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On the detection of a nonlinear
damage in an uncertain nonlinear
beam using stochastic Volterra series

Luis GG Villani1 , Samuel da Silva1, Americo Cunha2

and Michael D Todd3

Abstract
In the present work, two issues that can complicate a damage detection process are considered: the uncertainties and
the intrinsically nonlinear behavior. To deal with these issues, a stochastic version of the Volterra series is proposed as a base-
line model, and novelty detection is applied to distinguish the condition of the structure between a reference baseline
state (presumed ‘‘healthy’’) and damaged. The studied system exhibits nonlinear behavior even in the reference condi-
tion, and it is exposed to a type of damage that causes the structure to display a nonlinear behavior with a different
nature than the initial one. In addition, the uncertainties associated with data variation are taken into account in the
application of the methodology. The results confirm that the monitoring of nonlinear coefficients and nonlinear compo-
nents of the system response enables the method to detect the presence of the damage earlier than the application of
some linear-based metrics. Besides that, the stochastic treatment enables the specification of a probabilistic interval of
confidence for the system response in an uncertain ambient, thus providing more robust and reliable forecasts.
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Introduction

Structural health monitoring (SHM) techniques aim to
reduce the maintenance cost and increase the reliability
and security of aerospace, civil, or mechanical engineer-
ing structures.1 Moreover, within the hierarchy of com-
plexity that SHM methodologies may achieve, damage
detection is the first step, and its performance is funda-
mental to the success of the subsequent application of
higher forms of SHM in the hierarchy.2 In this sense,
many authors have studied and developed various dam-
age detection techniques to be implemented for differ-
ent structures and applications.2–7 Of course, there is
no general approach that can be used to detect damage
in all real systems, mainly when the intrinsically non-
linear behavior of many systems8 and the data variation
related to uncertainties9,10 are counted in the analysis.

Otherwise, many linear structures can exhibit non-
linear phenomena induced by the presence of damage,
and in this situation, any form of nonlinearity detector
is akin to detecting damage.11 Such damage that
produces nonlinear behavior, for example, delamina-
tion,12,13 rubbing and unbalance in rotor systems,14–16

and opening cracks,17–19 may be detected through the
observation of nonlinear behavior in the measured
responses. However, as mentioned before, many struc-
tures fundamentally present nonlinear behavior even in
the reference condition,20 causing confusion in the non-
linearity (as a proxy for damage) detection process.8 In
addition, systems’ measured output can exhibit data
variability from sources such as environmental or input
load variation, aleatoric noise, changes in boundary
conditions, variations in the fabrication processes (i.e.
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unit-to-unit variability), and others.21–23 These varia-
tions all confound the damage detection process, sug-
gesting the use of probabilistic tools,24–26 regression
models,5,27 machine learning algorithms,28 probabilistic
model selection approaches,29–32 outlier analysis,33,34

and novelty detection methods.5 Considering the data
variation problem is important in reducing the number
of false alarms,10,35 although there are situations where
variability can mask positive detections as well.

Villani et al.36 introduced an extension of the deter-
ministic Volterra series approach used by Shiki et al.37

to detect damage in intrinsically nonlinear systems
based on input/output measurements, recognizing data
variation. The authors examined the identification of
the nonlinear data-driven model several times, using
Monte Carlo simulations, to create a stochastic refer-
ence model capable of predicting the nonlinear perfor-
mance and the fluctuations in the response at the same
time. Two main strategies were suggested to detect the
presence of a crack in an initially nonlinear beam, con-
sidering simulated data, based on the random kernel’s
contributions and random kernel’s coefficients. The
results presented an adequate performance in distin-
guishing the intrinsically nonlinear behavior and the
data variation from the nonlinearity caused by the dam-
age. Although the simulated results showed a promising
performance of the method, experimental practice sug-
gested the use of a stochastic Volterra expansion to
explore the model space, particularly in the more chal-
lenging present problem of inherent nonlinearity, rather
than induced nonlinearity. The authors also hypothe-
sized that a formulation using the kernels’ coefficients
and contributions concomitantly in the same index
could be attractive to enhance the robustness of the
method, leaving the method to detect damage with
diverse characteristics without loss of performance. In
addition, in the simulations performed, only the varia-
tion of linear parameters was considered in the data
variation scenario, a simplification that might not
reflect the behavior of structures that operate in the
nonlinear regime of motion under the presence of
uncertainties. This simplification caused a low variation
of the high-order kernel coefficients, suggesting that a
more realistic application encompassing the variation
of the nonlinear components could complicate the
application of the approach.

