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ARTICLE OPEN

Neural correlates of reward processing distinguish healthy
youth at familial risk for bipolar disorder from youth at familial
risk for major depressive disorder
Akua F. Nimarko 1, Aaron J. Gorelik 1, Kayla E. Carta1, Mark G. Gorelik2 and Manpreet K. Singh 1✉

© The Author(s) 2022

Youth at familial risk for bipolar disorder (BD-risk) and major depressive disorder (MDD-risk) have aberrant reward processing, a core
feature of these mood disorders. Whether BD risk differentiates from MDD risk in reward processing merits further study. We
compared neural activation and connectivity during anticipation and outcome of monetary gain and loss during fMRI using the
Monetary Incentive Delay (MID) Task among BD-risk (n= 40), MDD-risk (n= 41), and healthy comparison youth (HC) (n= 45), in the
absence of any lifetime or current history of psychopathology [mean age 13.09 ± 2.58, 56.3% female]. Participants completed the
MID task at baseline and were followed for behavioral and clinical outcomes over 4.37 ± 2.29 years. Region-of-interest (ROI) analyses
conducted using anatomically defined thalamus, ventrolateral prefrontal cortex, nucleus accumbens, and putamen seeds showed
that relative to MDD-risk and HC, BD-risk had decreased activation of the thalamus during anticipation of monetary gain [F(2,118)=
4.64, p= 0.01 (FDR-corrected p= 0.04)]. Psychophysiological interaction analyses revealed that BD-risk had less connectivity
between the thalamus and left middle frontal gyrus (Z > 3.1, p < 0.001) and left-superior temporal gyrus (Z > 3.1, p < 0.05) compared
with MDD-risk. Voxelwise, BD-risk had decreased activation in the cerebellum during anticipation and outcome of monetary gain
relative to MDD-risk and HC (Z > 3.1, p < 0.001; Z > 3.1, p < 0.01). In BD-risk, decreased thalamic connectivity was associated with
increased impulsivity at baseline and reduced prosocial behavior at follow-up. Reduced thalamic activation and connectivity during
reward processing may distinguish familial risk for BD from familial risk for MDD and represent early markers of vulnerability that
may herald social dysfunction later in adolescence.

Translational Psychiatry           (2022) 12:31 ; https://doi.org/10.1038/s41398-022-01800-9

INTRODUCTION
Bipolar disorder (BD) and major depressive disorder (MDD) are
serious and persistent conditions that when developed during
childhood and adolescence [1, 2] result in worse outcomes
compared with adult onset [3, 4]. Reward-processing dysfunction
is a core feature of BD and MDD [5, 6]. Whereas anhedonia is a
transdiagnostic symptom manifestation of reward dysfunction
that may be observed in MDD and BD [7, 8], hedonism is a distinct
feature of BD [9, 10]. Further, although initial depressive
presentations of these disorders may overlap, familial aggregation
patterns [11] and nonoverlapping symptoms suggest distinct
disruptions in reward processes. Unfortunately, transdiagnostic
reward deficits that point to common illness features can lead to
delays in accurate diagnosis and appropriate treatment. A missed
BD diagnosis treated with antidepressants could lead to adverse
side effects such as a switch to mania in BD and BD-risk individuals
[12, 13]. Elucidating reliable, early reward-processing deficits
distinguishing BD from MDD would provide insights for unique
predisposing factors for symptom trajectories and lead to more
refined approaches to accurate diagnosis and treatment selection.
Limbic, paralimbic, striatal, and cortical regions (nucleus

accumbens (NAcc), putamen, thalamus, and ventrolateral pre-
frontal cortex (VLPFC)) have been implicated in reward-network

