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ABSTRACT 

 

AI Applications to Load Monitoring and Fault Detection for Power Electronics 

Systems in DC Microgrids 

Yue Ma 

Extensive deployment of power electronic loads in naval ship power systems 

indicate full ship electrification is inevitable. Next generation warships require high 

power density weapons drawing pulse power from a dc power grid. A particularly 

concerning issue is that these pulse loads draw large currents in short periods of 

time and are similar in behavior to a fault; and therefore may be indiscernible from 

a fault. This dissertation introduces novel machine/deep learning based algorithms, 

including long short-term memory recurrent neural network based autoencoders 

and data-driven clustering based machine learning approaches to detect dc faults 

and monitor load conditions applied to naval pulse loads. Two feature extraction 

methods are also implemented including the short-time Fourier transform and 

stationary wavelet transform. The novel load monitoring solution presented herein 

can be applied to any load profile that exhibits repetitive transients during normal 

operation. The frequency-domain features of the load current are extracted for the 

network training to set the network weights and biases. Once the network training 

is completed, the machine/deep learning approach will predict both signal 

classification and fault identification. Finally, the method is demonstrated in a low 

power laboratory system meant to mimic naval shipboard power systems. 
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1. INTRODUCTION 

Traditionally, the design of propulsion and electric plant systems are treated 

separately on United States Navy ships [1]. Future Naval advanced weapon and 

sensor loads require high power density power electronic distribution systems 

(PEDS) to be viable. The mission defined electronic loads such as advanced radar 

and pulsed-power weapons tend to have an irregular power draw and consume a 

significant amount of power, and would require significant additional generation 

equipment well beyond the existing power system. The legacy low-voltage ac power 

grid on a destroyer is already at capacity and since space is at premium, it is unlikely 

that any new power hungry pulse load could be included without a significant 

paradigm shift. Further, most of the potential power within the vessel is locked to 

the mechanical drive system and not readily usable as electrical power. As such, the 

all-electric ship is the intended option to unlock the mechanical power for various 

high power pulse loads. 

Medium-voltage dc (MVDC) distribution systems provide the energy density to 

drive these demanding loads. The dual-fed zonal power system has been 

implemented in Naval wharships using the dc distribution systems [2]. Power 

electronics loads offer unique advantages over traditional loads such as higher 

efficiency, less weight and volume etc. [3], [4]. It also generates new problems such 

as stability issue. The Naval vessels feature a host of new technologies for the power 

architecture as outlined in Figure 1. High-speed generators are need for reduced size 
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and work well in conjunction the MVDC PEDS. Wide band-gap power conversion 

systems (WPCS) will serve as an interface to the MVDC backbone and make 

practical the needed power conversion with limited volume and power losses. 

Command, control, computers, and communication (C4) provide distributed sensor 

information and the possibility of alternate control for each power conversion 

module and improve the survivability. 

A particular concern though is that power transient demand of the high-power 

loads can be misclassified as a fault with traditional protection schemes. To add to 

this concern, dc faults are potentially more severe than their ac counterparts because 

energy is added continuously to the event without zero crossings in the power 

delivery that mitigate the full impact. Current circuit protection methods usually 

assume constant power loads (CPLs) to simplify line impedance measurements for 

fault identification and converter control. This is because the converter controllers 

 
 

Figure 1. Future naval advanced power technologies. 
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operate on bandwidths many orders of magnitude larger than that of typical load 

transients. However, this assumption is not adequate to distinguish pulsed loads 

from faults, since some high-power pulse transients can complete within 

milliseconds. Therefore the fault identification and load monitoring scheme is key 

to the success of MVDC technology. 

The requirement for load monitoring would be the identification and classification 

of pulsed load transient events and to detect anomalous operating behavior on the 

distribution bus. It is also required to achieve fast enough monitoring performance 

of the signal bandwidth of the transients. A classification algorithm that takes 

seconds or more to finish computation, when a typical transient completes on the 

scale of milliseconds, will not be effective at mitigating fault damage at high voltage 

potentials. The heat dissipated during open air arc faults presents a significant fire 

hazard. 

Machine learning and Deep learning neural networks can be pipelined to allow 

for faster sample rates with additional cost to latency. This tradeoff should be 

balanced by system engineers in the relevant environment to create a load 

monitoring product with the correct fidelity to properly distinguish pulsed loads 

from faults but respond fast enough to prevent catastrophic damage. 

