
UC Irvine
ICS Technical Reports

Title
Subtree weight ratios for optimal binary search trees

Permalink
https://escholarship.org/uc/item/5wx118pr

Authors
Hirschberg, D. S.
Larmore, L. L.
Molodowitch, M.

Publication Date
1986-01-29

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5wx118pr
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
niay be protected
by Copyright Law
(Title 17 U.S.C.)

§yhtree Weight Ratios for Optimal Binary Search Tre~

D.S. ff irsch berg
L.L.-Larmore~-

M. Molodowitch

University of California, Irvine

Technical Report No. 86-02

January 29, 1986

ftrd, ,,;,,,s
--7
t:-.-
(c) '! '!
., :~
C~

lit>. g7b"0,'.l"

• J (. ~ v -

Subtree Weight Ratios for Optimal Binary Search Trees

D.S. Hfrschberg
L.L. Larmore

M. Molodowi'tch

Abstract

For an optimal binary search tree T with a subtree S(d) at a distance d
from the root of T, we study the ratio of the weight of S (d) to the weight of T.
The maximum possible value, which we call p(d), of the ratio of weights, is found
to have an upper bound of 2/F d+ 3 where Fi is the £th Fibonacci number. For d
= 1, 2, 3, and 4, the bound is shown to be tight. For larger d, the Fibonacci
bound gives p(d) = 0 (<Pd) where <P ~ .61803 is the golden ratio. By giving a
particular set of optimal trees, we prove p(d) = 0((.58578 ...)d), and believe a
similar proof follows for p(d) = 0((.60179 ...)d). If we include frequencies for
unsuccessful searches in the optimal binary search trees, the Fibonacci bound is
found to be tight.

1. Introduction

An optimal binary search tree minimizes the expected search time when

we are given a fixed set of keys with frequencies {31, {32, ... {3n for their occurrence

[l]. We refer to the {j's as weights of the nodes of the search tree. Melhorn has

shown that a tree, that is constructed by equalizing as much as possible the

weights of the left and right subtrees, is very near optimal [2]. We consider a

related problem: how skewed can an optimal search tree _be.

Let T be an optimal binary search tree and S be a subtree with its root at

a distance d from the root of T. The weight of T is W(T) = El'5.i'5.n{3i, the weight

of S is W(S) = Ei£sf3i' and the ratio of interest is p(d), the maximum possible

value for W(S) / W(T).

In Section 2 we give upper bounds for p(d), first for the case d = 1, where

S is the left or right subtree of T, and then for the case of general d. In Section

3, we describe a set of optimal search trees which have, for the cases d = 1, 2, 3,

and 4, subtrees that give ratios arbitrarily close to the upper bounds for the p's,

showing that the bounds are tight. In Section 4, we describe a conjecture as to

Authors' address: Department of Information and Computer Science. University of California, Irvine.
Irvine, CA 92717.

the asymptotic bounds on p(d) and exhibit sets of optimal trees that give ratios

close to the conjectured bounds. In Section 5, we examine more general optimal

binary search trees, which include frequencies for unsuccessful searches, and find

the Fibonacci bounds are tight for these types of trees. In Section 6, we

summarize the paper and conclude with some open questions.

2. Upper bound for p(d)

First we examine the case where d = 1. S is then the left or right subtree

of T. We use the following conventions for describing components of T:

root(U)

W(U)

TL,TR

TLL' TLR

TRL' TRR

f3o
/31, JJR

Theorem 1.

- the root of any tree U

- the weight of any tree U

- the left and right subtrees of T

- the left and right subtrees of root(T d
- the left and right subtrees of root(T R)

- the weight of root(T)

- the weights of root(T 1), root(T R)

If T is an optimal binary search tree, the weight of the left or right subtree

must be at most 2/ 3 the weight of the entire tree.

Proof.

Suppose that W(T R) > 2/3 W(T). Root(T R) has two subtrees, T RL and

T RR· There are two possible cases.

Case 1. The weight of T RL is greater than 1/3 W(T). Then make root(T RL) the

new root of T, using a double left rotation.

Case 2. JJR + W(TRR) > 1/3 W(T). Then make root(TR) the new root of T,

using a single left rotation.

In either case, the new tree has lower expected search time than T, a

contradiction to the optimality of T. By symmetry, the same argument holds for

the left subtree of T.

- 2 -

For the general case, we need the following lemma.

Lemma 1.

