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Endoplasmic reticulum (ER) is the site of synthesis, folding, assembly, and degrada-
tion of proteins. Disruption of ER function leads to ER stress, which is marked by accu-
mulation of unfolded proteins in the ER lumen. Detection of unfolded proteins by the
ER membrane receptors triggers the ‘‘unfolded protein response (UPR)’’ designed to
restore ER function viaactivation of the adaptive/cytoprotective responses. Failure of
UPR or persistent stress triggers activation of ER stress-mediated apoptotic pathway.
Several in vivoand in vitro studies havedemonstrated theassociation of ER stress with
glomerular diseases. Imai rats develop progressive glomerulosclerosis (GS), which is
associatedwith oxidative stress, inflammation andactivation of intra-renal angioten-
sin system, and can be prevented by AT-1 receptor blockade (ARB). Since persistent
oxidative and inflammatory stresses trigger ER stress-inducedapoptosis and tissue in-
jury, we hypothesized that kidneys in the Imai rats may exhibit failure of the adaptive
and activation of the apoptotic ER stress responses, which could be prevented by
ARB. To this end 10-week old Imai rats were randomized to untreated and ARB-
treated groups and observed for 24 weeks. At age 34 weeks, untreated rats showed
heavy proteinuria, azotemia, advanced GS, impaired ER stress adaptive/cytopro-
tective responses (depletion of UPR-mediating proteins), and activation of ER stress
apoptotic responses. ARB treatment attenuatedGS, suppressed intra-renal oxidative
stress, restored ER-associated adaptive/cytoprotective system, and prevented the
ER stress mediated apoptotic response in this model. Thus, progressive GS in Imai
rats is accompanied by activation of ER stress-associated apoptosis, which can be
prevented by ARB. (Translational Research 2012;-:1–10)
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Abbreviations: ER¼ endoplasmic reticulum; UPR¼ unfolded protein response; GS¼ glomerulo-
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protein 1; MAPKKK ¼ mitogen activated protein kinase kinase kinase; LC3 ¼ microtubule-
associated protein light chain 3; GAPDH ¼ glyceraldehyde 3-phosphate dehydrogenase
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The endoplasmic reticulum (ER) consists of a membra-
nous network that is contiguous with the nuclear enve-
lope and extends throughout the cytoplasm. It serves
as the principal site of synthesis, folding, assembly,
and degradation of secreted membrane-bound, and cer-
tain organelle-targeted proteins, production of steroids,
cholesterol, and other lipids and the major intracellular
reservoir of calcium. Newly synthesized proteins are
released into the lumen of ER wherein ER-resident
enzymes and chaperones mediate their covalent modifi-
cation and correct folded conformation. In the ER
lumen, peptidyl-prolylisomerase catalyzes protein
folding, glycosidases andmannosidases mediate protein
glycosylation and classical chaperones such as glucose-
regulated proteins (GRP) 94 and GRP78 (BiP), and
lectin-like chaperones, such as calnexin and calreticu-
lin, maintain their proper folding states.
Proper functioning of the ER is critical for the cell

function and survival. Conditions that disrupt ER func-
tion result in ER stress, which is marked by accumula-
tion and aggregation of unfolded proteins in the ER
lumen. Accumulation of the unfolded proteins is
FLA 5.1.0 DTD � TRSL561_proof � 5
detected by ER membrane receptors, which trigger an
adaptive/cytoprotective response termed ‘‘unfolded pro-
tein response (UPR)’’ to restore normal ER function and
cell survival via transmission of signals to the nucleus
and cytoplasm. The UPR represents a concerted and
complex cellular response mediated by 3 ER transmem-
brane receptors including double stranded RNA
activated protein kinase (PKR)-like endoplasmic reticu-
lum kinase (PERK), activating transcription factor 6
(ATF6), and inositol-requiring enzyme 1 (IRE1). At
resting condition, these ER stress receptors are held in
an inactive state by the ER chaperone, GRP78. Accu-
mulation of unfolded proteins triggers the UPR by pro-
moting dissociation and activation of these receptors
from GRP78. Once released, ATF6 migrates to the
Golgi apparatus where it is activated via cleavage by
site-1 and site-2 proteases. It then migrates to the nu-
cleus to promote transcription of ER chaperones and en-
zymes involved in protein folding, maturation, and
secretion. Simultaneously, PERK is activated via its ho-
modimerization and transphosphorylation. This allows
PERK to phosphorylate the eukaryotic translation initi-
ation factor-2a subunit (eIF2a), which by lowering the
initiation AUG codon recognition helps to slow the
translation rate, thereby reducing the protein load on
the damaged ER. Finally, IRE1 undergoes autophos-
phorylation and activation of its endoribonuclease activ-
ity, which by cleaving X-box-binding protein-1 (XBP1)
mRNA and changing its reading frame, yields a potent
transcriptional activator. Spliced XBP1, in turn, works
in parallel with ATF6 to promote gene transcription of
ER enzymes and chaperons (Fig 1).
The UPR is an adaptive/cytoprotective response de-