Then, in Villani et al.,38 the authors showed the
experimental application of the approach based on
Volterra kernels’ contributions to detect damage in an
intrinsically nonlinear beam, considering data variation
related to the reassembly of the experimental setup.
However, the damage simulated was associated with
the loss of mass that reflected in the variation of the
natural frequencies of the equivalent linear system. In
this situation, the damage did not have an influence in

the estimation of kernels’ coefficients. These results
pointed to the demand for developing a hybrid
approach capable of making use of the kernels’ contri-
butions and coefficients together in a robust index.
Moreover, an experimental application considering
damage with direct influence on the nonlinear compo-
nents of the response could improve the performance
of the approach with regard to the differentiation
between the intrinsically nonlinear behavior and
damage-induced nonlinear behavior.

Hence, this article aims to cover issues that were not
yet considered in both previous works: (a) an experi-
mental application of the stochastic Volterra series
methodology with the presence of damage that pro-
duces nonlinear behavior to the system—a breathing
crack emulation; (b) the observance of variation in the
intrinsic nonlinearity of the structure including the data
variability, thus not only considering its realization in
the linear components; (c) the generalization of the
approaches studied before with the development of a
new hybrid method that considers both the kernels’
coefficients and contributions simultaneously in the
damage index; and, finally, (d) the construction of a
theoretical distribution of the damage index calculated
in the reference condition to reduce the number of
experimental realizations needed to estimate the thresh-
old value based on the kernel density method used
before (a practical problem when we consider real-
world experiments). To the best of the authors’ knowl-
edge, this is the first article that assumes nonlinear
changes associated with an experimental mechanism of
damage with the assumption of reference already non-
linear, but unlike Bornn et al.,8 this paper considers the
inherent uncertainties in the experimental setup to per-
form a rigorous stochastic SHM method.

In this context, an intrinsically nonlinear beam is
analyzed, with natural data variation in the full experi-
mental context, to investigate the performance of the
proposed methodology. The variation simulated in
the data reflects merged changes both in linear
and nonlinear components of the system response.
Furthermore, the novelty detection is reshaped to hold
the random kernels’ contributions and coefficients in
the same damage index, using principal component
analysis (PCA) and Mahalanobis distance metrics. A
formal hypothesis test is presented to create a more
robust damage detection methodology, based on a the-
oretical distribution for the Mahalanobis distance
determined in the reference condition of the structure.
The results exposed in this work have demonstrated the
beneficial performance of a nonlinear metric to detect
damage in this situation and the capability of the sto-
chastic Volterra series to predict the data variation in a
probabilistic framework, improving the statistic confi-
dence of the method.
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To be familiar with the Volterra series model appli-
cation in damage detection problems, find the motiva-
tion to the study of the nonlinear phenomena in the
procedure and have more details about the Volterra
series reformulation to predict the nonlinear responses
considering data variation, the interested reader is
referred to seeing Shiki et al.,37 Villani et al.,36 and
Villani et al.38 This article fundamentally differentiates
from previous works by considering an initially uncer-
tain nonlinear system subject to damage that itself
induces nonlinear behavior in the structural response,
which hasn’t been considered before.

The present paper is organized as follows. Section
‘‘The damage detection methodology based on stochas-
tic Volterra series’’ describes the stochastic mathemati-
cal model used to describe the nonlinear systems
response and the approach proposed to detect the dam-
age considering the data variation related to uncertain-
ties. Section ‘‘Experimental setup’’ shows the nonlinear
structure considered in this work, the damage simu-
lated, and the main characteristics of its behavior.
Section ‘‘Application of the proposed methodology’’
shows the application of the methodology proposed
and the main results obtained. Finally, section ‘‘Final
remarks’’ presents the conclusions of the work.

The damage detection methodology
based on stochastic Volterra series

This section outlines the methodology proposed to be
practiced in the damage detection problem in initially
nonlinear systems, taking into account the data varia-
tion related to uncertainties. The development of the
stochastic model is briefly described, with more detail
in Villani et al.36 In addition, the reader can obtain
more information about the deterministic Volterra
series expanded using the Kautz functions in Shiki
et al.37

The stochastic version of the Volterra series

In order to take into account the uncertainties in the
model formulation, a parametric probabilistic approach
is assumed. Thus, the model parameters are assumed as
random parameters and the model response as a ran-
dom process.21–23 Therefore, a probability space
(Y,Σ,P) is considered, where Y represents the sample
space, Σ is a s-algebra over Y, and P is a probability
measure.36

In the discrete-time domain, assuming the presence
of uncertainties, single system output can be interpreted
as a random process realization that is a consequence
of a single deterministic input. The relationship between
the deterministic input and the random output can be

described, using the convolution notion,39 through the
stochastic version of the Volterra series

y(u, k) =
X‘

h = 1

XN1�1

n1 = 0

. . .