In an opti"mal bi'nary search tree,

a) ,80 + W(T R) 2 max{ W(T LL), W(T LR)}

b) /30 + W(Td 2 max{ W(TRR), W(TRL)}

Proof.

Parts (a) and (b) are equivalent by symmetry, so we prove part (a).

There are two possible cases to consider.

Case 1. Suppose /30 + W(T R) < W(T LR). Perform a double right rotation

putting root(T LR) as the new root of T, producing a tree with lower expected

search time.

Case 2. Suppose /30 + W(T R) < W(T Ld. Perform a single right rotation putting

_ root(T L) as the new root, again producing a tree with lower expected search

time.

For both cases we get a contradiction to the optimality of T, so the lemma is

proved.

Theorem 2.

For any subtree S with its root at a distance d from the root of an optimal

bz'nary search tree T, W{S)/ W(T) :S 2/ Fd+S where Fn i's then-th Fz'bonacci

number (F1 =1, F2 =1, F3 = 2). Hence p(d) has an upper bound of 2/Fd+s·

Proof.

Assume W(S) = 2 W0 for some value W0 . Start at root(S) and go up the

path to the root of T one level at a time. At each step i, we are at the root of a

bigger subtree. Call this subtree Ti' and let /3i be the weight of root(T i.).

root(Ti) has another subtree Vi which was not on the path followed. Since every

subtree of an optimal tree is also optimal, we can use Lemma 1:

/3i + W(Vi) 2 W(Ti_2)

But W(TJ = W(Ti_ 1) + /3i + W(Vi), so we obtain the recursive relation

W(TJ 2 W(Ti_ 1) + W(Ti_ 2)

W(T0) = W(S) = 2 W0 and, by Theorem 1, /31 + W(V 1) 2 W0 , so W(T 1) 2 3 W0.

We can solve for W(T d) = W(T),

- 3 -

and W(S)/ W(T) :::; 2/F d+ 3·

3. The upper bound is tight for depths 1, 2, 3, and 4

We first describe a set of trees, in which W(S)/ W(T) comes arbitrarily

close to the upper bounds for d = 1 and 2. For higher d, the set provides a lower

bound for p(d) of (2-t:)/(2d+l) for any small E.

Let T(d) consist of a complete binary tree of height din which all the

leaves except one are replaced by complete binary trees of height h and the one

leaf is replaced by a complete binary tree of height h+l (Figure 1). Let all nodes

have unit weight. T(d) is clearly optimal and, choosing S to be the subtree of

height h+ 1 at distance d from the root, we see that

W(S)/ W(T(d)) = (2·2h+l - 1) I ((2d+1)2h+l -1)

As we let h grow, the ratio comes arbitrarily close to 2/3 for d = 1 and to 2/5 for

d = 2. For higher d's, the ratio approaches 2/(2d+l).

Using T(l) and T(2), we can construct a set of trees Ti recursively, in

which W(S)/ W(Ti) comes arbitrarily close to the upper bound ford= i' = 3 and

d = i' = 4. Let T 1 = T(l) and T 2 = T(2). For odd (even) i'?: 3, the right (left)

subtree of root(T i) is T i-l" The other subtree of root(T i) is a single node with

the same weight (Ji as root(TJ, where (Ji= .5(W(Ti_ 2) + (Ji_ 2). Figures 2 and 3

show T 3 and T 4 respectively, and Figure 4 gives the general Ti"

If we let W0 = 2h+1, T 3 has a root with weight 1.5 W0 and a single node

with the same weight as the root as the left subtree. The right subtree of T 3 is

T(2) as defined above. Choosing for S the same subtree of height h+l as before,

but now at a distance 3 from the root,

W(S)j W(T) = (2 W0 - 1)/(8 W0 - 1)

and, letting h grow, the ratio approaches 2/8. Similarly for T4 , the ratio is

W(S)/ W(T) = (2 W0 - 1)/(13 W0 - 1) which comes arbitrarily

close to 2/13.

- 4 -

We now show that T
3

is optimal. In any rearrangement of the nodes into

a search tree minimizing the expected search time, which we will call the cost,

the two heavy nodes must stay in the same relative positions on the left side of

the tree. Since all other nodes have equal weight, they must be arranged as

evenly as possible, approximating a complete tree except on the left side where

the two heavy nodes are. Suppose the two heavy nodes are pushed down one

level and a node of weight 1 is at the root (Figure 5). The change in cost from

that of T 3 is given by

~Cost = +3 W0 - (2 W0 - 1) - (W0 - 1) - 2 = 0

so the cost is the same as T 3. Pushing the heavy nodes down further results in

greater cost, so T 3 is an optimal tree as is the tree in Figure 5.