signed to reduce accumulation of unfolded proteins
and restore ER function and cell survival. However, fail-
ure of UPR and/or persistence of stress trigger the acti-
vation of the ER stress-induced apoptotic responses.1-8

Several apoptotic mediators have been recognized in re-
lation to the ER stress. They include apoptosis-signal-
regulating kinase-1 (Ask1), nuclear factor kappa B
(NFkB), IRE1, and B-cell lymphoma 2 family of protein
(Bcl2) (Fig 1).9-12

There is increasing evidence for the role of ER stress
in the pathogenesis of diverse illnesses including
kidney diseases. ER stress is present in glomerular
cells from the animal models of membranous nephrop-
athy and membranoproliferative glomerulonephri-
tis.13-15 Development of proteinuria in animals with
April 2012 � 9:07 pm � ce
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Fig 1. Unfolded protein response (UPR). The UPR is a concerted and complex endoplasmic reticulum (ER) re-

sponse mediated by 3 ER trans-membrane receptors, pancreatic ER kinase (PKR)-like ER kinase (PERK), acti-

vating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1). Accumulation of unfolded

proteins triggers the UPR by promoting dissociation and activation of these receptors from ER chaperone,

GRP78. Once released, activated PERK phosphorylates the eukaryotic translation initiation factor-2a subunit

(eIF2a), which by blocking the protein synthesis slows the translation rate, thereby reducing the protein load

on the ER. Active ATF6 migrates to the Golgi apparatus where it is cleaved and then activated by limited prote-

olysis. Cleaved ATF6 then migrates to the nucleus to promote transcription of ER chaperones and XBP1. XBP1

mRNA is subsequently spliced by active IRE1 and thereby achieves its active form sXBP1. The sXBP1, in turn,

works in parallel with ATF6 to promote gene transcription of ER enzymes, chaperons, PERK-inhibitor, P58IPK,

and genes involved in protein degradation. In an attempt to restore the ER function and maintain the redox homeo-

stasis, PERK also phosphorylates Nrf2, which is the master regulator of genes encoding many antioxidant and

phase II detoxifying enzymes. Upon phosphorylation, Nrf2 dissociates from Nrf2-Keap1 complex, enters the nu-

cleus and binds to antioxidant responsive elements (ARE) in the promoter regions of the target genes. Prolonged

stress or failure of adaptive/cytoprotective responses of ER stress leads to switch of the signals from prosurvival to

proapoptotic and activation of apoptotic responses of ER stress. IRE1 recruits ASK1 that relays stress signals to

downstreamMAP kinases including c-Jun N-terminal kinase (JNK). IRE1 can also activate NFkB that can accen-