dysfunction in BD and MDD [5, 14–17]. Family history is a known
risk factor for developing a major mood disorder [18–22] and
youth at risk for BD may be exposed to chaotic family
environments that may impact frontostriatal networks [23]. For
these reasons, imaging studies of offspring of parents with BD
(BD-risk) or MDD (MDD-risk) are ideally suited to investigate early
and distinct neural endophenotypes of reward processing that
precede symptom onset [24, 25]. Among youth with BD and BD
risk, aberrant functional activations and connectivities in the
thalamus, pregenual cingulate cortex, and frontal regions during
reward processing have already been reported compared with
healthy and psychiatric comparison groups [16, 25, 26]. These
studies and others suggest that hyper- and hyposensitivity to
reward observed during mood episodes [27] and aberrant
prediction-error signaling [28] may be related to aberrant function
in the subcomponents of neural reward circuits known to regulate
these behaviors. Although there has been much focus on the
regulation of striatal activity and connectivity by the prefrontal
cortex, the thalamus may play a unique role in distinguishing
unipolar from bipolar depression [29]. For example, we found that
youth shortly after their first manic episode showed thalamic
hypoactivity during reward processing compared with healthy
adolescents [16]. This potentially unique pattern of thalamic
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dysfunction has also been reported in individuals with BD when
compared with individuals with MDD [29, 30]. Youth with or at-risk
for MDD rather show blunted striatum, insula, and increased
dorsal anterior cingulate cortex activation during reward proces-
sing [31–34].
Comparisons of neural circuit function during reward proces-

sing in BD and MDD adults [29, 35, 36] and in high-risk studies
[37, 38] motivate a need to understand the origins of these
differences prior to any symptom onset. Indeed, symptomatic BD-
risk youth have greater frontal-pole activation, decreased ventral
striatum–VLPFC [37], lower ventral striatum–anterior cingulate,
and greater pars orbitalis–orbitofrontal cortex functional connec-
tivity compared with youth offspring of parents with MDD and
other psychopathologies and healthy controls, even after remov-
ing the effects of symptoms and treatment [38]. To our knowl-
edge, no studies have a priori compared neural reward function
among healthy youth offspring with at least one parent with BD
(BD-risk), healthy youth offspring with at least one parent with
MDD (MDD-risk), and healthy offspring of families without first- or
second-degree relatives with psychopathology (HC), during a
never-symptomatic stage of relative psychological health. Under-
standing the differences among healthy at-risk groups may clarify
the origins and pathophysiology of these overlapping but distinct
conditions.
We previously described networks of regions implicated in

differentiating BD risk from MDD risk during emotion processing
[39], and neural markers of reward function in healthy offspring of
parents with BD [25]. Here, we investigated reward processing in
healthy offspring of parents with BD (BD-risk) and MDD (MDD risk),
and healthy controls (HC) to determine whether distinct neural
markers of reward function are present prior to symptom onset.
We used the Monetary Incentive Delay Task [16, 25] to probe
reward function. Based on previous studies [16, 25, 26, 29–38, 40],
we examined differences in activation and connectivity in a priori
regions of interest among BD-risk, MDD-risk, and HC youth. In
response to reward anticipation, we hypothesized that BD-risk will
exhibit decreased thalamic activation compared with MDD-risk
and HC. Based on previous studies [37, 38], during outcome of
rewards, we hypothesized that BD-risk will exhibit aberrant
activation of prefrontal regions and reduced negative
NAcc–VLPFC functional connectivity compared with MDD-risk
and HC during reward anticipation and outcome. Since reward
dysfunction in youth with mood disorders is associated with
significant functional impairments over time [5, 41–43], we
examined whether neural differences between BD-risk and
MDD-risk were related to impulsivity, novelty-seeking, and
behavioral strengths and difficulties, or conversion to psycho-
pathology at longitudinal follow-up approximately 4.4 years after
baseline.

METHODS
Participants
Participants included 126 healthy youth between ages 8 and 17 years with
no current or past Diagnostic and Statistical Manual of Mental Disorders
(DSM–IV) Axis-I disorder. Forty had at least one parent diagnosed with
bipolar-I disorder (BD risk), forty one had at least one parent diagnosed
with major depressive disorder (MDD risk), and forty five had no personal
or family history of psychopathology (HC). Youth were recruited from an
academic mood-disorder program and the surrounding community. The
Institutional Review Board approved the study, and written informed
assent and consent were obtained from youth and parents, respectively,
prior to study procedures. More details about participant inclusion and
exclusion criteria are presented in Supplementary Methods.

