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ABSTRACT 

Antidepressant Pharmacogenetics: Searching for Genetic Determinants  

of Treatment Response 

Jeffrey Brian Kraft Jr. 

 

Major depressive disorder is one of the most common and debilitating psychiatric 

disorders. Psychopharmacological agents are the most widely used form of treatment, 

although they are not universally effective and can produce significant side effects in 

some patients. The most common psychopharmacological agents used to treat major 

depression are the selective serotonin reuptake inhibitors, or SSRIs. Often, these drugs 

take several weeks to relieve depressive symptoms. Individualized therapy would have 

great clinical utility by identifying patients that are likely to respond positively to SSRI 

therapy a priori. The goal of this thesis is to investigate the use of genetic markers for 

guiding treatment with SSRIs. 

 We utilized several complementary pharmacogenetic approaches and two 

depressed populations treated with SSRIs. The first was a small (N=96) population given 

fluoxetine, and the second was a large (N=1,953) population taking citalopram. We used 

the fluoxetine population and a variant discovery approach to uncover novel variation and 

previously unknown tagging SNPs in the molecular target of SSRIs, the serotonin 

transporter, then employed a linkage disequilibrium mapping approach to investigate 

variants for association to response. Several variants in the promoter region of the gene 

were associated with fluoxetine outcome. No markers were associated with response 

when investigated in our citalopram population.  
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We also investigated relevant candidate genes for association with citalopram 

response and tolerance. Variants within the FEV gene, a master transcription factor in the 

serotonin pathway, were associated with a number of response phenotypes and mouse 

work implicates this gene in citalopram response. None of our other candidate genes 

demonstrated association with citalopram response. 

Utilizing a panel of approximately 20,000 non-synonymous cSNPs for association 

with citalopram response, one SNP in the gene LRP2 was significantly associated with 

response in the African American population. We also performed a whole genome 

association study using over 500,000 SNPs from across the genome. Using a two-stage 

study design, none of the most highly associated markers in the discovery sample were 

also associated in the validation sample. 
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CHAPTER 1 

INTRODUCTION TO MAJOR DEPRESSIVE DISORDER  

AND ANTIDEPRESSANT PHARMACOGENETICS 

 

1.1  Major Depressive Disorder (MDD) 

1.1.1  Scope of MDD 

Major depression is one of the most common and disabling psychiatric disorders 

(1). Depression is a leading cause of disability worldwide and the treatment of depression 

costs the United States more than $40 billion annually (2-5). Depression is strongly 

associated with suicide, which is the eleventh leading cause of death in the US overall, 

and the fourth leading cause of death among 25-44 year olds (4,6). The average age of 

onset for major depression is 25 years, and depression is often chronic and characterized 

by recurrences throughout the lifespan, with some estimates of recurrence as high as 85% 

(7). 

Major depressive disorder, as defined in the DSM-IV, is characterized by at least 

two weeks of pervasively depressed mood and/or diminished interest accompanied by 

vegetative and cognitive symptoms, including sleep and appetite disturbances, 

psychomotor and energy disturbances, cognitive changes and suicidal thoughts (8). 

Depression has high co-morbidity with other psychiatric disorders and substance abuse, 

and recent studies suggest that depression may be an independent risk factor for some 

somatic disorders such as heart disease and diabetes (9). Major depression affects 16% of 

the population in the United States over the course of a lifetime, with almost 6% of the 

population being depressed in any one year,  and the societal burden due to depression is 
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tremendous (1,10). By the year 2020, depression is estimated to become the leading cause 

of years of life lost to disability in both developing and developed countries (5). 

As with most psychiatric disorders, the disease we label major depressive disorder 

is likely to be heterogeneous with several different underlying etiologies (e.g. reaction to 

stressful events, induced by drugs, etc.), likely to be responsible. It appears, however, that 

most patients with major depression respond to a wide variety of treatments, including 

psychotherapies, medications, and other somatic treatments such as electroconvulsive 

therapy (11). Psychopharmacological treatment is currently the most common form of 

treatment and in particular, selective serotonin reuptake inhibitors (SSRIs) have become 

the most frequently prescribed antidepressant (12). 

1.1.2  Antidepressant Response 

While effective treatments for depression are available, it is clear that there is a 

large degree of clinical heterogeneity in response to antidepressants. The response rate to 

most antidepressants in clinical trials is on the order of 50-60%, with an even lower 

remission rate of 35-45% (13,14). Thus far several clinical or demographic characteristics 

have been associated with poor response to antidepressants including non-Caucasian 

ancestry, unemployment, low income or education, longer MDD index episodes, and 

concurrent psychiatric disorders (15). Thus far no reliable biological predictors have been 

found to be associated with antidepressant response (16). Because of this, patients who 

do not respond to their first antidepressant treatment often have to try other 

antidepressants in order to achieve remission. This trial and error process puts an 

enormous burden on the patient especially given the length of treatment required to gauge 

clinical effectiveness of the drugs (typically 4 weeks or longer). 
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Another problem is the adverse effects of antidepressants which often result in 

non-compliance and discontinuation of treatment. However, there is currently no way to 

predict whether or not a patient will experience the adverse effects. With the use of 

selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine and citalopram, side 

effects such as nausea, sexual dysfunction, headache, sleep disturbance, tremor, and 

weight disturbances are commonly reported. One example of the magnitude of the 

problem is sexual side effects, which can occur in ~50% of those taking SSRIs. A 

potentially devastating side effect involves increases in suicidal thinking among 

depressed patients, particularly adolescents, prescribed SSRIs although other studies have 

shown no increased risk of suicide due to SSRI treatment and this controversial issue 

remains highly contentious (17,18). 

 

1.2  Antidepressant Pharmacogenetics 

1.2.1  Pharmacogenetics Overview 

Pharmacogenetics, defined as the study of genetic variability between individuals 

in response to exogenous substances, as a field dates back to the late 1950s. The earliest 

modern pharmacogenetic discoveries of hereditary variation in drug response involved 

drugs such as succinylcholine, primaquine, and isoniazid. These classic studies set the 

stage for subsequent pharmacogenetic investigation, which currently focus on the genes 

that contribute to the pharmacokinetics (the actions of the body on drugs over a period of 

time) and pharmacodynamics (the biochemical and physiological effects of drugs and 

their mechanisms of action) of a particular drug (19). 
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A great deal is known about the common inter-individual variation in Phase I 

(oxidation, reduction, or hydrolysis) and Phase II (conjugation) drug metabolizing 

proteins, at both the enzymatic and DNA sequence levels (20). For example, an extensive 

catalog of functional variants and haplotype configurations in the genes encoding 

cytochrome P450 enzymes has been amassed (21). A major example of the success of 

pharmacogenetics involves the drug metabolizing protein, thiopurine methyltransferase 

(TPMT). Children who inherit two defective copies of this gene can experience fatal 

hematological side effects when administered 6-mercaptopurine, a chemotherapeutic 

agent used in pediatric leukemia, while patients with two normal copies of the gene for 

this enzyme require higher doses of the medication (22). 

Numerous examples exist for members of the cytochrome P450 family of 

metabolic enzymes but efforts at identifying genes involved in pharmacodynamics for 

particular medications have also been successful. Individual variations and haplotypes in 

the type 2 β-adrenergic receptor have been found to be associated with response to β-

agonists in the treatment of asthma (23). In addition, the dosing of warfarin, was recently 

shown to be significantly influenced by the subject’s genotype at a pharmacodynamic 

target of the drug (VKORC1) (24). 

1.2.2  Pharmacogenetics of Response to Tricyclic Antidepressants 

Studies performed in the 1960s and 1970s revealed that upon repeated 

administration of one or another class of antidepressants, both response and non-response 

to antidepressant class were significantly concordant between family members (25,26). 

This finding has been replicated more recently in relatively small samples (27,28). The 

important role of cytochrome P450s in tricyclic antidepressant (TCA) metabolism is 
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well-documented, and is reflected in the extensive work showing correlation between 

blood levels and response and toxicity, as well as the potential benefits of therapeutic 

drug monitoring for patient safety and reduced costs (29). 

Pharmacogenetic analysis guided by these observations revealed in one study that 

patients missing CYP2D6 could not be effectively treated with tricyclics (30). This locus 

has been suggested to account for 34% of the variation in plasma nortriptyline levels 

(31). Some authors recommend that pharmacogenetic considerations be taken into 

account with the use of tricyclics, suggesting substantial dose reductions in persons with 

the “poor metabolizer” phenotype of CYP2D6 or CYP2C19 (32). 

1.2.3  Pharmacogenetics of SSRI Response 

The current widespread use of SSRIs in depression along with recent advances in 

molecular genetics have resulted in sizeable body of literature on SSRI pharmacogenetics 

(33). The majority of these studies focus on putative pharmacodynamic genes related to 

monoamine function, including the serotonin transporter (the molecular target for SSRIs), 

tryptophan hydroxylase 1, monoamine oxidase A, and the 1A and 2A serotonin receptors. 

These case-control studies as a whole examine a small number of polymorphic loci in 

these genes, and utilize fairly small sample sizes, often with heterogeneity in diagnosis 

(unipolar and bipolar depression) and medication use.  

An Italian group has shown in a series of studies some evidence of an association 

between the long allele of a functional promoter polymorphism in the serotonin 

transporter and loosely defined depression, including cases of bipolar disorder in the 

depressed phase of the illness (34-37). Other groups have reported similar findings and 

these are further explored in Chapter 2 (38-40). These reports are of interest as this 
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polymorphism is usually defined by the long and short alleles, with the long allele 

leading to increased in vitro transcription of the SLC6A4 gene and serotonin uptake in 

cell lines (41). Additional notable findings in the pharmacogenetics of SSRI response 

have included associations to tryptophan hydroxylase (34), serotonin 2A receptor (42), 

GRIK4 (43), G protein β3 (44,45), angiotensin converting enzyme (46), and the 

glucocorticoid receptor FKBP5 (47). 

There has been little exploration of association between genetic variants in any of 

these genes and adverse events related to SSRI treatment. A small study showed that the 

short allele of the serotonin transporter promoter polymorphism was associated with the 

development of insomnia and agitation in a population of 36 outpatients (48). A study by 

Murphy et al of 124 subjects with geriatric depression treated with the SSRI paroxetine 

showed that the genotype for a variant in the 2A serotonin receptor (HTR2A) predicted 

both greater rates of discontinuation and severity of adverse events (49). 

There have also been several previous studies investigating the relationship 

between SSRI medications and pharmacokinetic genes. The pharmacokinetics of many 

SSRIs, including citalopram, are affected by CYP2D6 and CYP2C19 genotype status, 

although there is no evidence regarding how plasma levels of citalopram influence 

clinical efficacy or tolerance (50). In fact, the Evaluation of Genomic Applications in 

Practice and Prevention (EGAPP) initiative recently found insufficient evidence to 

support a recommendation for or against use of CYP450 testing in adults beginning SSRI 

treatment for non-psychotic depression (51). In a study of 53 Chinese patients with major 

depression taking citalopram, CYP2C19 genotype status was significantly associated 
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with clearance of citalopram and the metabolic ratio of desmethylcitalopram to 

citalopram, but not associated with the primary clinical outcome (52). 

 

1.3  Genomics and Association Studies 

1.3.1  Overview 

The effort to sequence the human genome has dramatically altered the potential 

impact of pharmacogenetics on human health as the vast majority of human genes have 

now been localized and annotated (53,54). Perhaps one of the greatest benefits of 

sequencing the human genome has been the discovery of the incredible level of sequence 

diversity between humans. Single Nucleotide Polymorphisms (single base pair 

substitutions) are the most abundant type of DNA variation with over 12 million 

individual SNPs having already been identified and referenced at dbSNP. Single 

nucleotide polymorphisms are effective markers for genetic studies, partly out of their 

abundance, but also due to the development of efficient and inexpensive methodologies 

for assaying SNPs (55). 

In the context of the Human Genome Project, pharmacogenetics can now be 

broadened to “pharmacogenomics”, with our new annotated knowledge of genes, 

proteins, and SNPs allowing a more general analysis of the many different genes that 

may determine drug behavior. 

1.3.2  Genetic Association Studies  

Pharmacogenetic phenotypes are complex traits with contributions from 

pharmacodynamic genetic variants (transporters, receptors), pharmacokinetic genetic 

variants (absorption, metabolism, elimination), and environmental factors. Given the 
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genetic complexity of antidepressant response, a powerful strategy for determining these 

genetic factors would be through use of an association study, also termed linkage 

disequilibrium (LD) mapping (56). In LD mapping, unobserved historical recombinations 

in an outbred population are used to identify genes that influence the risk for a trait by 

exploiting the physical proximity between a susceptibility gene and a marker locus (57). 

LD mapping thus assumes that some proportion of the cases have a common 

ancestor who had the disease-associated variation. The individuals who share this 

variation are also likely to share alleles at sites neighboring the actual disease locus due 

to linkage disequilibrium (58). The main advantage of this approach rests on the 

statistical power derived from the ability to collect substantial numbers of unrelated cases 

and controls (59). A number of interacting factors influence the likelihood of success in 

LD mapping designs, including the effect size of the trait variant, frequencies of marker 

and trait alleles, as well as LD relationships (60). 

A disadvantage of LD mapping is the reliance on the assumption that common 

disorders are caused by high frequency variants, which is known as the common disease-

common variant hypothesis (CDCV) (61,62). This assumption is useful for LD mapping, 

since rare alleles (which are “newer”) generally do not have significant LD with 

neighboring alleles, nor are common enough to be seen sufficiently often enough to allow 

reliable measures of association. Unless the actual causative rare allele is genotyped, it 

will generally not be captured by LD mapping. The CDCV hypothesis states that 

common alleles, each contribute by themselves very small increases in risk (e.g. odds 

ratios from 1.1 to 1.5 for single alleles), but when combined and interacting with each 

other can determine the overall genetic risk for an individual (63). 
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The common disease-common variant hypothesis is not universally accepted, and 

an alternative framework known as the common disease rare variant (CDRV) hypothesis 

has been proposed. This hypothesis states that for any given complex phenotype several 

(on the order of 100s – 1,000s) of rare variants exist in different genes and pathways that 

each are individually sufficient to cause the trait (64,65). This model is most similar to 

the molecular basis of most known Mendelian disorders. Unfortunately, using outbred 

populations it is difficult to collect enough samples to have adequate power to detect 

extremely rare variants (< 1% minor allele frequency) and family based studies are often 

not practical in pharmacogenetics, given the low likelihood that an extended pedigree 

would have sufficient numbers of members treated with the same medication. 

1.3.3  Whole Genome Association Studies 

A recently developed extension of LD mapping involves interrogating several 

thousands of markers across the entire genome and has been termed “whole genome 

association” (61). A major advantage of whole genome studies is that no understanding 

of the biological mechanism of the phenotype is required a priori, allowing susceptibility 

genes to be identified that were not considered candidate genes for the phenotype. To 

date a number of whole genome association studies have been published, and while there 

have been a few exceptional findings, results have been mixed and debate remains 

regarding the utility of these endeavors (66-73). For example, recent large studies of type 

II diabetes (T2D) found marginal genome-wide significance for a number of genes and 

required combining data from all these studies (FUSION, WTCCC, DBI, & DiaGen) to 

uncover novel susceptibility genes for T2D and also demonstrated that integrating the 

results from multiple genome scans can aid the prioritization of signals for replication, 
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and allow confirmation of genes at appropriate levels of statistical confidence not 

possible with individual genome-wide association studies (70-73). 

 

1.4  Pitfalls for Linkage Disequilibrium (LD) Mapping 

1.4.1  Marker Selection 

There are numerous challenges to genetic association studies, whether in either a 

candidate gene or whole genome context. An obvious issue with these studies is which 

SNPs to genotype: with over 12 million known SNPs in the human genome and candidate 

genes often extending beyond 100kb, current genotyping technologies prohibit complete 

ascertainment of all the SNPs within most candidate genes or all the SNPs in the human 

genome in reasonably sized clinical samples. Therefore, several groups have developed 

methods that exploit the LD between markers in order reduce genotyping redundancy 

while maintaining the genetic diversity within a region. One of the simplest methods 

attempts to select proxies, or “tagSNPs”, in order to capture allelic information at other 

loci based solely on the pairwise r2 measure of LD (74). Other methods select SNPs 

(haplotype tagging, or htSNPs) that capture the underlying haplotype structure (75,76). 

There is no consensus in the field on which method has the most efficiency or power in 

association studies but all of this may be rendered irrelevant in the near future with whole 

genome resequencing. For the candidate gene studies we undertook, we selected tagSNPs 

based on the r2 metric for LD alone. 

For whole genome association studies the SNP marker panels are on fixed arrays 

in order to reduce production costs, therefore the investigator cannot change the SNPs to 

be genotyped. Current marker panels for whole genome studies have focused on gene-

centric SNPs (ParAllele Biosciences), evenly spaced SNPs (Affymetrix), or used public 
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resources like HapMap to select SNPs based on patterns of LD (Illumina). In our gene-

centric analysis presented in Chapter 6, we used a combination of approximately 40,000 

gene-centric markers, including all known non-synonymous SNPs, by ParAllele 

Biosciences and in our genome-wide association discussed in Chapter 7, we used 500,000 

evenly spaced SNPs utilizing the Affymetrix platform. 

1.4.2  Phenotypic Heterogeneity 

As with all genetic studies of complex traits, phenotypic heterogeneity is a 

concern. We can safely assume that the majority of clinical diagnoses in psychiatry, as 

has been shown with several types of cancer, are composed of different subtypes with 

distinct molecular mechanisms. Diagnostic techniques are limited in all fields of 

medicine and this is an even greater concern for psychiatric phenotypes, since these 

phenotypes usually require the use of structured interviews or questionnaires for 

diagnosis. 

In our study, we attempted to limit phenotypic heterogeneity through the use of 

response pattern analysis (77,78). SSRI and other antidepressant medications have high 

placebo response rates, reaching 50% in some clinical trials. It has been shown that 

patients who have a delayed response (>2 week) to active medication and continue to 

maintain their response every week until week 12 (“specific responders”) are more likely 

to relapse if blindly switched to placebo than patients displaying an early and inconsistent 

response (“non-specific responders”) (78). Although the delayed response may not be a 

critical factor in determining true drug response, a sustained response seems to strongly 

predict specific response status (79). Thus, a subset of patients that appear to be 

responding to the medication are in fact having a placebo, or non-specific response. We, 
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therefore, performed association tests with this phenotypic subtype in order to limit 

heterogeneity by accounting for non-specific response to SSRI medication.  

1.4.3  Population Stratification 

One of the primary concerns for population-based genetic association studies is 

ethnic stratification. The desire to avoid the biases due to population stratification has 

caused family-based association tests to become quite popular in human genetics (80). 

Unfortunately, as stated above, pharmacogenetic studies generally cannot efficiently 

collect family based samples. Population stratification occurs when cases and controls 

have different allele frequencies due to differences in background population that is 

unrelated to outcome status. In the work described in this thesis, the majority of markers 

investigated showed some level of differentiation in allele frequency based on self-

reported race. For population stratification to have a confounding effect on genetic 

association studies, there also must be a difference in baseline response (or disease) rates 

between the ancestry subgroups (81). In the STAR*D sample set, described in Chapters 3 

thru 7, using self-reported race as a proxy for ancestry, several differences in response 

and tolerance existed across racial groups, indicating the need to adjust for population 

stratification in this sample. 

 Uncorrected population stratification can cause false positive associations and 

can also mask true associations that occur within subpopulations (81). Several methods 

have been proposed to adjust and correct for population stratification. The simplest 

involves subdividing the clinical population based on self-reported race and testing for 

association within each substratum. It has been shown that self-reported race correlates 
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well with genetic ancestry based on microsatellite and large-scale SNP genotyping 

(82,83). We used this method in our candidate gene studies in the STAR*D sample.  

Another method, known as genomic control (GC), uses unlinked markers across 

the genome to produce a scaling factor that is proportional to the degree of stratification 

(84). This scaling factor is then used to adjust the χ2 value of individual SNP tests for 

differences in population background. The disadvantage of this method is that it applies 

the same scaling factor to all SNPs tested, when clearly some SNPs are more 

differentiated across populations than others. We used this GC procedure in our candidate 

gene studies in the fluoxetine sample, as described in Chapter 2. 

An alternative to the GC procedure is structured association, which also uses 

unlinked markers to detect stratification, then attempts to define underlying subgroups 

within the stratified sample (85). After subpopulations are identified, association testing 

can then be performed within homogeneous subpopulations and additionally, a composite 

test statistic across all subpopulations can be calculated. A popular Markov chain Monte 

Carlo (MCMC) method for modeling population substructure is implemented in the 

program structure, which estimates the proportion of ancestry (Q) from “K” populations 

for each individual (86). Given that population subdivisions may be not occur as discrete 

clusters and the presumed levels of admixture in samples drawn from the United States, 

correctly choosing “K” is a difficult task. One way to select “K” is to run the model for 

several values of “K”, and then use the estimates of the posterior probability of the model 

fit to select the most parsimonious value. In our whole genome association study 

described in Chapter 7, we used a structured association method to correct for population 

stratification within the STAR*D sample. 
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An alternative to using self-reported ancestry and structured association is a 

method called principal components analysis (PCA). This multivariate method utilizes 

genotype data to infer continuous axes of genetic variation. Intuitively, the axes of 

variation reduce the data to a small number of dimensions, describing as much variability 

as possible between the samples (87-90). A series of principal components are generated 

which capture variability between samples due to stratification that are then used as 

covariates in regression analyses. This method is not sensitive to the number of axes 

inferred or subject to the computational limits like structured association methods. 

1.4.4  Corrections for Multiple Comparisons 

Another challenge to association studies is the issue of multiple comparisons. Put 

another way, the likelihood of type I statistical error increases when one subjects a 

number of independent observations to the same significance criterion that would be used 

when considering a single event. In LD mapping, often several SNPs per gene are 

genotyped (or several thousand in whole genome studies), and some markers will reach 

statistical significance due to chance alone. One way to account for these multiple 

comparisons is to use a Bonferroni correction. For example, if we set a p < 0.05 Type I 

(α) error rate as our study-wide criteria for significance and interrogate 500 markers. A 

Bonferroni corrected criteria for significance would be p < 0.0001 (α/N) for each 

individual SNP comparison. Bonferroni correction assumes the individual tests are 

independent of each other and clearly this is not the case for closely linked SNPs due to 

linkage disequilibrium, therefore this correction is generally considered overly 

conservative by geneticists (91). Permutation based empirical significance testing can 
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allow for more accurate assessment of association in the presence of linkage 

disequilibrium (92). 

An additional method for controlling type I error is to use a split sample study 

design (93). With this method a study sample could be split into two roughly equal 

halves: a discovery set, in which all markers will be genotyped, and a validation set, in 

which only the markers that reached the stated significance threshold in the discovery set 

are genotyped. Besides the cost-savings in terms of genotyping load this method also 

sidesteps some of the multiple testing issues since in the validation set only a subset of 

the total markers are tested, which requires less adjustment. However, by splitting the 

sample, we also greatly sacrifice power (94,95). We utilized a split sample design for our 

whole genome association study. There is still debate on which design is most powerful 

for whole genome association studies.  

 

1.5  Summary of Chapters 

 In this study, we interrogated naturally occurring genetic variants for association 

to antidepressant response. The goal of this work is to identify genetic markers that can 

help guide drug choice or dosing of psychopharmacological therapy with an SSRI. This 

work was performed using two clinical populations of depressed subjects administered 

SSRIs: a small (N=96) population taking fluoxetine (Chapters 2), and a larger (N=1,953) 

population taking citalopram (Chapters 4 thru 7). A flow chart of the projects described 

in this thesis is shown in Figure 1.1. 

In Chapter 2 of this dissertation, we utilized dHPLC and direct sequencing 

approaches to identify new variants within the SSRI pharmacodynamic target gene, the 
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serotonin transporter (SLC6A4). We focused our investigation on the coding regions, 

intron-exon boundaries and 5’ conserved non-coding sequence of this gene. To this end 

we screened 7.4kb in each of 96 patient samples in the fluoxetine population and 

discovered 27 variants of which 21 had not been previously described within the dbSNP 

database. Only one SNP (rs25531) showed modest association with our response 

phenotype (p < 0.01). Also of interest, the promoter length polymorphism did not show 

association within the fluoxetine sample (96). 

Chapter 3 attempts to further explore association between the serotonin 

transporter and antidepressant response utilizing a much larger population taking 

citalopram (STAR*D). We selected tagSNPs and genotyped 10 SNPs and the promoter 

length polymorphism in the SLC6A4 locus. No tagSNPs or haplotypes, including the 

variants that were associated with fluoxetine response in Chapter 2, were significantly 

associated with citalopram response or response specificity (97). 

In Chapter 4, we investigated the role of the ETS transcription factor FEV for its 

role in citalopram response. We utilized HAPMAP data along with the direct sequencing 

of coding regions, intron-exon boundaries and 5’ conserved non-coding sequence to 

select tagSNPS and other variants of interest within FEV. We then genotyped these nine 

markers in the entire STAR*D clinical population searching for association with 

citalopram response. Several markers were significantly associated with citalopram 

response or response specificity (p < 0.05). In collaboration with Miles Berger from the 

laboratory of Larry Tecott, we also assessed the role FEV using knockout mice of the 

murine homologue to FEV, Pet-1. Utilizing the tail suspension test we observe an 
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approximate 50% reduction in immobility time in wild type mice however, Pet-1 

knockout mice show no difference (p < 0.01). 

 Chapter 5 explores the role of the SSRI pharmacodynamic candidate genes: 

activator protein 2 beta (AP-2β), activator protein delta (AP-2δ), serotonin 1B receptor 

(HTR1B), and its adaptor protein p11 (S100A10), for association to citalopram response 

utilizing an LD-based candidate gene approach. We genotyped 26 tagSNPs across these 

four candidate genes. No tagSNPs or haplotypes were significantly associated with 

citalopram response or response specificity. 

In Chapter 6, we make use of a gene-centric approach by genotyping 

approximately 40,000 SNP markers with about 20,000 non-synonymous, coding SNPs 

and 20,000 tagSNPS in the discovery set of the citalopram population. Using a 

combination of low p value and high odds ratio as selection criteria, we then chose SNPs 

that were then genotyped in the remaining half of the citalopram population, in an effort 

to validate the initial association. We attempted to replicate 45 SNPs that were most 

highly associated with our response phenotype. One of these SNPs (rs6716834) 

replicated their initial association in the validation set (p = 0.005) within the African 

American ethnic group. As a secondary analysis, we also attempted to utilize the power 

of the entire sample in a one-stage design in which 12 SNPs showed significant 

association with response in the entire citalopram population, 5 in the Caucasian 

subgroup and 7 in the African American subgroup. 