tuate ER stress-associated tissue damage and inflammation.
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puromycin aminonucleoside-induced nephrosis is as-
sociated with upregulation of podocyte GRP78.16 In
addition induction of familial focal segmental glomer-
ulosclerosis (FSGS) in the mice (by expression of
a-actinin-4K256E transgene in podocytes) results in
expression of ER stress markers and proapoptotic
proteins.17 Moreover, markers of ER stress have
been identified in the renal biopsy specimens from
patients with various inflammatory and noninflamma-
tory glomerulopathies.18,19 These studies, among
others, point to the roles of ER stress in the pathophys-
iology of kidney disease.
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The Imai rats develop heavy proteinuria, hyperlipid-
emia, and progressive FSGS at 6 to 8 weeks of age
culminating in end-stage renal disease and death by
age 8 to 9 months.20 Imai rats were originally derived
from the mating of a male Sprague-Dawley rat that ex-
hibited spontaneous renal disease and hyperlipidemia
while consuming a low-fat diet.21 In an earlier study,
we found that progression of renal disease in this model
is accompanied by activation of intra-renal angiotensin
system, oxidative stress, inflammation, and impaired ac-
tivation of nuclear factor-erythroid-2-related factor 2
(Nrf2), which is the master regulator of genes encoding
5 April 2012 � 9:07 pm � ce
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many antioxidant and phase II detoxifying enzymes.
Long-term angiotensin receptor-1 blockade (ARB)
therapy attenuated intra-renal oxidative stress and in-
flammation, restored Nrf2 activity, and prevented ne-
phropathy in the treated animals pointing to the role
of intra-renal angiotensin system in the pathogenesis
of oxidative stress, inflammation, and nephropathy in
this model.22 Endoplasmic reticulum (ER) is highly sus-
ceptible to the effects of cellular redox state and as such
persistent oxidative stress can interfere with the ER
function and trigger ER stress. The present study was
conducted to test the hypothesis that progression of glo-
merulosclerosis in this model may be associated with
the failure of the ER stress-mediated adaptive response
and activation of ER stress-induce apoptotic pathway.
We further predicted that amelioration of nephropathy
with ARB may restore ER function.

METHODS

Study groups. Male Imai and Sprague Dawley rats
were obtained from Takeda Clinical Industries, (Osaka,
Japan). The 10-week-old Imai rats were randomized to
ARB-treated (olmesartan, 10 mg/kg/day by gastric
gavage for 24 weeks) or vehicle-treated groups. The
Sprague-Dawley rats served as controls. The given
dosage of olmesartan (Sankyo Pharmaceutical Inc.,
Tokyo, Japan) was chosen based on earlier studies
which had demonstrated optimal renoprotective effects
of this agent in the rat.23 The animals were fed regular
rat chow and water ad libitum. Arterial blood pressure
was determined by tail cuff plethysmography as
detailed in previous studies.24 Timed urine collections
were obtained using metabolic cages. At the conclusion
of the observation period, the animals were placed in
metabolic cages for a 24-h urine collection that was
used for measurement of creatinine and protein
concentrations. They were then anesthetized with intra-
peritoneal injection of pentobarbital, 50 mg/kg and
euthanized by exsanguinations using cardiac puncture.
Kidneys were immediately harvested and stored at -70�

F until processed. Blood was collected and plasma was
separated and used for measurement of creatinine, urea,
albumin, cholesterol, and triglyceride concentrations.
Plasma creatinine, urea nitrogen, cholesterol, albumin,
and triglycerides were measured by Synchro CX3
autoanalyzer (Beckman Instruments, Fullerton, Calif).
Urine protein was quantified by a kit purchased from
Wako Pure Chemical Industries (Tokyo, Japan).
Proteinuria was determined in 24-h urine collections
and creatinine clearance was calculated using standard
formula.
The study protocol was approved by the Animal Care