In machine learning or deep learning neural networks, the first step is feature 

extraction/event detection such as wavelet transform and Fourier transform [5], in 
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which certain attributes about the load profile characteristics in pre-defined events 

are detected and extracted. They are saved one-by-one into the database for the 

network training process that can be used in the following classification step to 

identify or label the observed load profile. In this step, the well-trained database is 

used to identify the feature vector of the detected event. The feature vector input 

should be similar to other signal types for which the classifier has knowledge in its 

database. Faults are detected when the classifier cannot easily identify the event.  
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2. LITERATURE REVIEW  

2.1. Feature Extraction  

Most of the research on signal feature extraction is focused on ac grid and ac loads 

with few notable exceptions. Therefore, some of the discussion here will include 

concepts like harmonics, reactive power and power factor that are primarily 

concerned with ac loads. Nevertheless, the work summarized here is still relevant 

because the signal processing techniques to obtain these features are similar to what 

will eventually be utilized in this project.  

Non-intrusive load monitoring (NILM) techniques have long been used in 

residential power systems to accurately determine energy use [6], [7], [8]. These 

techniques are typically based on extracting transient-state features but can also 

involve time-frequency analysis such as the wavelet transform [6]. A number of 

research publications focus on shipboard power system applications of non-intrusive 

load monitoring where time-frequency methods are followed by load disaggregation 

[9], [10], [11]. Load monitoring equipment has been placed on ships, and one 

valuable outcome has been the ability to determine long-term degradation of 

components via the load behavior [11], [12]. As an example, a pump that operates 

at an unusual frequency may indicate a problem with the pump or associated sensors. 

Unusual spectral components from NILM can be used as triggers to investigate 

running equipment to conduct early preventative maintenance, rather than corrective 

maintenance after equipment failure.  
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A comprehensive look at NILM research shows two broad categories of features 

exploited for load recognition: macroscopic and microscopic. According to [13] 

macroscopic features are those extracted at lower sampling frequency, nominally 

less than 200 Hz, while microscopic features are extracted from data sampled at a 

higher rate, typically 1kHz and above. Examples of macroscopic features include 

changes in real and reactive powers, power factors, steady-state RMS values, and 

the shape and duration of transient events. Common microscopic features are 

harmonic content of the signal, (extracted through either an FFT or short-time 

Fourier transform (STFT)), total harmonic distortion (THD), spectral envelope 

extracted through STFT, wavelet transform coefficients, and high frequency shape 

features of the raw data.  

G.W. Hart pioneered the field of NILM in [14] by using the change in steady-state 

real and reactive power as the unique identifying feature of the load. This approach 

worked for large loads with ON/OFF modes and distinct power ratings as one would 

expect from household appliances. Low power loads or loads with variable or multi-

level power draw cannot be identified using this feature only.  

Some works have tried to extract more macroscopic features in order to target a 

wider range of loads. Significant works in this category include the work by A. Cole 

and A. Albicki [15], [16]. The additional feature they included was the edge count 

for a given power profile and the variations in real and reactive power over an 
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extended period of time as long as 900 seconds. In this way they were able to 

distinguish appliances that had more than one mode of operation and went through 

several real and reactive power cycles through their operation. 

It was later noted that most appliances either have very low reactive power or a 

prominent real power component, and could be classified based on just the changes 

in real power alone. This approach is often coupled with features related to the usage 

pattern of the loads [17], [18]. The earliest work in this area was done by J.T. Powers 

et al. who used the time of occurrence and frequency of occurrence over a long 

period as a feature of the load profile [19]. Similarly, the work by Barnaski and Voss 

extracted features such as duration of use and frequency of change in power levels 

[20], [21], [22]. Baranski had good success detecting appliances such as 

refrigerators, heaters, or stoves that have a regular pattern of use. This method 

requires data storage for five to ten days to reliably look for patterns.  

A well-developed load monitoring system based on just macroscopic features is 

presented in [23]. The program called recognition of electrical appliances and 

profiling in real time (RECAP), gathers some macroscopic features from the voltage 

and current data into something called the appliance signature. These features 

include change in real power, power factor, RMS current, peak voltage, peak 

current, and signature length. Very similar to this approach is another work 

presented in [24] which uses power factor and time to reach steady-state power as 
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additional features, but it is still in the experimental stage so its effectiveness is not 

known.  