In Chapter 7, we use a genome-wide approach by genotyping approximately 

500,000 SNP markers spread across the genome in the citalopram population. We use a 

two-stage design in which we split the sample, and then use one group to look for 
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associated markers (discovery) and the other group to validate the initial associations 

(validation). A number of markers that were highly associated within the discovery 

sample were replicated in the validation sample. This work has revealed a number of 

interesting genes that may play an important of role in antidepressant response. It may 

also identify potential pathways for citalopram’s molecular mechanism of action, which 

is not fully understood. 

Chapter 8 summarizes these results and discusses the current challenges facing 

pharmacogenetics and complex disease association mapping in general, and offers 

suggestions for future directions.  
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CHAPTER 2 

SEQUENCE ANALYSIS AND VARIANT DISCOVERY IN THE SEROTONIN 

TRANSPORTER (SLC6A4) FOR ASSOCIATION WITH RESPONSE TO 

FLUOXETINE† 

 

2.1  Introduction 

Major depressive disorder (MDD) is a prevalent and disabling psychiatric 

disorder characterized by depressed mood, a number of neurovegetative symptoms, and 

functional impairment (1). Selective serotonin reuptake inhibitors (SSRIs) are effective 

medications for MDD and are the most widely prescribed antidepressants worldwide, and 

among the most commonly prescribed medications of any type. Despite recent advances 

in antidepressant pharmacotherapy, response rates are variable and are typically about 

60% for the first drug administered (2). The underlying mechanism for this variation is 

complex, involving both environmental and genetic factors and their interaction (3-5). 

One possible genetic mechanism involves the SLC6A4 gene, which encodes the 

serotonin transporter. This protein initiates the antidepressant effect of SSRIs, which are 

drugs that are thought to act primarily by terminating serotonin reuptake by the 

presynaptic serotonergic neuron.  

Many studies have tested for genetic association between deoxyribonucleic acid 

(DNA) variants in the serotonin transporter and SSRI response (6). Most studies have 

focused on a single common polymorphism located in the promoter region of SLC6A4. 

This insertion/deletion polymorphism (HTTLPR), reported to be 44 base pairs (bp) in 

                                                           
† This chapter has been published previously:  Kraft J.B., Slager S.L., McGrath P.J., & Hamilton S.P. “Sequence Analysis of the 
serotonin transporter and associations with antidepressant response.”  Biological Psychiatry 2005; 58(5): 374-381. Reprinted with 
permission. 
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length, has two common alleles, the long and the short, with the long allele having been 

shown to have higher in vitro transcription than the short allele (7). The results of these 

studies have been mixed. Two studies, including one of our own, found no association 

between SSRI response and the promoter variant (8,9). Multiple studies have reported a 

positive association with the long allele (10), and two studies have reported a negative 

association between the long allele and treatment response (11,12). This disparity among 

these studies might be partially explained by the fact that the studies finding positive 

association between response and the long allele were investigating Caucasian subjects, 

whereas those that found a negative association were studying Asian populations. No 

study has focused on Africans or African Americans, and the allele frequency differences 

between African American and other populations add complexity to association studies in 

diverse populations (13). Meta-analysis suggests that this polymorphism might be 

associated with MDD itself, although with a small effect (14). There is an equivocal 

imaging literature regarding the actual functional effect of HTTLPR genotype on 

transporter availability (15,16), although some groups have reported associations between 

genotype and functional imaging phenotype (17,18).  

SLC6A4 covers 37.8 kilobases (kb) of genomic sequence on chromosome 

17q11.2, contains a 630-amino-acid open reading frame, and has 15 exons, including 2 

non-coding exons, designated 1A and 1B (19). A study done by Glatt and colleagues 

screened the exonic regions for variants in an uncharacterized sample of 450 people and 

found the locus to contain no common variants with the minor allele frequency (MAF) > 

10%. They did, however, find 18 rare variants (MAF < 1%) and 2 variants occurring at 

allele frequencies of 0.01 and 0.03 (20). A mutation screen in a much smaller disease 
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sample similarly yielded no coding variants (21). Given that SLC6A4 is the therapeutic 

target of SSRIs, we sought to screen a well phenotyped population of persons with MDD 

for DNA variants in exons as well as surrounding introns to accomplish two things: 1) to 

identify SLC6A4 DNA variation in a depressed population; and 2) to further investigate 

the role of the SLC6A4 locus in antidepressant response. This work represents a natural 

extension of our previous work using the same gene and clinical sample, in which we 

identified association between anonymous markers and antidepressant response (9). 

Specifically, we found a SNP, rs25533, in the promoter region associated with 

antidepressant response but found no association with the HTTLPR and antidepressant 

response. To do this, we tested for association between variants in the sample and a 

response phenotype. We tested both single variants as well as haplotypes. We also 

describe biochemical assays suggesting that a single nucleotide polymorphism (SNP) in 

the promoter region of the gene might play a role in the transcription of the serotonin 

transporter. 

 

2.2  Materials and Methods 

2.2.1  Fluoxetine Study Sample 

We genotyped 96 research subjects diagnosed with unipolar MDD enrolled in a 

National Institute of Mental Health–funded fluoxetine discontinuation protocol (Patrick J. 

McGrath, principal investigator, New York State Psychiatric Institute). Diagnoses were 

established with the Structured Clinical Interview for DSM-IV Axis I Disorders–Patient 

Edition (22). No minimum score on a depression severity rating scale was required for 

inclusion. Baseline medical screening included medical history, physical examination, 

 30



electrocardiogram, complete blood count, urinalysis, blood chemistry, thyroid function, 

and a urine drug screen. 

Exclusion criteria were: significant suicide risk; pregnancy, breastfeeding, or 

absence of effective contraception for women; unstable physical disorders; neurological 

disorders significantly affecting central nervous system function, including history of 

seizures; lifetime history of any organic mental disorder, psychotic disorder, or mania; 

substance abuse or dependence active in the previous 6 months, excepting nicotine 

dependence; concurrent use of medications suspected to cause or exacerbate depression 

(e.g., β-blockers or corticosteroids) or to have significant antidepressant or anxiolytic 

properties; clinical or laboratory evidence of hypothyroidism without adequate and stable 

replacement; history of non-response to an adequate SSRI trial; or SSRI in a past or 

current depressive episode (defined as a 4-week trial of a minimum of 40 mg of 

fluoxetine or its daily equivalent). Study subjects were included if they occasionally took 

a non-benzodiazepine hypnotic, thyroid hormone replacement at a constant and effective 

dose for at least 3 months before the study, or oral contraceptives not temporally 

associated with onset or exacerbation of depression. Diuretics, oral hypoglycemics, and 

antihypertensives were permitted. Subjects in an established psychotherapy not believed 

to be effective for depression (i.e., other than interpersonal or cognitive behavioral 

therapy) were included. No subject began psychotherapy at entry or during the study.  

Subjects’ response patterns were categorized as responders, non-responders, or 

placebo-responders by pattern analysis after 12 weeks of open-label fluoxetine 

monotherapy (23). Subjects were subsequently followed for 12 months with double-blind 

fluoxetine maintenance versus placebo and again categorized by response type. Response 
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was judged by use of the Clinical Global Impression of Improvement score, whereby a 

score of “much improved” or “very much improved” was required for response. The 

mean (SD) baseline score on the 17-item Hamilton Rating Scale for Depression (HAMD-

17) for all subjects was 23.18 (4.9) (n = 93, missing = 3). The mean end of treatment 

HAMD-17 score for responders was 4.42 (2.9) (n = 74, missing = 3). The mean end of 

treatment HAMD-17 score for non-responders was 15.6 (6.0) (n = 17, missing = 2).  

An additional response phenotype was generated with response pattern analysis to 

attempt to decrease the apparent response to medication that is actually a placebo 

response. This analysis is based on the observation that a pattern of delayed but sustained 

response to medication characterizes “placebo” or non-specific response. Response 

pattern was defined in the following manner (24,25). “Specific” response was defined as 

response at week 12 with response beginning after the second week and sustained until 

week 12; “non-specific” or “placebo-pattern” response began in weeks 1 or 2 and was not 

sustained for all subsequent weeks until week 12. The average (±SD) age was 37.1 ± 11.6 

years, and the male/female ratio was 49% to 51%. There were 77 responders (80%) and 

19 non-responders (20%) to a 12-week trial of fluoxetine. Use of pattern analysis 

indicated that 20 of 77 responders (26%) were non-specific responders. The breakdowns 

of non-responder, responder, & specific responder can be seen in Figure 2.1. The subject 

population was 78% Caucasian, 6% African American, 8% Hispanic, 5% Asian, and 3% 

other. No significant differences in ethnicity (by exact test, p = 0.07) or age (by t test, p = 

0.19) were found between responders and non-responders. Institutional review board 

approval was obtained from the New York State Psychiatric Institute and the University 

of California, San Francisco, and each research participant provided informed consent.  
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2.2.2  Gene Sequence and Polymerase Chain Reaction Primers 

Genomic and complementary DNA sequences were obtained from GenBank 

(accession numbers AC104984 and BC069484), and primers were designed with Primer3 

software (26) and manufactured by Invitrogen (Carlsbad, California). Primers were 

designed to give products between 350 bp and 600 bp in length. These products were 

designed to span exons and include flanking intronic sequence at the 5′ and 3′ ends. 

Eighteen primer pairs were designed to screen 7.9 kb of sequence, including all 15 exons 

(NT_010799) and the promoter length polymorphism (HTTLPR) (accession numbers 

AB061799 – AB061801) in the promoter region (Table 2.1).  

2.2.3  DNA Analysis  

Genomic DNA was extracted from whole blood with a Puregene genomic DNA 

purification kit (Gentra Systems, Minneapolis, Minnesota). Deoxyribonucleic acid was 

quantified with an ND-1000 spectrophotometer (NanoDrop Technologies, Rockland, 

Delaware).  

2.2.4  DNA Amplification  

For all 96 samples, amplification was performed in a final volume of 10 μL 

containing 20 ng genomic DNA template, 50 μmol/L deoxyribonucleoside triphosphates 

(dNTPs), 1 mol/L anhydrous betaine, 50 mmol/L KCl, 20 mmol/L Tris-HCl (pH 8.4), 2.5 

mmol/L MgCl2, 200 nmol/L primers, and 0.25 units Platinum Taq DNA polymerase 

(Invitrogen, Carlsbad, California), then cycled according to a touchdown protocol at 

94°C for 3 min, followed by 7 cycles at 94°C for 30 sec, 65°–59°C for 30 sec (decreased 

by 1°C intervals per cycle), and 72°C for 30 sec, followed by 38 cycles at 94°C for 30 

sec, 58°C for 30 sec, and 72°C for 30 sec, with a final 10 min at 72°C. For amplicons 1 
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and 8, Platinum Taq High-Fidelity DNA polymerase was used along with MgSO4 

concentration of 2 mmol/L in place of MgCl2. For amplicons 1, 8, and 16, the touchdown 

protocol was modified to annealing temperatures of 72°C, 60°C, and 61°C, respectively. 

For the HTTLPR, amplification was performed in a final volume of 6 μL containing 20 

ng genomic DNA template, 200 μmol/L dNTPs, 1.5 mol/L anhydrous betaine, 15 

mmol/L (NH4)2SO4 (pH 9.3), 50 mmol/L Tris-HCl (pH 8.4), 2.5 mmoL MgCl2, 0.1% 

Tween 20, 500 nmol/L primers, and 0.25 units JumpStart AccuTaq LA DNA polymerase 

(Sigma-Aldrich, St. Louis, Missouri), then cycled at 94°C for 1 min, followed by 45 

cycles at 94°C for 30 sec and 68°C for 4 min, with a final 30 min at 68°C. All reactions 

were performed on a GeneAmp PCR System 9700 (Applied Biosystems, Foster City, 

California) in 384-well plates (MJ Research, Waltham, Massachusetts).  

2.2.5  Denaturing High-Performance Liquid Chromatography Screening  

All amplicons with the exception of 1, 8, 16, and the HTTLPR were screened by 

denaturing high-performance liquid chromatography (dHPLC) on a WAVE Nucleic Acid 

Fragment Analysis System (Transgenomic, Omaha, Nebraska). Denaturation temperature 

and column gradient conditions were determined with Wavemaker software v4.1.44 

(Transgenomic, Omaha, Nebraska). All samples were amplified and screened by eye for 

variant waveforms. Samples with deviation from the most common waveform along with 

at least one sample with the common waveform were subsequently subjected to direct 

sequencing. Amplicons 1, 8, 16, and the HTTLPR were subjected to direct sequencing 

with primary screening by dHPLC. 
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LPR HTTLPR ggcgttgccgctctgaatgc 419 68 
   gagggactgagctggacaaccac    
1 Exon 1A gagcgcaaccccatccagcgggagc 390 72 
   cgctggggcgcatgcacctcctcg    
2 Exon 1B caccccagcatcagtaacct 493 58 
   cccctttgtcttggatgcta    
3 Exon 2 atggactgccatgtagcaaa 498 58 
   agctcagccactagggtggt    
4 Exon 2 agagctcggaggtgatcca 454 58 
   tcgcagcctgtgatactgac    
5 Exon 3 ggatgtgatcctgcctgttc 519 58 
   tgcctaaggcctgactgatt    
6 Exon 4 gcctggagtccttggaatg 501 58 
   actcccacccctgatagctt    
7 Exon 5 tgtgctttgtggtccttcag 454 58 
   agagagagggtgcatcatgg    
8 Exon 6 tgactccaagggttgtgatctttctgc 515 60 
   gattcaggcataaacccatccagt    
9 Exon 7 ggcttcagtgtgcaagtctg 454 58 
   ccaatcaccttcctccacac    

10 Exon 8 catggcagtcagagcttcag 461 58 
   catgcccagccttctttg    

11 Exon 9 tgtcaaccacctcctcctct 416 58 
   gccaagggacagtgcttaat    

12 Exon 10 cttacccctccctcctgttc 456 58 
   gtgggatctgcggtaaaatg    

13 Exon 11 cacgcctggctaattttcac 487 58 
   atcgggaggtcacatcttgt    

14 Exon 12 gtaggaattccggcttgtca 452 58 
   ggattacaggtgcccatcac    

15 Exon 13 tcacatcttgggaatttcctg 484 58 
   aggctttgggagatgcctta    

16 Exon 14 aaggctcatcattttcttccat 543 58 
   gggaatatgtccaggggaat    

17 Exon 14 tccgcttgaatgctgtgtaa 460 58 
    tggctagcgagatagcatcc     

 

Table 2.1: PCR amplicon information including forward & reverse primer sequences, 
length in basepairs (bp), and primer annealing temperature. 
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2.2.6  DNA Sequencing  

Before direct sequencing, the excess primers and deoxynucleotides in the 

polymerase chain reaction (PCR) products were then degraded by adding a 5-μL solution 

of 1 unit of shrimp alkaline phosphatase (Roche, Indianapolis, Indiana), 0.5 units of 

Escherichia coli Exonuclease I (USB, Cleveland, Ohio), 5 mmol/L MgCl2, and 50 

mmol/L Tris-HCl (pH 8.5). The mixture was incubated at 37°C for 90 min, followed by 

deactivation for 15 min at 95°C. Sequencing reactions were performed with BigDye v3.1 

(Applied Biosystems, Foster City, California) chemistry at a 1/16th scale in 5 μL total 

volume containing 1 μL template (approximately 25 ng), 2.5 pmol primer, 0.75 μL 

Applied Biosystems 5× buffer, .5 μL BigDye v3.1, and 1.75 μL water. The reactions 

were cycled at 96°C for 3 min, followed by 25 cycles at 96°C for 10 sec, 50°C for 5 sec, 

and 60°C for 4 min. The reactions were performed on a GeneAmp PCR System 9700 

(Applied Biosystems) in 384-well plates (MJ Research). Reactions were then purified 

with Montage MultiScreen-SEQ (Millipore, Bedford, Massachusetts) plates and the 

Hamilton Microlab 4200 (Hamilton, Reno, Nevada) 96-probe liquid robotic system. 

Samples were analyzed on a Prism 3730xl DNA Analyzer (Applied Biosystems), and 

analysis of mutations was performed with Mutation Surveyor v2.30 software 

(SoftGenetics, State College, Pennsylvania). For SNP 1 (rs25531), samples that were 

homozygous for the minor G allele were amplified, run on a 2% agarose gel, then gel 

purified according to the manufacturer’s instructions (Qiagen, Valencia, California) to 

separate the long and short HTTLPR alleles and then subject to direct sequencing. All 

variants were submitted to dbSNP. With this sample set, the probability that we would 
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detect variants at a minor allele frequency of 1% was 85.2%, and >99.9% for variants 

with minor allele frequencies of >5%.  

2.2.7  Genomic Control Genotyping  

To correct for population stratification within the sample collection, we 

previously reported the results of the genomic control method (27,28) and found minimal 

evidence of stratification (9). In brief, we genotyped 20 C/T SNPs distributed over the 

majority of chromosomes and calculated the χ2 tests of association. The average of these 

statistics was used to correct for the observed stratification. In the response group versus 

non-response group comparison, genomic control analysis resulted in λ of 1.21, 

indicating a need to adjust p values for slight population stratification. In the other two 

phenotypic comparisons, specific response versus non-specific response and specific 

response versus all others, genomic control analysis resulted in λ < 1.0, indicating that we 

could not detect stratification between these two patient populations. This inflation factor 

is then used to adjust for potential population stratification. If there is truly no inflation 

due to population stratification, then the inflation factor would have a value of 1. Our 

estimated inflation factor indicates modest stratification, but this is not statistically 

significant, though our lack of significance can be due to low power (sample size = 20 

markers). Regardless, we can still use our estimate of 1.21 to adjust for possible 

stratification.  

2.2.8  Statistical Analysis  

Three phenotypic comparisons were made, based on the results from the response 

pattern analysis described above. The comparisons made were 1) all responders (specific 

and non-specific) versus non-responders; 2) specific responders versus both non-specific 
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responders and non-responders; and 3) specific responders versus non-specific 

responders. Single-point association tests were performed by logistic regression with the 

statistical package R 1.6.1 (29). Alleles were coded as 0, 1, or 2, corresponding to the 

presence of 0, 1, or 2 copies of the rare allele. This coding scheme was chosen because of 

its robustness to departure from the true additive genetic model (30). Tests for 

associations using and multi-marker haplotypes were implemented in COCAPHASE 

v2.403 (31). This program uses an unconditional logistic regression based on a log-linear 

model and reports likelihood ratio tests. The expectation-maximization algorithm infers 

haplotypes and calculates maximum-likelihood frequency estimates. Permutation 

(100,000 permutations) was used to estimate the significance of the results for haplotype 

analyses. COCAPHASE was also used to estimate linkage disequilibrium (LD) across 

selected regions of SLC6A4.  

2.2.9  Electrophoretic Mobility Shift Assays  

Oligonucleotides were designed for the G and A alleles of rs25531 (5′-

GCATCCCCCCTGCACCCCC(G/A)GCATCCCC-3′) as well as the AP-2 consensus 

oligonucleotide (5′-GATCGAACTGACCGCCCGCGGCCCGT-3′) and manufactured by 

Invitrogen. Oligonucleotides were annealed to make double-stranded DNA (dsDNA), 

then labeled by 3′-end labeling with Klenow fragment (New England Biolabs, Beverly, 

Massachusetts) in a 50-μL reaction consisting of 5 μL of 10× Klenow buffer (100 

mmol/L Tris, 500 mmol/L NaCl, 100 mmol/L MgCl2, and 10 mmol/L dithiothreitol), 2 

μL (2 pmoL/μL) dsDNA template, 1 μL (5 units) Klenow, 1μL alpha deoxycytidine 

triphosphate (αdCTP) (3000 Ci/mmol), 3 μL of dNTP mixture (100 μmol/L of 

deoxyadenosine triphosphate, deoxyguanosine triphosphate, and deoxythymidine 
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triphosphate), and 38 μL water. Labeled oligonucleotides were separated from 

unincorporated αdCTP by means of Sephadex G-50 spin columns (Amersham 

Biosciences, Piscataway, New Jersey). Binding reactions were done in 15 μL consisting 

of 1 μL (5 ng) HeLa cell nuclear extracts (Santa Cruz Biotechnology, Santa Cruz, 

California), 3 μL 5× binding buffer (50 mmol/L Tris, 750 mmol/L KCl, 2.5 mmol/L 

ethylenediaminetetraacetic acid, 0.5% Triton-X 100, 62.5% glycerol [vol/vol], and 1 

mmol/L DTT), 1 μL (1 μg) poly dA · dT, 1 μL (approximately 300,000 counts per 

minute) labeled oligonucleotide, and 9 μL water. Binding reactions were loaded onto a 

6% non-denaturing polyacrylamide gel and run at 180 V for 2 hours at 25°C. The gel was 

transferred to 3M paper and dried for 1 hour before being exposed to a PhosphorImager 

screen (Amersham Biosciences) overnight. The optical density of each band was 

determined with ImageQuant 3.3 software (Molecular Dynamics, Sunnyvale, California).  

 

2.3  Results  

2.3.1  Sequencing Results  

We screened 2628 bp of exonic and 4783 bp of intronic or flanking sequence, 

totaling 7.4 kb in each of 96 samples. This translates to 712 kb screened in our 

population. Our effort screened more intronic sequence (2:1 ratio) than had been done by 

other studies (20,21). 

2.3.2  SNP Detection  

Our effort yielded 27 variants in the SLC6A4 locus, comprising 25 SNPs and 2 

insertion/deletions. Of these, 21 were newly discovered variants, including 20 nonexonic 

variants, 1 SNP in an untranslated exon, and 1 SNP in a coding exon (Table 2.2). Sixteen 
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of the 27 were singletons (3 exonic), and only 2 had MAFs greater than 10%. Of special 

interest was a SNP (rs25531) just upstream of the HTTLPR. This SNP, which had been 

previously encountered in SLC6A4-sequencing screens, had an MAF of 10% (21,32). It 

resides in the complex of repeat units that constitute the HTTLPR, and it occurs 18 bp 5′ 

to the site where a 43-bp insertion/deletion defines the 14-repeat (deleted, or “short”) or 

16-repeat (inserted, or “long”) common HTTLPR alleles.  

2.3.3  Single Marker Association  

In our primary phenotypic comparison, response versus non-response to 

fluoxetine, we tested SNP rs25531, the only SNP with a sufficient minor allele frequency 

that had not been already analyzed in our previous work (9). We first tested for an 

association by using an additive model and found nominal statistical significance (p = 

0.03); however, because there were only two individuals who were homozygous for the 

minor allele (both non-responders), we also tested for an association by using a dominant 

model (carrier versus noncarrier of the minor allele) and found non-significant results (p 

= 0.09, odds ratio .37, 95% confidence interval 0.12–1.17). The odds ratio suggested that 

rare allele carriers were less likely to respond to treatment. This variant showed no 

significant deviation from Hardy-Weinberg equilibrium. 

We also tested for association between this variant and two other response 

phenotypes. Because we are able to determine the specificity of response pattern, we are 

able to separate specific (“true“) responders from non-specific (“placebo”) responders 

(see Methods and Materials for description of pattern analysis). Our two phenotypes 

based on this refinement consist of 1) specific responders versus all others (i.e., non-

specific responders and non-responders); and 2) specific responders versus non-specific 
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responders. Both comparisons resulted in no significant association between the 

phenotype and rs25531. Four known SNPs, also found by sequencing in this population 

(rs6353, rs6354, rs6355, and rs140700) (Table 2.2), were previously tested for 

association in this same population with fluoxetine response, none of which were 

significantly associated with treatment response (9). The low allele frequencies seen for 

the remainder of the newly discovered variants provides insufficient power to detect 

association between the variant and phenotype in our sample, thus we did not formally 

test for association with these variants.  

2.3.4  Haplotypic Association  

To examine potential interaction between alleles from different variants within a 

gene, we inferred haplotypes from unphased genotypes and tested for association with 

our primary phenotype. For this analysis, we focused on the SNP rs25531 and two other 

nearby variants. One is the HTTLPR and the other is an SNP near the non-coding exon 

1A (rs25533), which was nominally associated with our responder versus nonresponder 

phenotypic comparison in our previous work (9). Thus, we used genotypic data for the 

SNP rs25531 described from the previous section in conjunction with our HTTLPR and 

rs25533 genotypes obtained from our previously published work (9). The expectation 

maximization algorithm estimated six haplotypes (Table 2.3). We found a significant 

global test of association (p = 0.02); however, the 100,000 permutation global p value 

was nonsignificant (p = 0.10). Of interest, inspection of the inferred haplotypes suggests 

that a haplotype containing the A, 14-repeat, and T alleles of rs25531, HTTLPR, and 

rs25533, respectively, is more common in responders, whereas a haplotype containing 

complete mismatches for these variants (G, 16-repeat, C) occurs more often in non-
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responders (Table 2.3). On the basis of allele frequencies of the individual markers, we 

would expect the A–16-repeat–T haplotype to be the most common, and indeed it was 

estimated to occur at nearly equivalent allele frequencies in responders (48%) and non-

responders (50%).  

2.3.5  Linkage Disequilibrium  

We estimated LD between SNP rs25531, the HTTLPR, and the nearby SNP 

rs25533 by using D′ and r2. The LD seemed to be strong among the three markers (Table 

2.4) according to D′ but less so according to another metric of LD,  r2. We also estimated 

LD within the responders and the non-responders and observed stronger LD among the 

markers in the responders than in the non-responders (Table 2.4), although given the 

potential for wide variability due to small sample sizes, comparisons warrant caution.  

2.3.6  Functional Characterization of SNP rs25531  

We sought to analyze further the role that rs25531 plays in antidepressant 

response. To confirm that rs25531 lies upstream of the insertion/deletion constituting the 

HTTLPR, a matter of debate in the literature, we gel purified and sequenced separately 

the long and short alleles of samples homozygous for the minor G allele(32,33). The 

resulting sequence data show that the polymorphism is 5′ to HTTLPR and can occur in 

the context of a long or short HTTLPR allele. This polymorphism still lies within the 

greater repeat structure of the promoter region. According to the repeat architecture of a 

previous sequence analysis of the HTTLPR (32), this polymorphism occurs 5′ to the 43-

bp (not 44-bp, as is typically reported) deletion that delineates the most common 14- and 

16-repeat alleles seen in the human population. In other words, rs25531 occurs within the 

sixth repeat, whereas the deleted segment occurs within the seventh through ninth repeats 
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of the most common configuration of the HTTLPR. The A allele, also seen in 

chimpanzee, occurs in the 20-bp ζ allele of Nakamura et al, whereas the minor G allele 

corresponds to the 20-bp μ allele. Our sequence data indicate that the 43-bp deletion is 

defined by removing 15 bp of the ο repeat, an entire 20-bp ζ repeat, and eight bases of a η 

repeat. This region is outlined in Figure 2.2.  