and Ethical Committee of the Saga Medical School,
Saga, Japan.
FLA 5.1.0 DTD � TRSL561_proof � 5
Preparation of kidney homogenates and nuclear
extracts. All solutions, tubes, and centrifuges weremain-
tained at 0-4C�. The nuclear extract was prepared as de-
scribed previously.25 Briefly, 100 mg of kidney cortex
was homogenized using a glass-Teflon homogenizer in
0.5 mL buffer A containing 10 mM HEPES (pH 7.8),
10 mM KCl, 2 mM MgCl2, 1 mM dithiothreitol (DTT),
0.1 mM EDTA, 0.1 mM PMSF, 1mM pepstatin, and 1
mM P-aminobenzamidine using a tissue homogenizer.
Homogenates were kept on ice for 15 min and then 125
mL of a 10% Nonidet p40 (NP 40) solution was added
and mixed for 15 s, and the mixture was centrifuged for
2 min at 12,000 rpm. The supernatant containing
cytosolic proteins was collected. The pelleted nuclei
were washed once with 200 mL of buffer A plus 25 mL
of 10% NP 40, centrifuged, then suspended in 50 mL of
buffer B (50 mM HEPES, pH 7.8, 50 mM KCl, 300
mM NaCl, 0.1 mM EDTA, 1 mM DTT, 0.1 mM PMSF,
10% (v/v) glycerol), mixed for 20 min, and centrifuged
for 5 min at 12,000 rpm. The supernatant containing
nuclear proteins was stored at 280C�. The protein
concentrations in tissue homogenates and nuclear
extracts were determined by the Bio-Rad protein assay
(Bio-Rad Laboratories, Hercules, Calif). Target proteins
in the cytoplasmic and/or nuclear fractions of the
kidney tissue were measured by Western blot analysis
using the following antibodies: Rabbit antibodies
against rat GRP 78, PERK, Phospho-PERK (Thr980),
IRE1, eIF2a, Akt, Phospho-Akt (Thr308), Bcl2,
Phospho-Bcl2 (Ser70), Phospho-ASK1 (Thr845), and
Bcl-2–associated X protein (BAX) were purchased
from Cell Signaling (Denver, Colo). Antibodies against
Nrf2, NFk P65 and Histone H1 were purchased from
Santa Cruz Biotechnology Inc (Santa Cruz, Calif).
ASK1, cyclophilin B, GAPDH, LC3 and b-actin
antibodies (Sigma-Aldrich, St. Louis, Mo), and ATF6
antibody (Abcam, San Francisco, Calif) were purchased
from cited sources.
Briefly, aliquots containing 50 mg proteins were frac-

tionated on 8 and 4% to 20% tris-glycine gel (Novex,
San Diego, Calif) at 120 V for 2 h and transferred to
a hybond-ECL membrane (Amersham Life Science,
Arlington Heights, Ill). The membrane was incubated
for 1 h in blocking buffer (1 3 TBS, 0.05% Tween-20
and 5% nonfat milk) and then overnight in the same
buffer containing the given antibodies. The membrane
was washed 3 times for 5 min in 1 3 TBS, 0.05%
Tween-20 before a 2-h incubation in a buffer (1 3
TBS, 0.05% Tween-20 and 3% nonfat milk) containing
horseradish peroxidase-linked anti-rabbit IgG and anti-
mouse IgG (Amersham Life Science) at 1:1,000
dilution. The membrane was washed 4 times and devel-
oped by autoluminography using the ECL chemilumi-
nescent agents (Amersham Life Science). Beta-actin,
April 2012 � 9:07 pm � ce
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Table. Urinary protein excretion, creatinine clearance, serum concentrations of albumin, creatinine, urea

nitrogen, systolic arterial pressure, bodyweight and kidneyweight in the control, untreated Imai group, andAT1

receptor blocker (ARB)-treated Imai group at 34 weeks of age

Control Imai Imai1ARB

Proteinuria (mg/24 h) 18.0 6 1.3 560.2 6 38.5* 18.1 6 1.5†

Serum albumin (g/dL) 3.50 6 0.04 2.35 6 0.05* 3.95 6 0.06†

Serum urea nitrogen (mg/dL) 14.7 6 0.55 75.60 6 8.76* 14.38 6 0.25†

Serum creatinine (mg/dL) 0.30 6 0.02 1.67 6 0.40* 0.28 6 0.02†

Creatinine clearance (mL/min/kg BW) 8.8 6 1.1 2.3 6 0.5* 6.5 6 0.7†

Systolic blood pressure (mmHg) 90.55 6 4.45 182.25 6 5.12* 91.90 6 2.12†

Body weight, g 654.78 6 20.05 518.98 6 19. 15* 534.50 6 3.40
Kidney weight, g 3.40 6 0.06 6.40 6 0.35* 3.67 6 0.67†

ARB 5 AT-1 receptor blockade.
Values are mean 6 SD.
*P , 0.01 vs control.
†P , 0.01 vs untreated Imai rats.
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GAPDH, and histone H1were used as housekeeping
proteins against which expressions of the proteins of in-
terest were normalized.

Data analysis. Analysis of variance (ANOVA), multi-
ple range tests, and regression analysis were used in
statistical analysis of the data. Data are presented as
mean 6 SD. P values less than 0.05 were considered
significant.