In household appliance monitoring applications, fast detection has not been a 

primary concern so most algorithms using macroscopic features alone perform 

adequately for their purpose. In some cases, it is easier to differentiate between loads 

based on microscopic features such as its harmonic content which requires a high 

sampling frequency. The first work to include harmonics analysis as a feature was 

done by Sultanem in late 1980s and early 1990s, although he concluded that most 

household devices could be identified just on the basis of real and reactive power 

changes [25].  

The use of high sampling frequency and microscopic features was developed by 

Leeb and Shaw at MIT. Leeb’s contribution was to extract useful frequency features 

from turn on transients of various devices rather than steady-state features like 

changes in power and RMS current [26], [27], [28]. He employed the technique of 

short-time Fourier transforms (STFT) to calculate the spectral envelope of the signal 

[27], [28]. Changes in envelope of third and fifth harmonics were monitored over 

time and recorded as a feature of the transient. A large library of these unique 

transient features has been developed for a variety of common ac loads and even 

some dc loads [29], [30], [31], [32]. This form of a load monitoring system has been 

tested extensively on household and commercial ac loads and recently on U.S Coast 
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Guard Cutters Spencer (WMEC-905) and Escanaba (WMEC-907), where it has 

shown promising results and was able to detect deviation from normal behavior in 

case of worn out equipment [11], [29], [33], [34]. With Shaw’s work the focus of 

NILM has shifted more towards diagnostics [35], [36] along with monitoring of 

loads but fast fault identification for dc loads has not yet been produced. Following 

Leeb’s work many other research groups have also exploited harmonic content of 

the transient extracted through STFT as a unique feature of the load [37], [38], [39], 

[40].  

The application of STFT imposes certain limitations on the analysis of the input 

waveform. The window size of data considered, number of discrete points in the 

data, and sampling frequency are all fixed which means that the frequency resolution 

and the range of frequencies analyzed are fixed too. This may limit the ability to 

detect features from a wide variety of loads. A more advanced harmonic analysis 

technique called wavelet transform is employed in more recent research that allows 

the program to zoom into the sampled window of data and retrieve information at 

various frequency resolutions. The wavelet transform was demonstrated to have an 

advantage over the STFT when trying to extract frequency information from a 

transient in [55]. The wavelet transform is usually implemented for real-time 

application using the discrete time wavelet transform (DWT). In this approach the 

input data set is passed through a series of high-pass and low-pass filters in a 

multiresolution analysis (MRA) approach to extract coefficients corresponding to 
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the energy in various bands of frequencies at various resolutions. After passing 

through the filter stages the input to the next stage is dyadically (2^N) reduced to 

ensure the output is the same size as the original signal. Many works recently have 

used DWT instead of STFT to extract time-frequency features from the input data 

due to easy access to high speed multicore processors [41], [42], [43], [44], [45], 

[46], [47], [48], [49].  

The stationary wavelet transform (SWT) is a variant to the DWT where the filter 

stages are dyadically upsampled instead [50]. The key benefit to this approach 

allows the transient signal response to be the same wherever the transient occurs in 

the sample window. In the DWT case, a transient response in the beginning of 

sample window could have a different response than one occurring at the middle or 

end of the window. The SWT can also be implemented in real-time but requires 

more system memory to store each of the filter responses at the same size of the 

original input signal.  

Not all microscopic features have to be frequency-based like in the case of STFT 

or DWT/SWT. Some work has been done on saving high frequency sampled data 

from raw current and voltage waveform as a way to save the unique signature of 

every load. The most detailed work in this category is done by Lam et al. where 

instantaneous voltage and current data (VI) is used to create features to capture the 

trajectory of each load [51]. These features include direction of the VI trajectory, the 
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area enclosed by VI over time, measure of asymmetry in the VI trajectory, its 

curvature, and its slope with reference to the mean value across different segments. 

Other efforts in the time-domain analysis as a form of feature extraction include 

[52], [53], [54], [55], [56]. Even better performance is obtained by using a 

combination of time-domain microscopic characteristics along with frequency-

domain features [57], [58]. Using time-domain features reduces the complexity of 

the feature extraction process, but it is less reliable as some load transients look 

similar in the time-domain. Furthermore, frequency-based features are more robust 

to noise and errors in data acquisition [52].  