The base substitution in rs25531 alters a consensus binding sequence for the 

activator protein 2 (AP-2) transcription factor. To test the possibility that this variation 

changes the binding properties of this segment of DNA for AP-2, we carried out a series 

of electrophoretic mobility shift assays. First, we determined that oligonucleotides 

containing rs25531 and flanking sequence were retarded by nuclear extracts. The banding 

pattern from both the G and A oligonucleotides matched that of a consensus recognition 

sequence for AP-2 (Figure 2.3). This protein–DNA interaction was quantitatively greater 

in the less common G allele oligonucleotide than that seen with major A allele 

oligonucleotides but less than that of consensus AP-2 oligonucleotides. This effect was 

inhibited by incubating nuclear extracts with excess unlabeled G or A allele 

oligonucleotides (data not shown), as well as excess unlabeled consensus AP-2 

oligonucleotides. This effect was specific for AP-2, because unlabeled consensus SP1 

oligonucleotides failed to inhibit this effect. Negative control samples lacking nuclear 

extract did not lead to any bands other than the free probe (data not shown).  
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Location Coding
Noncoding 

(Exonic)
Noncoding 
(Intronic) Position ‡ Variant SNP # Coding

No. of 
Chromosomes dbSNP

Promoter --- --- 419 26247 A → G 1 N 19 rs25531 †
Exon 1A --- 75 315 27876 G → A 2 N 1 rs34845320

28063 C → T 3 N 2 rs35206195
Exon 1B --- 97 396 40695 C → A 4 N 37 rs6354 †

40731 C → A 5 N 1 rs28914831
40784 G → A 6 N 1 rs28914827
40868 C → T 7 N 1 rs34871173

Exon 2 343 123 174 41391 T → C 8 N 1 rs7212502
41398 G → A 9 N 1 rs34102420
41783 G → C 10 Y 2 rs6355 †

Exon 3 135 --- 384
Exon 4 220 --- 281 45158-45159 ∆TC 11 N 1 rs34019821

45549 ∆A 12 N 1 rs34459452
Exon 5 139 --- 315
Exon 6 135 --- 370 47204 G → A 13 N 21 rs140700 †

47244 C → T 14 N 1 rs35886704
47549 G → A 15 N 1 rs35721756

Exon 7 104 --- 267 47684 G → A 16 N 5 rs34956669
47817 G → C 17 N 4 rs34083002

Exon 8 128 --- 333 50551 G → A 18 N 4 rs34149483
Exon 9 113 --- 303 52263 G → A 19 Y 1 rs6353 †

52400 G → A 20 N 2 rs35842343
Exon 10 132 --- 324 53113 G → A 21 N 1 rs34954201
Exon 11 100 --- 387 54156 G → T 22 N 2 rs35467658

54293 C → G 23 N 1 rs34332000
54300 G → C 24 N 1 rs34876533

Exon 12 101 --- 351 55780 C → T 25 Y 1 rs33919215
Exon 13 168 --- 316 60197 T → C 26 N 1 rs34129293
Exon 14 75 440 267 65307 C → T 27 N 1 rs34500314

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2.2: Results for variant discovery sequencing in SLC6A4 within the fluoxetine 
sample set. Chimpanzee reference allele in boldface and number of chromosomes out of 
192 indicated. † indicates a SNP was previously identified and present in dbSNP at time 
of study. ‡ Indicates position in reference to accession AC104984.14. 
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Haplotype Frequencies 
  Non-Responders Responders 

A - 14RPT - T 11 (29%) 67 (44%) 
A - 16RPT - C 0 (0%) 2 (1%) 
A - 16RPT - T 19 (50%) 74 (48%) 
G - 14RPT - T 2 (5%) 0 (0%) 
G - 16RPT - A 6 (16%) 6 (4%) 
G - 16RPT - T 0 (0%) 5 (3%) 

 
 
 
Table 2.3: Estimated Frequencies for haplotypes containing variants in the promoter and 
exon 1A region of SLC6A4. Haplotypes consist of variants: rs25531, HTTLPR, and 
rs25533 (in order). The number of repeats is indicated by 14RPT or 16RPT, 
corresponding to “short” and “long” alleles, respectively. 
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A.    
  rs25531 HTTLPR rs25533 

rs25531   0.75 0.84 
HTTLPR 0.06  1.00 
rs25533 0.50 0.04   

B.    
  rs25531 HTTLPR rs25533 

rs25531   1.00 0.72 
HTTLPR 0.43  1.00 
rs25533 1.00 1.00   

 

Table 2.4: Linkage Disequilibrium estimates with R2 and D’ using three markers 
(rs25531, HTTLPR, and rs25533). Shown in panel A.) LD estimates in the entire sample 
using R2 (above diagonal) and D’ (beneath diagonal) and B.) LD estimates using D’ in 
the responders (above diagonal) and non-responders (beneath diagonal). 
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A

1 
 
 
 
2 
 
 
 
 
3 
 
 
 
4 
 
 
 
5 

B

α TGCAGCCCTCCCAGCATCCCCCC 
β TGCAACCTCCCAGCAACTCCC 
γ TGTACCCCTCCTAGGATCGCTCC 
δ TGCATCCCCCATTATCCCCCCC 
ε TTCACCCCTCGCGGCATCCCCCC 
ζ TGCACCCCCRGCATCCCCCC 
ο TGCAGCCC[CCCCAGCATCTCCCC 
ζ TGCACCCCCAGCATCCCCCC 
η TGCAGCCC]TTCCAGCATCCCCC 
θ TGCACCTCTCCCAGGATCTCCCC 
ι TGCAACCCCCATTATCCCCCC 
κ TGCACCCCTCGCAGTATCCCCCC 
λ TGCACCCCCCAGCATCCCCCCA 
μ TGCACCCCCGGCATCCCCCC 
ν TGCACCCCTCCAGCATTCTCCT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Nucleotide sequence of SLC6A4 promoter repeat polymorphism. 
A.) Repeat segments are designated as in Nakamura et al (2000) and represent a 16-
repeat sequence. The location of the A/G single nucleotide polymorphism rs25531 is 
designated by a bolded “R” in the first repeat. The 43 base pair sequence deleted in 
“short” or 14-repeat alleles is marked by brackets. B.) Representative electropherograms 
showing rs25531 homozygote common AA (1), homozygote rare GG (2), and 
heterozygote AG (3). Panels 4 & 5 show the G allele on both the 14RPT (4) & 16RPT (5) 
backgrounds. 
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Figure 2.3: Electrophoretic mobility shift assay of the putative activator protein 2 (AP-2) 
consensus site surrounding the location of rs25531. Upper panel: Autoradiograph 
showing various labeled oligonucleotides (middle row) incubated with nuclear extracts 
(upper row) with or without various competing unlabeled oligonucleotides (bottom row). 
Lower panel: Quantitation of band patterns from the autoradiograph, expressed in units 
of intensity. 
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2.4  Discussion  

Pharmacogenetic investigations are rapidly expanding, in part because of 

increased interest in predicting response to drug treatments based on common genetic 

variation. In psychopharmacology, as throughout the rest of medicine, clinicians often 

face variability in clinical response coupled with a lack of clinical or biological predictors 

of response. We have focused on a well-characterized sample with MDD being treated 

with a single SSRI, fluoxetine, in which we have previously identified association 

between anonymous markers and antidepressant response (9). We thus sought to identify 

variants that might explain this association, using a combination of dHPLC and direct 

sequencing to screen comprehensively both the exonic regions of the gene and much of 

the surrounding intronic regions for variation. We tested for association with a treatment 

response phenotype, using both single loci and multilocus haplotypes. Our SNP 

discovery effort yielded many new variants not previously reported, although many 

occurred at such low frequencies as to not be useful in association studies, unless 

substantially larger populations are used. Our study has confirmed what other groups 

have also found: that coding regions of SLC6A4 are not particularly variable (20,21). 

In our primary phenotype, categorical response versus non-response, we found 

suggestive evidence of an association with SNP rs25531, with the minor allele being 

more likely to reduce response to treatment. The HTTLPR was not significantly 

associated in single-locus analysis, as previously noted (9); but a test of the three marker 

haplotypes, including the HTTLPR and the flanking SNPs rs25531 and rs25533, was 

negatively associated with treatment response (p = 0.02), although this was not 

significant when the permuted global significance p value was calculated. No significant 
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association was found with our other two phenotypic comparisons, specific responders 

versus all others and specific responders versus non-specific responders. Although 

beyond the scope of our focused hypothesis regarding overall antidepressant response, 

other phenotypes, such as the genotypic effect on temporal course of response, might be 

of interest for subsequent investigation.  

We characterized SNP rs25531 functionally to ascertain a biological basis for 

how this SNP could affect clinical outcome. Because rs25531 lies just upstream of the 

HTTLPR in the gene’s promoter region, and HTTLPR genotype has been shown to affect 

transcriptional activity, we investigated the role of this SNP as a potential modulator of 

transcription factor binding. The minor G allele creates a consensus AP-2 binding 

sequence, and oligonucleotides containing this allele showed greater binding to nuclear 

extracts when compared with the major A allele. Although others have reported that the 

minor G allele of this SNP occurs in a region of the long (16-repeat) allele of the 

HTTLPR, and thus is missing from chromosomes carrying the short allele (14 repeats) 

we did not find this to be the case, confirmed by subsequent groups (33,34). We detected 

the G allele on short allele chromosomes. Given the region’s repetitive nature, sequence 

misalignment, with the placement of the insertion/deletion in particular, might explain 

this discrepancy.  

Many studies have been published that investigated HTTLPR in a variety of 

neurobehavioral phenotypes. Such studies often find association between the HTTLPR 

and the phenotype of interest, only to go unreplicated or to show association with the 

opposite allele. Because rs25531 lies just upstream of the insertion/deletion that 

characterizes the HTTLPR and might play a regulatory role in the gene, rs25531 could be 
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a confounding factor in these studies. We find evidence in our data that rs25531 is 

associated with both response and with HTTLPR, and as a result, the association between 

HTTLPR and response might depend on which allele one is considering at the rs25531 

site. According to our haplotype analyses, there is support for this claim, with the long 

HTTLPR allele occurring more often in the non-responders, given that the minor G allele 

is present. When the A allele of rs25531 is present, we observe the short allele occurring 

more often in the responders. 

Although the results of this study are promising, they are also subject to 

limitations. The primary disadvantage of this study is the small sample size, which 

contributed to a greatly reduced ability to detect associations between phenotype and 

genotype. This limitation is crucial because it suggests that our sample might not have 

been large enough to 1) detect relevant uncommon/rare variants; and 2) detect association 

between variants we discovered and our drug response phenotype. This type II error 

could presumably be addressed by a much larger clinical sample, as described in the 

subsequent chapter. A limitation in any case–control association study is confounding 

based on population stratification. By using a genomic control method in our population, 

we previously noted little evidence for stratification in our sample, given the constraint of 

our sample size and the number of markers used (9). For the amount of stratification 

detected in this sample, we would have to adjust the significance values of our 

association results minimally. In this context, we are fairly confident that we have 

avoided cryptic stratification or bias that can be associated with the use of racial or 

cultural identifiers, although a larger sample size and more markers might allow us to 

detect more modest stratification (35). Likewise, a larger sample will facilitate replication 
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of our finding of association between fluoxetine response and rs25531. The interpretation 

of our association data also necessitates consideration of multiple testing. The correlation 

between phenotypes tested, as well as the observed correlation of marker-to-marker 

relationships, makes traditional corrections for multiple comparisons inappropriately 

conservative. We have thus left our significance tests uncorrected.  

Although our investigation into the biological consequences of rs25531 showed 

enhancement of AP-2 binding activity, the role of AP-2 in serotonin pathway biology is 

relatively unknown. The transcription factor AP-2 is a critical factor in mammalian 

neural gene expression (36). Many genes involved in brain neurotransmitter systems have 

AP-2 binding sites in their regulatory regions. Additionally, regional monoamine 

metabolite levels vary with AP-2 protein levels (37), and chronic treatment with 

antidepressants alters both AP-2 levels and DNA-binding activity of AP-2 (38,39); 

however, no clear picture immediately surfaces as to how AP-2 directly affects response 

to SSRIs. Thus, our observation that response to fluoxetine might be mediated by altering 

AP-2 function must be deemed provisional until further in vivo experiments are 

conducted. One approach, as described in chapter 5, is to look directly at the role of DNA 

variation in the gene encoding the AP-2 protein in relation to antidepressant response. 

In summary, we have made an in-depth investigation into the role of DNA 

variants within the serotonin transporter for response to fluoxetine and found several 

interesting associations. We observed suggestive evidence of an association (by both 

single-locus and haplotypic analysis) with non-response and the minor allele of an SNP 

near the HTTLPR. All the associations we observed within our population were located 

within the promoter region of this gene. Previous studies finding association with the 
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HTTLPR, our own observations associating several variants within the promoter region, 

and functional data suggesting that at least two of these variants play a role in the 

regulation of serotonin transporter suggest that the 5′ region of this gene might play a role 

in the response of SSRIs.  
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CHAPTER 3 

ANALYSIS OF ASSOCIATION BETWEEN THE SEROTONIN TRANSPORTER 

(SLC6A4) AND RESPONSE TO CITALOPRAM IN THE STAR*D CLINICAL 

SAMPLE† 

 

3.1  Introduction 

Pharmacologic treatment with selective serotonin reuptake inhibitors (SSRIs) is a 

mainstay in the treatment of major depressive disorder (MDD). There is prominent 

heterogeneity in response to antidepressants (1), and as of yet, there are no explanations 

for this observed variability. One possibility that has generated great interest, however, is 

that this variability results from genetic variation at the SLC6A4 locus (2). A number of 

studies have tested the association between DNA variations in this gene and response to 

various SSRIs (3). The results of these studies are inconclusive, however, particularly 

when different populations are investigated. In studies of the promoter variant 

(HTTLPR), some work finds no association with response (4,5), whereas other reports 

show an association with treatment response (6), although the associated allele varies 

with ethnicity (Table 3.1). 

A limitation of the previous studies is that most did not systematically study 

variation across this gene, instead focusing almost exclusively on the promoter variant or, 

to a lesser extent, on an intronic tandem repeat polymorphism (7). Although our group 

failed to find association between the HTTLPR and SSRI response, we did detect 

nominal association between two single nucleotide polymorphisms (SNPs), rs25531 and 

                                                           
† This chapter has been published previously:  Kraft JB, Peters EJ, Slager SL, Jenkins GD, Reinalda MS, McGrath  PJ., & Hamilton 
SP. “Analysis of association between the serotonin transporter and antidepressant response in a large clinical sample.”  Biological 
Psychiatry 2007; 61(6): 734-742. Reprinted with permission. 
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rs25533, near the HTTLPR in the 5′ region of this gene in studies of 96 subjects treated 

with fluoxetine (5,8). This work was described in detail in the previous chapter. Table 3.1 

summarizes the findings of these previous studies, which were chosen for inclusion if the 

study analyzed variants in the serotonin transporter in depressed samples being treated 

with an SSRI. In several of these studies, analyses were carried out by modeling recessive 

or dominant transmission of the short allele, but this was not done in others.  

In this study, we sought to conduct a more definitive study by genotyping variants 

in the SLC6A4 gene in a large sample of subjects with major depression whose response 

to treatment had been carefully characterized. All of the subjects were treated with the 

SSRI citalopram. This sample was collected in the course of Sequenced Treatment 

Alternatives to Relieve Depression (STAR*D), a prospective, multicenter, randomized 

clinical trial involving 4,041 outpatients in both primary and specialty care settings 

(9,10). 
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3.2  Materials and Methods 

3.2.1  Sample  

Of the 4,041 subjects, DNA was obtained from 1,953 subjects as part of the 

National Institute of Mental Health (NIMH) Human Genetics Initiative. The design of 

STAR*D was to enroll adults experiencing a major depressive episode who exhibited 

neither an inadequate response nor intolerance to an adequate trial of any of the STAR*D 

protocol treatments during the current episode. The overall aim of STAR*D (principal 

investigator, A. John Rush, NIMH Contract N01-MH-90003) was to determine 

prospectively which of a number of treatments are beneficial for subjects experiencing an 

unsatisfactory clinical outcome following treatment with citalopram. Because the 

STAR*D trial design has been described extensively (9-11), it is summarized only briefly 

here. 

To make the findings as generalizable as possible, STAR*D used broad inclusion 

criteria (10,11) and enrolled a diverse population, including good minority representation. 

Diagnoses were made using the Psychiatric Diagnostic Screening Questionnaire (12), and 

depressive symptoms were assessed with the 16-item Quick Inventory of Depressive 

Symptomatology Self-Report version (QIDS-SR) collected at clinic visits. The QIDS-SR 

is highly correlated with the 17-item Hamilton Rating Scale for Depression (HRSD17), 

and scores can be converted readily between the two instruments (13). Subjects meeting 

criteria and providing consent were administered citalopram as the initial treatment. The 

protocol encouraged 12 weeks of treatment with vigorous dosing of open-label 

citalopram (20–60 mg/day).  
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The subsample of 1,953 participants who consented to provide DNA samples was 

61.8% female and 38.2% male, with ethnic proportions of 78.1% Caucasian, 16.1% 

African American, 3.5% multiracial, 1.1% Asian, 1.2% Pacific Islander/Native 

American, and 0.1% unspecified; 14.0% of the sample reported being Hispanic, and 

43.5% of the sample came from primary care clinics, with the remaining 56.5% coming 

from specialty clinics. For this analysis, we report on analyses on DNA from 1,914 

participants (98%). Baseline demographic and clinical data on these 1,914 subjects are 

presented in Table 3.2.  

Access to the DNA samples and clinical data was approved by the STAR*D 

Ancillary Studies Committee, and clinical data were obtained from the Data Coordinating 

Center of STAR*D. Approval to carry out the work described here was obtained by the 

Committee on Human Research at the University of California, San Francisco.  

3.2.2  Marker Selection  

To provide adequate coverage of the entire SLC6A4 locus, tagging SNPs were 

chosen based on our previous genotyping and variant discovery efforts (5,8). Tagging 

SNPs were selected from a data set of SNP variants that were common (> 5% minor 

allele frequency) in a subset of Caucasian patients (n = 75) from our previous studies. 

Thirteen SNPs met this criteria, and seven were selected as tagging SNPs using a linkage 

disequilibrium (LD) threshold of r2 > 0.8, as implemented in the program “ldselect.pl” 

(14). Because our initial variant characterization efforts were performed using a largely 

Caucasian population, we compared our tagging SNP set to HapMap data for this 

genomic region, which contained 10 common SNPs in a sample of 30 Yoruban trios 

(HapMap build 16c.1, June 2005). Two additional tagging SNPs from HapMap data were 
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selected for this study (rs16965628 and rs2020933) because they had large (> .25) minor 

allele frequency differences between Yoruban samples and Caucasian samples. In 

addition, two markers that were previously reported to be associated with antidepressant 

response (5-HTTLPR and rs25531); (3,5,8) were also included in this study, for a total of 

11 markers (Table 3.3). The distribution of markers at the SLC6A4 is schematized in 

Figure 3.1.  

3.2.3  Sample DNA Analysis 

DNA was quantified using the Quant-IT DNA Assay Kit, Broad Range 

(Molecular Probes, Eugene, OR, USA) and fluorescence read on the VICTOR2 1420 

Multilabel Counter (PerkinElmer Life Sciences, Boston, MA, USA). Gender was verified 

by the use of a PCR based assay of the sexually dimorphic amelogenin locus (15). 

3.2.4  DNA Analysis and Genotyping  

DNA from subjects was quantified and then used as a template to amplify specific 

regions of the gene via polymerase chain reaction (PCR). Variants were assayed by either 

fluorescence polarization detection of template-directed dye-terminator incorporation 

(FP-TDI) or by the use of restriction fragment length polymorphism analysis (RFLP).  

3.2.5  DNA Amplification 

All samples were amplified using polymerase chain reaction (PCR) in 5 

microliters (μL) reactions containing 200 nM of the forward and reverse primers (Table 

3.3), 5 ng genomic DNA template, 50 μM dNTPs (Roche, Indianapolis, IN, USA), 1 M 

anhydrous betaine (Acros Organics, Geel, Belgium), 50 mM KCl, 20 mM Tris-HCl (pH 

8.4), 2 mM MgCl2, and 0.2 units (U) Platinum Taq DNA polymerase (Invitrogen, 

Carlsbad, CA, USA). All primers and TDI probes were designed using Primer3 software 
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(16) and manufactured by Invitrogen. Samples were cycled using a touchdown protocol at 

94°C for 3 min, followed by seven cycles of 94°C for 30 s, 65-59°C for 30 s (decreased 

by 1°C intervals per cycle), and 72°C for 30 s, followed by 38 cycles of 90°C for 30 s, 

58°C for 30 s, and 72°C for 30 s, with a final 10 min at 72°C. The reactions were 

performed on either an Applied Biosystems GeneAmp PCR System 9700 (Foster City, 

CA, USA) or a DNA Engine Tetrad PTC-225 thermal cycler (MJ Research/Bio Rad, 

Hercules, CA, USA). For SNP rs25533, reactions were changed to include 10 ng 

genomic DNA template, 500 μM dNTPs, 300 nM forward and reverse primers, and 0.3 

units (U) Platinum Taq DNA polymerase and the following protocol was used: 94°C for 

3 min, followed by 35 cycles of 94°C for 30 sec, 68°C for 30 sec, 72°C for 30 sec with a 

final 10 min at 72°C. 

For SNP rs25531 and the 5-HTTLPR, conditions were changed so that 

amplification was performed in a final volume of 10 μL containing 25 ng of genomic 

DNA template, 300 μM dNTPs, 1.5 M anhydrous betaine, 15 mM ammonium sulfate (pH 

9.3), 50mM Tris-HCl (pH 8.4), 2.5 mM MgCl2, 0.1% Tween 20, 500 nM primers, and 

0.5 units Platinum Taq DNA polymerase then amplified using the following protocol: 

94°C for 3 min, followed by 35 cycles of 94°C for 45 sec, 68°C for 30 sec, 72°C for 60 

sec with a final 10 min at 72°C. 
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3.2.6  Polymorphism Genotyping 

 All markers except rs25531, rs25533, and the 5-HTTLPR were genotyped using 

fluorescence polarization detection of template-directed dye-terminator incorporation 

(FP-TDI). Following PCR, the excess primers, deoxynucleotides, and pyrophosphate in 

the PCR reaction were then degraded by adding a 0.1 μl of 10X PCR Clean-Up Reagent, 

containing a mixture of shrimp alkaline phosphatase and exonuclease I (PerkinElmer, 

Wellesley, MA, USA), 0.1μl of inorganic pyrophosphatase (Roche Applied Science, 

Indianapolis, IN, USA), and 0.8 μl of PCR Clean-Up Dilution Buffer to each 5 μl PCR 

reaction (PerkinElmer, Wellesley, MA, USA). The mixture was then incubated at 37°C 

for 60 min, followed by inactivation for 15 min at 80°C. The final step was the addition 

of a 4 μl solution containing a final concentration of 0.5 μM TDI probe, 1 μl of 10X TDI 

Reaction Buffer, 0.5 μl of AcycloTerminator Mix (containing R110 and TAMRA-labeled 

AcycloTerminators, corresponding to the polymorphic base), and 0.025 μl of AcycloPol 

DNA polymerase (PerkinElmer). This mixture was cycled at 95°C for 2 min, followed by 

25 cycles of 94°C for 15 s and 55°C for 30 s. Following template-directed incorporation, 

fluorescence polarization was read using a VICTOR2 1420 Multilabel Counter 

(PerkinElmer), and genotypes were read using custom software. 

For rs25531 and rs25533, genotyping was carried out using restriction fragment 

length polymorphism (RFLP) analysis. The reason for this is that traditional 

hybridization-based or single-base extension techniques will not work for the highly 

repetitive region surrounding rs25531. The minor allele in both these SNPs introduces an 

Hpa II digestion site which was exploited for genotyping. Following PCR amplification, 

samples were then digested in a 10 μl reaction containing 1 μl 10X Buffer 1 (New 
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England Biolabs, Ipswich, MA, USA), 5 μl PCR product, and 1 unit of Hpa II enzyme 

(New England Biolabs). The reaction was incubated at 37°C for 90 minutes followed by 

heat inactivation at 80°C for 15 min. Samples were then separated on a 3% NuSieve 

(Cambrex Corporation, East Rutherford, NJ, USA) agarose gel at 150V for 1 hour and 

genotyped based on the presence of cut DNA of predicted sizes. The 5-HTTLPR marker 

was genotyped by separating the PCR product on a 2.5% agarose gel at 150V for 1 hour 

and determining the size of the bands. To verify genotypes for the HTTLPR and rs25531, 

a subset of 384 samples from the total number of 1,914 samples (~20%) was subjected to 

direct sequencing. All genotypes were concordant. 

3.2.7  Phenotypic Definitions  

We define five interrelated response phenotype definitions of response to 

citalopram, building upon those described in the previous chapter. The first two are 

responders and non-responders: responders are subjects who had at least 42 days of 

treatment and whose QIDS-SR on their final clinical visit shows ≥ 50% reduction in 

score; the remaining subjects, who had at least 42 days of treatment, were then 

considered non-responders. The ≥ 50% reduction in symptom severity on the HRSD17 is 

the conventional definition of response in clinical trials. We used the QIDS-SR score to 

estimate severity because all subjects had this rating, and it correlates highly with the 

HRSD17 scores (13). We required this 42-day (or 6-week) threshold to ensure an adequate 

exposure to citalopram and to enhance the power to find associations between genotype 

and response by reducing potential heterogeneity. Using this threshold, we found no 

statistical difference in the average total dosage of citalopram between those who were on 

the trial for at least 42 days (average total dosage = 29.88 mg) and those who were not 
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(average total dosage = 30.43 mg). The 254 subjects with < 42 days of treatment were 

excluded from analysis.  