Assessment of psychiatric health
Participants were assessed using semistructured interviews by trained
raters as described previously [39] and in Supplementary Methods. Youth
were interviewed using the Children’s Depressive Rating Scale-Revised

(CDRS-R) [44], Young Mania Rating Scale (YMRS) [45], and Multidimensional
Anxiety Scale (MASC) [46] to confirm absent or low depression, mania, and
anxiety-symptom severity, respectively.
Youth were followed longitudinally over 4.37 ± 2.29 (mean ± SD) years

and evaluated for mood-symptom development. More details are
described in the Supplementary Methods. At baseline, the Revised
Dimensions of Temperament (DOTS-R) Survey [47], and Sensitivity to
Punishment and Sensitivity to Reward Questionnaire (SPSRQ) for children
[48] were completed by parents during euthymia. We focused on the
DOTS-R approach-withdrawal score, which indexes the degree of novelty-
seeking and on the SPSRQ impulsivity subscale, which measures levels of
dysfunctional impulsivity. At baseline and follow-up, parents completed
the Strengths and Difficulties Questionnaire (SDQ) [49], to assess
psychosocial strengths (alluding to adaptive behaviors) using the
Prosocial Behaviors SDQ subscale. Psychopathological difficulties (allud-
ing to problem behaviors) were also assessed using a combined Total
Difficulties SDQ subscale. All parents were euthymic at the time of
assessment.

Statistical analysis
We administered the Monetary Incentive Delay (MID) Task [50] during
functional magnetic resonance imaging (fMRI) to participants. Task design,
fMRI data acquisition, preprocessing, and statistical analyses including
power estimation are detailed in the Supplementary Methods.
To examine group differences in neural activation during anticipation

and outcome of monetary gain and loss, region-of-interest (ROI) analyses
were conducted. A priori ROIs were selected based on regions activated in
at-risk youth during reward processing, including the thalamus, VLPFC,
NAcc, and putamen [51]. We conducted analyses of covariance (ANCOVA)
for anticipation and outcome contrasts adjusting for gender, ethnicity,
mean-centered age, CDRS-R, and YMRS scores (p < 0.05, false-discovery
rate (FDR) corrected). Ethnicity was included as a covariate for all analyses
due to group differences in ethnicity.
We conducted psychophysiological interaction (PPI) analyses with a

whole-brain target mask and the thalamus as the seed region since this
ROI exhibited a group difference during anticipation gain versus no gain.
We examined group differences in context-dependent functional con-
nectivity, covarying for gender, ethnicity, mean-centered age, CDRS-R, and
YMRS scores (Z > 3.1, p < 0.05, family-wise error (FWE) cluster-corrected)
[52].
We conducted voxelwise whole-brain analyses to evaluate other regions

not included in our a priori hypotheses. Group comparisons were
conducted with voxelwise whole-brain F-tests covarying for gender,
ethnicity, mean-centered age, CDRS-R, and YMRS scores for anticipation
and outcome contrasts (Z > 3.1, p < 0.05, FWE cluster-corrected) [52].
Preliminary and exploratory linear regressions within BD risk and MDD

risk, covarying for age, gender, and ethnicity, were run to examine the
associations between reward brain markers and novelty-seeking and
impulsivity as assessed by the DOTS-R and SPSRQ and subsequent
behavioral outcomes assessed by follow-up SDQ Total Difficulties and
Prosocial scores.
Baseline SDQ scores were included as covariates for linear regressions

using follow-up SDQ variables. We applied a false-discovery rate (FDR)
correction for multiple tests to account for testing four regressions in each
group. To account for variability in longitudinal follow-up and to explore
the relations between neural findings and early stages of clinical
conversion to a mood disorder, we ran cox regression analyses with age,
gender, and ethnicity as covariates within BD risk and MDD risk. These
exploratory analyses are included in the Supplementary Results.
Additional post hoc analyses, including analyses across both risk groups,

age effects, and machine learning to predict group status, are included in
the Supplementary Methods, Supplementary Results, and Supplementary
Discussion.

RESULTS
Participant demographics and clinical characteristics
From the original 151 participants included in this study, three BD-
risk, six MDD-risk, and one HC youth were excluded due to not
having complete or useable scans for the MID task. An additional
four BD-risk, five MDD-risk, and six HC youth were excluded due to
excessive head motion in the scanner. The final sample consisted
of 40 BD-risk, 41 MDD-risk, and 45 HC youth.
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Demographic, clinical, behavioral characteristics, parent diag-
noses, and psychiatric diagnoses at follow-up are presented in
Tables 1, 2, and Supplementary Table 1. There were no group
differences in age, length of follow-up, IQ, CDRS scores, YMRS
scores, motion artifact, or task accuracy and reaction time (all ps >
0.05). There was a group difference in ethnicity, χ2 (2, N= 126)=
20.77, p= 0.01. HC included more individuals who identified as
Asian compared with BD risk and MDD risk. There were no