. . .
XNh�1

nh = 0

Hh(u, n1, . . . , nh)
Yh

i = 1

u(k � ni)

ð1Þ

where (u, k) 2 Y3Z+ 7!y(u, k) represents the single ran-
dom output that is consequence of the single determi-
nistic input k 2 Z+ 7!u(k), (u, n1, ::, nh) 2 Y3Z

h 7!
Hh(u, n1, . . . , nh) represents the random version of the
h-order Volterra kernel, and Z+ represents the set of
integer positive numbers.

The principal benefit of the Volterra series model is
the capability to reproduce the system output as a sum
of linear and nonlinear contributions

y(u, k) =
X‘

h = 1

yh(u, k) =

= y1(u, k)|fflfflffl{zfflfflffl}
linear

+ y2(u, k) + y3(u, k) + � � �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
nonlinear

ð2Þ

where (u, k) 2 Y3Z+ 7!y1(u, k) is the random output
obtained using the first random kernel,
(u, k) 2 Y3Z+ 7!y2(u, k) is the random output obtained
using the second random kernel, and so on. In this
work, the series will be truncated in the third-order ker-
nel because of the cubic characteristic of the nonlinear
system response investigated, and the capability to sep-
arate linear and nonlinear contributions in the total
response will be used in the damage detection proce-
dure as feature sensitive to the presence of damage.

On the other hand, as broadly addressed in previous
works,36,37,40 the central disadvantage of the approach
is the challenge in achieving the convergence when a
high number of terms are used. To solve this problem,
the Volterra series can be extended utilizing the Kautz
functions,41,42 and the system random output can be
represented as

y(u, k)’
X‘

h = 1

XJ1

i1 = 1

. . .

. . .
XJh

ih = 1

Bh u, i1, . . . , ih
� �Yh

j = 1

lh, ij
(u, k)

ð3Þ

where J1, . . . , Jh represents the number of Kautz func-
tions used in the kernels projections, the h-order ran-
dom Volterra kernel expanded in the orthonormal
basis is represented by the random process
(u, i1, . . . , ih) 2 Y3Z

h
+ 7!Bh(u, i1, . . . , ih), and the ran-

dom process (u, k) 2 Y3Z+ 7!lij (u, k) is a filtering of
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the deterministic input signal by the random Kautz
functions. The Kautz functions are supposed random
because their definition depends on the dynamics of the
system and, as the system response is considered as a
random process, it is presumed that the Kautz func-
tions will also randomly change.

Conclusively, the coefficients of the kernels can be
calculated using the least-squares approximation in a
deterministic way,37 and then, adopting Monte Carlo
simulations, the process is repeated until the stochastic
model converges. The Monte Carlo method was chosen
because it is easier to perform when the deterministic
algorithm is known.23,43 More information about the
random Kautz functions and the process of the random
Volterra kernels estimation may be found in Villani
et al.36,38

Damage detection based on novelty detection

In the previous work, two points were analyzed sepa-
rately in the damage detection process: the kernel’s coef-
ficients and the kernel’s contributions. Nevertheless, it
is difficult for practical applications to decide which fea-
ture is better. Thus, the damage detection index used
here examines both features jointly. Regarding the sto-
chastic model identified with training data in the refer-
ence condition, the damage-sensitive index may be
determined in the reference status. First of all, recogniz-
ing that the Volterra series will be truncated in the
third-order kernel, the kernel’s coefficients can be allo-
cated together to be used as damage-sensitive feature

λlin(u, i1) =

B1(u, 1)

B1(u, 2)

..

.

B1(u, J1)

8>>>><
>>>>:

9>>>>=
>>>>;

λqua(u, i1 = i2) =

B2(u, 1, 1)

B2(u, 2, 2)

..

.

B2(u, J2, J2)

8>>>><
>>>>:

9>>>>=
>>>>;

λcub(u, i1 = i2 = i3) =

B3(u, 1, 1, 1)

B3(u, 2, 2, 2)

..

.

B3(u, J3, J3, J3)

8>>>><
>>>>:

9>>>>=
>>>>;

ð4Þ

where the random process (u, i1) 2 Y3Z+ 7!λlin(u, i1)
represents the coefficients of the first kernel,
(u, i1 = i2) 2 Y3Z+ 7!λqua(u, i1 = i2) represents the coeffi-
cients of the diagonal of the second kernel, and
(u, i1 = i2 = i3) 2 Y3Z+ 7!λcub(u, i1 = i2 = i3) represents

the coefficients of the main diagonal of the third
kernel.