We show that T 4 is optimal in Section 4.

4. Lower bounds for p(d)

From Theorem 2 we see that, if W(T i) obeys the recursive relation

W(T J = W(T i- l) + W(T i-2)

then, solving the characteristic equation, gives

limd_.oo W(T d) = 0 (((1 +VS) /2) d)

so p(d) = 0((2/(l+VS))d) = O(</>d), where</>~ .61803 is the golden ratio. We

conjecture that p(d) = 0(Kd) where K ~ .60179 .

The following stronger version of Lemma 1 suggests why K is probably less

than </>. The notation conventions are the same as in Section 2.

Lemma 1!

In an optimal binary tree,

a) (30 + W(T R) ;:::: max{/3L + W(T LL), /3LR + W(T LR)}

b) (30 + W(T L) ;:::: max{/3R + W(T RR), /3RL + W(T RL)}

Proof.

The proof is the same as in Lemma 1.

- 5 -

We can use Lemma 11 and the same construction as in Theorem 2 of going

up the path from root(S) to root(T) one level at a time. Using the same notation

as in Theorem 2 and applying Lemma 11 at step i,

/3i+ W(VJ 2: W(Ti-2) + /3i-1
if the path from root(T i-2) to root(T i) was straight and

/3i+ W(Vi) 2: W(Ti-2) + j3i-2
if the path from root(T i-2) to root(T i) was bent.

Since W(Ti) = W(Ti_1) + j3i + W(Vi), we get the following:

W(T i) 2: W(T i-1) + W(T i-2) + /3i-1

W(T J 2: W(T i-1) + W(T i-2) + j3i-2
the choice depending on whether the path went straight or zigzagged. From this,

we see that to get p(d), we need to choose the minimum possible weights /3/s for

the nodes directly on the path from root(S) to root(T). In the examples given in

Section 3, the relevant /3/s had unit weight, and since f3J W0 = 1/2h+l -+ 0 as h

-+ oo, p(d) approached the upper bound of 2/F d+ 3.

For d > 4, we conjecture that the /3/s on the path are no longer negligible,

and hence p(d) < 2/F d+ 3 for d > 4.

In Section 3 we first described a set of trees which gave a lower bound of

(2-t)/(2d + 1) for p(d) so that p(d) = 0(2-d). The set Ti that was described

next gives a recursion relation for /3i:

j3i = /3i-1 + 1.S/3i-2 - .5/3i-3
and we have p(d) = 0((.58578 ...)d).

We now describe a third set of trees which is very similar to the second

(Figure 6). In going from Ti_ 1 to Ti, the change in the weight is the same as

before, W(T~ - W(Ti_ 1) = W(Ti_2) + f3i_ 2, but now it is equally split between

four nodes instead of two. One of the four new nodes is the root of Ti, the other

three nodes form a complete binary tree which is a subtree of root(Ti), and Ti_ 1
is the other subtree .. The weight of a new node is thus .25(W(Ti_ 2) + /Ji_ 2) and

p(d) = 0((.60179 ...)d). The first two trees, T~ and T~, are the same for this set

as for the other sets.

- 6 -

In the remainder of this section, we prove the optimality of the trees in

the second set. For the trees in the third set, we have constructed a proof of

optimality using similar arguments. We use extensively a theorem by Knuth [1]:
If the inorder of tree T is nodes A1, ... ,An, and Ai is the root of an optimal binary

search tree for nodes A1, ... ,Ak, and Ai is the root for an optimal binary search

tree for Ak+l' ... ,An, then the root A 1 for A1, ... ,An satisfies the condition that i ::;;

l ::;; j.

Theorem 3.

The binary search trees Ti in the seconll set, described in Section 3, are

optimal.

Proof.

The proof is by strong induction. T 3 was shown to be optimal in Section 3.

We also need to show for the basis that T 4 is optimal (Figure 3).