differences among the groups on the DOTS-R approach-with-
drawal score (p= 0.28) and SPSRQ impulsivity score (p= 0.52).
At baseline, there were no group differences in SDQ Prosocial

and Total Difficulties subscales (all ps > 0.05). At follow-up, there
were no group differences in the Prosocial subscale (p > 0.05).
However, at follow-up, there was a group difference in Total
Difficulties, F(2,82)= 3.50; p= 0.04, with the MDD-risk showing
increased total difficulties compared with HC (post hoc t-test: t(54)

Table 1. Participant characteristics at baseline.

BD-risk (n= 40) MDD-risk (n= 41) HC (n= 45) F or χ2 p

Female (N) 26 (65%) 18 (43.9%) 27 (60.1%) 2.04 0.13a

Baseline age 12.47 (2.76) 13.56 (2.24) 13.21 (2.65) 1.91 0.15b

Age at follow-up 17.44 (4.08) 16.94 (2.63) 18.15 (2.98) 1.51 0.23b

Length of follow-up (years) 4.87 (2.47) 3.29 (1.11) 4.94 (2.60) 7.47 <0.01b

Intellectual quotient (IQ) 113.67 (10.79) 112.75 (14.42) 117.25 (13.26) 1.43 0.24b

Children’s depression rating scale-R (CDRS) 21.41 (6.59) 20.26 (3.93) 18.89 (2.52) 3.14 0.05b

Young mania rating scale (YMRS) 2.23 (3.34) 1.95 (3.82) 0.82 (1.28) 2.63 0.08b

Multidimensional anxiety scale (MASC) 38.17 (15.81) 40.541 (16.42) 35.370 (17.95) 0.74 0.48b

Children’s global assessment scale (CGAS) 87.11 (4.93) 87.32 (5.59) 91.25 (4.93) 8.56 <0.01b

Ethnicity, N (%) 20.77 0.01a

White or Caucasian 31 (78%) 27 (66%) 21(47%)

Asian 1 (3%) 4 (10%) 15 (33%)

Black or African American 0 (0%) 1 (2%) 1 (2%)

Hispanic or Latino 1 (3%) 4 (10%) 3 (7%)

Native American or Pacific Islander 0 (0%) 1 (2%) 0 (0%)

Mixed race or other 7 (18%) 5 (12%) 5 (11%)

Parental diagnosis

Mother Father Mother Father

Bipolar disorder (BD) 29 11 0 0 – – –

BD only (14) (6) (0) (0)

BD+ anxiety disorder (4) (1) (0) (0)

BD+ anxiety disorder+ eating disorder (1) (0) (0) (0)

BD+ anxiety disorder+ substance abuse (3) (0) (0) (0)

BD+ anxiety disorder+ substance abuse + eating disorder (1) (0) (0) (0)

BD+ anxiety disorder+ substance abuse + psychosis (1) (0) (0) (0)

BD+ anxiety disorder+ ADHD (1) (0) (0) (0)

BD+ ADHD (1) (0) (0) (0)

BD+ eating disorder (1) (0) (0) (0)

BD+ psychosis (1) (0) (0) (0)

BD+ substance abuse (1) (4) (0) (0)

Major depressive disorder (MDD) 0 4 28 17 – – –

MDD only (0) (2) (20) (12)

MDD+ anxiety disorder (0) (1) (4) (5)

MDD+ anxiety disorder+ eating disorder (0) (0) (3) (0)

MDD+ anxiety disorder+ substance abuse (0) (0) (1) (0)

MDD+ substance use (0) (1) (0) (0)

Dimensions of temperament survey-revised

Approach-withdrawal 20.03 (3.83) 19.11 (3.81) 18.64 (3.21) 1.31 0.28b

The sensitivity to punishment and sensitivity to reward questionnaire (SPSRQ)