The third phenotype definition is remission. Remission was defined as a QIDS-SR 

score ≤ 5, which closely corresponds to the conventional definition of an HRSD score of 

≤ 7 (13).  The final two phenotypes are based on our attempt to reduce heterogeneity 

further by attempting to separate placebo response from true drug response in 

antidepressant trials (17). Some response to antidepressant medication is a placebo 

response, which we posit may have either no genetic determinant or a different genetic 

substrate than “true” drug response. Thus, it is of interest to limit our definition of 

response to true pharmacologic response rather than placebo response. For these 

phenotypes, a “specific” pattern of response was defined by persistence, or the 

maintenance of response for the remainder of the study once it was attained. Previous 

studies considered “specific” patterns to be further characterized by delayed response, 

that is, after the first 2 weeks (18,19). We were unable to employ this criterion because 

the STAR*D study design did not include ratings before week 2. We defined persistent 

responders as those subjects who had a sustained response at all consecutive visits 

following the first visit with a response, as measured by ≥ 50% reduction in QIDS-SR 

scores. Those whose response occurred only at the last visit were removed from the 

analysis. In contrast, “non-specific” responders were those subjects who responded using 

QIDS-SR reduction criteria, but did not maintain their response following the first visit 

with a response. 

Note that “specific” and “non-specific” responders are a subset of responders (as 

defined by the response phenotype described earlier). Moreover, because visits were at 
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least 2 weeks apart, we assumed that intervening weeks were characterized by the 

response defined by the previous visit. We compared “specific” responders to non-

responders, allowing us to test the hypothesis that the “specific” response to citalopram 

represented a more genetically homogenous group of persons taking citalopram. We also 

compared “specific” responders to “non-specific” responders to test whether there are 

genetic difference between “true” drug responders and “placebo” responders, as 

suggested in our previous work (5).  

3.2.8  Statistical Analysis  

The frequency distributions of demographic and clinical variables were examined 

in the combined sample and by the five phenotypes. To control for any potential 

population stratification, all analyses were stratified by race categories: Caucasian and 

African American. Other racial categories were not considered because of the small 

numbers of those samples. We tested for Hardy–Weinberg equilibrium within each of the 

Caucasian and African American groups, and all subjects from a stratum were used in the 

analysis because all subjects had depression, and the evaluated polymorphisms were not 

suspected to influence risk of depression. Linkage disequilibrium was estimated using r2.  

We used unconditional logistic regression analysis to examine associations of the 

11 genetic polymorphisms and each of the four phenotypic comparisons. These 

comparisons are 1) Responder versus Non-responder, 2) Remitter versus Non-remitters, 

3) “Specific” Responders versus Non-responders, and 4) “Specific” Responders versus 

“Non-specific” Responders. Each polymorphism was modeled individually as gene–

dosage effects in the regression models. This coding scheme was chosen because of its 

robustness to departure from the true additive genetic model (20). Regression analyses 
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were either unadjusted or adjusted for potential confounding effects, including gender, 

age, education (years of school), months in current major depressive episode (MDE), and 

years since first MDE. We estimated odds ratios (OR) and 95% confidence intervals 

(CIs) for the carriers of the minor allele versus non-carriers of the minor allele. Because 

of the large number of statistical tests, significance threshold was set at 0.01, and 

permutation tests were performed on any test that resulted in an asymptotic p value of 

0.01 or less.  

Association between haplotypes and the four phenotypic comparisons were 

calculated using a score test implemented in the computer program HAPLO.SCORE 

(21). This test uses the expectation–maximization algorithm to estimate the posterior 

probability of each person’s haplotype. These posterior probabilities are then used to 

calculate a person’s expected haplotype score in the logistic regression analyses. All 

haplotypes with frequencies > 0.01 were simultaneously tested in the analysis. Global p 

values and individual haplotype p values were obtained. Statistical tests were performed 

in SAS version 8.2 or Splus version 6.2.1 statistical packages. All statistical analyses 

were carried out in collaboration with Dr. Susan L. Slager (Mayo Clinic). 

3.2.9  Post-Hoc Analysis Methods 

For the intent to treat analysis and the longitudinal analyses, we stratified the 

analyses by race (Caucasian or African American).  For the intent to treat analysis, all 

subjects with at least 1 follow-up were analyzed.  We determined response as any subject 

whose QIDS-SR on his/her final clinical visit shows at least a 50% reduction in score.  

Tests for association were then analyzed as discussed in Statistical Analysis.  For the 

longitudinal analysis, we used generalized estimating equations (GEE), which is an 
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extension of generalized linear models that accounts for correlated repeated 

measurements within individuals.  We used the exchangeable correlation structure and all 

subjects with at least one follow up were analyzed for the association between the raw 

QIDS-SR score and each DNA variant.  
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3.3  Results  

Of the 1,953 subjects who consented to give DNA, data for 1,914 subjects are 

described in this report. The 39 samples that were unavailable for genotyping did not 

differ from the remaining samples in demographic or clinical variables. Using our 

responder versus non-responder phenotype (R/NR), 1,660 of the 1,914 samples could be 

categorized, with 991 responders and 669 non-responders, for a response rate of 59.7%. 

We excluded 254 because they did not reach the 6-week treatment threshold. The clinical 

and demographic characteristics of the 1,914 samples are shown in Table 3.2. Significant 

demographic and clinical differences between responders and non-responders within the 

current study included years of schooling (p < 0.001), months in current MDE (p < 

0.001), length of current MDE >24 months (p = 0.001), baseline QIDS-SR (p = 0.008), 

and years since first MDE (p = 0.02). The presence of recurrent depression or a family 

history of depression did not differ between responders and non-responders. Of the 

responders, 826 (83.3% of responders) were considered to be remitters. For the analysis 

of specificity of the 991 responders, 679 (68.5%) were categorized as “specific” 

responders, and 187 (18.9%) as “non-specific” responders, with the remaining 125 

(12.6%) responders unclassifiable for the specificity response phenotype. The ratio of 

“specific” to “non-specific” responders is similar to that seen in our previous work (5).  

We used the phenotypes described to test two general hypotheses. First, we 

sought to determine whether SLC6A4 variants are associated with general indicators of 

response (responders vs. non-responders, remitters vs. non-responders) based on changes 

in the QIDS-SR. Second, we sought to examine whether SLC6A4 variants influences 

response in a subgroup of responders likely to exhibit a “true” drug response (“specific” 

 74
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responders versus non-responders, “specific” responders versus “non-specific” 

responders). All analyses were stratified by ethnicity, which for this analysis are 

Caucasian and African American. None of the variants showed significant deviation from 

Hardy–Weinberg equilibrium within any of the ethnic groups (results not shown). 

Linkage disequilibrium (LD) was present among the polymorphisms. Figure 3.2 shows 

the extent of LD for each ethnic group, using the r2 metric. Given our SNP ascertainment 

strategy, we did not expect prominent association between markers.  

The association results for the 11 polymorphisms for the response versus non-

response comparison for each of the two ethnic groups are shown in Table 3.4. The minor 

allele frequencies among the non-responders within the Caucasians ranged from 5% 

(rs2020933) to 46% (rs2020934). None of the variants were found to be associated with 

response at a relaxed significance threshold of p < 0.01. We found similar results for our 

other three phenotypic comparisons: “specific” responders versus non-responders; 

“specific” responders versus “non-specific” responders; and remitters versus non-

responders (Table 3.4). We also found no evidence of confounding adjusting for gender, 

age, education, months in current MDE, and years since first MDE in the regression 

analyses. 

We then constructed haplotypes and tested for association with the four 

phenotypic comparisons to account for possible interactions among the 11 variants within 

the serotonin transporter. Our global test of association with the responder versus non-

responder phenotypic comparison was found to be non-significant in either Caucasian or 

African-American groups (p = 0.55 & p = 0.28), respectively. Similar results were 

observed for the other phenotypic comparisons (results not shown).
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Figure 3.2: Linkage disequilibrium at the SLC6A4 locus. r2 was estimated in Caucasian 
(top) and African American (bottom) samples. r2 is displayed using Haploview, with 
darker boxes representing larger values of r2. Haplotype "blocks" are represented using 
the criteria of Gabriel, et al (22). 
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3.4  Discussion  

We failed to detect association between any of the SNPs within the SLC6A4 and 

antidepressant response phenotype. Our failure to detect association in a large sample is 

strong evidence against a role for common variation in this gene as a factor in response to 

SSRIs. In our primary phenotype, categorical response versus non-response, our results 

differed with regard to a number of other studies in which associations were found 

between response and SLC6A4. There may be a number of reasons for this including 

differences in outcome measures, drugs, ethnicities, and analytical approaches.  

For our outcome measures, we used the QIDS-SR. This instrument has been 

shown to have high correlation (Pearson’s correlation = 0.81) with the standard HRSD 

(13), which has been used in many of the previous studies. Despite this high correlation, 

however, variability in these measurements may explain the difference in results among 

the studies, especially if the effect size of any SLC6A4 genotypic effect is modest (23).  

All of the studies in Table 3.1 and this study tested for association between 

SLC6A4 and an SSRI. It would be ideal to compare all of the previous studies to our 

own. Unfortunately, each of the previous studies differs strikingly from the others, with 

wide variation in treatment trial design, drug choice, marker choice, outcome measures, 

and statistical methods in each of the studies reviewed in Table 3.1. For example, the 

systematic and vigorous dosing strategy employed by STAR*D differs from the forced 

titrations or flexible dosing approaches used in the other studies, raising the possibility 

that those studies may be more sensitive to effects due to genotype × dose interactions. 

Although it is presumed that the SSRIs are equivalent in terms of mechanism, this has not 

been proven definitively and thus remains a potential explanation for the difference 
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between studies using different SSRIs. Another difference may involve the inclusion 

criteria applied to the various studies. The inclusion criteria for STAR*D was HRSD17 ≥ 

14, which was somewhat lower than several of the previous studies that used the HRSD17 

for assessment, suggesting that the STAR*D sample may be less severely affected. 

The only previous study that is most directly comparable to ours based on drug is 

by Arias and colleagues, which investigated only the 5-HTTLPR variant (24). This study 

used citalopram and defined response as ≥ 50% reduction in HRSD21 at 4 weeks and 

remission as HRSD21 ≤ 7 at 12 weeks. Because this definition is different from ours, we 

carried out analyses to emulate this approach (≥ 50% reduction in QIDS-SR at 28 days or 

QIDS-SR ≤ 5 at 84 days) and still found no association between SLC6A4 and treatment 

response (data not shown). In this context, if the association between this gene and 

antidepressant response is not consistently found in samples with adequate power, the 

previous findings are likely spurious because of small sample sizes and low prior 

probability of the genetic variants affecting response (25). Finally, using four markers 

and differing phenotypes, McMahon and colleagues reported no association between 

SLC6A4 and antidepressant response in the STAR*D data set (26). The same group has 

recently reported no association to response with the 5-HTTLPR in the same data set, 

essentially confirming our results presented here (27). 

An important issue in case–control association studies of antidepressant response 

(or association studies in general) is population stratification, which in theory may lead to 

spurious associations. To correct for potential ethnic stratification, we analyzed each 

population subgroup separately to test for association. Although methods have been 

developed for quantitating and correcting for stratification (28,29), previous studies have 

 79



shown that self-reported ethnicity closely corresponds with clustering of marker allele 

frequencies (30). We found dramatic differences in allele frequencies among the ethnic 

groups for many of the markers used here, with the average allele frequency difference 

between Caucasians and African Americans of 0.17 (Table 3.4). Because of these 

differences across the ethnic groups found in our study, ethnicity may explain the 

differences in results across the previous studies. In a number of the previous studies, 

ethnicity is not clearly delineated, however (Table 3.1).  

A major strength of our study is that we attempted to reduce heterogeneity of the 

clinical phenotype. Accurate assessment of clinical phenotype is essential in 

pharmacogenetic studies. This is particularly true with antidepressant therapy, because 

placebo response rates can be as high as 60% for patients with MDD (31). Previous 

studies with serotonin pathway gene variants and SSRI antidepressant response have 

failed to address these concerns. Given the high placebo response rate for many 

antidepressants, it may prove necessary to control for non-specific responses in 

pharmacogenetic studies of antidepressant response (32). In this regard, we examined two 

phenotypes that might better represent those subjects who are responding to the 

biochemical effects of the medication, “specific” responders and remitters. Our goal for 

these refined phenotypes was to decrease phenotypic heterogeneity among the 

responders, possibly introduced by any placebo response. We failed to observe any 

association to the serotonin transporter using these phenotypes, however.  

Another strength of our study is that we more fully interrogated the SLC6A4 gene 

than previous studies. Our tag SNP approach, using HapMap information, and our own 

previous dense genotyping of the gene (5) has sufficiently covered the gene. Furthermore, 
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our in-depth sequencing survey of this gene (8) has provided few useful markers beyond 

publicly available common SNPs. In addition to single-locus analysis, we used 

haplotypic analyses to allow us to determine whether combinations of alleles were 

associated with treatment response. The use of both single-locus and haplotypic 

association has allowed us to take a more comprehensive look at the role of DNA 

variation in the serotonin transporter locus in antidepressant treatment response. Thus far, 

the vast majority of the previous studies on serotonin transporter variants in 

antidepressant response have focused on single polymorphism associations.  

A possible limitation of our study may be our choice of clinical phenotype, that is, 

antidepressant response, as our primary phenotype. We restricted our analyses to subjects 

receiving 6 weeks of treatment and required a 50% reduction in symptomology. In doing 

this, we excluded some 250 subjects; although we believe requiring sufficient medication 

exposure to reduce placebo response should increase the probability of detecting an 

association to drug response. Note that the rates of response and remission in our analysis 

were higher when compared with that of a recent analysis of 2,876 STAR*D subjects, in 

which subjects with less than 6 weeks of treatment were included (10), suggesting a 

strong correlation between response and length of treatment. Nevertheless, it might be 

argued that an intent-to-treat approach may be useful. We have done this for the 

Caucasian and for the African American subjects who had at least one treatment 

assessment and found that a single marker, rs140700, resulted in a p value of 0.009 in the 

Caucasian subsample. In a longitudinal analysis using generalized estimating equations 

and the raw QIDS-SR scores measured at each treatment assessment, we found results 

similar to our primary analysis, that is, none of the SNPs had p values < 0.01 for either 
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race. Thus, the fact that these alternative post hoc approaches resulted in similar results to 

those reported further support our findings of no association between this gene and 

antidepressant response. 

An additional potential limitation arises because this open study, without placebo 

control or measure of adherence (i.e., serum level monitoring), might have shown only 

placebo response and therefore may not provide a valid phenotype for gene finding, 

although this seems less plausible given the similarity in response and remission rate to 

controlled studies where compliance is measured.  

Another limitation of this report involves its generalizability to the STAR*D 

sample as a whole. There are significant differences between the sample providing DNA 

and the 2,087 STAR*D subjects who did not provide DNA for the genetics study. For 

example, the subject who gave DNA was significantly more likely to 1) come from a 

primary care clinic (43.5% vs. 34.7%, p < 0.0001); 2) be a Caucasian subject and not be 

an African American subject (78.4% vs. 73.0%, 15.8% vs. 19.2%, p = 0.0003); 3) be 

Hispanic 14.6% vs. 11.2%, p = 0.006) ; 4) be married (42.6% vs. 39.9%, p = 0.003); 5) 

have recurrent depression (76.0% vs. 71.5%, p = 0.002); 6) be older (42.6 vs. 38.5, p < 

0.0001); 7) be more educated 13.6 vs. 13.3 years, p = 0.007); 8) have more MDEs (6.4 

vs. 5.4, p = 0.003); and 9) have a longer illness (16.6 vs. 13.6 years, p < 0.0001). It is 

difficult to formulate how these differences, typically of small magnitude, would affect 

the generalizability of our results. In any case, it must be stated that the results may not 

be generalizable to subjects who are not inclined to provide DNA samples, who in the 

STAR*D sample appear to have observable differences with the subjects who provided 

DNA samples.  
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Furthermore, the clinical importance of some of these statistically significant 

differences, which are presumably driven by the large sample, is unknown. For example, 

the average number of years of education was 13.6 in subjects who gave DNA, which 

was significantly different from the average of 13.3 years in the subjects who did not 

provide blood samples. The effect size for this observation of a 0.3 year difference in 

schooling is minute, so that even if it is unlikely to arise by chance, it would be difficult 

to imagine a scenario or mechanism through which this would affect attempts to find a 

genetic association. The difference between primary care and specialty care subjects in 

STAR*D has been shown to be negligible (33). We also compared baseline QIDS-SR in 

our sample between specialty and primary care clinics and found no significant difference 

for all subjects (p = 0.70) or for groups stratified by ethnicity (Caucasians p = 0.30, 

African Americans p = 0.23), comparable to the findings in an analysis of 2,876 

STAR*D subjects (10). The response rates between primary care and specialty clinics 

were similar for our primary response phenotype (57.8% vs. 60.5%, p = 0.32) and for our 

remission phenotype (53.3% vs. 56.3%, p = 0.38). Although the age of onset of MDD in 

STAR*D subjects has been shown to be related to a number of clinical variables (34), we 

found that it was not correlated with treatment response. 

Finally, we cannot exclude the fact that our results may be false negatives. Given 

our sample size in the Caucasian sample, we have 80% power to detect a minimal odds 

ratio of 1.39, assuming 5% significance level, dominant model, and common allele 

frequency greater than 0.2. Our largest observed odds ratio in the Caucasian sample, 

given a common allele frequency of at least 0.2, was 1.31 (range 1.02–1.31). To detect 
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effects of this magnitude or less, we would need to increase our sample size by at least 

50%. To date, we have the largest sample collection of patients.  

In summary, we have looked in depth at the molecular target of SSRIs, the serotonin 

transporter, in the largest clinical sample analyzed to date and tested the role of DNA 

variants within this gene in citalopram response and failed to find any associations using 

both single loci and haplotypic analyses. At this point, we cannot definitively answer the 

ultimate question: at what point can we say that the contribution of genotype in SLC6A4 

to antidepressant response is negligible? We have not accounted for the possibility of 

gene–gene or gene–environment interaction. By itself, however, this gene does not affect 

response to drug in our representative population with citalopram using our outcome 

assessment. Because it appears serotonin plays an important role in depression, this study 

may simply suggest that variation within other genes in the serotonin pathway such as 

enzymes that affect serotonin levels (TPH1,TPH2, MAOA) or the serotonin receptors 

(5HT2A, 5HT2C) may contribute to SSRI response. Similarly, it is possible that 

serotonin itself may be part of a cascade of events and any genetically determined 

variability in antidepressant response may lie elsewhere in the cascade or in another 

neural system all together.  
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CHAPTER 4 

SEQUENCE ANALYSIS AND VARIANT DISCOVERY IN THE FIFTH EWING 

VARIANT (FEV) GENE FOR ASSOCIATION WITH RESPONSE TO 

CITALOPRAM† 

 

4.1  Introduction 

As detailed in Chapter 1, a major theory for the mechanism of action of SSRI’s 

involves the products of serotonin pathway genes. Having already investigated a critical 

gene in the serotonin pathway, the serotonin transporter (see chapters 2 and 3), we sought 

examine other genes that may play a role in antidepressant response. Recent work using a 

murine model system has pointed us to the transcription factor FEV (Fifth Ewing 

Variant) which has been reported to control transcription of a number of genes within the 

serotonin system. Work done by Deneris and colleagues using the murine homolog of 

FEV, Pet-1, has shown that this gene is expressed exclusively in serotonergic neurons 

earlier than the serotonin specific markers SLC6A4 or TPH and that expression of crucial 

serotonergic genes such as tryptophan hydroxalase, monamine oxidase A, and the 

serotonin transporter are all disrupted by obliterating Pet-1 expression (1,2). 

Studies done on FEV using postmortem brain tissue has revealed that FEV 

mRNA is robustly and exclusively expressed in the major serotonin-containing cell 

groups of the dorsal and median raphe nuclei (3,4). The only investigation into variation 

within the FEV locus was done using a case/control SIDS population consisting of 96 

cases of African American and Caucasian ethnicity and 96 ethnically matched controls. 

                                                           
† This chapter has been submitted for publication:  Kraft J.B., Berger M.L., Mangir D.E., Garriock H.A., Peters E.J., Slager S.L., 
Jenkins G.D., Reinalda M.S., McGrath P.J., Tecott L.H., & Hamilton S.P. “The role of serotonin-system regulatory transcription 
factor FEV in citalopram response.” 2008 
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They describe 3 variants in or around exon 3 (rs452985, rs860573, & rs2301296) that 

were not associated with SIDS. They also describe a previously unknown polymorphism 

IVS2-191_190insA (rs35898226) within intron 2 of FEV that was associated with 

increased risk of SIDS (5). 

As an upstream transcription factor that appears to exert control over the 

expression of a number of previously reported risk factors for depression or 

antidepressant response and given the central role of the serotonin system in mediating 

the effects of selective serotonin reuptake inhibitors, such as citalopram, we hypothesized 

that the Pet-1/FEV locus would be necessary for the antidepressant effects of SSRIs. 

In this Chapter, I describe the results of mutation screening in the FEV gene, as 

well as the results of an association study between DNA variants in this gene and 

antidepressant response. Finally, I will present data showing the effect of deletion of this 

gene in mice on antidepressant responsiveness. My goal was to enrich the marker set that 

we genotyped with potentially novel SNPs from the study population, as well as to 

identify SNPs with possible functional relevance to the antidepressant effects of SSRI’s. 

 

4.2  Materials and Methods 

4.2.1  STAR*D Study Population 

The study population consisted of the subjects who consented to give DNA from 

the STAR*D antidepressant trial, as reviewed in Chapter 3.  Within each ethnic group, 

and gender, we randomly split our subjects a priori into a discovery and validation 

sample set. Due to heterogeneity within our self-identified “White” subjects, as 

uncovered via the structure analysis described later (Chapter 7), all analyses were split 
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into three racial subgroups: White, non-Hispanic; White, Hispanic; and African 

American.  Other self-reported race classes were not analyzed. 

4.2.2  Gene Sequence and Polymerase Chain Reaction Primers 

Genomic and complementary DNA sequences were obtained from GenBank 

(accession number NM_017521), and primers were designed with Primer3 software (6) 

and manufactured by Invitrogen (Carlsbad, California). These products were designed to 

span exons and include flanking intronic sequence at the 5′ and 3′ ends. Six primer pairs 

were designed to screen 7.9 kb of sequence, including all 3 exons (NM_017521) and 2 

highly conserved areas in the promoter region of the gene (Table 4.1). 

4.2.3  Sample DNA Analysis  

DNA was quantified using the Quant-IT DNA Assay Kit, Broad Range 

(Molecular Probes, Eugene, OR, USA) and fluorescence read on the VICTOR2 1420 

Multilabel Counter (PerkinElmer Life Sciences, Boston, MA, USA). Gender was verified 

by the use of a PCR based assay of the sexually dimorphic amelogenin locus (7). 
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4.2.4  DNA Amplification  

For the randomly chosen subset of  96 samples to be sequenced, samples were 

amplified using polymerase chain reaction (PCR) in 5 microliters (μL) reactions 

containing 500 nM of the forward and reverse primers (Table 4.1), 5 ng genomic DNA 

template, 300 μM dNTPs (Roche, Indianapolis, IN, USA), 1 M anhydrous betaine (Acros 

Organics, Geel, Belgium), 50 mM KCl, 20 mM Tris-HCl (pH 8.4), 2 mM MgCl2, and 

0.25 units (U) Platinum Taq DNA polymerase (Invitrogen, Carlsbad, CA, USA). Samples 

were cycled using a touchdown protocol at 94°C for 3 min, followed by seven cycles of 

94°C for 30 s, 65-59°C for 30 s (decreased by 1°C intervals per cycle), and 72°C for 30 s, 

followed by 38 cycles of 90°C for 30 s, 58°C for 30 s, and 72°C for 30 s, with a final 10 

min at 72°C. All reactions were performed on a GeneAmp PCR System 9700 (Applied 

Biosystems, Foster City, California) in 384-well plates (MJ Research, Waltham, 

Massachusetts).  

4.2.5  DNA Sequencing  

Before direct sequencing, the excess primers and deoxynucleotides in the 

polymerase chain reaction (PCR) products were then degraded by adding a 5 μL solution 

of 1 unit of shrimp alkaline phosphatase (Roche, Indianapolis, Indiana), 0.5 units of 

Escherichia coli Exonuclease I (USB, Cleveland, Ohio), 5 mmol/L MgCl2, and 50 

mmol/L Tris-HCl (pH 8.5). The mixture was incubated at 37°C for 90 min, followed by 

deactivation for 15 min at 95°C. Sequencing reactions were performed with BigDye v3.1 

(Applied Biosystems, Foster City, California) chemistry at a 1/16th scale in 5 μL total 

volume containing 1 μL template (approximately 25 ng), 2.5 pmol primer, 0.75 μL 

Applied Biosystems 5× buffer, 0.5 μL BigDye v3.1, and 1.75 μL water. The reactions 
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were cycled at 96°C for 3 min, followed by 25 cycles at 96°C for 10 sec, 50°C for 5 sec, 

and 60°C for 4 min. Reactions were then purified with Montage MultiScreen-SEQ 

(Millipore, Bedford, Massachusetts) plates and the Hamilton Microlab 4200 (Hamilton, 

Reno, Nevada) 96-probe liquid robotic system. Samples were analyzed on a Prism 3730xl 

DNA Analyzer (Applied Biosystems), and analysis of mutations was performed with 

Mutation Surveyor v2.30 software (SoftGenetics, State College, Pennsylvania). All 

variants were submitted to dbSNP. With this sample set, the probability that we would 

detect variants at a minor allele frequency of 1% was 85.2%, and >99.9% for variants 

with minor allele frequencies of >5%. 

4.2.6  Marker Selection  

To provide adequate coverage of the entire FEV locus, five tagging SNPs were 

chosen based on the HapMap data for this genomic region, which contained 

approximately 20 common SNPs (HapMap build 16c.1, June 2005). In addition, four 

markers from our variant discovery effort were also included in this study, for a total of 9 

markers (Table 4.2). The distribution of markers at the FEV locus is schematized in 

Figure 4.1.  
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Figure 4.1: Schematic showing the genomic layout for the FEV locus and the relative 
locations of the 9 SNPs investigated for association to citalopram response in the 
STAR*D sample. Yellow regions in the gene are coding portions while the blocks 
represent exons and the lines introns. 
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4.2.7  Polymorphism Genotyping 

 Markers FEV01, FEV02, rs452985, rs452400, rs860573, and rs16859448 were all 

genotyped on a multiplex genotyping platform called SNPlex (Applied Biosystems, 

Foster City, CA). Markers FEV05 & rs359965 were genotyped using a 5’ nuclease assay 

(Taqman). 