In the presence of so many features that can be used to uniquely identify a load or 

a transient, the challenge is to pick the right number of features that can reliably 

identify a reasonable range of common profiles without making the process overly 

complex and resource-consuming. A notable effort in combining the features to 

come with the most reliable monitoring system using least number of features is 

presented in [59].  

2.2. Classification Monitoring  

The Viterbi algorithm is a commonly used dynamic programming algorithm that 

recursively solves for a hidden layer of sequence of states that can best account for 

the observed layer of sequence of events. It has long been used in the field of speech 

recognition where the recorded audio signal is the observed sequence of events and 

a string of words would form the hidden layer. In power system signal processing a 
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variation of Viterbi algorithm is applied in [20], [21], [22] where the observed load 

profile over a prolonged period is the observed layer. Probability distribution is 

derived from data stored for up to ten days. The hidden layer is then the sequence of 

known states that can most closely match the observed layer. This algorithm can 

become very complicated when a large number of states are involved. For N states 

there are 2^N combinations. The algorithm in [21] performs some optimization to 

greatly reduce the number of probable combinations. In terms of fault recognition 

this approach is not ideal because it is difficult to categorize the fault itself as a stage 

since the nature of fault is unpredictable. Also ideally, fault detection should occur 

as soon as it happens, but the method in [21] records data over an extended period 

of time involving several events. Inaction over long periods of time can potentially 

lead to catastrophic damage, especially at MVDC levels.  

A very similar approach is also used by [52] and [60] with good success. Instead 

of recording data over several load cycles, [52] uses the instantaneous feature of the 

observed load and recursively solves for the combination of states to determine 

which loads contribute to the observed waveform. Another method based on the 

Viterbi algorithm is the Factorial Hidden Markov Model (FHMM), which is used in 

several papers [61], [62], [63]. The important development in these papers is that 

they employ an algorithm called the unsupervised learning technique where the 

training dataset is not required to have one-to-one correspondence with the class 

type. Getting a training dataset from each class of load can be difficult or impractical 
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in some applications. This leads to more complex models compared to supervised 

learning where the relationship between the sample of training dataset and the 

corresponding class is known. The method in [64] uses a unique fuzzy logic-based 

approach which is also unsupervised and performs with 85% accuracy. The 

cognitive electric power meter performs classification based on Bayes’ theorem 

[65], [66]. This is a probability based approach which is suitable for electric 

monitoring on a large number of loads over an extended period of time.  

Matching each observed feature of one event to an array of stored features for all 

possible events can broadly be categorized as a pattern recognition approach. The 

most common and intuitive approach is the minimum distance classifier, specifically 

Euclidian distance classifier. Suppose all the extracted features for any event 

observed at time t can be combined into a vector X, and an array of vectors mi 

contains the mean value of those features for class ωi. For a system with M classes 

of loads, mi is calculated from a pre-programmed database or historical data used 

for training. The unknown feature vector X is assigned to class ωi if Euclidian 

distance between X and mi is less than Euclidian distance between X and mj for all 

i=j [67].  

Another family of commonly-used, simple classifiers are nearest neighbor 

classifiers. The subtle difference between nearest neighbor and minimum distance 

classifier is that each feature in the feature vector is analyzed independently. If the 
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algorithm has n different features i.e. X is a vector of length n, then each feature is 

processed through a minimum distance classifier to determine the nearest feature 

among all classes. After all features are analyzed, the algorithm looks at which class 

has most features closest to the observed feature vector. Because of their simplicity 

and performance many papers use nearest neighbor approaches in some form for 

their classifier algorithm [38], [39], [68]. An alteration of the nearest neighbor 

classification is a machine learning technique known as k-means clustering. The 

variation on nearest neighbor algorithms is that each feature vector is compared to a 

k moving averages corresponding to the number of loads to be classified and the ith 

average is shifted once the load is added to load group i within k [69]. The advantage 

of this approach would allow the averages to shift over time, which may be 

important to consider for classifying mechanically aging loads.  

Neural networks form another family of classifiers that has been considered by a 

large number of papers [27], [36], [37], [60]. A significant advantage of the neural 

network architecture branch of machine learning applications is that these 

architectures can model nonlinearities when multiple layers of nodes are applied in 

succession during an inference, or classification, operation. And while both 

traditional artificial and convolutional neural network (ANN/CNN) architectures 

have been considered for use in both ac and dc distribution system transient analysis 

in recent years [70], [71], their utility is limited due to the lack of temporal memory. 