In addition, the contribution of the kernels can be
calculated as

ylin(u, k)’
XJ1

i1 = 1

B1 u, i1ð Þ l1, i1
(u, k)

yqua(u, k)’
XJ2

i1 = 1

XJ2

i2 = 1

B2 u, i1, i2ð Þ l2, i1
(u, k) l2, i2

(u, k)

ycub(u, k)’
XJ3

i1 = 1

XJ3

i2 = 1

XJ3

i3 = 1

B3 u, i1, i2, i3ð Þ.

. l3, i1
(u, k) l3, i2

(u, k) l3, i3
(u, k)

ð5Þ

where (u, k) 2 Y3Z+ 7!ylin(u, k) is the linear contribu-
tion, (u, k) 2 Y3Z+ 7!yqua(u, k) is the quadratic contri-
bution, and (u, k) 2 Y3Z+ 7!ycub(u, k) is the cubic
contribution. Therefore, to reduce the order of the clas-
sification problem, the PCA26,44–46 can be applied to
the kernel contributions

ylin(u, k)� PCA� Clin(u, 1), . . . ,Clin(u, npca)

y
qua(u, k)� PCA� Cqua(u, 1), . . . ,Cqua(u, npca)

ycub(u, k)� PCA� Ccub(u, 1), . . . ,Ccub(u, npca)

ð6Þ

where (u, npca) 2 Y3Z+ 7!Clin(u, npca) represents the
principal components of the linear contribution,
(u, npca) 2 Y3Z+ 7!Cqua(u, npca) represents the principal
components of the quadratic contribution,
(u, npca) 2 Y3Z+ 7!Ccub(u, npca) represents the principal
components of the cubic contribution, and npca is the
number of principal components considered. The num-
ber of components was defined based on the contribu-
tion of each component in the construction of the
covariance matrix.44

After the calculation of the kernel’s coefficients and
the principal components of the kernel’s contributions,
the damage index can be defined in the reference
condition

Ilin = ½λlin(u, i1) Clin(u, npca)�(Ns3(J1 + npca))

Inlin = ½λqua(u, i1 = i2) λcub(u, i1 = i2 = i3) .

. Cqua(u, npca) Ccub(u, npca)�(Ns3(J2 + J3 + 2npca))

ð7Þ

where Ilin and Inlin are the linear and nonlinear indices
in the reference situation, respectively. The linear and
nonlinear indices will be assessed with the aim of com-
parison between the linear and nonlinear methodolo-
gies performance. Therefore, in the reference condition,
Ilin is a Ns3(J1 + npca) matrix and Inlin is a
Ns3(J2 + J3 + 2npca) matrix, being Ns the number of
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observations used in the training phase of the reference
stochastic model.

Now, with the structure in an unknown (‘‘test’’) situ-
ation, a new deterministic model can be identified, and
the indices may be estimated in the unknown status

I lin = ½llin(i1) Clin(npca)�(13(J1 + npca))

I nlin = ½lqua(i1 = i2) lcub(i1 = i2 = i3) .

. Cqua(npca) Ccub(npca)�(13(J2þJ3þ2npca))

ð8Þ

where I lin and I nlin are, respectively, the linear and non-
linear indices in an unknown condition. As the indices
calculated in the reference condition are matrices com-
posed by more than one single feature, the novelty
detection has to be performed considering multivariate
data. Therefore, the comparison between the indices
calculated in the reference and an unknown condition
can be made considering D2 Mahalanobis distance33,47

D2
m ¼ ½Im � mIm

�T S
�1
Im
½Im � mIm

� ð9Þ

where m = lin or m = nlin; mIm
and SIm

are, respectively,
the mean vector and the covariance matrix of the index
calculated in the reference condition. The simple
machine learning method based on Mahalanobis dis-
tance is used here because the classification is done
between two possible conditions (healthy and dam-
aged) and the goal is to examine the performance of
the Volterra kernel characteristics as damage-sensitive
features and not to investigate the differences between
refined classification methods. Other classification
methods can be used in the future to improve the meth-
odology depending on the real application confronted.

With the squared Mahalanobis distance calculated, a
hypothesis test may be proposed. In this work, this dis-
tance calculated in the reference condition is modeled
with a chi-square distribution, which may be calculated
based on the assumption of independence and normal-
ity in the underlying multivariate features from which
the squared Mahalanobis distance is calculated.48,49

Ideally, sampling distribution of the Mahalanobis dis-
tance is desirable, but no such analytical form is known
to exist, so the theoretical model is fit to the (limited)
empirical data obtained. This approximation has satis-
factory performance, as will be shown further along.
Therefore, the hypothesis is proposed

H0 : D2
m;X2

H1 : D2
m ¿X 2

�
ð10Þ

where X2 is the chi-square distribution, H0 is the null-
hypothesis (healthy condition) and H1 is the alternative
hypothesis (damaged condition).