By Knuth's theorem, since T 3 is optimal, there are three possibilities for

the root after adding the two heavy nodes C and D.

a) The root is C. This is what we want.

b) The root is B. Then the weight of the right subtree is 10 W0 - 1, which

contradicts Theorem 1.

c) The root is one of the nodes of unit weight. A tree can then be characterized

by the levels of nodes B and C. ·

Case 1) Both B and C are at level 1 (Figure 7). There is no net change in

cost from the tree with the root at C.

Case 2) B is at level 2 and C is at level 1 (Figure 8). The change in cost

from Case (1) is W0 , which is strictly positive, so that this is not optimal.

It is clear that moving B or C down further only increases the cost.

Hence the tree with the root at C (Figure 3) is optimal, as is the tree in

Case (1), so that T 4 is optimal.

We now assume that all Ti, for 1 ::;; j < i (where i > 4), are optimal and

show that Ti is optimal. In the following, we label the nodes and subtrees of Ti

as in Figure 4.

- 7 -

Using Knuth's theorem, there are five possibilities for the root when nodes

E and F are added to Ti- l'

1) The root is E. This is what we wish to show.

2) The root is B. The subtree containing {nodes C, D, E, F, and the tree T i- 3}

contradicts Theorem 1.

3) The root is D. The right subtree contains nodes E and F. For the left

subtree, we must find the optimal tree for A, B, C, and the nodes in T i- 3.

If D is added, we have the optimal tree T i-l so that, using Knuth's

theorem, the root for an optimal tree which excludes D must be at A or B.

However, having the root at A contradicts Theorem 1, so that the root of

the left subtree must be B.

The tree with the root at D is shown in Figure 9. Note that the

cost for such a tree must be greater than the cost for the tree T' shown in

Figure 10, where both C and subtree T i-3 are at level 2. There is no

change in cost from the tree with root E (Figure 4) to T~ Thus the tree

with the root at D must cost more than the tree with the root at E.

4) The root is C. The right subtree contains D, E, and F. The left subtree must

be optimal and contain A, B, and the nodes in T i-3. Again using Knuth's

theorem and the assumption that B is the root of an optimal tree Ti- l'

the root for the left subtree must be A or B. It cannot be A because of

Theorem 1, so the root of the subtree must be B.

The tree must be the one shown in Figure 11 and there is no

difference in cost between it and the tree with the root at E.

5) The root is a node K in Ti_ 3. Let H0 be the optimal tree formed by the nodes

in T i-3 before K and H1 be the optimal tree formed by the nodes in T i-3

after K.

The left subtree consists of A, B, and the nodes in H0. Again using

Knuth's theorem, the root of the left subtree must be A or B, and clearly

the tree with B as root has lower cost.

- 8 -

The right subtree consists of C, D, E, F, and the nodes in H1.

There are three possibilities for the root because of Knuth's theorem,

shown in Figures 12, 13, and 15. Instead of finding the optimal tree

containing C and the nodes of H1, see that the cost of the tree in Figure

14 is less than that in Figure 13. Comparing costs, we see that both Fig.

14 and Fig. 12 cost more than Fig. 15. Hence the right subtree has E as

the root.

The whole tree with the root at K is given in Figure 16. We now

rearrange the nodes of T i- 3 in Figure 4 to make K the root as in Figure

17. Then

Cost(Fig. 16) - Cost(Fig. 4)

= Cost(Fig. 16) - Cost(Fig. 17) + Cost(Fig. 17) - Cost(Fig. 4)

= 2{3i - 3/3K - 2 W(H0) - W(H1) + L\K

= 2/3i - 2/3K - W(Ho) - W(T i-3) + L\K

= 3/Ji-2 - 2f3K - W(Ho) + L\K

where L\K gives the difference in cost in rearranging Ti._3 to make K the

root.

There are three possibilities for Ti_3: it can be T 2, T 3, or some Tk

where k > 3. When Ti:_ 3 is T2, in the above equation for the difference in

costs, /3i_2 = 1.5 W0, ,BK = 1, and we can explicitly find - W(H0) + L\K for

different K's. For all K's, the difference in costs is positive. Similarly for

the case of T 3, we can explicitly show that the difference is positive for all

K's. For the last case, we look at the structure of T i-3 (Figure 18). K

can be any of the four nodes shown or be a node in T i-s· However, we

get the minimum in the difference in costs when 2/3K + W(H0) is a

maximum, so we need only to look at the cases where K is either node M

or node N. For node N, the rearranging cost L\K is too high. For node M,

even assuming L\K = O,

3/Ji-2 - 2f3K - W(Ho) = 3/Ji-2 - 2/Ji-4 - 2/Ji-3 - W(T i-5)

= 3f3i-2 - W(Ti-3)
which can be shown to be always positive for i' > 6. Therefore the cost of

trees with the root at a node from T i-3 is greater than the cost of the tree

with the root at E.