Power distribution systems are causal systems and some loads can exhibit complex 
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power consumption profiles that can span across multiple sample blocks (for 

example when monitoring for the cycles of a washing machine). In order to 

sufficiently employ a ANN/CNN to an ac/dc distribution system, a globally 

intelligent system must also manage CNN/ANN output snapshots in order to stitch 

together the responses to provide the temporal awareness.  

A recurrent neural network (RNN), and its long short-term memory (LSTM) 

variant, provide for time-domain signal classification by accounting for previous 

inputs to influence the classifier output at the current time. Moreover, ANN/CNN 

layers can also be leveraged simultaneously with an LSTM RNN for feature 

extraction for better predictor accuracy [72]. RNNs have been applied successively 

in natural language processing, electrocardiography, and stock market prediction 

among other fields [73], [74], [75].  

2.3. Fault Identification  

Using the feature extraction and classifier tools mentioned above several recent 

research efforts have been made to use microscopic features of load profile to detect 

faults such as low impedance shunt faults [76], [77], [78], [70], [79] or high 

impedance series arc faults [80], [81], [82], [83], [84].  

Research effort in [76] and [70] is especially pertinent to this research because it 

targets dc grids in particular. The work in [76] still focuses on the faults on the ac 

loads attached to the dc grid while [70] discusses faults on several locations on the 
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grid including both ac and dc sites. The most developed work on shipboard MVDC 

fault detection using wavelet transforms has been presented in [70] but it still does 

not cover a comprehensive range of faults, and the algorithm has not been tested on 

hardware which would test the robustness of the program. Specific contributions of 

this paper are that it develops a feature vector using the DWT signal energies and it 

implements an artificial neural network to perform fault detection with a comparison 

to other fault diagnosis algorithms. Research in [77] provides a comparison of DWT 

and STFT for feature extraction with a focus on fault diagnosis. Based on various 

simulated ac faults, [77] concludes that DWT can provide more salient features over 

the STFT for a majority of faults based on a neural network approach as a classifier.  

Considering the series arcing phenomenon, the STFT was used to extract 

frequency components in [81] paired with an algorithm that can detect the arc based 

on its frequency composition. The arc detection method is not tested in real time on 

a processor and the arc current supplied through a parallel capacitor is analyzed 

instead of the actual current flowing through the air gap. The theory of the algorithm 

and the modeling work in [81] makes it relevant to this project. Another work of 

significance is provided in [80] wherein wavelet transforms are used to detect series 

arcing faults. The work in [80] provides a theoretical algorithm but remains to be 

applied in real time to a test system. Furthermore, it also needs a network of 

capacitors which may not be practical for every kind of load but is useful for dc 

transmission lines.  
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Residual analysis is another way to perform fault detection by trying to compare 

measured system parameters against their model estimate values. In [85] and [86], 

a Kalman filter approach was used to track line current values on individual loads. 

Large measurement deviations from the filter output signified fault events. Issues 

posed for using Kalman filter load models is that they require known state-space 

system models and require linearization which may be a significant detractor for 

non-linearly switched loads.  

Finally, LSTM networks have been used in a few anomaly detection applications 

in other research fields. Usually these networks require a labeled dataset to train the 

model to look for anomalous conditions [87], [88], [89]. LSTM autoencoders, which 

do not require a labeled set, have also been used as fault detectors as well [90], [91]. 

In [92], Park et al. used an LSTM variational autoencoder (VAE) to detect faults in 

a robotic assisted feeding application. Unfortunately, while VAE networks offer a 

robust model tolerant to a wide range of system behaviors, they are not easily trained 

to perform classification in addition to fault detection. Some machine learning 

algorithm has been proposed such as STFT cluster analysis [93] and multi-class 

logistic regression algorithm [94] but the real-time implementation is not mentioned. 
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3. STFT-LSTM AUTOENCODER BASED DEEP LEARNING APPROACH 

3.1. Fourier Transform Data Driven Deep Learning Approach 

The proposed approach will be introduced in this section including its key 

component – autoencoder (AE) with long short-term memory (LSTM) layers 

network training, Fourier transform feature extraction, and proposed load 

monitoring algorithm. The proposed approach in this chaptor has been published in 

[95], [96], [97]. 