RESULTS

General data. Data are summarized in the Table. As
expected, plasma creatinine, blood urea nitrogen,
urine protein excretion, and arterial pressure were
significantly elevated whereas creatinine clearance
and plasma albumin were significantly reduced in the
untreated Imai rats. These changes were associated
with decreased body weight and increased kidney
weight in the untreated Imai rats compared with the
normal control rats. Long-term ARB administration
prevented these abnormalities.

ER stress-associated adaptive/cytoprotective
system. Data are shown in Figs. 2 and 3. Among proteins
that mediate ER stress-induced adaptive/cytoprotective
responses, the abundance of GRP78, PERK, ATF6,
and eIF2a was significantly lower in the kidneys of the
untreated Imai rats than those found in the normal
control group. This was accompanied by decreased
nuclear and elevated cytoplasmic abundance of Nrf2,
pointing to its impaired activity in the untreated Imai
rats’ kidneys. By means of upregulation of the genes
encoding many antioxidants and phase II detoxifying
enzymes and other molecules, activation of Nrf2
contributes to the ER stress-associated adaptive/
cytoprotective responses. Several kinases including
PERK and phosphorylated Akt facilitate activation and
translocation of Nrf2 to the nucleus and consequent
transcription of its targeted genes. In fact the
FLA 5.1.0 DTD � TRSL561_proof �
abundance of PERK, phosphorylated PERK, and
phosphorylated Akt was significantly reduced in the
kidneys of the untreated Imai rats, a phenomenon that
can in part account for the impaired activation of Nrf2.
The reduction of phosphorylated Akt in the kidneys of
the untreated animals was accompanied by increased
Akt abundance highlighting the defect in Akt
phosphorylation. The protein abundance of Qcyclophilin
B, which is a key factor in protein folding and serves
as a major mediator of the ER stress-induced adaptive/
cytoprotective response, was significantly reduced in
the kidneys of the untreated Imai rats. Long-term ARB
therapy prevented the above abnormalities.

ER stress-associated apoptotic pathway and
autophagy. Data are shown in Figs. 4 and 5. ASK1,
BAX, IRE1, and NFkB are among the main mediators
of ER stress-induced apoptotic responses. The protein
abundance of these proteins was significantly higher in
the kidney tissue of untreated Imai rats than those found
in the normal control group. IRE1 appears to have both
prosurvival and proapoptotic properties. In early stages
of ER stress, IRE1 participates in the ER stress
adaptive/cytoprotective responses; but in presence of
persistent ER stress, IRE1 facilitates apoptosis by
promoting the synthesis and activation of apoptotic
proteins such as ASK1. In fact, protein abundance of
IRE1 was significantly elevated in the kidneys of the
untreated Imai rats. This was accompanied by increased
abundance and activation of the proapoptotic proteins
ie, phosphorylated ASK1 and phosphorylated Bcl2.
Phosphorylation of Bcl2 via activated c-Jun N-terminal
kinase (JNK), which is a downstream MAP kinase of
ASK1, promotes apoptosis by obviating its prosurvival
activity.
ER stress has been shown to trigger autophagy in the

kidney and other tissues.26-28 In fact the observed acti-
vation of the ER stress-induced apoptotic pathway in
5 April 2012 � 9:07 pm � ce



Fig 2. Representative Western blots and group data depicting the abundance of proteins mediating ER stress-

induced adaptive/cytoprotective responses (GRP78, PERK, P-PERK, eIF2a, ATF6, and cyclophilin B) in the con-

trol group and in the untreated and ARB-treated Imai groups. n5 6 in each group. Data are presented as mean6
SD. **P , 0.01 and ***P , 0.001vs control group.
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the kidneys of our untreated Imai rats was accompanied
by marked upregulation of LC3, which is a well-known
marker of autophagy.
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DISCUSSION