Impulsivity 1.99 (.62) 2.22 (.59) 2.16 (.75) 0.67 0.52b

Note. Values indicate the mean (SD) unless otherwise noted. ADHD attention-deficit/hyperactivity disorder, BD bipolar disorder, BD-risk youth at risk for bipolar
disorder, F/U follow-up, GAD generalized anxiety disorder, HC healthy control youth, MDD major depressive disorder, MDD-risk youth at risk for a depressive
disorder, OCD obsessive compulsive disorder, PTSD post-traumatic stress disorder.
aStatistic computed using χ2 test.
bStatistic computed using ANOVA.
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= 2.77; p= 0.01). Further, the change from baseline to follow-up
was significant for Total Difficulties (F(2,38)= 3.62; p= 0.04) but
not for the Prosocial subscale (p > 0.05). Details about group
differences during SDQ difficulties subscales: Emotional Problems,
Peer Problems, Conduct Problems, and Hyperactivity are reported
in Supplementary Table 2.

ROI-analysis results for MID task
During our ROI analysis, BD-risk had decreased activation in the
thalamus compared with MDD-risk and HC during the anticipation
of monetary gain versus no gain (F(2,118)= 4.64; p= 0.04, FDR-
corrected), shown in Fig. 1A. There were no other significant
differences in brain activation among the groups during anticipa-
tion of monetary loss versus no loss or in outcome conditions (FDR-
corrected p > 0.05). ROI regions that did not survive FDR correction
but were explored are depicted in Supplementary Fig. 1.

Functional connectivity
During anticipation of monetary gain versus no gain, BD-risk had
less connectivity between the thalamus and left VLPFC (Z > 3.1;
p < 0.01) and left angular gyrus compared with HC (Z > 3.1; p <
0.05), shown in Fig. 1B and Table 3. BD-risk had less connectivity
between the thalamus and left middle frontal gyrus (Z > 3.1; p <
0.001) and left superior temporal gyrus (Z > 3.1; p < 0.05)
compared with MDD-risk, shown in Fig. 1B and Table 3. There
were no other significant differences in functional connectivity
among the groups during anticipation of monetary loss versus no
loss or in outcome conditions (FDR-corrected p > 0.05).

FMRI whole-brain voxelwise results for MID task
BD-risk had decreased activation in the left cerebellum during
anticipation of monetary gain versus no gain (Z > 3.1; p < 0.001)
and decreased activation in the right cerebellar crus II during
outcome of monetary gain versus no gain or loss (Z > 3.1; p <
0.01), shown in Fig. 2 and Table 3. There were no other significant
whole-brain group differences in brain activation during
anticipation of monetary loss versus no loss or outcome of
monetary loss versus no gain or loss (Z > 3.1; p > 0.05).

Relation between baseline reward processing and behavior at
follow-up
Within BD-risk, decreased thalamus–angular gyrus connectivity
during anticipation gain versus no gain was associated with
increased impulsivity (β=−0.61; p= 0.04, FDR-corrected). Thala-
mus and left-superior temporal gyrus hypoconnectivity during
anticipation gain versus no gain was associated with decreased
follow-up SDQ Prosocial (β= 0.37; p= 0.04, FDR-corrected).
Decreased cerebellum activation during anticipation gain versus
no gain was associated with increased follow-up SDQ Total
Difficulties (β=−0.56; p= 0.012, FDR-corrected). No other sig-
nificant behavioral associations were observed between neural
activation and connectivity and follow-up SDQ, approach-with-
drawal, and impulsivity scores that survived multiple corrections in
the BD-risk or MDD-risk groups (all ps > 0.05). Behavioral associa-
tions that did not survive FDR correction but were explored are
reported in Supplementary Results.

Table 2. Participant diagnostic and behavioral characteristics at baseline and follow-up.

BD-risk (n= 40) MDD-risk (n= 41) HC (n= 45) F p

Baseline F/U Baseline F/U Baseline F/U Baseline F/U Baseline F/U

Diagnosis

Bipolar disorder (BD) 0 1 0 0 0 0 – –

BD+ substance abuse
(cannabis)+ panic
disorder+ ADHD

(0) (1) (0) (0) (0) (0)

Major Depressive Disorder
(MDD)

0 7 0 13 0 4 – –

MDD only (0) (7) (0) (8) (0) (2)

MDD+ generalized
anxiety disorder (GAD)

(0) (0) (0) (4) (0) (2)

MDD+ substance abuse
(cannabis)

(0) (0) (0) (1) (0) (0)

