.L = 5. For this value of J.L, the mobility ratio M at the front is approximately 
1.18, which is slightly greater than the critical value M = 1. Hence 'according to the linear
ized theory and the numerical results in [5], the advancing front should be unstable in the 
absence of capillary pressure, i.e. for E = O. 

Figure 10 shows the computational results for E = o. Contours are drawn in saturation incre
ments of 0.1 at three successive time values. Because the contour plotting package displaces 
contours that should lie on top of one another, the advancing front is shown as a band of adja
cent contour '~lnes, rather than as the sharp front produced by the numerical calculations. 
Observe that unstable "fingering" of the front develops spontaneously during the calculation. 
(The smaller undulations, which are of the order of a mesh spacing and are stable, are 
inherent in the random choice method and the interpolations introduced by the contour plot
ting program.) 

Figure 11 shows the effect of including a small amount of capillary pressure (E = 0.01). The 
fingering instability of Fig. 10 is not evident in this case. 

For the second test problem the viscosity ratio is taken to have the value J.L = 10, correspond
ing to which the mobility ratio at the front is M::::::: 1.40. Figures 12, 13, and 14 show the 
computational results for E = 0, E = 0.01, and E = 0.05, respectively. Here, the results are in 
accord with the expectation that the front should be more unstable than for the smaller mobil
ity ratio of Figs. 10 and 11. The effects on the fingering instability of including successively 
larger amounts of capillary pressure can be seen. 

These results indicate that the modified random choice method holds promise as a device for 
studying sharp fronts in a porous medium. It appears sufficiently free of artificial numerical 
stabilization of an unstable front, so that the physical effects of including small amounts of 
capillary pressure can be investigated computationally. Computational results for the five-spot 
problem in the stable regime are given in [12]. 
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Figure 10 
Saturation contours for IJ. = 5, E = 0 

at times t = (a) 0.80, (b) 1.20, (c) 1.50. 
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