- 9 -

We have now covered all possibilities and shown that the tree with the

root at E (Figure 4) is optimal, which proves the theorem.

5. More general optimal binary search trees

In the more general case of an optimal binary search tree, we are also

given a 0 , a 1, ... an, where ai is the frequency of unsuccessful searches for a key

between Ki and Ki+ 1. Lemmas 1 and 11 and Theorems 1 and 2 still hold with

the weights of trees now including the weights of the leaves a's, but now we can

show that the Fibonacci bounds are tight for all depths.

Let T". be the set of binary search trees defined recursively as follows
i

(Figure 19). T'~ and T'~ are T(l) and T(2) as defined in Section 3, where the

leaves are now the a/s. T'~· has a root of unit weight, its left subtree is T'i_ 1, and

its right subtree is a leaf of weight an= W(T'i_ 2) - 1. Since all the /3/s have

unit weight and /3J W0 --+ 0, p(d) --+ 2/F d+ 3 as discussed in Section 4.

Theorem 4.

The bi'nary search trees T'i are optimal.

Proof.

The proof is by induction on i. T"1 and T'~ are obviously optimal. We

first show T'~ is optimal (Figure 20). We can characterize any rearrangement of

the tree by the level of the rightmost leaf Z with weight 3 W0-1. T'~ as shown

has the leaf at level 1. The lowest cost of a tree with Z at level 2 is the same as

that for T'~, and the cost rises as Z goes down further. Hence T'~ is optimal.

Now assume T'i-l is optimal. When we add one internal node of unit

weight and one leaf of weight W(T'i_2)-1 to the right of T'i_ 1, by Knuth's

theorem there are only two possible choices for an optimal tree: T'i and Figure

21. We can see that their costs are equal, so that T'i is optimal, as is Figure 21.

6. Summary and open questions

We studied the behavior of p(d), defined as the maximum possible value

- 10 -

for the ratio of the weight of a subtree of an optimal binary search tree to the

weight of the entire tree, where the subtree is at a distance d from the root. p(d)
d was shown to have an upper bound of 2/F d+ 3 , so that p(d) = 0((.61803 ...)).

We described sets of trees giving lower bounds for p(d) of 0((.5)d), 0((.58578 ...)d)

and 0((.60179 ...)d). Ford~ 1, 2, 3, and 4, the upper bound was found to be

tight, but for higher d's the question of closing the gap between the two bounds

still remains. For optimal binary search trees which include frequencies for

unsuccessful searches, the Fibonacci bound was shown to be tight.

References

[1] Knuth, D.E.: Optimum binary search trees. Acta Informatica 1, 14-25

(1971)

[2] Mehlhorn, K.: Nearly optimal binary search trees. Acta Informatica 5,

287-295 (1975)

- 11 -

Figure 1. T (d) '

2W -1
0

Figure 2. T 3 for d = 3

d

h

2W -1
0

Figure 3. T 4 ford= 4

Figure 4. Ti for second set

- 2 -

2W -1
0

Figure 5. Alternate T for d = 3

Figure 6. T'. for third set
i

- 3 -

2W -1
0

(3.
i

Figure 7. Case (1)

All W0 -1

Figure 8. Case (2)

- 4 -

Optimal subtree
containing C, Ti_3

Figure 9. Root at D

Figure 10. Lower cost tree with root at D
(Not a binary search tree)

- 5 -

Figure 11. Root at C

j3i-2

Figure 12. Possible right subtree with root at C

- 6 -

Optimal subtree
containing C, H1

Figure 13. Possible right subtree with root at D

Figure 14. Lower cost subtree with root at D
(Not a binary search tree)

- 7 -

Figure 15. Optimal subtree with root at E

Figure 16. Root at K, a node in Ti_ 3

- 8 -

Figure 17. Subtree Ti_
3

replaced by a subtree with K as root

Figure 18. Expansion of Ti_ 3

- 9 -

· 2W -1
0

Figure 19. T".
i

Figure 20. T"3

- 10 -

W(T"-)-1 i-2

W(T".)-1 i-2

Figure 21. Another optimal rearrangement of T"i

- 11 -