The remaining SNP, FEV03, was genotyped via restriction length fragment 

analysis (RFLP) due to complications with both the multiplex genotyping platform as 

well as Taqman. The minor allele introduces an Nla III digestion site which was 

exploited for genotyping. Following PCR amplification, samples were then digested in a 

10 μl reaction containing 1 μl 10X Buffer 4 (New England Biolabs, Ipswich, MA, USA), 

5 μl PCR product, 0.1 μl 100X BSA, and 1 unit of Nla III enzyme (New England 

Biolabs). The reaction was incubated at 37°C for 90 minutes followed by heat 

inactivation at 80°C for 15 min. Samples were then separated on a 3% NuSieve 

(Cambrex Corporation, East Rutherford, NJ, USA) agarose gel at 150V for 1 hour and 

genotyped based on the presence of cut DNA of predicted sizes. 

4.2.8  Statistical Analysis  

Four phenotypic comparisons were made, based on the results from the response 

pattern analysis described previously (Chapter 2). The comparisons made were 1) all 

responders (specific and non-specific) versus non-responders (Resp42); 2) specific 

responders versus non-responders (Spec.Resp.); 3) remitters versus non-responders 

(Remit) and 4) tolerant versus intolerant (Tolerant). Single-point association tests were 

performed by logistic regression with the statistical package R 1.6.1 (8). Alleles were 

coded as 0, 1, or 2, corresponding to the presence of 0, 1, or 2 copies of the rare allele. 
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This coding scheme was chosen because of its robustness to departure from the true 

additive genetic model and departures from Hardy-Weinberg equilibrium (9). 

To take full advantage of the power of our sample, we also analyzed the data 

using self-reported ancestry as a covariate in an attempt to adjust for population 

stratification. Single-locus association tests were performed by logistic regression using 

self-reported ancestry as a covariate with the statistical package R 1.6.1. 

4.2.9  Animal Care and Background   

The animal experiments described in this chapter were carried out by Miles 

Berger in the laboratory of Laurence Tecott at UCSF. Pet-1 KO and wild type control 

littermates were obtained from heterozygote matings. For these crosses, the original Pet-1 

null allele (Hendricks et al, 2003) was backcrossed twice onto C57bl6/j background; thus 

all experimental animals contained approximately 87.5% C57Bl6/j genomic background 

and approximately 12.5% 129Sv background.  

Adult Pet-1 KO and wild type control littermates were maintained in low profile 

microisolator cages with four to five animals per cage. All animals had ad libitum access 

to food and water, and cages were changed biweekly. All other animal care was 

performed in accord with NIH guidelines and the Institutional Animal Care and Use 

Committee (IACUC) of the University of California, San Francisco.  

4.2.10  Tail Suspension Test   

Adult Pet-1 KO and wild type control littermates were injected intraperitoneally 

with 10 mg/kg citalopram dissolved in saline or control solution 30 minutes prior to tail 

suspension testing, and housed individually in fresh cages until testing. Tail suspension 

testing was performed as described (10) with slight modifications (11). 
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In brief, mice were attached by their tails with a one inch by half inch piece of duck tape 

to an 8 inch long wire suspended inside of a large box (two feet by one foot by one foot). 

The mouse was placed facing the inside of the box so there were no other visual cues 

available it, and a camcorder was placed five feet away to record the animal’s behavior 

during the six minute test. The experimenter left the room immediately after attaching the 

animal’s tail to the wire to avoid any human interference with the test. All video footage 

was scored for immobility time by a blinded observer. At least 8 mice were included in 

each treatment group. 

 

4.3  Results  

4.3.1  Sequencing Results  

We screened 709 bp of exonic and 2,980 bp of intronic or flanking sequence, 

totaling 3.7 kb in each of 96 samples. This translates to 355 kb screened in our 

population.  

4.3.2  SNP Detection  

Our effort yielded 15 variants in the FEV locus, comprising 14 SNPs and 1 

insertion/deletion. Of these, 13 were newly discovered variants, none of which were 

found in exons and 5 of which were found in upstream promoter regions (Table 4.1). Five 

of the 15 were singletons, and only 1 had a MAF greater than 5%. For our follow up 

genotyping, we concentrated on 4 of the 5 “common” SNPs found ignoring FEV04 

(rs3835980) which had previously been reported in the dbSNP database. 
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4.3.3  Single Marker Association  

In our primary phenotypic comparisons, we tested nine SNPs found in or around 

the FEV locus. Stratifying by the three ethnic groups, we tested for association by using 

an additive model and found marginal significance (p < 0.05) for eight of the nine 

markers looked at. Only the marker FEV05 did not show marginal association with any 

of the 4 phenotypes in any of the 3 ethnic groups. It should be noted that none of these 

associations meet a corrected p-value given the number of multiple comparisons we are 

considering. It would be expected that with a p-value threshold of p < 0.05, we would 

observe 5% of tests to be positive by chance alone. However, we find that taking all 4 

phenotypes and 3 ethnicities into account, nearly 25% or 5 times as many as expected are 

positive. This is even more striking when considering the most highly powered subgroup 

of white, non-Hispanic which comprises nearly 80% of our sample. In that subgroup, 19 

of the 36 tests (53%) show association at p < 0.05 level. This is more than ten times that 

expected by chance but the p values are all marginal (0.007 < p < 0.05). These variants 

showed no significant deviation from Hardy-Weinberg equilibrium and the observed 

associations do not seem to be due to LD as the average r2 values for each ethnic group 

were less than 0.4 

4.3.4  Single Marker Association with Self-Reported Ancestry as Covariate  

Using our four primary phenotypic comparisons, we tested nine SNPs found in or 

around the FEV locus using self-reported ancestry as a covariate within the logistic 

regression model. As seen in Table 4.3, several markers are associated with the three 

related response phenotypes (#1-3) at levels that exceed Bonferroni correction (p < 

0.0056). The associated SNPs had dominant odds ratios between 1.25 and 2.22. The 
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tolerance phenotype is largely negative for markers in the FEV which could be explained 

by reduced power due to the relatively low numbers of intolerant subjects or may 

possibly be an indication that this gene does not play a role in the tolerance of citalopram. 

4.3.5  Linkage Disequilibrium  

We estimated LD between all markers in the FEV region by using D′ and r2. LD 

patterns using markers within the gene are shown in Table 4.4. Graphical representations 

for each ethnic subgroup are shown in Figures 4.2, 4.3, & 4.4. Mean LD using the r2 

metric was 0.31 for Non-Hispanic Caucasians, 0.22 for Hispanic Caucasians, and 0.13 for 

African Americans. These values are too low to explain the large number of positive 

results within this gene being due to inter-relatedness between the markers being tested. 

4.3.6  Behavioral Effects of FEV in Murine Model System 

 In collaboration with Miles Berger in the laboratory of Laurence Tecott, the 

effect of citalopram treatment on mice deleted for the murine orthologue of FEV, Pet-1, 

was evaluated using a well established mouse model of antidepressant action, the tail 

suspension test (12). 

To further examine the role of the FEV locus in antidepressant response, we 

measured response to citalopram in mice deficient in Pet-1, the murine homologue of 

FEV. We treated Pet-1 KO and wild type control animals with citalopram and then 

measured their immobility time in the tail suspension test. We observed an approximate 

50% decrease in immobility time in the tail suspension test in wild type animals treated 

with citalopram versus placebo, but no change in immobility time in Pet-1 KO animals 

treated with citalopram versus placebo (p < 0.01) (Figure 4.5). 
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4.4  Discussion  

In this study, we sought to test whether DNA variation in the candidate gene FEV 

is associated with clinical response to SSRI treatment. To accomplish this we used known 

HAPMAP genotype data and our complete exon resequencing information to select 

tagging SNPs within this gene and then examined FEV in a large population taking 

citalopram. Our analysis showed several different markers associated with a number of 

related response phenotypes (Table 4.2) with significance values less than p = 0.05. 

These associations are at best considered marginal given the large number of statistical 

tests that were performed. While we cannot say for sure that variation at this locus 

appears to significantly influence patient response to citalopram, our genetic data and 

behavioral/functional tests suggest further study. 

In our primary phenotypes, we found modest evidence of association with SNPs 

across multiple phenotypes within a given ethnic subgroup. For example, significant 

associations were observed for SNPs rs359965 and rs452985 for all 4 phenotypes within 

the non-Hispanic Caucasian group and SNP FEV01 was significant for every phenotype 

except specific response in the African American group. There were also SNPs which are 

significant for one phenotype across multiple ethnic populations. For example, SNP 

rs452400 shows positive association for the Resp42 phenotype in both the non-Hispanic 

Caucasian and African American groups. In almost all cases, these findings cannot be 

accounted for in terms of LD between markers. For example, rs452400 is associated with 

Resp42 phenotype in African Americans (p < 0.05) while 2 markers (rs16859448 and 

rs452985) are in high LD (r2 values of 0.85 & 0.88, respectively) yet show no evidence of 

association (p values of 0.27 & 0.31, respectively) (Figure 4.4). 
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Using self-reported ancestry as a covariate allowed us to analyze the entire 

STAR*D sample correcting for population stratification but without the associated loss of 

power incurred when doing stratified analysis. We found several independent markers 

associated with our related response phenotypes of response, remission, and specificity of 

response at a level exceeding a Bonferroni correction for the number of tests performed. 

These associations within the FEV locus provide evidence that this gene plays a role in 

citalopram response within the STAR*D clinical sample. 

Our mouse work shows that the murine homologue of FEV (Pet-1) is crucial for 

antidepressant behavioral effects of citalopram in the tail suspension test. It is not yet 

known if this effect is due to direct interaction of FEV with citalopram or through 

regulation of other downstream effectors that are direct or indirect targets of the drug. 

Association data suggest a role for variation in the gene itself, and future work should 

focus on interaction between variants in this gene and other serotonin pathway 

components. Taken together, these findings in humans and mice suggest that the 

FEV/Pet-1 locus may be an important genomic locus for antidepressant responsivity in 

mammals. 

Although the results of this study are promising, they are also subject to 

limitations. A limitation in any case–control association study is confounding based on 

population stratification. We attempted to control for population stratification in this 

study by analyzing the data within self-identified ethnic groups, as this has been shown to 

correlate well with marker allele frequencies (13). The interpretation of our association 

data also necessitates consideration of multiple testing. The correlation between 

phenotypes tested, as well as the observed correlation of marker-to-marker relationships, 
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makes traditional corrections for multiple comparisons inappropriately conservative. We 

have thus left our significance tests uncorrected. Also, while we have attempted to 

capture the majority of common variation within these genes, current genotyping costs 

prohibit complete ascertainment of all variants. Soon, advances in DNA sequencing 

technology will make possible deeper resequencing of genes associated with phenotypes 

of interest. Future investigation of FEV in antidepressant response might include 

complete resequencing of the FEV locus, including the entirety of introns, as well as 

flanking sequences that may harbor regulatory sequences. 

In summary, we have made an in-depth investigation into the role of DNA 

variants within the gene FEV for association to citalopram response in a large patient 

population. Using single locus tests, we observed a number of nominal associations 

between several markers and a number of inter-related phenotypes. When using self-

reported ancestry as a covariate in the analysis, several of the polymorphisms we 

interrogated appear to be associated with citalopram response in the STAR*D population. 

Given the results of our association study and our behavioral/functional data suggesting 

the importance of Pet-1 (FEV) in citalopram action, this gene may warrant further 

investigation. Given that little is known about exactly how SSRIs exert their 

antidepressant effects in vivo, interrogation of DNA variation in other neuronal pathways 

or across the entire genome may be needed to clarify the picture. 
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CHAPTER 5 

LINKAGE DISEQUILIBRIUM MAPPING OF VARIANTS IN CANDIDATE GENES 

FOR ASSOCIATION WITH RESPONSE TO CITALOPRAM 

 

5.1  Introduction 

A prominent theme to the work described in previous chapters involves 

investigation of the role of various candidate genes in determining antidepressant 

response. I have previously discussed the findings of many of our previously conceived 

candidate genes (Chapters 2-4). In this chapter, I will now focus on candidate genes 

identified from the publications of other labs and represent our efforts to replicate those 

observations with regard to citalopram response within the STAR*D population. 

Work published by Svennigsson et al. in a Science article in 2006, showed that a 

protein called p11 (S100A10) interacted with the serotonin 1B receptor and increased 

localization of 5-HT1B receptors at the cell surface (1). It was also shown that 

overexpression of p11 increased 5-HT1B receptor function and recapitulated certain 

behaviors seen after antidepressant treatment in mice. Further, adding to the allure of p11 

expression appeared to be modulated by antidepressant treatment (2). As described earlier 

(Chapter 1), we had previously been interested in the transcription factor AP-2 due to the 

interaction with an associated SNP in the promoter region of the serotonin transporter. 

There is support in the literature that helped to elevate AP-2 as a major candidate gene. 

Among the most instrumental was work from Damberg and colleagues showing that 

brainstem levels and activity of several isoforms of AP-2 were changed after treatment 

with antidepressants and that levels of AP-2 correlated with monoamine turnover in the 
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rat brain (3-5). Given the findings described above we elected to investigate four 

candidate genes for association to antidepressant response, p11 (S100A10) and 5HT1B, 

as well as two isoforms of AP-2 (AP-2β & AP-2δ). 

In this study, we sought to conduct a more definitive study by tagging variation 

within these genes and genotyping these variants in a large sample of subjects with major 

depression whose response to treatment had been carefully characterized. This sample 

was collected in the course of Sequenced Treatment Alternatives to Relieve Depression 

(STAR*D), which has been described previously (Chapter 3). 

 

5.2  Materials and Methods 

5.2.1  STAR*D Study Population 

The study population consisted of the subjects who consented to give DNA from 

the STAR*D antidepressant trial, as reviewed elsewhere (see Chapter 3). To limit 

heterogeneity within our analyses, the analyses for the S100A10 & HTR1B loci were 

done by splitting samples into two self-identified racial subgroups: White and African 

American. Due to heterogeneity within our self-identified “White” subjects, as uncovered 

via the structure analysis described later (Chapter 7), the analyses for TFAP2β & 

TFAP2δ were split into three racial subgroups: White, non-Hispanic; White, Hispanic; 

and African American.  Other self-reported race classes were not analyzed due to very 

small sample sizes, and thus diminished power to detect association. 
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Gene dbSNP Identifier Assay Method Location Position
HTR1B rs6298 TAQMAN 6q14.1b 78,168,588
HTR1B rs130058 TAQMAN 6q14.1b 78,168,877
HTR1B rs11568817 TAQMAN 6q14.1b 78,168,978

S100A10 rs6678672 TAQMAN 1q21.3b 149,171,591
S100A10 rs1873311 TAQMAN 1q21.3b 149,178,804
TFAP2B rs9367415 SNPLEX 6p12.3a 50,828,883
TFAP2B rs2143081 SNPLEX 6p12.3a 50,829,670
TFAP2B rs2272903 SNPLEX 6p12.3a 50,833,407
TFAP2B rs2076309 SNPLEX 6p12.3a 50,836,237
TFAP2B rs2817399 TAQMAN 6p12.3a 50,851,357
TFAP2B rs2817407 SNPLEX 6p12.3a 50,853,073
TFAP2B rs1569777 SNPLEX 6p12.3a 50,855,581
TFAP2B rs2245173 SNPLEX 6p12.3a 50,857,376
TFAP2B rs2817419 SNPLEX 6p12.3a 50,859,742
TFAP2B rs2817420 SNPLEX 6p12.3a 50,860,168
TFAP2B rs2817421 SNPLEX 6p12.3a 50,863,913
TFAP2D rs11961359 SNPLEX 6p12.3a 50,726,739
TFAP2D rs760899 SNPLEX 6p12.3a 50,740,443
TFAP2D rs9381890 SNPLEX 6p12.3a 50,741,533
TFAP2D rs9395616 SNPLEX 6p12.3a 50,747,310
TFAP2D rs2235497 SNPLEX 6p12.3a 50,749,910
TFAP2D rs9367409 SNPLEX 6p12.3a 50,751,064
TFAP2D rs9369971 SNPLEX 6p12.3a 50,758,719
TFAP2D rs6928472 SNPLEX 6p12.3a 50,759,344
TFAP2D rs2235495 TAQMAN 6p12.3a 50,774,776
TFAP2D rs9349557 SNPLEX 6p12.3a 50,780,012

Table 5.1: List of candidate genes investigated and tagSNPS genotyped within each locus 
as well as method of genotyping. All data based on HapMap build 34 of the genome and 
dbSNP buil 124 including HapMap Phase II data. 
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HTR1B S100A10 TFAP2B/D
Location 6q14.1b 1q21.3b 6p12.3a
HapMap Build HG34/dbSNP124 HG34/dbSNP124 HG34/dbSNP124
Start Position 78,167,530 149,171,000 50,715,964
Ending Position 78,169,200 149,183,800 50,865,963
Size of Region 1.67 kb 12.8 kb 150 kb
# SNPs in Region 9 18 197
MAF >5% CEU 5 13 96
MAF >5% YRI 3 13 102
tagSNPs for CEU 3 4 14
tagSNPs for YRI 2 5 17
tagSNPs for STAR*D 3 2 21

 

Table 5.2: List of regions investigated and breakdown of SNPs in the region. Number of 
tagSNPS genotyped within each locus are listed as “tagSNPs for STAR*D”. Represents 
HapMap Phase II data. 
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5.2.2  Marker Selection  

To provide adequate coverage of the all four candidate genes, tagging SNPs were 

chosen based on the HapMap data for each genomic region (HapMap build 19, October 

2005, NCBI B34 assembly, dbSNP b124) using the method of Carlson et al. (6). Detailed 

information on the genes and tagging SNPs selected are listed in Table 5.1 and linkage 

disequilibrium (LD) values for the SNPs selected are described in Tables 5.3 through 5.6. 

Due to the diverse ethnic makeup within the STAR*D population, we chose to select 

tagSNPs based on both the HapMap CEU and the YRI populations to ensure adequate 

coverage within such a diverse sample. 

5.2.3  Polymorphism Genotyping 

 For the eight tagSNPs genotyped using 5’ exonuclease fluorescence (Taqman) 

assays (Table 5.1), 5 µl reactions containing 10ng of dried genomic DNA template, 2.5 µl 

of Universal Taqman PCR Master Mix (Applied Biosystems), 0.085 µl of 20X Taqman 

assay probe (Applied Biosystems), and 2.42 µl of sterile H20 were cycled at 95°C for 10 

minutes, followed by 40 cycles of 92°C for 15 seconds and 60°C for 1 minute.  Reaction 

fluorescence was read and genotypes were scored on an ABI 7900HT Sequence 

Detection System (Applied Biosystems). All other tagSNPs were genotyped on a 

multiplex genotyping platform called SNPlex (Applied Biosystems, Foster City, CA). 

5.2.4  Statistical Analysis  

Three phenotypic comparisons were made, based on the results from the response 

pattern analysis described previously (Chapter 2). The comparisons made were 1) all 

responders (specific and non-specific) versus non-responders (Resp42); 2) specific 

responders versus non-specific responders (Specific); and 3) remitters versus non-

 116



responders (Remit). Single-point association tests were performed by logistic regression 

with the statistical package R 1.6.1 (7). Alleles were coded as 0, 1, or 2, corresponding to 

the presence of 0, 1, or 2 copies of the rare allele. This coding scheme was chosen 

because of its robustness to departure from the true additive genetic model (8). 

Haploview was used to estimate linkage disequilibrium (LD) across regions of the genes. 

 

5.3  Results  

5.3.1  Single Marker Association 

In our primary phenotypic comparisons, we tested five SNPs in the regions of the 

S100A10 and HTR1B genes (S100A10=2 SNPs / HTR1B=3 SNPs). Stratifying by the 

two ethnic groups, Caucasian and African American, we tested for association by using 

an additive model and found marginal significance (p < 0.05) for one marker (rs130058) 

in HTR1B gene when looking in the entire African American sample using the specific 

response phenotype (Table 5.7). Those markers with nominal associations (p < 0.1) 

within S100A10 & HTR1B did not meet even modest corrections for multiple 

corrections. 

In our primary phenotypic comparisons, we tested twenty-one SNPs found in the 

TFAP2β & TFAP2δ gene cluster. Stratifying by the three ethnic groups, White, non-

Hispanic; White, Hispanic; and African American, we tested for association by using an 

additive model and found marginal significance (p < 0.05) for four markers (rs2245173, 

rs2817420, rs9381890, & rs2235495) occurring in different ethnic groups as well as 

within different phenotypes (Table 5.8). Those markers with nominal associations within 
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the TFAP2β & TFAP2δ gene cluster did not meet even modest corrections for multiple 

corrections. 

5.3.2  Linkage Disequilibrium  

 As expected, the tagSNPs selected for each gene had relatively low levels of 

linkage disequilibrium as this was used as selection criteria. Also of interest was that the 

efficiency of tagSNPs was vastly different for the different genes depending on the 

density of genotyped SNPs within the HapMap Phase II data (Table 5.2). HTR1B 

required 3 tagSNPs while S100A10 needed only 2 tagSNPs. TFAP2B & TFAP2D are 

located within a 150kb block and tagSNPs were chose to tag this block containing both 

genes with 11 tagSNPs falling within the TFAP2β locus and 10 in the TFAP2δ gene for a 

total of 21. 
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A. 

 

 

RS11568817 RS130058 RS6298
RS11568817 1 1
RS130058 0.54 1
RS6298 0.33 0.18

B. 

 

 

 

RS11568817 RS130058 RS6298
RS11568817 1 1
RS130058 0.3 1
RS6298 0.06 0.02

Table 5.3: Linkage disequilibrium patterns within the HTR1B locus. D’ values on upper 
diagonal shaded in red and pairwise r2 values for each SNP pair on lower diagonal shaded 
in blue. Caucasian & African Americans are shown separately in A & B, respectively. 
Levels of shading indicate strength of LD with darker colors indicated stronger LD.
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A. 

 

 

RS1873311 RS6678672
RS1873311 0.97
RS6678672 0.04

B. 

 

 

 

RS1873311 RS6678672
RS1873311 1
RS6678672 0.03

Table 5.4: Linkage disequilibrium patterns within the S100A10 locus. D’ values on upper 
diagonal shaded in red and r2 values on lower diagonal shaded in blue. Caucasian & 
African Americans are shown separately in A & B, respectively. Levels of shading 
indicate strength of LD with darker colors indicated stronger LD.
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5.4  Discussion  

In this study, we sought to test whether DNA variation within several interesting 

candidate genes from the literature was associated with clinical response to citalopram 

treatment using the STAR*D sample. To accomplish this we used known HAPMAP 

genotype data to select tagSNPs within these four genes and then examined these genes 

in a large population taking the SSRI citalopram. Our analysis showed several different 

markers associated with a number of related response phenotypes (Table 5.7 & Table 5.8) 

with significance values less than p = 0.05. These associations are at best considered 

marginal given the large number of statistical tests that were performed. While we cannot 

say for sure that variation at these loci does not appear to significantly influence patient 

response to citalopram, our genetic data based upon a LD mapping, tagSNP approach 

suggests that variation within these genes do not significantly contribute to an 

individual’s response to citalopram. 

A limitation in any case–control association study is confounding based on 

population stratification. We attempted to control for population stratification in this 

study by analyzing the data within self-identified ethnic groups, as this has been shown to 

correlate well with marker allele frequencies (7). The interpretation of our association 

data also necessitates consideration of multiple testing. The correlation between 

phenotypes tested, as well as the observed correlation of marker-to-marker relationships, 

makes traditional corrections for multiple comparisons inappropriately conservative. We 

have thus left our significance tests uncorrected. 

In summary, using a tagSNP approach, we have made an effort to investigate the 

role of genetic variation in four genes (HTR1B, S100A10, TFAP2β, and TFAP2δ) with 

 123



 124

regards to their effect on response to citalopram in a large patient population. Using 

single locus tests, we observed a number of nominal associations between several 

markers and a number of inter-related phenotypes. None of the polymorphisms we 

interrogated appear to be strongly associated with citalopram response in the STAR*D 

population. Furthermore, we were unable to find genetic evidence to validate previous 

assertions in the literature that these genes play a role in depression or antidepressant 

response. Given the largely negative results that we have found using a candidate gene 

approach and that little is known about exactly how SSRIs exert their antidepressant 

effects in vivo, we will, in the future, employ a systematic approach to looking at 

variation across the entire genome to help elucidate genetic determinants of 

antidepressant response. 
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CHAPTER 6 

GENE-CENTRIC ANALYSIS REVEALS MARKERS ASSOCIATED WITH 

RESPONSE TO CITALOPRAM IN A LARGE CLINICAL SAMPLE WITH MDD†  

 

6.1  Introduction 

As described in previous chapters, major depression is among the most common 

psychiatric disorders and treatment with selective serotonin reuptake inhibitors (SSRIs) is 

a mainstay in the treatment of MDD (1). There is prominent heterogeneity in response to 

antidepressants (2), which is thought to be at least partly under genetic control (3,4).  

To date, studies looking for genetic loci affecting antidepressant response have 

been inconclusive in small samples (5,6). However, recent studies designed to be much 

more powerful (7,8) have generally failed to discover variants within known candidate 

genes strongly believed to influence antidepressant response based on a presumed 

understanding of the mechanism of action of antidepressant drugs. 

The general lack of success of candidate gene studies, even in large samples, is 

not unique to psychiatric genetics and has led to the development of technologies that 

enable scientists to interrogate large number of variants from across the genome 

independent of assumed biological pathways or mechanisms of action. Such studies, 

whether genome-wide or targeted, are becoming increasingly popular in many areas with 

highly significantly associated variants being discovered for complex genetic disorders 

(9-17). Many of these studies have identified loci that were not uncovered during 

candidate gene experiments. 

                                                           
† This chapter will be submitted for publication:  Kraft J.B., Shyn S.I., Garriock H.A., Peters E.J., Reinalda M.S., Jenkins G.D., Slager 
S.L., McGrath P.J., & Hamilton S.P. “Gene-Centric Analysis Reveals Markers Associated with Response to Citalopram in the 
STAR*D Clinical Sample.” 2008 
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Large-scale studies, due to the extent of hypothesis testing, require validation 

(18), and study design has been a focus of much discussion recently as investigators seek 

strategies to evaluate the validity and generalizability of their findings (19). The most 

common design analyzes all genotypic data without a replication stage. The primary 

disadvantages of this approach are the larger cost and the lack of a validation step. A 

variation on this approach is to work with other research teams to validate findings, as 

has been done recently in type 2 diabetes (20-22). 