3.1.1. Autoencoder with Long Short-Term Memory Layers 

As a category of deep learning neural network, the AE has a dumbbell structure 

as shown in Figure 4. The feature extraction input can be stored in the encoder, then 

recovered in the decoder part afterwards for the aim of fault identification.  

 

Figure 2. LSTM layer architecture. 

https://en.wikipedia.org/wiki/Neural_network
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In this proposed solution, the AE architecture is used to perform fault 

identification. To identify a fault, an AE is trained on normal datasets. Any faulty 

signal input the AE has never experienced is supposed to generate a significant error 

in reconstruction. An unpredictable and undeterminable reconstruction can be 

generated because of an unexperienced input signal. The fault is identified by this 

error between reconstructed and initial signals.  

The current waveform monitoring is a type of time series analysis that the LSTM 

is a suitable candidate. An autoencoder with long short-term memory layers is 

therefore applied in this time series analysis. Figure 2 represents an overall operation 

flow of an LSTM layer consisting of LSTM cells. The features in the first time step 

input the LSTM cell together with random set of initial states i.e. cell state c and 

hidden units h. Then in each step, a new updated cell state and input features will be 

fed into the cell to generate the hidden units and next cell state. The hidden units are 

the cell output and the cell state c contains the previous knowledge learned in each 

  
                   Figure 3. LSTM cell node.                                      Figure 4. Autoencoder.    
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cell. For the refreshment of the cell state (c), the input gate (i), forget gate (f), gating 

gate (g) and output gate (o) are being employed in the LSTM cell shown in Figure 

3. 

Figure 3 explains how the LSTM cell operate in each sampling frequency. The 

functions in each gate including update, forget and generate cell state and hidden 

units are illustrated. The trained weights are the input weights W = [Wf, Wi, Wg, Wo], 

the recurrent weights R = [Rf, Ri, Rg, Ro], and the bias b = [bf, bi, bg, bo]. The i, f, g 

and o denote the input gate, forget gate, gating gate, and output gate, respectively. 

The input weights, recurrent weights and biases are obtained through network 

training. 

The cell state updated in each sampling frequency is computed by 𝐶𝑡 =  𝑓𝑡 ⊙

𝐶𝑡−1 +  𝑖𝑡 ⊙ 𝑔𝑡. The hidden units in each sampling step is calculated by ℎ𝑡 =  𝑜𝑡 ⊙

𝑜𝑐(𝐶𝑡) At each time step, the input gate is described as  𝑖𝑡 =  𝜎𝑔(𝑊𝑖 ∙ 𝑥𝑡  + 𝑅𝑖 ∙

ℎ𝑡−1  +  𝑏𝑖  ), the forget gate is described as 𝑓𝑡 =  𝜎𝑔(𝑊𝑓 ∙ 𝑥𝑡 + 𝑅𝑓 ∙ ℎ𝑡−1  +  𝑏𝑓), 

the gating gate is 𝑔𝑡 =  𝜎𝑐(𝑊𝑔 ∙ 𝑥𝑡 + 𝑅𝑔 ∙ ℎ𝑡−1  +  𝑏𝑔), and the output gate is 𝑜𝑡 =

 𝜎𝑔(𝑊𝑜 ∙ 𝑥𝑡 + 𝑅𝑜 ∙ ℎ𝑡−1  +  𝑏𝑜). In these calculations, σg denotes the gate activation 

function that is the sigmoid function given by σ(x)=(1+e-x)-1 to compute the gate 

activation function. 

3.1.2. Network Training 

Deep learning is performed on neural networks through training sessions. The aim 
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of training is to set up the weights and biases in the neural network. There are two 

forms of training mechanisms for neural networks: supervised and unsupervised 

learning. In supervised learning, classification labels are supplied with the data and 

the network weights are adjusted to achieve the best classification performance 

against the labels. For unsupervised learning tasks, the network is trying to organize 

around a governing structure to data that is unlabeled. Supervised learning is 

performed in LSTM by putting a sequence or image to the network and have the 

network reproduce the input sequence/image. AEs use this unsupervised learning 

process to adjust their network weights. 

The goal of training is to minimize the accuracy loss. An exhaustive search is 

usually unreasonable to determine the minimum loss because the search space grows 

exponentially with the number of layers in neural networks. In practice, the gradient 

descent approach is well-suited for online, or in-service, application because the 

weights can be adjusted after analysis on only small batches of data. This could be 

beneficial as to compensate for monitored component aging or other time shifting 

parameters. 