Progression of renal disease in the Imai rats is associ-
ated with activation of intra-renal angiotensin system,
upregulation of oxidative and inflammatory cascades,
and downregulation of antioxidant and cytoprotective
systems leading to oxidative stress and inflammation
in the renal tissue.22 Alteration of cellular redox state
can profoundly affect the ER function and lead to accu-
mulation of unfolded proteins and ER stress, which if
persists, can culminate in apoptotic cell death. Oxida-
tive stress and inflammation in the untreated Imai rat
kidney was associated with the impaired ER stress adap-
tive/cytoprotective responses and activation of ER stress
apoptotic responses. In fact, kidneys in the untreated an-
imals showedmarked reduction of PERK and phosphor-
ylated PERK, elF2a, ATF6, GRP78, nuclear Nrf2,
phosphorylated Akt, and cyclophilin B; but, significant
elevation of IRE1, ASK1, phosphorylated ASK1, BAX,
NFkB phosphorylated Bcl2, and LC3.
As noted earlier, ATF6 and PERK play crucial roles in

mediating UPR. Activation of PERK through homodi-
merization and transphosphorylation enables it to
FLA 5.1.0 DTD � TRSL561_proof � 5
phosphorylate the eIF2a and, consequently, reduce pro-
tein load on a damaged ER via lowering the general rate
of translation. In addition, once activated, ATF6 pro-
motes transcription of ER chaperones and enzymes in-
volved in protein folding, maturation, and secretion,
thereby reducing the unfolded protein load. The kidneys
in the untreated Imai rats showed marked reductions of
PERK, phosphorylated PERK, elF2a, and ATF6 abun-
dance. The reduction of these important mediators of
UPR reflects the failure of the ER stress-mediated adap-
tive response in this model. In addition, the observed re-
duction of cyclophilin B, which facilitates protein
folding via its peptidyl-prolyl isomerase activity, further
contributes to the failure of the ER adaptive response in
this model.29

In an earlier study, we found marked reduction of nu-
clear translocation of Nrf2 and downregulation of the
antioxidant and cytoprotective byproducts of its target
genes in the kidneys of Imai rats.22 In confirmation of
the latter study, we found marked reduction of nuclear
Nrf2 content in the untreated Imai rat kidneys. This
was accompanied by significant increase in cytoplasmic
Nrf2 abundance pointing to impaired activation of Nrf2
as the primary problem in this case. The impairment of
the ER stress response shown here may contribute to the
defective activation of Nrf2 in this model. Nrf2 is held in
the cytoplasm as an inactive complex bound to the
April 2012 � 9:07 pm � ce



Fig 3. Representative Western blots and group data depicting the abundance of cytoplasmic (cNrf2) and nuclear

(nNrf2) Nrf2, Akt, and P-Akt, in the untreated and ARB treated Imai groups. n 5 6 in each group. Data are pre-

sented as mean 6 SD. **P , 0.01 and ***P , 0.001vs control group.
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repressor molecule, Keap1 (Kelch-like ECH-associated
protein 1). Separation of Nrf2 from Keap1 is critical for
its activation (nuclear translocation). This process de-
pends on either phosphorylation of Nrf2 and/or oxida-
tive or covalent modification of thiols in cysteine
residue of Keap1.30,31 By means of phosphorylation of
Nrf2, several upstream kinases including PERK can ac-
tivate Nrf2 to induce production of antioxidant and cy-
toprotective molecules.32 This phenomenon represents
an important component of adaptive/cytoprotective re-
sponses of ER stress to maintain the cellular redox ho-
meostasis.33 Thus, the observed reduction in PERK
abundance and activity may have contributed to the im-
paired Nrf2 activation in this model. In addition to
PERK, phosphorylated Akt can activate Nrf2 and
thereby participate in the ER stress-associated prosur-
vival response.34 Prolonged ER stress has been shown
to suppress phosphorylation of Akt and thereby promote
apoptosis.35 Consistent with these findings, phosphory-
lated Akt abundance was markedly reduced in the
kidneys of our untreated Imai rats. The observed reduc-
tion of phosphorylated Akt reveals another mechanism
for the impaired Nrf2 activation and the failure of the
ER stress-mediated adaptive/cytoprotective responses
FLA 5.1.0 DTD � TRSL561_proof �
in this model. Long-term treatment with ARB restored
expression of PERK, phosphorylated PERK, phosphor-
ylated Akt, and Nrf2 activity.
Activation of the IRE1 appears to have both prosur-

vival and proapoptotic properties. On the one hand, ac-
tivation of its endonuclease function by ER stress results
in removal of a 26-nucleotide from X binding protein 1
(XBP1) mRNA and generation of a frame shift splice
variant (sXBP), which avidly induces expression of
ER chaperones and P58IPK.36,37 The ER chaperones
and P58IPK, in turn, contribute to normalization of
cell function and survival by increasing ER protein fold-
ing and relieving protein translational block at the con-
clusion of ER stress. However, activation of IRE1 in the
face of persistent ER stress can facilitate apoptosis by
promoting the synthesis of proapoptotic proteins.38