Besides, the probability of a distance value calcu-
lated to be included in the theoretical chi-square

distribution can be computed integrating its probability
density function (PDF)50

pm = F(D2
mjn) =

ðD2
m

0

t(n�2)=2e�t=2

2n=2G(n=2)
dt ð11Þ

where pm is the probability of the value D2
m belonging to

the chi-square distribution, G(:) is the Gamma function,
and n is the number of degrees of freedom. Finally, a
sensitivity value can be determined depending on the
application and probability of false alarms tolerated,
and the hypothesis test can be rewritten

H0 : pm ø b

H1 : pm\b

�
ð12Þ

where b represents the sensitivity chosen for the
hypothesis test. The definition of this parameter
depends on the practical application and, as an experi-
mental laboratory setup is utilized, several values will
be examined to study the performance of the method.
Figure 1 shows a flowchart of the damage detection
approach. On the left-hand side of Figure 1, the train-
ing phase is observed, with the identification of the sto-
chastic reference model and the estimation of the
damage indices in the reference condition. On the right-
hand side of Figure 1, the identification of a new model
in an unknown status and the calculation of the new
indices are represented. Then, the indices are correlated
using the squared Mahalanobis distance, and finally,
the hypothesis test is applied to classify the condition
of the structure between healthy and damaged.

Experimental setup

The experimental setup used is presented in Figure 2.
The structure monitored is formed by a clamped-free
beam, that is constructed by gluing four thin beams of
Lexan together, 2:43243240 (mm3) each one, with the
intention of emulating a damage propagation that is
described further on. At the free boundary, two
steel masses are affixed and interact with a magnet,
generating a nonlinear behavior in the system response,
even in the reference condition due to added
magnetic potential. Moreover, the setup includes the
following:

� A National Instruments acquisition system:

CompactDAQ Chassis (NI cDAQ-9178);
A C Series Sound and Vibration Input Modules
(NI-9234);
A C Series Voltage Output Module (NI-9263).
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� Electrodynamic Transducer Labworks Inc. (ET-
132);

� Amplifier MB Dynamics (SL500VCF);
� Load cell PCB PIEZOTRONICS (208C02);
� Accelerometer PCB PIEZOTRONICS (352C22).

The electrodynamic transducer is employed to excite
the structure with different signals and considering two
levels of input (low—1 V root mean square (RMS) and
high—6 V RMS). The output data are measured by the
accelerometer positioned close to the free extremity of
the beam, because the authors are only interested in the
region of the first mode shape of the structure (see
Figure 2). The input signal analyzed is the voltage sig-
nal applied in the electrodynamic transducer. As a sin-
gle-input/single-output (SISO) model is considered, this

pair of signals is enough to identify the Volterra kernels
and monitor the structure health. All the acquisition
parameters, signals considered, and equipment used
were the same in the experiments performed consider-
ing the different structural conditions.

Intrinsically nonlinear behavior

The mechanical system used exhibits nonlinear opera-
tion even in the reference condition, without the pres-
ence of damage. Figure 3(a) shows the results obtained
during the stepped sine test applied considering two
levels of input. When the input applied has a low level
of amplitude (1 V RMS), the output signal shows lin-
ear characteristics for both up-sweep and down-sweep
inputs. However, when the input signal is at a

Figure 1. Flowchart of the damage detection methodology proposed.

(a) (b)

Figure 2. Experimental apparatus: (a) photos and (b) scheme (dimensions in millimeters).
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sufficiently high amplitude (6 V RMS), the nonlinear
phenomena can be seen with the jump presented in the
test. In addition, Figure 3(b) shows the time–frequency
diagram of the system response considering a high level
of a chirp input in the region of the first mode shape of
the structure. The presence of the cubic harmonic in
the response confirms the nonlinear characteristic of
the response caused by the interaction between the
magnet and the steel masses.

Therefore, the system studied presents nonlinear
behavior, subject to sufficient level of input, even when
the structure is healthy. This characteristic is
obtained because the magnetic force changes nonli-
nearly with distance from the end masses to the mag-
net. This intrinsically nonlinear behavior can be
confused with the simulated damage that causes a dis-
tinct nonlinear characteristic to the system response, as
will be seen next.

Damage simulated

The damage imposed on the structure aims to simulate
a breathing crack present in the system. In this sense,

four different beams were built to be used in the appli-
cation of the damage detection methodology:

� Training beam: beam constructed with four intact
Lexan beams and used in the training phase of the
algorithm (see Figure 4(a)).

� Test beam: beam constructed with four intact
Lexan beams and used in the test phase of the algo-
rithm (see Figure 4(a)).

� Damage I: beam constructed with three intact and
one cut beam (see Figure 4(a) and (b)).

� Damage II: beam constructed with two intact and
two cut beams (see Figure 4(a) and (b)).