Another approach involves split-sample or two-stage designs (23), in which SNP 

genotyping is done on one portion of the sample initially and then positive findings 

within this first group are then genotyped in the rest of the samples to validate the initial 

associations. The primary disadvantages of this approach are a diminution of power and 

the lower likelihood of weak genetic effects replicating, although it might be the best 

available option for singular samples. It has been suggested recently that an alternative to 

a split-sample design would be to genotype a fraction of a sample set, followed by 

genotyping of those SNPs showing association in the remainder of the samples. A joint 

analysis of all samples genotyped for this smaller set of markers is then carried out. This 

approach obtains the cost savings of a two-stage design, while generally retaining the 

power of a one-stage approach (24), with the attendant lack of validation.  

The selection criteria for determining which markers to carry on to the second 

stage of genotyping have been discussed far less but may be of equal importance. The 

most straightforward strategy would be to select a priori those markers that meet the 

chosen level of significance for the validation stage. One way to enhance the likelihood 

of choosing high value SNPs for validation is to preferentially weight SNPs based on 
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prior information, such as when the SNP occurs in a linkage peak or known candidate 

gene for the phenotype (25,26).  

Finally, it may be useful to select SNPs that represent a larger genetic effect 

despite showing a lower level of statistical significance (i.e., having a lower p value). 

With the large samples used for many current studies, it is likely that there will be 

markers with dramatically small p values coming from the discovery stage. Many of 

these will have negligible effect sizes and therefore the clinical implications of such 

variants are not immediately clear. It thus may be of great interest to find SNPs that 

suggest a substantial contribution to risk, and still show an adequate level of significance 

using association statistics. Undoubtedly, this approach would result in not considering 

SNPs that are highly associated with a trait, but with a small effect. Another hazard of 

choosing such markers involves enrichment for low frequency variants, for which allele 

frequency differences between cases and controls may be unreliable, thus leading to 

spuriously large odds ratios. 

As described in previous chapters, we are determining if common DNA variants 

contribute to antidepressant response status in a large clinical sample (N=1,914) taking 

the SSRI citalopram (Celexa). Here, we report an analysis of 40,113 gene-based SNPs, 

including 20,000 non-synonymous SNPs, in a two-stage design (27). We additionally 

sought to test if using both significance levels and a threshold effect size (e.g., odds ratio 

≥2.0) as criteria for SNP selection for stage-two genotyping would be a successful 

approach to discovering clinically relevant variants associated with antidepressant 

response in our whole genome study. 
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6.2  Materials and Methods 

6.2.1  Study Design 

We used a two stage design to identify associated variants and validate our 

findings. We selected 962 subjects for the first stage (discovery) and 952 subjects for our 

second stage (validation). These subjects were selected by random sampling controlling 

for gender, race, and Resp42 phenotype, thus assuring comparability of the discovery and 

validation samples for the most meaningful characteristics. All markers with trend test p 

≤ 0.001 and with a dominant OR ≥ 2.0 were selected for genotyping in the second stage. 

It might be argued that power is sacrificed by not using a single stage design using all 

samples for analysis, or a two-stage design with joint analysis (25). While it is true that 

our approach sacrifices power, these other approaches do not provide true replication of 

association findings. Since we are aware of no other sample of comparable size that 

exists now or for the foreseeable future, we believe we must sacrifice some power for the 

ability to assess the validity of our findings. 

6.2.2  STAR*D Study Sample 

The study population consisted of the subjects who consented to give DNA from 

the STAR*D antidepressant trial, as reviewed elsewhere (see Chapter 3). To limit 

heterogeneity within our analyses, the analyses were done by splitting samples into two 

self-identified racial subgroups: White and African American. Due to heterogeneity 

within our self-identified “White” subject, as uncovered via the structure analysis 

described later (Chapter 7), the analyses were also ran splitting STAR*D into three racial 
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subgroups: White, non-Hispanic; White, Hispanic; and African American. Other self-

reported race classes were not analyzed due to small sample sizes. 

6.2.3  Polymorphism Genotyping 

Approximately 40,000 markers were genotyped by ParAllele Biosciences (South 

San Francisco, CA) using Molecular Inversion Probes (MIP), so named because the 

oligonucleotide probe central to the process undergoes a unimolecular rearrangement 

from a molecule that cannot be amplified, into a molecule that can be amplified. This 

rearrangement is mediated by hybridization to genomic DNA and an enzymatic "gap fill" 

process that occurs in an allele-specific manner. The resulting circularized probe can be 

separated from cross-reacted or unreacted probes by a simple exonuclease digestion and 

then amplified using PCR probes sites common to all MIPs (36). Of the 40,113 assays, 

593 were duplicate assays and 39,635 passed genotyping quality control. Ten HapMap 

samples were typed from 2-7 times as external controls, and 5 STAR*D samples were 

genotyped in duplicate. Duplicate genotyping showed repeatability of 99.92%. SNP and 

amelogenin data identified one X0 female and one XXY male. 37 of the 45 SNPs 

genotyped on the validation set of samples were genotyped using the SNPlex multiplex 

genotyping platform (Applied Biosystems, Foster City, CA) with 7 remaining SNPs 

genotyped using a 5’ nuclease assay (Taqman) and 1 SNP genotyped with restriction 

length fragment analysis (RFLP ) due to assay failure with both SNPlex and Taqman 

(Table 6.1). 

6.2.4  Marker Information & Selection 

The 40,113 markers genotyped for our study were not chosen to cover the 

genome, and are spaced approximately one marker per 72kb (Figure 6.1). SNPs were 

 132



 133

chosen by ParAllele to a) represent common variation in genes, and b) represent available 

known non-synonymous variants. The initial experimental design was to add 

approximately 60,000 additional markers to provide a higher density of tagging SNPs in 

genes, with little coverage of non-genic regions. As discussed in the next chapter, this 

approach was supplanted by a larger-scale effort.
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6.2.5  Statistical Analysis 

The frequency distributions of demographic and clinical variables were examined. 

To control for any potential population stratification, we stratified our analyses by self-

reported ethnicity: Caucasian and African-American. We tested for Hardy-Weinberg 

equilibrium within each of the ethnic groups, and for these analyses, all subjects from a 

stratum were used in the analysis since all subjects had depression and the evaluated 

polymorphisms were not suspected to influence risk of depression. Linkage 

disequilibrium was estimated using the r2 metric. 

We used unconditional logistic regression analysis to examine associations of 

genetic polymorphisms and response to citalopram. Each polymorphism was modeled 

individually as gene-dosage effects in the regression models. This coding scheme was 

chosen because of its robustness to departure from the true additive genetic model (28). 

Multivariate regression analysis was used to control for possible confounding by sex, age, 

education (years of school), months in current major depressive episode (MDE), and 

years since first MDE. We estimated odds ratios (OR) and 95% confidence intervals 

(CIs) for the carriers of the minor allele versus non-carriers of the minor allele. In the 

validation stage, markers were considered significant only if they met a threshold p value 

(p ≤ 0.006) and had the same direction of effect as in the discovery stage. The same 

directionality requirement is important as it will remove those SNPs where the allele 

associated with improved response switches between the discovery and validation 

samples but each different alelele remains significantly associated. 

As a secondary analysis, we evaluated the combined effect of multiple SNPs on 

citalopram response. For this analysis we used SNPs significantly associated when 
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considering the entire dataset (p ≤ 0.001 in the combined sample). We selected the allele 

that was more common in the responder group and treated this allele as the protective 

allele. We then summed up the total number of protective alleles each individual had. 

This total was modeled as a continuous variable in a logistic regression analysis. One 

thousand permutations were run to obtain the corrected type I error rate and odds ratio 

estimate. Statistical tests were performed in SAS version 8.2 or Splus version 6.2.1 

statistical packages. 

 

6.3  Results  

6.3.1  Two-Stage Primary Analysis 

In our two-stage strategy, we genotyped approximately half of our sample for 

40,113 SNPs located in or near known or predicted genes, including approximately 

20,000 non-synonymous SNPs. We then sought to validate our initial findings by 

genotyping the second half of our sample for SNPs that met our a priori threshold for 

statistical significance and effect size. Markers with a trend test p ≤ 0.001 and with a 

dominant OR ≥ 2.0 were selected for genotyping in the second stage. Markers that had p 

≤ 0.006 in the validation stage for the same allele were considered to show replication.  

We found that 45 SNPs met our selection criteria in our discovery population and were 

therefore genotyped in the remainder of our sample (Table 6.1). Only one SNP in the 

LRP2 locus (rs6716834) met the criteria for replication, and occurred in the African-

American sample. The minor allele frequency for responders was 0.29 in the discovery 

sample, compared to 0.52 in the non-responders (p = 5.3 x 10-5, dominant odds ratio = 

0.29 [95% confidence interval = 0.14-0.60]). In the validation sample, the responder 
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minor allele frequency was 0.33, versus 0.53 in non-responders (p = 0.006, dominant 

odds ratio = 0.41 [95% confidence interval = 0.17-0.94]) (Table 6.2). Combining 

discovery and validation samples, we observed continuing support for the LRP2 SNP (p 

= 1.3 x 10-6, dominant odds ratio = 0.33 [95% confidence interval = 0.19-0.58]). 

6.3.2  One-Stage Secondary Analysis 

 As a secondary analysis, we evaluated the additive effect of multiple SNPs on 

response to citalopram. We used twelve markers that met our discovery stage criteria and 

then met a relaxed level of significance in the combined dataset (p ≤ 0.001) (Table 6.2). 

Within the Caucasian sample, there were five SNPs from five different genes that were 

used in this analysis. Thus the number of “protective” alleles (i.e., the allele increased the 

likelihood of response) for each Caucasian individual ranged from 0 to 10. We found a 

highly significant trend of response with increasing number of protective alleles 

(permutation p ≤ 0.0001). That is, for each additional protective allele, the likelihood of 

response increases 55% (odds ratio = 1.55, 95% confidence interval = 1.37-1.73) (Figure 

6.2). Within the African-American group, there were seven SNPs from six genes that 

were genotyped in stage two. Because, two SNPs (rs915033 and rs915034) were in 

strong LD (r2 = 0.95) with each other, only rs915033 was used. We also found a 

significant effect (permutation p ≤ 0.0001), with an effect size of OR = 2.01 (95% 

confidence interval = 1.76-2.34) for each additional allele (Figure 6.3). This suggests 

multiple independent susceptibility loci acting in an additive manner with no real 

evidence of epistasis, although we have not formally tested for such. 
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6.4  Discussion  

Our 40,113 marker, two-stage design study implicated one SNP in the LRP2 locus 

with antidepressant response with a relatively large effect size. The dominant odds ratio 

for the minor allele was 0.29 in the discovery set, and 0.41 in the validation set.  

The most likely role for the protein LRP2 in antidepressant response involves its 

function at the blood brain barrier and possible role in transport of drug into the central 

nervous system. The SNP associated with antidepressant response within LRP2 is a non-

synonymous coding change within the protein changing a serine to an asparagine at 

amino acid position 83. This is a relatively mild mutation that is predicted to not be a 

“significant” amino acid substitution and to be well tolerated (score 0.79) as determined 

by the SIFT algorithm (29-32). This gene is relatively large (~250kb) and contains some 

31 non-synonymous SNPs within its 79 exons. DNA variation in the gene has been 

previously associated with side effects to the chemotherapeutic agent cisplatin, 

highlighting the role that this protein may play in drug transport (33,34). 

Spurious associations due to population stratification within a sample are a major 

concern for case-control association studies. To correct for potential ethnic stratification, 

we analyzed both the African American & Caucasian groups separately to test for 

association. As described above, we also tested for the possible confounding effects of a 

small subgroup of Hispanics within the Caucasian sample by further dividing the 

Caucasians on the basis of Hispanic ancestry and found that all markers still remained 

associated with our phenotype (Table 6.3).  

A limitation of our study is that our choice of 40,113 markers does not represent a 

comprehensive whole genome association study. While approximately half of these 
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markers were chosen as tag SNPs, the other half of the markers represents coding SNPs 

within known genes. These 40,113 markers have an average spacing of about 72kb 

between them which is much larger than what that would be desired for a whole genome 

study. Even with a non-ideal choice of markers, we were able to discover one marker that 

was validated within our two-stage design and 11 other markers using a more relaxed 

threshold. Two of these 12 SNPs were non-synonymous coding changes and minor allele 

frequencies varied dramatically among the markers (3%-40% MAF). These markers were 

found to be in several intriguing genes including NR5A1 (a transcription factor involved 

in steroid and hormone production in response to stress), KCND2 (a potassium ion 

channel expressed in the brain), and EMR4 (a novel epidermal growth factor expressed in 

the brain). These results provide us with plausible genes for antidepressant response and 

provide a picture of what could be uncovered using a larger number of markers designed 

to more adequately survey the genome. This study will be addressed in detail within 

Chapter 7. 

In summary, we have looked at approximately 40,000 markers throughout the 

genome in a very large clinical sample using a two-stage “split” sample design to find an 

association with a single marker (rs6716834) within the LRP2 gene. Although not 

validated in the two-stage design, we have also implicated 11 other markers in our entire 

sample found in various loci including some promising genes such as a potassium 

channel and calcitonin b related peptide. It appears that the LRP2 gene does affect 

response to drug in our representative population with citalopram using our outcome 

assessment phenotypes. 

 



A
) 

           

R
ac

e
M

A
F 

(N
R

)
M

A
F 

(R
)

D
om

in
an

t O
R

A
dd

iti
ve

 M
od

el
 P

-v
al

ue
R

ac
e

M
A

F 
(N

R
)

M
A

F 
(R

)
D

om
in

an
t O

R
A

dd
iti

ve
 M

od
el

 P
-v

al
ue

rs
11

55
93

16
E

B
N

A
1B

P
2

N
S

3
18

44
08

.1
06

C
A

2.
47

%
0.

23
%

0.
09

5.
62

E
-0

5
C

A
1.

52
%

0.
78

%
0.

51
0.

08
45

69

rs
19

90
42

8
K

C
N

D
2

N
O

9
13

45
57

.4
7

C
A

1.
04

%
4.

11
%

4.
23

0.
00

01
90

C
A

1.
71

%
4.

16
%

2.
44

0.
00

04
31

rs
20

35
97

0
E

M
R

4
N

O
21

42
87

4.
86

4
C

A
8.

45
%

14
.6

9%
2.

19
0.

00
04

18
C

A
9.

04
%

13
.2

5%
1.

60
0.

00
13

09

rs
38

06
87

3
K

IA
A

09
47

, C
R

74
94

41
N

S
7

11
95

27
.5

99
C

A
5.

52
%

1.
62

%
0.

26
7.

29
E

-0
5

C
A

4.
90

%
2.

23
%

0.
42

0.
00

06
20

rs
40

06
25

S
LC

37
A

1
N

O
1

43
30

6.
33

9
C

A
32

.9
3%

43
.0

0%
2.

03
7.

52
E

-0
5

C
A

33
.5

7%
41

.1
9%

1.
65

0.
00

01
22

rs
68

04
95

1
M

C
F2

L2
, K

IA
A

08
61

N
O

5
55

15
.6

07
C

A
3.

58
%

8.
91

%
2.

58
0.

00
01

97
C

A
6.

78
%

7.
41

%
1.

10
0.

57
15

81

rs
73

56
63

TB
C

1D
2B

N
O

19
69

32
.7

63
C

A
2.

77
%

6.
90

%
2.

87
0.

00
02

86
C

A
3.

41
%

6.
21

%
1.

95
0.

00
12

67

rs
96

15
R

X
R

A
N

S
15

76
13

8.
07

6
C

A
1.

77
%

5.
22

%
3.

17
0.

00
03

91
C

A
3.

87
%

4.
99

%
1.

34
0.

18
33

78

M
ar

ke
r

G
en

e
Jo

in
t

cS
N

P
P

os
iti

on
C

hr
om

D
is

co
ve

ry

 B
) 

            

R
ac

e
M

AF
 (N

R
)

M
AF

 (R
)

D
om

in
an

t O
R

Ad
di

tiv
e 

M
od

el
 P

-v
al

ue
R

ac
e

M
AF

 (N
R

)
M

AF
 (R

)
D

om
in

an
t O

R
Ad

di
tiv

e 
M

od
el

 P
-v

al
ue

s1
15

59
31

6
EB

N
A1

BP
2

N
S

3
18

44
08

.1
1

C
A

2.
23

%
0.

27
%

0.
11

56
75

67
6

0.
00

09
80

C
A

1.
36

%
0.

76
%

0.
55

0.
17

67
52

H
C

A
3.

39
%

0.
00

%
4.

40
E-

07
0.

01
71

05
H

C
A

2.
17

%
0.

93
%

0.
42

0.
30

61
48

rs
19

90
42

8
KC

N
D

2
N

O
9

13
45

57
.4

7
C

A
0.

87
%

3.
34

%
4.

06
0.

00
27

76
C

A
1.

35
%

3.
79

%
2.

77
0.

00
07

11
H

C
A

1.
72

%
9.

02
%

6.
16

0.
00

76
08

H
C

A
3.

33
%

6.
42

%
2.

06
0.

14
24

88
s2

03
59

70
EM

R
4

N
O

21
42

87
4.

86
4

C
A

8.
93

%
14

.8
2%

2.
15

0.
00

30
43

C
A

8.
75

%
13

.2
6%

1.
71

0.
00

17
08

H
C

A
6.

67
%

13
.7

9%
2.

27
0.

06
44

61
H

C
A

10
.3

3%
13

.2
1%

1.
25

0.
36

54
20

s3
80

68
73

KI
A

A0
94

7,
 C

R
74

94
41

N
S

7
11

95
27

.6
C

A
2.

69
%

0.
67

%
0.

24
0.

00
48

93
C

A
2.

88
%

0.
99

%
0.

33
0.

00
13

24
H

C
A

16
.3

8%
7.

63
%

0.
35

0.
03

89
41

H
C

A
13

.8
9%

9.
81

%
0.

63
0.

24
51

50
s4

00
62

5
SL

C
37

A1
N

O
1

43
30

6.
33

9
C

A
35

.0
6%

44
.4

7%
2.

06
0.

00
08

20
C

A
34

.9
3%

42
.0

6%
1.

63
0.

00
10

36
H

C
A

24
.5

8%
33

.6
1%

1.
60

0.
12

06
01

H
C

A
27

.4
7%

35
.7

8%
1.

60
0.

08
30

74
s6

80
49

51
M

C
F2

L2
, K

IA
A0

86
1

N
O

5
55

15
.6

07
C

A
4.

05
%

9.
40

%
2.

45
0.

00
10

42
C

A
7.

64
%

7.
56

%
1.

00
0.

94
71

97
H

C
A

1.
82

%
5.

66
%

2.
76

0.
16

33
99

H
C

A
2.

91
%

6.
50

%
2.

00
0.

12
81

88
s7

35
66

3
TB

C
1D

2B
N

O
19

69
32

.7
63

C
A

2.
60

%
6.

96
%

2.
89

0.
00

04
30

C
A

3.
55

%
6.

10
%

1.
77

0.
00

71
86

H
C

A
3.

45
%

6.
56

%
2.

77
0.

29
44

31
H

C
A

2.
78

%
6.

88
%

3.
43

0.
06

05
40

rs
96

15
R

X
R

A
N

S
15

76
13

8.
07

6
C

A
2.

02
%

5.
11

%
2.

71
0.

00
46

08
C

A
4.

38
%

4.
81

%
1.

13
0.

64
34

48
H

C
A

0.
85

%
5.

93
%

7.
81

0.
02

02
59

H
C

A
1.

65
%

6.
07

%
4.

06
0.

01
75

38

D
is

co
ve

ry
Jo

in
t

M
ar

ke
r

G
en

e
cS

N
P

C
hr

om
Po

si
tio

n

Ta
bl

e 
6.

3:
 A

) L
is

t o
f 8

 S
N

Ps
 m

ee
tin

g 
si

gn
ifi

ca
nc

e 
an

d 
ef

fe
ct

 si
ze

 th
re

sh
ol

ds
 (p

 ≤
 0

.0
01

 &
 O

R
 ≥

 2
.0

) i
n 

th
e 

di
sc

ov
er

y 
su

bs
et

 o
f t

he
 S

TA
R

*D
 sa

m
pl

e 
w

ith
in

 th
e 

C
au

ca
si

an
 ra

ci
al

 su
bg

ro
up

. A
ls

o 
lis

te
d 

ar
e 

th
e 

p 
va

lu
es

 in
 th

e 
en

tir
e 

ST
A

R
*D

 sa
m

pl
e.

 B
) L

is
t o

f 8
 S

N
Ps

 m
ee

tin
g 

si
gn

ifi
ca

nc
e 

an
d 

ef
fe

ct
 si

ze
 th

re
sh

ol
ds

 (p
 ≤

 
0.

00
1 

&
 O

R
 ≥

 2
.0

) i
n 

th
e 

di
sc

ov
er

y 
su

bs
et

 o
f t

he
 S

TA
R

*D
 sa

m
pl

e 
w

ith
in

 th
e 

C
au

ca
si

an
 ra

ci
al

 su
bg

ro
up

. W
he

n 
th

e 
C

au
ca

si
an

 su
bg

ro
up

 w
as

 b
ro

ke
n 

do
w

n 
in

to
 

N
on

-H
is

pa
ni

c 
C

au
ca

si
an

 (C
A

) &
 H

is
pa

ni
c 

C
au

ca
si

an
s (

H
C

A
) o

nl
y 

3 
of

 th
es

e 
8 

w
ou

ld
 h

av
e 

m
et

 o
ur

 o
rig

in
al

 th
re

sh
ol

ds
 (c

ol
or

ed
 p

in
k)

 b
ut

 th
e 

4 
SN

Ps
 th

at
 w

er
e 

si
gn

ifi
ca

nt
 in

 th
e 

en
tir

e 
ST

A
R

*D
 w

ith
ou

t s
ub

di
vi

di
ng

 th
e 

C
au

ca
si

an
 ra

ci
al

 g
ro

up
 a

re
 a

ls
o 

po
si

tiv
e 

w
ith

in
 th

e 
N

on
-H

is
pa

ni
c 

C
au

ca
si

an
s (

co
lo

re
d 

bl
ue

). 

r r r r r r

144 

 



6.5  Reference List  
 
 1.  Kessler RC, McGonagle KA, Zhao S, Nelson CB and others. Lifetime and 12-

Month Prevalence of DSM-III-R Psychiatric Disorders in the United States. Results 
From the National Comorbidity Survey. Arch. Gen. Psychiatry 1994; 51(1): 8-19 

 2.  Esposito K and Goodnick P. Predictors of Response in Depression. Psychiatr. Clin 
North Am 2003; 26(2): 353-365 

 3.  Serretti A, Lilli R, and Smeraldi E. Pharmacogenetics in Affective Disorders. Eur. J 
Pharmacol. 2002; 438(3): 117-128 

 4.  Malhotra AK, Murphy GM, Jr., and Kennedy JL. Pharmacogenetics of 
Psychotropic Drug Response. American Journal of Psychiatry 2004; 161(5): 780-
796 

 5.  Kraft JB, Slager SL, McGrath PJ, and Hamilton SP. Sequence Analysis of the 
Serotonin Transporter and Associations With Antidepressant Response. Biol 
Psychiatry 2005; 58(5): 374-381 

 6.  Binder EB, Salyakina D, Lichtner P, Wochnik GM and others. Polymorphisms in 
FKBP5 Are Associated With Increased Recurrence of Depressive Episodes and 
Rapid Response to Antidepressant Treatment. Nat Genet 2004; advanced online 
publication 

 7.  McMahon FJ, Buervenich S, Charney D, Lipsky R and others. Variation in the 
Gene Encoding the Serotonin 2A Receptor Is Associated With Outcome of 
Antidepressant Treatment. Am J Hum Genet 2006; 78(5): 804-814 

 8.  Kraft JB, Peters EJ, Slager SL, Jenkins GD and others. Analysis of Association 
Between the Serotonin Transporter and Antidepressant Response in a Large 
Clinical Sample. Biol. Psychiatry 2007; 61(6): 734-742 

 9.  Ozaki K, Ohnishi Y, Iida A, Sekine A and others. Functional SNPs in the 
Lymphotoxin-Alpha Gene That Are Associated With Susceptibility to Myocardial 
Infarction. Nat. Genet. 2002; 32(4): 650-654 

 10.  Klein RJ, Zeiss C, Chew EY, Tsai JY and others. Complement Factor H 
Polymorphism in Age-Related Macular Degeneration. Science 2005; 1109557 

 11.  Hampe J, Franke A, Rosenstiel P, Till A and others. A Genome-Wide Association 
Scan of Nonsynonymous SNPs Identifies a Susceptibility Variant for Crohn 
Disease in ATG16L1. Nat Genet 2007; 39(2): 207-211 

 12.  Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT and others. Genome-
Wide Association Study Identifies a Second Prostate Cancer Susceptibility Variant 
at 8q24. Nat Genet 2007; 39(5): 631-637 

 145



 13.  Libioulle C, Louis E, Hansoul S, Sandor C and others. Novel Crohn Disease Locus 
Identified by Genome-Wide Association Maps to a Gene Desert on 5p13.1 and 
Modulates Expression of PTGER4. PLoS Genetics 2007; 3(4): e58 

 14.  Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ and others. A Genome-Wide 
Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility 
Variants. Science 2007; 316 1341-1345 

 15.  Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund 
University and Novartis Institutes for BioMedical Research, Saxena R, Voight BF 
and others. Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes 
and Triglyceride Levels. Science 2007; 316(5829): 1331-1336 

 16.  Sladek R, Rocheleau G, Rung J, Dina C and others. A Genome-Wide Association 
Study Identifies Novel Risk Loci for Type 2 Diabetes. Nature 2007; 445(7130): 
881-885 

 17.  Easton DF, Pooley KA, Dunning AM, Pharoah PDP and others. Genome-Wide 
Association Study Identifies Novel Breast Cancer Susceptibility Loci. Nature 2007; 
advanced online publication 

 18.  Chanock SJ, Manolio T, Boehnke M, Boerwinkle E and others. Replicating 
Genotype-Phenotype Associations. Nature 2007; 447(7145): 655-660 

 19.  Cardon LR and Bell JI. Association Study Designs for Complex Diseases. Nat. Rev. 
Genet. 2001; 2(2): 91-99 

 20.  Zeggini E, Weedon MN, Lindgren CM, Frayling TM and others. Replication of 
Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 
Diabetes. Science 2007; 316(5829): 1336-1341 

 21.  Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ and others. A Genome-Wide 
Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility 
Variants. Science 2007; 316 1341-1345 

 22.  Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund 
University and Novartis Institutes for BioMedical Research, Saxena R, Voight BF 
and others. Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes 
and Triglyceride Levels. Science 2007; 316(5829): 1331-1336 

 23.  Satagopan JM, Venkatraman ES, and Begg CB. Two-Stage Designs for Gene-
Disease Association Studies With Sample Size Constraints. Biometrics 2004; 60(3): 
589-597 

 24.  Skol AD, Scott LJ, Abecasis GR, and Boehnke M. Joint Analysis Is More Efficient 
Than Replication-Based Analysis for Two-Stage Genome-Wide Association 
Studies. Nat Genet 2006; 38(2): 209-213 

 146



 147

 25.  Roeder K, Bacanu SA, Wasserman L, and Devlin B. Using Linkage Genome Scans 
to Improve Power of Association in Genome Scans. The American Journal of 
Human Genetics 2006; 78(2): 243-252 

 26.  Chen GK and Witte JS. Enriching the Analysis of Genomewide Association Studies 
With Hierarchical Modeling. Am J Hum Genet 2007; 81(2): 

 27.  Satagopan JM and Elston RC. Optimal Two-Stage Genotyping in Population-Based 
Association Studies. Genet Epidemiol. 2003; 25(2): 149-157 

 28.  Freidlin B, Zheng G, Li Z, and Gastwirth JL. Trend Tests for Case-Control Studies 
of Genetic Markers: Power, Sample Size and Robustness. Hum Hered. 2002; 53(3): 
146-152 

 29.  Ng PC and Henikoff S. Predicting the Effects of Amino Acid Substitutions on 
Protein Function. Annu. Rev. Genomics Hum. Genet. 2006; 7 61-80 

 30.  Ng PC and Henikoff S. SIFT: Predicting Amino Acid Changes That Affect Protein 
Function. Nucleic Acids Res. 2003; 31(13): 3812-3814 

 31.  Ng PC and Henikoff S. Accounting for Human Polymorphisms Predicted to Affect 
Protein Function. Genome Res. 2002; 12(3): 436-446 

 32.  Ng PC and Henikoff S. Predicting Deleterious Amino Acid Substitutions. Genome 
Res. 2001; 11(5): 863-874 

 33.  Riedemann L, Lanvers C, Deuster D, Peters U and others. Megalin Genetic 
Polymorphisms and Individual Sensitivity to the Ototoxic Effect of Cisplatin. 
Pharmacogenomics. J. 2008; 8(1): 23-28 

 34.  Kantarci S, Al-Gazali L, Hill RS, Donnai D and others. Mutations in LRP2, Which 
Encodes the Multiligand Receptor Megalin, Cause Donnai-Barrow and Facio-
Oculo-Acoustico-Renal Syndromes. Nat. Genet. 2007; 39(8): 957-959 

 
 



 

CHAPTER 7 

WHOLE GENOME ASSOCIATION STUDY 

OF RESPONSE TO CITALOPRAM 

 

7.1  Introduction 

 While candidate gene study designs are often utilized in the investigation of 

complex diseases, having a prioi knowledge of the causative (or even likely causative) 

candidate genes is often difficult for most phenotypes. Indeed, identification of new genes 

is often the driving force behind complex disease studies. Genome-wide linkage studies 

have been performed for years, but as discussed in Chapter 1, logistical difficulties arise 

from collecting families for pharmacogenetic studies. Recent advances in SNP 

genotyping technology and reduction in costs have made whole genome association 

(WGA) studies entirely feasible (1). The first reports of WGA studies have appeared in 

the literature and there have been some great successes such as the CFH gene and 

macular degeneration (2), however, complexities and questions remain regarding the 

optimal analysis of WGA data (3). 