Accordingly, the severity and duration of ER stress de-
termines the success or failure of the ER stress re-
sponse.39,40 In addition to participating in the ER
stress-induced apoptosis, IRE1 has been shown to pro-
mote autophagy in the eukaryotic cells.26

The kidneys in our untreated Imai rats showed
a marked increase in IRE1 abundance, which was asso-
ciated with marked elevation of ASK1, phosphorylated
5 April 2012 � 9:07 pm � ce



Fig 4. Representative western blots and group data depicting the abundance of proteins mediating ER stress-

induced apoptotic response (IRE1, ASK1, p-ASK1, p-Bcl2, BAX, and NFkB) in the control group and in the un-

treated Imai and ARB-treated Imai groups. n5 6 in each group. Data are presented as mean6 SD. **P, 0.01and

***P , 0.001vs control group.

Fig 5. Representative Western blots and group data depicting the

abundance of LC3 protein in the control group and in the untreated

Imai and ARB-treated Imai groups. n5 6 in each group. Data are pre-

sented as mean 6 SD. **P , 0.01 vs control group.
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ASK1, phosphorylated Bcl2, and LC3. IRE1 has been
shown to induce apoptosis through recruitment of
ASK1. ASK1 is a mitogen activated protein kinase
kinase kinase (MAPKKK) that relays stress signals to
FLA 5.1.0 DTD � TRSL561_proof � 5
downstream MAP kinases including JNK and p38.41,42

The role of ASK1 in mediating apoptosis is supported
by the observations that overexpression of ASK1 in-
duces apoptosis in several cell types and the neurons
from ASK1-/- mice are resistant to lethal ER stress.9

It is of note that once activated, JNK can phosphorylate
Bcl2 and, thereby obviate its prosurvival activity.43 In
addition to promoting ASK1-mediated apoptosis,
IRE1 activates NFkB, which can accentuate ER stress-
associated tissue damage and inflammation.10 In fact
upregulation of IRE1 in the kidneys of our untreated
Imai rats was accompanied by activation of NFkB.
Thus, upregulation of IRE1, ASK1, phosphorylated
ASK1, and phosphorylated Bcl2 in the kidneys of the
untreated Imai rats points to the activation of ER stress
apoptotic responses. Additionally, concomitant upregu-
lation of IRE1 and LC3 points to the association of ER
stress apoptotic responses with autophagy. Long-term
administration of ARB preserved renal function and
structure, and prevented upregulation of IRE1 and
ASK1 and phosphorylation of ASK1 and Bcl2. Upregu-
lation of LC3 was also prevented with ARB administra-
tion. This observation points to the central role of
pathologic activation of intra-renal angiotensin system
in the defective ER stress response and autophagy in
this model. Hypertension and proteinuria have been
shown to induce ER stress.22, 44-46 Activation of
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intra-renal angiotensin system in the diseased kidney
contributes to progression of renal disease by promoting
oxidative stress, inflammation, hypertension, and pro-
teinuria. Therefore, prevention/attenuation of oxidative
stress, inflammation, hypertension, and proteinuria in
our ARB-treated animals could have collectively con-
tributed to alleviation of ER stress in this model.
In conclusion, advanced glomerulosclerosis in the

Imai rats is associated with conspicuous impairment
and failure of ER stress adaptive/cytoprotective re-
sponses and activation of ER stress apoptotic responses.
Long-term administration of ARB preserved renal func-
tion and structure, restored normal ER function, and
prevented activation of ER stress. These findings point
to the important role of activation of intra-renal angio-
tensin system in the defective ER stress response in
this model.
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