The cut in the beams is positioned close to the exci-
tation point (see in Figure 2(b)). This spot was chosen
to obtain the required nonlinear behavior to test the
performance of the algorithm. The damage condition
might be judged severely, but the position and excita-
tion combined were defined to generate a condition
that is difficult to detect—mainly in the condition dam-
age I—as will be shown further along. Figure 5 shows
the time–frequency diagram of the system response

(a) (b)

Figure 3. Intrinsically nonlinear behavior of the system. (a) Stepped sine test, where , , , and represent,
respectively, frequency up and frequency down considering low level of input, and frequency up and frequency down considering
high level of input. (b) Time–frequency diagram of the system response.

(a) (b)

Figure 4. Structural conditions considered: (a) all beams constructed and (b) damaged beams (zoom).
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considering a chirp input with a high level of amplitude
and the structure in damaged conditions. Figure 5(a)
shows the appearance of a quadratic harmonic when
compared with Figure 3(b), that is a consequence of the
crack, without significant alterations in the behavior of
other components of the response (first and third har-
monics look similar to the ones observed in Figure
3(b)). With the propagation of the damage (damage II),
the quadratic and cubic harmonics grow up and the
resonance frequency changes (Figure 5(b)).

Therefore, it is recommended that the initial propa-
gation of the damage has influence in the quadratic
harmonic of the system and when the extension of the
damage is more significant, all linear and nonlinear
components of the response are affected. The damage
detection approach applied has to be able to detect the
appearance of the nonlinear behavior caused by the
damage, without confusing this evolution with the
cubic nonlinear behavior caused by the presence of the
magnet. In addition, the problem becomes more com-
plicated when the data variation is assumed, requiring
a strategy to separate these effect as shown in the next
section.

Data variation

In order to study the performance of the strategy in the
presence of data variation or other uncertainties, the
distance between the magnet and the steel masses (see
in Figure 2(b)) was varied from 2 to 3.5 mm during the
tests, repeated on different days to obtain a total of 200
experimental tests for each beam constructed.

Figure 6 illustrates the variation of the system
response during the tests. The results consider only the
first mode shape frequency range, as only this range
will be examined in the damage detection process. It is
clear that it is easy to classify the structural condition
when the extension of the damage is even more severe

(damage II), but it is not plausible to observe visually
the deviation between the reference and damage I con-
ditions when the frequency response function (FRF)
and the linear modal parameters are considered. These
modal parameters were estimated considering a line-fit
method51 and the experimental realizations of the
FRF.

These results show how hard it is to detect the pres-
ence of the damage when the data variation is consid-
ered in the analysis. In the scenario considered in this
work, with the experimental data measured, the model
proposed has to be able to detect the presence of the
damage in the uncertain ambient state without confu-
sions between the nonlinear behavior caused by the
presence of the magnet and that one caused by the pres-
ence of the damage. In this sense, the next section pre-
sents the main results obtained with the application of
the methodology based on stochastic Volterra series.

Application of the proposed methodology

This section matches the application of the methodol-
ogy described in section ‘‘The damage detection metho-
dology based on stochastic Volterra series’’ to detect
damage admitting the experimental setup described in
section ‘‘Experimental setup.’’ The main results
obtained are shown, and the performance of the linear
and nonlinear analysis is compared.

Reference model identification

The first step to the utilization of the methodology is
the estimation of the stochastic reference model. As
mentioned before, the first three Volterra kernels were
considered in the analysis. The number of Kautz func-
tions and the Kautz parameters related to each Volterra
kernel were defined as described in the previous work.36

Therefore, the number of functions used here are J1 = 2,

(a) (b)

Figure 5. Time–frequency diagram of the system response obtained in damaged conditions: (a) damage I and (b) damage II.
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J2 = 4, and J3 = 6. To obtain the input/output signals
used in the kernels estimation, the structure was excited
admitting a chirp input signal varying the excitation fre-
quency from 25 to 40 Hz (first mode shape region) and
considering two levels of amplitude (1 V RMS—linear
system behavior and 6 V RMS—nonlinear system
behavior). The chirp input is attractive because it
excites the linear and nonlinear components of the sys-
tem response with enough energy, leading to a better
estimation of the high-order kernels.19,37,52 The output
signal considered (velocity vibration signal) is obtained
through the integration of the acceleration signal mea-
sured by the accelerometer (see Figure 2). The velocity
signals are used because of the previous implementation
of the model identification procedure considering this
type of output. As done before,36,37 the kernel estima-
tion is performed in two steps, that is, the first kernel is

identified considering the underline linear behavior of
the system and then, the second and third kernels are
identified considering the nonlinear components of the
system response.