The obvious strength of being able to assay most of the genes in the human 

genome is tempered by concerns about multiple testing penalties, population 

stratification, and the apparent non-replication of many smaller candidate gene 

association studies. Despite these methodological considerations, large WGA studies are 

currently progressing with studies such as the Wellcome Trust Case Control Consortium 

(WTCCC), which genotyped over 16,000 subjects with various common diseases as well 

as 3,000 control samples, and the Genetic Association Information Network (GAIN) who 
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are investigating a number of complex disorders. Both of these projects are consortium-

based and have pledged to make their raw genotype and clinical data publicly available 

shortly after it is generated, allowing other investigators to apply different analytical 

techniques.  

We undertook conducting a WGA study using a subset of the STAR*D patient 

population for which DNA samples were collected, which consists of over 1,900 

depressed subjects taking the SSRI citalopram. In order to limit Type I error and reduce 

overall genotyping costs, we used a two-stage study design (4). In the first stage, we 

genotyped approximately half of the sample (discovery set, N=964) for 500,567 SNPs 

distributed across the human genome. The most highly associated SNPs were then 

genotyped in the second half of the sample (validation set, N=975) to asses if they would 

replicate the initial association. 

 Here we report the initial analysis of the WGA data, including descriptions of the 

genotype data manipulation and quality control checks. Single locus SNP association 

results are reported for response, specificity of response, remission, and intolerance 

phenotypes. We analyzed the data using the Cochran-Mantel-Haenszel test to compare 

across self-reported ethnic strata. While none of the putative associations investigated in 

the second stage replicated their strong initial associations, as discussed below, this is a 

very preliminary analysis involving the “lowest hanging fruit” and as such broader, more 

comprehensive genotyping in the validation sample set needs to be performed. 
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7.2  Materials and Methods 

7.2.1  STAR*D Study Population 

The study population consisted of the subjects who consented to give DNA from 

the STAR*D antidepressant trial, as reviewed elsewhere (see Chapter 3). Within each 

ethnic group, and gender, we randomly split our subjects a priori into a discovery and 

validation sample set (Table 7.1). The entire discovery and validation sets were 

genotyped using the WGA platforms. Due to heterogeneity within our self-identified 

“White” subject, as uncovered via the structure analysis described below, all analyses 

were split into three racial subgroups: White, non-Hispanic; White, Hispanic; and African 

American. Other self-reported race classes were not analyzed.  

7.2.2  Genotyping 

The Affymetrix 500K array (5) was used (N=500,567 successful SNPs) to 

genotype the discovery set, and genotypes were scored using Affymetrix’s BRLMM 

algorithm (6). In addition, the Affymetrix 5.0 array (5) was used (N=500,567 successful 

SNPs) to genotype the validation set, and genotypes were scored using Affymetrix’s 

BRLMM-P algorithm. Twelve samples were genotyped on both platforms, concordance 

rate of 99.29%, to ensure compatibility of genotype information between platforms.
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7.2.3  WGA Quality Control 

Raw data files were transferred to us by Affymetrix for the discovery set and 

generated “in-house” for the validation set. Genotypes were generated using the BRLMM 

and BRLMM-P algorithms for the discovery and validation sets, respectively. This data 

was imported along with phenotype data into Progeny 7.0 software. Data was then output 

in standard linkage format using Progeny and analyzed using PLINK and STATA-MP 

version 9. 

 We removed samples from the data for two reasons: low sample call rates (<95%) 

and samples with self-reported ancestry not falling into the 3 main ethnic groups. Of the 

500,568 SNPs that were successfully genotyped, we removed SNPS that: had no 

chromosomal annotation in dbSNP (121), were duplicated within the panel (1), were on 

the X chromosome for ease of analysis (10,525), had a call rate less that 95% within the 

sample set, and had minor allele frequencies less than 0.1% across the sample set. The 

remaining SNPs were used in the analyses described below. In order to be tested for 

association to citalopram response phenotypes, SNPs were required to conform to Hardy-

Weinberg equilibrium (HWE). SNPs were tested for departure from HWE within each of 

the 3 racial subgroups and markers with a significant departure from HWE (p < 

0.000001) in two of the three racial subgroups were excluded from association analysis. 

SNP quality control and descriptive statistics were generated using custom 

files (“WGA_STARD_QC.do”, “MAF_STARD.do”, “WGA_Spacing.do”, written by 

Jeffrey Kraft) and executed in STATA-MP version 9 or from the program PLINK (7). 
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7.2.4  Linkage Disequilibrium Analysis 

In order to assay the amount of redundancy in the SNP genotype data, SNP 

binning based on pairwise r2 values was performed. Within each racial subgroup (White, 

non-Hispanic, White Hispanic, and African American), pairwise r2 for each SNP with all 

other SNPs within a 1 megabase sliding window was calculated. This was process 

repeated for all the SNPs in the WGA panel. Data was then compiled, any redundancy 

was removed, and number of proxy SNPs at several r2 thresholds was calculated. This 

was performed using “matrix of pairwise LD” function within PLINK and custom scripts, 

written by Jeffrey Kraft, and executed in STATA-MP version 9. 

7.2.5  Structure Analysis 

In order to assess the levels of genetic heterogeneity in the sample, the MCMC 

method of Pritchard et al was performed, as implemented in structure version 2.0 (8). 

Using the entire STAR*D sample set and 2,500 random SNPs from the WGA data from 

across the genome, the algorithm was run using 10,000 burn-ins followed by 100,000 

iterations. Several runs were performed assuming from 1 to 4 underlying subpopulations 

(“K”), and results for each “K” were stable in terms of estimates of alpha, Fst, and 

proportion ancestry (“Q”) for each individual, indicating the algorithm had not 

inadvertently settled at a local maximum. 

7.2.6  Single Locus Analysis 

In this report, all association analyses were carried out by stratifying by self-

reported ethnicity and then comparing across ethnic strata. We investigated four clinical 

phenotypes, citalopram response, specificity of response to citalopram, citalopram 

remission, and intolerance to citalopram. All of these phenotypes have been described in 
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detail previously for this study population (see section 3.2.7). We used the software 

PLINK to test each SNP in the WGA panel for association to the four phenotypes within 

the three ethnic subgroups in each of the subsets (discovery and validation). Only SNPs 

that passed the QC filters described above were used in the association analysis although 

these thresholds were applied independently to the discovery and validations subsets 

resulting in two unique groups of SNPs. We used an allelic model and the Cochran-

Mantel-Haenszel (CMH) test to investigate single locus associations across ethnic strata. 

Dominant (minor allele carrier versus non-carrier) odds ratios for each SNP were also 

calculated. 

 We sought to only investigate the most highly associated SNPs within each 

phenotype. Our strategy was to rank order the p-values using the allelic model in the 

discovery set, then take the most highly associated 10 SNPs in each phenotype to follow 

up using the validation set. We then required these follow-up SNPs to have a significance 

of p < 0.05 in the validation sample set in order to declare study-wide significance. 

 For our post-hoc one-stage analysis, we combined the discovery and validation 

sets and rank ordered the p values, reporting the top 10 markers for each phenotypic 

comparison. 

7.2.7  SNP x SNP Interaction Analysis 

The 10 SNPs with the lowest p-values from the single loci analyses in the entire 

STAR*D sample were modeled for pair-wise SNP interactions using the epistasis 

function of PLINK. The epistasis test uses logistic regression and makes a model based 

on allele dosage for each SNP, A and B, and fits the model: Y = b0 + b1.A + b2.B + 

b3.AB + e, where the test for interaction is based on the coefficient b3. Dominant (minor 
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allele carrier versus non-carrier) odds ratios for each SNP x SNP interaction were also 

calculated. These analyses were done on the entire STAR*D sample. 

 

7.3  Results 

7.3.1  WGA Data Descriptions and QC 

Using our QC filters (described in detail within section 7.2.3) a total of 469,170 

SNPs passed in our discovery sample, 435,512 SNPs in our validation set, and 445,260 

SNPs in the entire STAR*D sample. Overall, these SNPs had a very high call rate (mean 

99.1%). 

 SNPs were not uniformly distributed across the entire genome. Large gaps exist in 

centromeric and telomeric regions of some chromosomes. This is due to technical 

difficulties that arise from assaying those regions which are abundant in repetitive DNA 

sequences. On average there was a marker every 5.7kb (median 2.5kb), however assay 

coverage was variable with coverage on the X chromosome markedly lower and no 

markers present on the Y chromosome (Figure 7.1). As seen in Figure 7.2, the 

distribution of intermarker distances is largely skewed due to a small number of very 

large gaps between SNPs (not shown). 

 Marker minor allele distribution varied between racial subgroups. The Non-

Hispanic Caucasian subgroup had a lower average minor allele frequency than either 

Hispanic Caucasians or the African American subgroup (0.20 / 0.21 / 0.22, respectively), 

and had fewer SNPs with a minor allele frequency greater than 5% as well (348,467 / 

359,487 / 397,909, respectively, see Figure 7.2).  
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7.3.2  Assessment of Population Structure 

As discussed previously, population stratification can lead to confounding in case-

control association studies. We ran a structure analysis, described in detail in Chapter 

1.4.3, on the discovery and validation sample set using 2,500 random SNPs from across 

the genome (Figure 7.3). The results indicated that a model with 3 genetic subgroups 

(i.e., K=3) was the best fit for the data. A clear distinction was seen between the self-

reported African American and White samples, and the third genetic subpopulation 

correlated well with Hispanic ancestry.
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Figure 7.3: Results of structure analysis using 2,500 random SNPs in the entire STAR*D 
sample set. A) Plot shows the percent identity (Q) from the 3 subpopulations for each 
subject. Subjects are ordered based on self-reported race, as shown to the right of the 
structure plot. B) Graph of the posterior probability of the model at various numbers of 
historical subpopulations (K). The addition of a 4th subpopulation does not significantly 
strengthen the model fit, thus K=3 was used. 
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7.3.3  Linkage Disequilibrium Analysis 

Given the marker density in this study, there was a great amount of LD between 

the SNPs on our WGA panels, as would be expected. Also, as expected based on 

population history, the African American subgroup showed less LD on average than the 

Non-Hispanic Caucasian subgroup and the Hispanic Caucasians displayed an 

intermediate amount of LD comparatively (Figures 7.4-7.6).  

 In order to get a sense of the redundancy of the genotype data, which is an 

important consideration in determining the number of independent tests performed, we 

ran an r2 threshold binning approach on the SNPs in the WGA panel. Using a sliding 

window of 1 million base pairs around the target SNP, the number of proxy SNPs was 

determined using various thresholds of r2. These analyses revealed significant 

redundancy in the SNPs genotyped. In the Non-Hispanic Caucasian subgroup, using an r2 

= 1.0 threshold, which means the genotype of one SNP perfectly predicts the genotype of 

another SNP in all cases, 10% of the SNPs have at least one perfect proxy. At a reduced, 

but still conservative, threshold of r2 = 0.80 (common threshold for selecting tagSNPs), 

nearly 60% of the SNPs have at least one good proxy in the dataset (Figure 7.4). Fewer 

than 200,000 SNPs were correlated at the 0.80 level with no other SNP. In the Hispanic 

Caucasian and African American subgroups, redundancy was still high, though, as 

expected, at a level less than in the Non-Hispanic Caucasians (Figures 7.5 & 7.6). 
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Figure 7.4: Amount of LD and redundancy of SNPs at various r2 thresholds in the Non-
Hispanic Caucasian racial subgroup. All SNPs are shown on the y-axis. Using a sliding 
window of 1Mb around the target SNP, the number of proxy SNPs (SNPs in LD above 
the threshold) for each SNP was determined using an r2 threshold of 1, 0.90 and 0.80 (x-
axis).



 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 7.5: Amount of LD and redundancy of SNPs at various r2 thresholds in the 
Hispanic Caucasian racial subgroup. All SNPs are shown on the y-axis. Using a sliding 
window of 1Mb around the target SNP, the number of proxy SNPs (SNPs in LD above 
the threshold) for each SNP was determined using an r2 threshold of 1, 0.90 and 0.80 (x-
axis).
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Figure 7.6: Amount of LD and redundancy of SNPs at various r2 thresholds in the African 
American racial subgroup. All SNPs are shown on the y-axis. Using a sliding window of 
1Mb around the target SNP, the number of proxy SNPs (SNPs in LD above the threshold) 
for each SNP was determined using an r2 threshold of 1, 0.90 and 0.80 (x-axis).
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7.3.4  Single Locus Association – Discovery Set 

We performed four phenotypic comparisons in our subjects as described in detail 

previously. The results for all the SNPs across the genome for the four phenotypes 

(remission, response, specificity of response, and tolerance) are shown in Figures 7.7 thru 

7.10, respectively. One marker (SNP_A-2024840) was significant in the remission 

phenotype using a Bonferroni corrected threshold with a significance of 1.01x10-7. Four 

SNPs (SNP_A-1843477, SNP_A-2242408, SNP_A-1837056, and SNP_A-1842826) 

showed significance with the tolerance phenotype at levels exceeding a Bonferroni 

corrected threshold (p < 1.07x10-7). For the response and specificity of response 

phenotypes no markers were significant at the Bonferroni corrected threshold. 

The significance values and dominant odds ratios for the top 10 rank ordered 

SNPs in the discovery set for each of the four phenotypes are listed in Table 7.2. quantile-

quantile (QQ) plots for the remission, response, and specificity of response phenotypic 

comparisons showed no gross inflation of the chi-squared statistics (Figure 7.11A-

7.13A). The tolerance phenotype showed systematic inflation which can be indicative of 

confounding due to population stratification or other factors (Figure 7.14A). Most likely, 

this is due to the small numbers of genotype counts that accompany this rare phenotype. 

7.3.5  Single Locus Association – Validation Set 

We genotyped the validation set using the Affymetrix 5.0 platform containing the 

same 500,568 SNPs as mentioned previously and then looked for replication of the top 10 

SNPs from the discovery set in the second phase of the study. For the tolerance 

phenotype, one SNP (SNP_A-2139836) replicated with a significance value of 0.018. For 

the remission, response and specificity of response phenotypes, none of the top 10 SNPs 
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yielded a significant association in the validation sample (p<0.05), using the same 

genotypic model and data coding format as in the discovery set analysis (Table 7.3). 

Several of the SNPs selected for replication from the discovery set did not meet the QC 

standards in the validation set and therefore association results are not presented for these 

few SNPs.  

7.3.6  Single Locus Association – Entire STAR*D Sample 

  Our results from our two stage design were largely negative with only one SNP 

showing replicated association (in a fairly rare phenotype), therefore, we attempted to 

analyze our data, post-hoc, as a one-stage study to maximize the power of our clinical 

sample. This analysis was only possible due to the dense marker genotyping on both sets 

of STAR*D (discovery and validation). We combined the discovery and validation set 

genotypes and rank ordered the p values in the combined sample. 

No markers showed association with any of the phenotypic comparisons at levels 

exceeding a Bonferroni corrected threshold (p < 1.12x10-7). The significance values and 

dominant odds ratios for the top 10 rank ordered SNPs in the entire STAR*D sample for 

each of the four phenotypes are listed in Table 7.4 and the quantile-quantile (QQ) plots 

for these phenotypic comparisons showed no gross inflation of the chi-squared statistics 

with the exception of the tolerance phenotype as seen previously (Figure 7.11B-7.14B). 

 Our genome-wide results were unable to verify and replicate previously reported 

associations in the literature with the candidate genes SLC6A4, TPH2, FKBP5, ACE, or 

GNB3. We did find associations (p < .01) with SNPs in HTR2A & GRIK4, which is 

consistent with reports from the McMahon group working on the STAR*D sample , but 

we don’t consider them significant due to the number of tests performed (Table 7.5). 
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7.3.7  SNP x SNP Interaction Analysis – Entire STAR*D Sample 

  The results from our pair-wise SNP interaction analysis were largely negative. 

All unique pair-wise combinations of the top 10 SNPs for each phenotypic comparison 

were tested for the associated phenotype. The interaction analysis for the remission 

phenotype showed only one of the 45 unique interactions had significance p < 0.05. The 

interaction analyses for response and specificity of response phenotypes also showed 

only one interaction with significance less than 0.05. The interaction analysis for the 

tolerant phenotype was able to be calculated for only two pair-wise interactions (both 

non-significant) due to the rarity of this phenotype (i.e. for most pair-wise combinations 

of SNPs, there were not cases and controls who had the rare allele of both SNPs). Despite 

the 3 positive interactions, one in each of 3 phenotypes, these results are in line with what 

would be expected by chance due to the large number of tests and do not demonstrate that 

significant interaction exists between the most highly associated markers  in each 

phenotype.
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P-Value OR (95% CI)
remit SNP_A-2024840 13 A G 1.01E-07 0.5 (0.39 - 0.65)
remit SNP_A-4218787 7 G A 1.34E-07 1.97 (1.53 - 2.54)
remit SNP_A-2042516 1 A G 1.10E-06 2.07 (1.54 - 2.78)
remit SNP_A-4238877 13 T A 2.17E-06 1.92 (1.46 - 2.52)
remit SNP_A-4266303 7 A C 4.77E-06 1.6 (1.31 - 1.96)
remit SNP_A-4230512 8 C T 5.68E-06 3.05 (1.86 - 4.99)
remit SNP_A-1789669 13 C T 7.87E-06 1.81 (1.39 - 2.35)
remit SNP_A-2141865 13 C G 8.69E-06 1.8 (1.39 - 2.34)
remit SNP_A-2256177 13 T C 8.99E-06 1.8 (1.39 - 2.33)
remit SNP_A-2149893 2 G A 9.44E-06 0.27 (0.15 - 0.5)

resp42 SNP_A-4218787 7 G A 4.52E-07 1.88 (1.47 - 2.4)
resp42 SNP_A-2024840 13 A G 5.68E-07 0.54 (0.43 - 0.69)
resp42 SNP_A-2042516 1 A G 1.62E-06 2 (1.51 - 2.67)
resp42 SNP_A-2149893 2 G A 4.43E-06 0.29 (0.17 - 0.51)
resp42 SNP_A-4266303 7 A C 6.35E-06 1.56 (1.29 - 1.9)
resp42 SNP_A-4227466 1 G A 6.69E-06 0.57 (0.45 - 0.73)
resp42 SNP_A-4238877 13 T A 7.23E-06 1.82 (1.4 - 2.37)
resp42 SNP_A-2057977 16 T G 9.21E-06 0.65 (0.53 - 0.79)
resp42 SNP_A-2297908 11 T C 9.94E-06 2.18 (1.53 - 3.1)
resp42 SNP_A-2128247 3 G A 1.36E-05 1.55 (1.27 - 1.89)

spec_resp SNP_A-4218787 7 G A 6.68E-07 1.94 (1.49 - 2.53)
spec_resp SNP_A-2057977 16 T G 2.44E-06 0.61 (0.49 - 0.75)
spec_resp SNP_A-4261350 13 G A 5.41E-06 1.82 (1.4 - 2.36)
spec_resp SNP_A-1915448 11 T C 6.63E-06 0.6 (0.49 - 0.75)
spec_resp SNP_A-2024840 13 A G 7.78E-06 0.55 (0.42 - 0.72)
spec_resp SNP_A-1996954 9 T C 9.46E-06 1.85 (1.41 - 2.44)
spec_resp SNP_A-4196344 16 C G 1.06E-05 1.6 (1.3 - 1.98)
spec_resp SNP_A-4266303 7 A C 1.63E-05 1.59 (1.29 - 1.95)
spec_resp SNP_A-4238877 13 T A 1.68E-05 1.85 (1.39 - 2.45)
spec_resp SNP_A-2007509 20 T C 1.84E-05 1.59 (1.28 - 1.96)

tolerant SNP_A-1843477 13 A G 4.04E-10 0.07 (0.02 - 0.19)
tolerant SNP_A-2242408 12 A G 3.96E-09 N/A
tolerant SNP_A-1837056 5 A G 1.03E-08 0.08 (0.03 - 0.22)
tolerant SNP_A-1842826 15 T C 1.32E-08 N/A
tolerant SNP_A-2288013 19 C T 1.76E-07 0.09 (0.03 - 0.28)
tolerant SNP_A-4195753 10 C A 3.15E-07 0.05 (0.01 - 0.24)
tolerant SNP_A-2095694 11 A C 4.19E-07 0.03 (0 - 0.27)
tolerant SNP_A-1943222 1 A G 4.68E-07 0.2 (0.11 - 0.38)
tolerant SNP_A-2139836 4 A G 6.26E-07 0.06 (0.02 - 0.25)
tolerant SNP_A-1962163 2 T A 7.05E-07 0.02 (0 - 0.25)

Phenotype SNP Chr. Allele 1 Allele 2 Discovery Set

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.2: List of top 10 associated SNPs in the discovery set from each of the four 
phenotypic comparisons (remit, resp42, spec_resp, & tolerant). “N/A” as the odds ratio 
indicates the dominant odds ratio cannot be calculated.
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P-Value OR (95% CI)
remit SNP_A-2024840 13 A G 0.684 0.94 (0.69 - 1.28)
remit SNP_A-4218787 7 G A 0.178 1.24 (0.91 - 1.7)
remit SNP_A-2042516 1 A G 0.417 0.87 (0.62 - 1.22)
remit SNP_A-4238877 13 T A ----- -----
remit SNP_A-4266303 7 A C 0.827 1.03 (0.81 - 1.31)
remit SNP_A-4230512 8 C T 0.747 1.1 (0.61 - 1.98)
remit SNP_A-1789669 13 C T 0.515 0.91 (0.67 - 1.22)
remit SNP_A-2141865 13 C G 0.493 0.9 (0.67 - 1.21)
remit SNP_A-2256177 13 T C 0.572 0.92 (0.68 - 1.24)
remit SNP_A-2149893 2 G A 0.473 0.8 (0.43 - 1.47)

resp42 SNP_A-4218787 7 G A 0.157 1.24 (0.92 - 1.68)
resp42 SNP_A-2024840 13 A G 0.866 0.97 (0.73 - 1.31)
resp42 SNP_A-2042516 1 A G 0.184 0.81 (0.59 - 1.11)
resp42 SNP_A-2149893 2 G A 0.823 0.94 (0.53 - 1.65)
resp42 SNP_A-4266303 7 A C 0.745 1.04 (0.82 - 1.31)
resp42 SNP_A-4227466 1 G A 0.833 0.97 (0.71 - 1.32)
resp42 SNP_A-4238877 13 T A ----- -----
resp42 SNP_A-2057977 16 T G 0.453 1.1 (0.86 - 1.39)
resp42 SNP_A-2297908 11 T C 0.705 1.08 (0.73 - 1.6)
resp42 SNP_A-2128247 3 G A 0.722 0.96 (0.75 - 1.22)

spec_resp SNP_A-4218787 7 G A 0.092 1.33 (0.95 - 1.85)
spec_resp SNP_A-2057977 16 T G 0.791 1.04 (0.8 - 1.35)
spec_resp SNP_A-4261350 13 G A ----- -----
spec_resp SNP_A-1915448 11 T C 0.745 1.05 (0.79 - 1.39)
spec_resp SNP_A-2024840 13 A G 0.778 1.05 (0.76 - 1.45)
spec_resp SNP_A-1996954 9 T C 0.165 1.24 (0.91 - 1.69)
spec_resp SNP_A-4196344 16 C G ----- -----
spec_resp SNP_A-4266303 7 A C 0.899 1.02 (0.78 - 1.32)
spec_resp SNP_A-4238877 13 T A ----- -----
spec_resp SNP_A-2007509 20 T C ----- -----

tolerant SNP_A-1843477 13 A G 0.103 N/A
tolerant SNP_A-2242408 12 A G ----- -----
tolerant SNP_A-1837056 5 A G ----- -----
tolerant SNP_A-1842826 15 T C 0.418 2.3 (0.29 - 18.33)
tolerant SNP_A-2288013 19 C T 0.595 1.5 (0.33 - 6.72)
tolerant SNP_A-4195753 10 C A 0.278 N/A
tolerant SNP_A-2095694 11 A C 0.124 N/A
tolerant SNP_A-1943222 1 A G 0.777 1.1 (0.57 - 2.15)
tolerant SNP_A-2139836 4 A G 0.018 0.17 (0.03 - 0.87)
tolerant SNP_A-1962163 2 T A 0.783 0.73 (0.08 - 6.83)