Unspecified depressive
disorder

0 2 0 2 0 1 – –

Generalized anxiety
disorder

0 3 0 2 0 2 – –

GAD only (0) (2) (0) (2) (0) (2)

GAD+ ADHD (0) (0) (0) (0) (0) (0)

GAD+ ADHD+OCD (0) (1) (0) (0) (0) (0)

Social Phobia 0 1 0 0 0 (0) – –

Strengths and difficulties questionnaire

Prosocial scale 8.54 (1.56) 8.78 (1.70) 8.13 (2.14) 8.67 (1.61) 8.68 (1.34) 9.09 (1.44) 0.63 0.57 0.54 0.57

Total Difficulties 7.38 (4.48) 6.48 (4.18) 8.65 (5.44) 7.67 (4.51) 5.84 (4.31) 5.00 (2.65) 1.91 3.50 0.16 0.04

Note. Values indicate the Mean (SD) unless otherwise noted. ADHD attention-deficit/hyperactivity disorder, BD bipolar disorder, BD-risk youth at risk for bipolar
disorder, F/U follow-up, GAD generalized anxiety disorder, HC healthy control youth, MDD major depressive disorder, MDD-risk youth at risk for a depressive
disorder, OCD obsessive compulsive disorder, PTSD post-traumatic stress disorder. Statistic computed using ANOVA.
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DISCUSSION
This study identified neural markers of reward processing that
distinguish healthy youth at familial risk for BD from healthy youth
at familial risk for MDD and low-risk healthy-comparison youth at a
stage of relative psychological health. BD-risk had decreased
thalamus activation and hypoconnectivity between the thalamus
and VLPFC, angular gyrus, middle frontal gyrus, and superior
temporal gyrus, while anticipating monetary gain relative to
MDD-risk and HC youth. Voxelwise, BD-risk youth had less
activation in the cerebellum during anticipation of monetary gain

and outcome of monetary gain relative to MDD-risk and HC.
Within BD-risk, decreased thalamus–angular gyrus connectivity
was associated with increased impulsivity at baseline, decreased
thalamus–superior temporal gyrus connectivity was associated
with decreased prosocial behavior at follow-up, and decreased
cerebellar activation was associated with increased total difficul-
ties at follow-up.
Reduced thalamic activation and connectivity during anticipa-

tion of gain may represent early and unique trait markers for BD-
risk, or markers of risk for broader affective psychopathology [16].

Fig. 1 Significant group differences within regions of interest and functional connectivity during reward processing. A BD-risk had
decreased activation in the thalamus compared with MDD-risk and HC during anticipation of a monetary gain versus anticipation of no
monetary gain. B The BD-risk group had reduced connectivity between the thalamus and left VLPFC and left angular gyrus compared with the
HC group, and reduced connectivity between the thalamus and left middle frontal gyrus and left superior temporal gyrus compared with the
MDD-risk group during anticipation of monetary gain versus no monetary gain. Z-statistics images were thresholded (Z > 3.1) using corrected-
cluster significance threshold of p < .05. Legend: blue: BD-risk, yellow: MDD-risk, gray: HC. Left side of the image corresponds to the left
hemisphere. Error bars are standard errors of the mean. n.s.= not significant; *p < 0.05, **p < 0.01, ***p < 0.001.
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The thalamus relays and integrates reward-related information
flowing from subcortical to higher cortical areas, enabling
encoding and modulation of salient, approach-related emotions
during reward processing [53]. Reward-sensitivity dysfunction in
BD-risk youth prior to symptom onset might originate from
aberrant limbic and executive control-network function, which
under typical circumstances, would recruit attentional control
processes to support goal-directed behavior. The preliminary
association between thalamic to angular gyrus hypoconnectivity
during anticipation of gain and increased impulsivity merits
replication. Unregulated perception and representation of goal
value may heighten reward sensitivity and elevated attention
impulsivity [54], increasing the risk for developing affective
psychopathology, as supported by thalamus–left angular gyrus
hypoconnectivity predicting increased risk of converting to a
mood or anxiety disorder across both risk groups (Supplementary
Results).
Thalamus–superior temporal gyrus hypoconnectivity in BD-risk