The deterministic model is identified several times,
considering the 200 experimental realizations obtained
from the healthy training beam, to construct the sto-
chastic reference model. Figure 7 presents the verifica-
tion and validation of the model identified. Figure 7(a)
and (b) shows the stochastic model output with 99% of
confidence bands, in the time domain, considering the
same chirp input used in the model estimation with a
high level of amplitude (6 V RMS), in comparison with
experimental data measured. It is observed that the sto-
chastic model can predict the system output consider-
ing the data variation. In addition, Figure 7(c) shows
the stochastic model output with 99% of confidence

(a) (b)

Figure 6. Variation of the data measured. (a) Frequency response function, where the continuous lines represent the mean values
and the color zones represent the curves obtained with 99% of confidence: - reference; - damage I; and - damage II.
(b) Variation of linear modal parameters, where represents the reference condition, D represents damage I, and h represents
damage II.

(a) (b) (c)

Figure 7. Verification and validation of the reference model. (a) Model response in the time domain considering a chirp excitation.
(b) Model response in the time domain considering a chirp excitation (zoom). (c) Model response in the frequency domain
considering a sine excitation. represents the 99% model response confidence bands, —— represents the model response mean,
and � � � represents five realizations of the experimental data.
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bands, in the frequency domain, holding a single sine
input with excitation frequency close to the system
resonance frequency (’35 Hz) and a high level of
amplitude (6 V RMS), in comparison with experimen-
tal data measured. As can be seen, the stochastic model
can predict the harmonic components of the response.
This characteristic is unusual in the sense that as the
damage considered produces variations in the non-
linear components of the response, it is expected that
the model could be sensitive to these variations with
adequate performance to detect the damage faster than
the linear approach. With the stochastic reference
model estimated, the damage detection procedure can
be applied and the results obtained are shown in the
next section.

Damage detection performance

First of all, it is interesting to observe whether the
Mahalanobis distance computed considering the indices
obtained in the reference condition (Ilin and Inlin)
belongs to the chi-square distribution, as proposed in
the methodology. Figure 8 shows adjustment between
the histograms obtained from the Mahalanobis dis-
tance, calculated with the indexes in the reference con-
dition, and the chi-square theoretical distribution. Of
course, the theoretical approximation is not perfect but
satisfactory, considering the limited amount of data
available in the analysis. Moreover, this approximation
overcomes the problems involving the empirical estima-
tion of distributions based on experimental data, and
the Kernel Density Estimator used before, related to
the needed amount of experimental data and the
choices of the kernel and smoothing parameter.47,53

This aspect of the indices distribution allows the

application of the hypothesis test proposed based on
the probability of the distance calculated belonging to
the chi-square distribution.

The evolution of the distance calculated from the
indices with the propagation of the damage is presented
in Figure 9. It is observed that the linear index is not
sensitive to the presence of the damage at the beginning
of the propagation, that is, damage I condition (see
Figure 9(a)). The nonlinear index presented more sensi-
tivity to the presence of damage, showing an adequate
separation between damage I condition and the refer-
ence condition (see Figure 9(b)). Besides, the nonlinear
index calculated from the data measured considering
the test beam presents some outliers that will be
reflected, probably, in false positives, depending on the
threshold value used. These outliers are a consequence
of the high sensitivity of the nonlinear components to
structural variations. These results are not unexpected
since the test and training beams are nominally the
same, but not identical. The use of more than one
training beam could improve the methodology perfor-
mance in a real application. Another interesting aspect
of the index used is the increase of the distance values
with the propagation of the damage that, in the future,
may be well correlated to the severity of the damage.

Considering the distances determined, the hypothesis
test proposed may be applied. Table 1 shows the results
obtained for both linear and nonlinear indices. It is
clear that the nonlinear index presented a higher capa-
bility to detect the presence of the damage. The false
alarms (false detection) are also higher considering the
nonlinear index. However, this value can be reduced
without loss of performance to detect the damage with
the decrease of the test sensitivity as perfomed, for
example, by Avendaño-Valencia and Fassois.31 The

(a) (b)

Figure 8. Comparison between the theoretical and experimental distributions. (a) Distance calculated based on the linear index in
the reference condition. (b) Distance calculated based on the nonlinear index in the reference condition. The histogram represents
the experimental data and the black line represents the theoretical chi-square distribution.
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linear index presented problems to detect damage I
condition, even with the variation of the test sensitivity.
In real applications, the value of the test sensitivity (b)
has to be determined depending on the level of security/
confidence required and on the previous knowledge
about the monitored structure. In some applications,
this value can also be optimized to present a better per-
formance in the damage detection process, based on
measured data obtained from damaged structures.31