Phenotype SNP Chr. Allele 1 Allele 2 Validation Set

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.3: List of top 10 associated SNPs in the discovery set from each of the four 
phenotypic comparisons (remit, resp42, spec_resp, & tolerant). Listed are the p-values for 
the validation set. “N/A” as the odds ratio indicates the dominant odds ratio cannot be 
calculated. “-----“ indicates SNP failed QC in the validation set but not in the discovery 
set.
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remit SNP_A-4218787 7 55kb UBE3C ------ expressed in brain
remit SNP_A-2312802 20 100kb BMP7 Ca++ binding / Wnt signaling regulator highly expressed in brain
remit SNP_A-4198575 3 IN IQSEC1 β-1 integrin / cell adhesion expressed in brain
remit SNP_A-2024840 13 25kb HMGB1 DNA transcription / DNA repair ------
remit SNP_A-1866894 18 IN NOL4 RNA binding highly expressed in brain
remit SNP_A-2260830 3 15kb IQCB1 interacts with calmodulin / neural growth expressed in brain
remit SNP_A-2170173 15 IN RORA circadian rhythm highly expressed in brain
remit SNP_A-2235053 20 120kb BCAS1 ------ highly expressed in brain
remit SNP_A-1937160 18 IN WDR7 exocytosis of neurotransmitters highly expressed in brain
remit SNP_A-2007509 20 25kb INSM1 Shh signaling regulator highly expressed in brain

resp42 SNP_A-4218787 7 55kb UBE3C ------ expressed in brain
resp42 SNP_A-4198575 3 IN IQSEC1 β-1 integrin / cell adhesion expressed in brain
resp42 SNP_A-2170173 15 IN RORA circadian rhythm highly expressed in brain
resp42 SNP_A-2312802 20 100kb BMP7 Ca++ binding / Wnt signaling regulator highly expressed in brain
resp42 SNP_A-4201095 1 IN MAN1A2 Ca++ binding highly expressed in brain
resp42 SNP_A-4212364 7 225kb IGFBP3 cell growth expressed in brain
resp42 SNP_A-4283086 2 >500kb ------ ------ ------
resp42 SNP_A-2007509 20 25kb INSM1 Shh signaling regulator highly expressed in brain
resp42 SNP_A-4301367 13 10kb RFC3 DNA replication / DNA repair ------
resp42 SNP_A-2311397 13 5kb RFC3 DNA replication / DNA repair ------

spec_resp SNP_A-4218787 7 55kb UBE3C ------ expressed in brain
spec_resp SNP_A-1937160 18 IN WDR7 exocytosis of neurotransmitters highly expressed in brain
spec_resp SNP_A-1983260 5 50kb SNCAIP neuronal degradation via α-synuclein highly expressed in brain
spec_resp SNP_A-2007509 20 25kb INSM1 Shh signaling regulator highly expressed in brain
spec_resp SNP_A-4198575 3 IN IQSEC1 β-1 integrin / cell adhesion expressed in brain
spec_resp SNP_A-2170173 15 IN RORA circadian rhythm highly expressed in brain
spec_resp SNP_A-2023819 1 350kb AJAP1 cell adhesion ------
spec_resp SNP_A-1970535 21 IN SLC37A1 sugar transport ------
spec_resp SNP_A-1847174 17 20kb NPTX1 Ca++ binding / synaptic transmission highly expressed in brain
spec_resp SNP_A-4202268 3 450kb FOXP1 transcription factor / neural growth expressed in brain

tolerant SNP_A-2245760 22 IN SCUBE1 Ca++ binding / neural growth / platelet function highly expressed in brain/platelets
tolerant SNP_A-1795580 7 IN FAM20C Ca++ binding highly expressed in brain
tolerant SNP_A-2139836 4 350kb CXXC4 Wnt signaling regulator highly expressed in brain
tolerant SNP_A-2118974 4 350kb CXXC4 Wnt signaling regulator highly expressed in brain
tolerant SNP_A-4236225 4 375kb FRG1 DNA transcription ------
tolerant SNP_A-2098107 8 15kb MSRA oxidative stress / DNA repair expressed in brain
tolerant SNP_A-1915683 4 IN SORCS2 neuropeptide signaling highly expressed in brain
tolerant SNP_A-1796662 4 250kb CXXC4 Wnt signaling regulator highly expressed in brain
tolerant SNP_A-1978347 4 300kb CXXC4 Wnt signaling regulator highly expressed in brain
tolerant SNP_A-1894206 2 IN NPAS2 transcription factor / circadian rhythm / autism highly expressed in brain

Relevant Function Relevant ExpressionDistance     
From Gene

GenePhenotype SNP Chr.

Table 7.6: List of top 10 associated SNPs in the discovery set from each of the four 
phenotypic comparisons (remit, resp42, spec_resp, & tolerant) along with the closest 
gene to the associated SNP and that distance away. “-----“ indicates either expression of 
functional data could not be found. Highlighted SNPs indicate they were found in more 
than one phenotype.
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7.4  Discussion 

 Association studies involving this large number of markers present both unique 

analytical and computational challenges. In our study, we pursued a limited number (N = 

20) of single locus associations in each of four phenotypic comparisons using our 

validation sample set, only one of which replicated (p<0.05) the initial association for 

either phenotype comparison (SNP_A-2139836). This SNP is intergenic and is 250kb 

away from the closest known gene, CXXC4, which is a negative regulator of the 

canonical Wnt signaling pathway and highly expressed in several regions of the brain (9). 

Since it did meet our criteria for study-wide significance, this variant (which is greater 

than 250kb from any known gene) deserves follow-up testing in other study populations 

taking SSRIs. 

It has been argued that a joint analysis of the combined discovery and validation 

sample sets is more powerful than the two-stage replication strategy (10). With this in 

mind, we analyzed our data post-hoc as a one-stage design. The top hits from this 

analysis provide several interesting findings with biological plausibility (Table 7.6). Of 

interest were two genes involved in canonical Wnt signaling and highly expressed in the 

brain. Five genes that bind calcium and were also highly expressed in the brain also 

showed association. Finally, the genes NPAS2, implicated in autism studies, and RORA 

are both involved in circadian rhythm regulation and were among the most associated 

SNPs. In addition to being largely associated (p < 1x10-4) in the entire sample, these 

markers reside in genes whose functional roles could easily play a role in depression or 

response to antidepressants. 
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We originally chose a replication based strategy as we were chiefly interested in 

the ability of the putatively associated SNPs to consistently show association in different 

populations. In order for these SNPs reported from either our two-stage or one-stage 

design to be used in clinical decision making, replication in different populations is 

essential, as non-replication of putative associations is an unfortunate reality that is all too 

common with complex genetic phenotypes. 

Given that we had an adequate sample size to replicate the initial associations in 

the validation set, the reason for the general lack of replication is unclear, though there 

could be several underlying causes. In order to limit Type I error in the screening stage 

we only attempted to replicate SNPs that were within the 10 most significant p-values in 

the discovery set. However, only a handful of these associations would survive a 

Bonferroni correction for multiple comparisons, so there is a reasonable risk that these 

are false-positive signals in the discovery dataset. It is quite possible that findings that 

reliably replicate are much further down in the rank ordering.  Unfortunately, it’s unclear 

how many independent tests were performed and thus require adjustment, given the high 

levels of LD seen in the data. Population stratification could also be underlying the lack 

of replication although we attempted to control for population stratification using self-

reported race as a proxy for genetic ancestry. This strategy was guided by a structure 

analysis using 2,500 SNPs in the entire STAR*D population dataset. Analyzing the data 

using a principal components analysis may better correct for stratification in the sample. 

The non-replication could also be due to unknown heterogeneity between the 

discovery and validation sample sets. This heterogeneity could be a clinical characteristic 

(e.g., depression subtype) or epistatic DNA variation that was not controlled for in the 
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sample splitting, but that nonetheless alters the strength of the association. Extending or 

altering the BRLMM calling algorithm, which is designed to give the highest call rates 

the data allows, to focus on call quality could be useful and is under development (11).  

  As mentioned previously, this study was designed to investigate only the most 

“low hanging fruit”, and was not intended to be a comprehensive follow-up of the 

discovery sample set results. Certainly, additional genetic models need to be tested in the 

discovery set (genotypic, dominant, recessive, etc.). Also, a larger proportion of follow-

up SNPs will need to be investigated. Fortunately, the validation set is already genotyped 

for the same 500,000 markers as the discovery set and given the two-stage study design, 

multiple correction penalties for the follow-up of SNPs will be far less than the correction 

for the entire WGA panels, allowing for more liberal selection criteria. For example, 

there are 25 SNPs for the remission phenotype meeting p-values of < 0.01 in discovery 

and validation analyses, as well as having a p-value < 0.005 in the overall analysis. While 

not striking, it is of note that the signals are in the same direction in the two samples, and 

perhaps worthy of further consideration. 

The statistical sacrifice with the two-stage design is of course a reduction in 

power. However, even with a split sample, we can capture (and replicate) clinically 

meaningful effect sizes with reasonable power. With dense marker data for both the 

discovery and validation sets, a more powerful analysis using a one-stage design is also 

possible. An FDR based approach may also be worthwhile, given that the actual 

causative SNPs may not be the most highly associated SNPs and would be missed using 

the current analysis. Permutation techniques could also be used, but could prove 
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challenging due to current computational limits, although newer techniques can 

approximate permutation results more quickly (12). 

Alternatively, follow-up SNPs could also be selected using an effect-size (OR) 

threshold, instead of one based purely on a significance threshold. This approach may be 

of particular utility in pharmacogenetic studies, where the eventual goal is to develop 

genetic tests for use in clinical treatment and this would yield the SNPs with the largest 

clinical effects, regardless of biological meaning. Fine mapping of SNPs in the validation 

set for regions surrounding the putatively associated SNPs would also be beneficial, since 

differences in LD patterns across the discovery and validation sample sets could 

complicate indirect association analysis. In addition to SNP data, the panels used to 

genotype the discovery sample set yield quantitative hybridization data that can in theory 

be used to score copy number variations, or CNVs (13). Identifying and testing these 

CNVs for association to citalopram response would be worthwhile, though the techniques 

for performing this are still being developed.  

 For complex genetic diseases, the common disease/common variant hypothesis 

states that several DNA variants will, in combination, contribute a clinically meaningful 

risk of having the phenotype. Techniques for uncovering interacting loci are poorly 

developed, largely due to the computation and statistical burden of the number of tests 

that can be performed. For instance, performing all pairwise comparisons (SNP x SNP) 

with our WGA panel would require 1.3 x 1011 statistical tests. With needing to correct for 

this many tests, sample sizes like the one used in this study have power only to detect 

unrealistically large interaction effects (14). The correction penalties for more than two 

SNPs interacting are even more severe. Additionally, as higher level interaction testing is 
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performed, the number of subjects with the desired allelic combination to be tested is 

reduced, further decreasing the statistical power. Thus, for powerful interaction analysis, 

extremely large clinical populations, on the order of tens of thousands of patients, will 

need to be collected or limited numbers of markers to test in interaction analyses. Our 

attempt to test for interactions between markers showed no significant interactions in any 

of the 4 phenotypes tested. 

 We also investigated previously reported genes (e.g. FKBP5, HTR2A, etc.) in the 

literature for association using our whole genome data. We were not able to validate any 

previously reported associations for the genes SLC6A4, TPH2, FKBP5, ACE, & GNB3 

in the STAR*D sample using the markers we had genotyped. We did find evidence of 

association with markers in GRIK4 and HTR2A (p < 0.01) but we would dismiss these 

due to the number of tests being performed. 

 In summary, here we have presented the preliminary results of a two stage whole 

genome association study for citalopram response and tolerance using the STAR*D 

clinical population. While only one of the single locus associations (SNP_A-2139836) in 

our discovery sample set met our replication criteria in the validation sample set, this 

SNP is near a quite plausible candidate gene (CXXC4). This gene is an inhibitor of the 

canonical Wnt signaling pathway, is highly expressed in several regions of the brain, and 

may play a role in synaptic rearrangement and plasticity. Combining the data together to 

maximize power led to many strong associations in biologically interesting gene 

pathways. 
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It is clear that further analysis is required to comprehensively follow-up the 

discovery set results and replication of our findings in other populations taking SSRIs 

will be crucial to understanding which hits are real and clinical meaningful. Finally, 

given the lack of understanding of citalopram’s mechanism of action, gene-agnostic 

studies such as these may be required to find genetic markers that are informative and 

predictive of citalopram response or tolerance. 
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CHAPTER 8 

SUMMARY AND FUTURE DIRECTIONS 

 

8.1  Summary of Dissertation Work 

 The overarching goal of this thesis was to find genetic markers associated with 

antidepressant response that could be used as predictive markers for future antidepressant 

treatment in patients. The experiments described in the previous chapters have attempted 

to establish genetic markers that are predictive of a depressed subject’s clinical outcome 

following antidepressant therapy. To accomplish this goal, several complementary 

genetic approaches have been utilized (outlined in Figure 1.1). Our initial efforts involved 

a small but highly characterized (N=96) depressed patient population taking the selective 

serotonin reuptake inhibitor (SSRI) fluoxetine in which we investigated the serotonin 

transporter, the molecular target of SSRIs. In order to uncover novel SNPs or potentially 

functional variants, the coding regions, intron-exon boundaries, and conserved non-

coding regions were directly screened in all subjects in the fluoxetine population. Within 

the fluoxetine patient sample, several SNPs in SLC6A4 were associated (p < 0.05) with 

response and response specificity and several previously unknown SNPs were identified, 

all of which were at low minor allele frequencies (MAF < 0.05) (1). 

In an attempt to replicate the initial associations within the serotonin transporter, 

tagging SNPs were selected to adequately capture variation within the gene and then 

genotyped in the large STAR*D sample (N=1,953), which had been treated with the 

SSRI citalopram. None of the variants were associated with citalopram response or 

response specificity (2). This apparent lack of replication could be due to several factors 
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including Type I error, differences between the drug’s mechanisms of action, or 

differences between the clinical populations, particularly in terms of genetic 

heterogeneity. 

 We then explored variation within the transcription factor FEV as a possible 

modulator of citalopram response. Using a one-stage study design, several of the variants 

in FEV that we screened were significantly (p < 0.05) associated with citalopram 

response within the STAR*D population. In collaboration with Miles Berger from the 

laboratory of Dr. Larry Tecott, we examined a murine model of FEV using mice deficient 

for the FEV homologue, Pet-1. Using a well accepted model for depression in mice (tail 

suspension test), we found that citalopram treatment, while effective for wild-type 

controls, had no effect on the knockout mice for Pet-1. The genetic and functional data 

provides excellent support for a role for FEV in citalopram response and this gene should 

be investigated further. 

We also investigated variation within a number of other pharmacodynamic 

candidate genes as possible predictors of citalopram response or tolerance. These 

candidate genes included the serotonin 1B receptor (5-HT1B), a protein called p11 

(S100A10), and two isoforms of the transcription factor AP-2 (AP-2β & AP-2δ) which 

gained our interest due to functional evidence from our earlier studies of SLC6A4 (1). 

Unfortunately, none of the variants in any of these 4 candidate genes that we screened 

were significantly associated (p < 0.05) with citalopram response within the STAR*D 

population. The genetic data suggested these genes do not play a role in citalopram 

response or tolerance in our sample. 
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 Given the difficulty we and others have had in predicting relevant candidate genes 

a priori, we used a panel of gene-centric markers to investigate a large number of genes 

using a two-stage study design to genotype over 40,000 SNPs in approximately half of 

the STAR*D sample. Forty-five of these SNPs were associated with citalopram response 

using a combination of significance level (p < 0.001) and effect size (odds ratio > 2.0) as 

criteria in the discovery sample set. We attempted to replicate these significantly 

associated SNPs in the validation sample set. One of these SNPs showed significant (p < 

0.01) association with response in the validation sample set. Furthermore, in exploratory 

analysis we looked at the entire data set using a one-stage design and twelve markers 

were predictive of response to citalopram in the entire STAR*D sample. 

In our last analysis, we used a whole genome association (WGA) platform and a 

two-stage study design to genotype over 500,000 SNPs in the discovery half of the 

STAR*D sample. Several of these SNPs were associated with citalopram response, 

specificity of response, remission or tolerance at high significance levels in the discovery 

sample set. We attempted to replicate significantly associated SNPs within the discovery 

set at a threshold of p < 1x10-5 using the validation sample set. Three SNPs showed 

evidence of replication in the tolerance phenotype (rs4274851, rs10026406, and 

rs6959125). However, none of the SNPs showed significant (p < 0.05) association with 

response, specificity of response, or remission in the validation sample set. This non-

replication could be due to a variety of factors, including uncorrected population 

stratification, unknown clinical confounders, or simple Type I error in the discovery set. 

This was an attempt to replicate the “low hanging fruit” of the discovery portion 

of the WGA study. For example, the “truly” associated variants may not have provided 
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the most extreme estimates of statistical significance, and instead may be represented by 

more modest, but consistent, measures of significance. An example is the gene HEX6, 

which was found with modest association independently in the Type II diabetes studies 

done by the FUSION, WTCCC, and DGI GWAS consortium groups and when the data 

was combined across studies, this gene becomes quite significant (p < 1.0x10-7) (3-5). An 

unanswered question is how far to pursue findings for replication (e.g., absolute p-value 

threshold, effect size, significance in more than one subgroup of phenotype). 

 

8.2  Future Directions 

 The field of human genetics examining complex phenotypic traits has been 

evolving at a stunning pace since the sequencing of the human genome. Much of the 

evolution of the field can be traced to rapidly advancing genotyping technologies that 

increase genotype throughput and reduce genotyping costs. Thanks to these advances, 

larger scale genotyping, like our WGA study involving 500,000 SNPs, can now be 

completed in a few weeks. The scale of genotyping will continue to grow, as Affymetrix 

and Illumina have both already released a 1 million SNP panel, part of which will be 

designed to detect copy number variants (CNVs). It is now becoming clear that within the 

next decade, large-scale targeted genome resequencing in large sample sets will become 

economically feasible. This will allow us to better address complex phenotypes utilizing 

both common variants and rare variants simultaneously (SNPs, CNVs, microsatellites, 

etc.) and lead to a better understanding on the role of genetics on complex phenotypes. 

This is not without pitfalls as a question with both practical and theoretical implications, 
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however, is will the field be able to interpret such high density genetic data in meaningful 

ways? 

The largest concern for population based association studies has been the risk of 

confounding due to population stratification. Population stratification is thought to play a 

role in the non-replication of many association studies, and as study populations become 

larger the risk of confounding also increases due to recruitment across wider geographic 

and sub-population distances. Current methods for detecting and correcting for 

population stratification, such as structure, can perform adequately, but for small scale 

genotyping studies they require additional marker genotyping which can be cost 

prohibitive and with large scale genotyping data computational power becomes a concern 

(6). The development of efficient ancestry informative marker (AIM) panels that have 

maximal allele frequency differences across subpopulations would have great utility in 

small scale association studies (7-11). The selection of AIMs for distant subpopulations 

(e.g., Africans and Asians) in order to detect large levels of stratification is fairly 

straightforward, given the dense marker data available from the HapMap project (12-14). 

Recent reports suggest population stratification may have a confounding effect 

even within isolated populations such as Iceland and Europe, which were both thought to 

be relatively homogeneous (15,16). Selection of AIMs for more subtle levels of 

stratification across continental clines will require more large scale genotyping in these 

subpopulations in order to define their allele frequencies. For WGA studies, and in the 

future whole genome resequencing studies, the dense amount of marker data available 

should allow for accurate matching of cases and control based on ancestry and 

consequently little reduction in statistical power.  
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 Another major hurdle in the development of analytical methods is the issue of 

multiple testing (17). It is difficult to separate true associations from those caused by 

chance when performing 500,000 or more single locus tests. When several phenotypes 

and several populations are examined, the problem obviously is amplified. The problem 

becomes much larger when searching for interacting SNPs, which are a cornerstone of 

the common disease common variant hypothesis. False discovery rate (FDR) methods 

can be used to gauge how many SNPs to move forward in multi-stage studies, and aren’t 

affected by inter-marker relatedness (18). Increases in computational power will allow for 

permutation based methods to be applied across entire WGA panels, which will take into 

account inter-marker relatedness. However, given the inherent risk of Type I error from 

the number of tests and since we often have no a priori reason to believe putatively 

associated SNPs in WGA studies, replication in separate populations will be of the 

utmost importance. Even this gold standard is problematic, when “independent” 

populations may differ subtly by phenotypic definition or less subtly by differences in 

population ancestry or genotyping platform. Statistical limits may make innovative study 

designs, along with the collection of large clinical populations for replication, the only 

way to get through the multiple testing concerns in large scale associations studies. There 

is still room for flexibility in the face of this seeming statistical absolutism. For example, 

it may be possible to look for patterns of association to variation in networks of genes 

representing pathways, although the methodology for such investigation has not been 

adequately developed. Similarly, common sense and curiosity may still have a role in 

addressing our data. For example, a pattern of low-level association to many uncorrelated 

variants within a single gene may highlight genes for further examination. Likewise, 
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modest association in genes with compelling biological connection to the phenotype 

could generate additional hypothesis testing. 

 Analytical techniques in the genetics of complex traits have not evolved as 

quickly as methods for genotyping. For instance, as recently as 10 years ago, it was still 

unclear whether useful amounts of LD exist in the human genome (19). It is clear now 

that significant LD extends to useful distances in human populations (20,21). The 

HapMap project, which was completed (phase II) during the course of this project, allows 

users to select tagging SNPs from the publicly available dataset of dense markers across 

the genome, which is an invaluable resource to LD mapping. However, much is still 

unclear about the most powerful way to utilize LD in association studies. For example, 

determining association between traits and rare variants is a challenge, as tagging 

strategies are largely ineffective, and truly massive samples would be required for 

reliable estimates of association (22). 

Currently, the utility of haplotype testing in association studies is still debatable, 

as some feel it does not add enough additional information to single locus testing to 

justify the multiple correction penalties (23). A substantial number of methods have been 

published in the past 5 years that utilize LD in order to select tagging SNPs (24-28). It 

seems that the most analytically straightforward, based on a threshold for pairwise r2, has 

also become the most popular method for selecting tagging SNPs, though other methods 

appear to be more efficient at reducing genotyping load. It’s still unclear exactly how 

well tagging SNPs will transfer across different human populations, although much 

research has focused on this question (29,30). 
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 Single nucleotide polymorphisms have been the major type of variation 

investigated in genetic association studies for the past decade, largely because of their 

ability to be easily assayed in a cost-effective manner. However, it is becoming 

increasingly clear that other types of variation, namely copy number variation (CNVs), is 

common in the genome and may contribute to human phenotypes. Copy number variants 

take the form of segmental duplications or deletions, and are thought to alter at least as 

much of the human genome as SNPs (31). Given their sizable changes to the genome, 

CNVs are reasonably thought to cause considerable differences in expression or function 

of the genes they encompass, although there is little evidence for this as of yet. Since the 

majority of genotyping techniques focus on a small area around the SNP of interest 

(generally less than 100bp), CNVs that encompass interrogated SNPs can have a 

detrimental and often unknown effect on genotype accuracy and quality. Fortunately, 

current genotyping methods for WGA studies mostly rely on hybridization to a fixed 

DNA array, which yields quantitative data that can be scored for copy number variants as 

well as SNPs (32). A catalog of common CNVs in the human genome and a large, 

detailed search for common CNVs across the genome similar to the SNP Consortium 

project is currently being investigated and will greatly aid in the integration of CNVs into 

WGA studies (33-36). 

 Large collections of well-phenotyped subjects are crucial to the success of 

complex genetics in the next decade. Large populations are necessary in order to provide 

replication of initial findings, to lessen the burden of multiple testing by increasing 

power, and for studies of interacting SNPs, which is a critical component of the common 

disease common variant hypothesis of complex diseases. Alternatively, for the common 
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disease rare variant (CDRV) hypothesis, where individual variants are thought to have 

large effect sizes but occur very infrequently, large collections of patients will be 

necessary to find adequate number of subjects carrying the risk variant. There will always 

be room for more specialized samples, such as from isolated populations, in order to 

reduce heterogeneity that may interfere with LD mapping. Likewise, informative family-

based samples will continue to be useful. 

While single investigators typically have the resources to collect on the order of 

hundreds of patients at best, large government sponsored clinical trials (such as 

STAR*D) and late phase investigational drug trials can involve large numbers of 

subjects, but usually not more than two or three thousand. Even with all the resources 

used to fund such studies, it is becoming clear that sufficiently powered pharmacogenetic 

studies will require on the order of tens of thousands of patients. For this scale of 

populations, large consortia will need to be formed, where investigators share subject 

DNA, phenotype data, and ultimately, credit for any findings. Examples of efforts on a 

similar scale can be seen with the Type I diabetes genetic consortium or the Welcomme 

Trust Consortium (37-39). 

As with all genetics research, false positives and disappointments are common, 

and more subjects are always needed. I feel with healthy cooperation among researchers 

and some luck, in the next decade there will be many examples of the clinical utility of 

personalized medicine. 
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