youth was associated with decreased prosocial behaviors at, on
average, 4-year follow-up. Lower prosocial behavior may be
indicative of a higher likelihood of clinically significant social and
behavioral problems in the future [55, 56]. Prosocial behaviors are
commonly developed in adolescence, when both social develop-
ment [57] and mania onset [3] are most acutely experienced. Thus,
it is possible for decreased thalamic connectivity to be a
vulnerability marker for future behavior problems in BD-risk
youth. To our knowledge, these findings provide the earliest
observation along the bipolar-risk continuum for thalamic network
dysfunction and its relations to reward sensitivity, decision-
making, and essential social behaviors at a time when mood
symptoms frequently emerge [58]. Future studies could poten-
tially consider targeting behaviors that improve thalamic function
and connectivity during early psychosocial interventions in BD-risk
youth who show signs of attentional impulsivity and problems
with prosociality [59].
During anticipation and outcome of monetary gain, BD-risk

youth demonstrated less activation in the left cerebellum and
right cerebellar crus II, respectively, compared with MDD-risk and
HC youth. The cerebellum, implicated in regulation, cognition, and
affect [60], bidirectionally connects to prefrontal, parietal cortical
areas, and limbic regions [61, 62], thereby regulating inhibition
and reward learning [63, 64]. Aberrant cerebellar function in BD
and BD risk [65–69] may contribute to bipolar-symptom expres-
sion [70–73]. Behaviorally, decreased cerebellar activation corre-
lated with increased propensity toward psychiatric dysfunction as
measured by follow-up SDQ total difficulties among BD-risk youth.
Understanding the role of the cerebellum in reward function in
bipolar disorder may clarify the significance of our voxelwise
observations.
Family studies provide evidence for distinct familial aggregation

patterns in mania and depression [11]. Because BD-risk youth may
be at risk for other, non-BD disorders and MDD-risk youth may be
at risk for BD, we evaluated risk markers of reward processing for
affective psychopathology by combining the high-risk groups and
comparing them to HC. ROI and whole-brain analyses revealed
that high-risk youth had decreased activation in the putamen,
ventrolateral prefrontal cortex, and cerebellar crus compared with
HC during outcome of monetary gain (Supplementary Fig. 2).
These regions have been previously associated with functional
abnormalities in MDD and BD [25, 37, 63, 64]. Thalamic activation
did not survive multiple-comparison corrections when BD risk and
MDD risk were combined (Supplementary Fig. 3), suggesting that
it may be uniquely critical for reward function in BD risk.
Our study is the largest to compare neural markers of risk in

healthy youth at familial risk for BD and MDD in relation to
subsequent behavioral and psychiatric outcomes. Nevertheless,
we acknowledge several limitations of this work. Neuroimaging
data were collected at one time point, which precludesTa
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determination of whether reward circuitry differences between BD
risk and MDD risk represent neural vulnerability markers or
compensatory adaptation to familial risk. Future studies should
evaluate neural markers longitudinally to examine changes in
brain activation and connectivity over time and delineate neural
biomarkers specific to BD risk versus MDD risk. A relatively wide
age range of youth participated and though there were no
significant age differences between groups or interactions
between age and group, differential patterns of activation within
other reward regions may undergo nuanced changes during
sensitive windows that are obscured through group averages.
With an expanded dataset, the wide age range may provide future
opportunity to granularly explore critical sensitive subwindows for
mood-disorder conversion. Finally, measures related to depres-
sion, mania, and anxiety were assessed at baseline to establish
asymptomatic status for inclusion and are continuing to be
collected over longitudinal follow-up with nonclinical or sub-
clinical values in a subset of the sample. This precludes us from
examining associations between neural markers and change in
psychiatric symptoms from an asymptomatic baseline to follow-up
across all participants. Future studies that evaluate dimensional
mood-symptom changes longitudinally may be able to delineate
neural biomarkers of BD risk relative to MDD risk while mapping
symptom development. Further, future studies could employ
machine-learning techniques to determine if neural correlates
predict risk-group membership (see our preliminary results:
Supplementary Table 3, Supplementary Fig. 4).
Our study highlights potential differential vulnerabilities for BD

risk compared with MDD risk that are well contextualized in
studies that differentiate these disorders when the syndromes are
fully expressed. Elucidating unique neural, behavioral, and clinical
predictors of future reward dysregulation is a step forward toward
identifying objective markers of BD risk and may provide selective
targets to better guide prevention and early interventions in youth
with and at risk for mood disorders. Supplementary information is
available at TP’s website.
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