However, a better way to analyze the damage detec-
tion capability of the methodology is computing the
receiver operating characteristics (ROC) curve. This
curve relates the false alarm ratio with the true detec-
tion ratio obtained applying the hypothesis test for dif-
ferent values of sensitivity (b). As a result, the closer to
the point (0,1) is the curve, and better is the perfor-
mance of the index because it presents a higher prob-
ability of detecting the damage with a low level of false
alarms. This curve is used here to study the discrepan-
cies between the performance of the linear and non-
linear approaches proposed. Figure 10 shows the curves
obtained after the application of the hypothesis test
using different threshold values, considering both
indices (linear and nonlinear) and all structural condi-
tions studied (training beam, test beam, damage I and
damage II). In the figure, it can be seen that the non-
linear index presents a better performance since the red
curve is close to the point (0,1). This result was expected
as the linear components of the response are not sensi-
tive to the initial propagation of the damage (see Figure
9 and Table 1).

Moreover, the performance of the nonlinear index
(almost perfect, but this is admittedly a consequence of

a finite data set), with the curve very close to the point
(0,1), was achieved in an experimental laboratory appli-
cation. Even with the consideration of the data varia-
tion simulated during the experimental tests, these
results do not reflect a real-structure application. It is
supposed in a real-world application a higher number
of confounding effects, different types of damage occur-
ring coincidentally, and other aspects that may decrease
the methodology performance. However, the better
capability of the features related to the nonlinear ker-
nels to detect the presence of the damage considering
the confounding effects caused by the nonlinearities
and uncertainties must be preserved.

(a) (b)

Figure 9. Evolution of the Mahalanobis distance calculated with the progression of the damage. (a) Distance calculated based on
the linear index. (b) Distance calculated based on the nonlinear index. represents the reference training beam, 3 represents the
reference test beam, represents damage I condition beam, and h represents damage II condition beam.

Figure 10. Receiver operating characteristics (ROC) curve. �
represents the linear index and represents the nonlinear index.
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Final remarks

The problem of damage detection in an intrinsically
nonlinear system, regarding the data variation associ-
ated with uncertainties, subjected to the presence of
damage that causes a nonlinear characteristic in the
system response, was investigated in this article. In this
sense, an initially nonlinear beam was analyzed, and
the data variation was emulated by the random varia-
tion imposed in the experimental setup (variation of
the distance between the magnet and the beam). The
damage studied was a breathing crack that affects the
system to exhibit a nonlinear operation with a distinct
character of the initial one. In this condition, the meth-
odology has to be adequate to distinguish the intrinsi-
cally nonlinear operation and the data variation to the
presence of the damage. A method based on a stochas-
tic version of the Volterra series, with the use of the
random kernel’s coefficients and contributions as dam-
age detection features, combined with a novelty detec-
tion technique, was applied to solve the problem.

Unlike what has been shown in the previous works
published,36,38 the kernel coefficients and the kernel
contributions approaches were applied together, con-
sidering a unique index to monitor the structural condi-
tion, aiming to augment the robustness of the method.
Moreover, a theoretical distribution was introduced to
the Mahalanobis distance computed in the reference
condition to reduce the possible problems related to the
use of the kernel density estimator previously assumed.
In addition, for the first time, the methodology was
examined through an experimental application consid-
ering an intrinsically nonlinear beam subordinated to
the presence of damage that produces nonlinear aspects
to the system response, all this considering data varia-
tion that reflects changes in the linear and nonlinear
components of the response.

The results obtained revealed that the monitoring of
the nonlinear components of the system response,
denoted by the high-order kernel’s coefficients and con-
tributions considered as damage detection features, is a

helpful method to be implemented in damage detection
problems when the nonlinear system response is pres-
ent. Again, the nonlinear metric confirmed to be more
sensitive to the appearance of the damage and showed
better performance considering the data variation com-
pared with the monitoring of linear components.
Finally, the use of the stochastic reference model, com-
bined with the novelty detection technique and the
hypothesis test, exhibited satisfactory performance to
overcome the problem related to the data measured
variation, providing the metric for detecting the pres-
ence of the damage with probabilistic confidence even
in an uncertain ambient. Based on the results achieved,
although the application was performed considering an
experimental laboratory setup, the authors believe that
in real-world applications the nonlinear metric will also
demonstrate higher performance than the linear one
for this kind of problem.
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Table 1. Results obtained through the application of the hypothesis test.

Hypothesis test sensitivity (b) Percentage of false detection (%) Percentage of true detection (%)

Training beam Test beam Damage I Damage II

Linear index 10�2 0.5 15.5 34.5 100
10�4 0 0 5 100
10�6 0 0 0 100
10�12 0 0 0 75

Nonlinear index 10�2 4.5 12.5 100 100
10�4 1 7 100 100
10�6 0 4.5 100 100
10�12 0 1.0 96.5 100
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