3.1.3. Fourier Transform Feature Extraction 

A direct input of time series waveform without feature extraction has only one 

feature at each time step which is the magnitude of the waveform. It is not enough 

for accurate waveform classification in the condition that has more than two classes. 

The short-time Fourier transform (STFT) is therefore chosen so that a number of 
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STFT harmonic components 𝑋𝑘[𝑛] can be extracted as the feature vectors at each 

step time. A Fourier transform based feature extraction has been applied in non-

intrusive load monitoring applications such as short-time Fourier transform (STFT) 

cluster analysis based load monitoring. The magnitude of multiple STFT harmonics 

as feature vector were captured and stored in the database to analyze the feature of 

normal case, and then compare them with the feature of faulty case to identify faults. 

The recursive form of STFT - recursive discrete Fourier transform (DFT) is 

preferred for fast computation in real-time applications shown in Figure 6. In each 

sampling time step 1 𝐹𝑠⁄ , an array of length N can be calculated. The magnitude in 

each element in this array is important for current feature analysis.  

The STFT output 𝑋𝑘[𝑛] of the input signal, named harmonic components, is the 

relevant time-frequency information on waveforms which are fed into the LSTM 

RNN AE to reconstruct the input signal. The STFT harmonics 𝑋𝑘[𝑛] in normal 

operation are different compared to fault cases. Ten STFT harmonic components 

were shown enough to sufficiently perform the reconstruction. An 10 by L array of 

harmonic components of the input signal is generated by recursive DFT, where L is 

 
 Figure 5. Two consecutive windows.                         Figure 6. Block diagram for recursive DFT. 
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the length of the sample. The ten STFT features are fed into the network in each 

time step, corresponding to ten components of STFT harmonics. 

3.1.4. Load Monitoring Algorithm 

The load monitoring algorithm is based on deep learning neural networks. The 

proposed system includes feature extraction, classification and AE based fault 

identification as shown in Figure 7. In the feature extraction step, the system 

implements the input signal measurement and uses STFT to process the measured 

current to obtain the Fourier transform feature fed into the deep learning neural 

network. In the next step of classification, the encoder classifies the current 

waveform as the output of load monitoring. In the fault identification step, the AE 

recovers the signal and compared it with the real time input signal for error residual 

calculation. The fault identification system calculates the residuals between original 

and recovered signal to identify faults.  

LSTM encoder-decoder layers includes 30 hidden nodes, sized within the 

 

Figure 7. Deep learning based load monitoring. 

microcontroller memory constraints. The network is trained in two steps. In the first 
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step, classified training datasets with the pulsed signal features including its start, 

ramp, and end stages are being used for training the LSTM encoder layer and 

classifier layer. This LSTM encoder and classifier layer can output the classification 

of the signal for the load monitoring purpose. The node size of this LSTM encoder 

node matches up with the classification number of the load waveform. The input 

signal is recovered by the AE based signal reconstruction system. Specifically, an 

15-node fully connected layer and ReLu layer are employed after the LSTM decoder 

to reconstruct original signal.  

Figure 8 illustrates the fault identification system including two parts to compute 

and compare the residuals between its original and recovered signal. The two parts 

are root mean square error (RMSE) and maximum localized absolute error (MLAE). 

The MLAE is supplemented for small duration disturbances which is hard to detect 

for RMSE. Whether the MLAE or RMSE are over their individual thresholds (η1, 

η2) is the criterion of fault identification. An OR logic is used after MLAE and 

RMSE to identify faults.   
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The fault identification system calculates and compares the RMSE and MLAE to 

their respective maximum thresholds reviewed by the receiver operating 

characteristic (ROC) analysis from the error residuals of the verification datasets. 

The thresholds are continuously changed at this ROC comprehensive review to 

trade-off false positive rate (FPR) and false negative rate (FNR).  

 

3.2. Electric Ship System and Potential Fault Description 

A circuit schematic diagram to represent the experimental setup for an electric 

ship is shown in Figure 9. Three fault monitor subsystems are used to evaluate 

individual load performance. An overarching load monitor is used to aggregate the 

outputs of the individual monitor subsystems. The hardware parameters are listed in 

Table I. Three different types of electric ship loads are linked to the MVDC busbar. 

Reconstructed Signal Original Signal 

Residuals 

Calculate RSME 

ඥσ (𝑥𝑖 − 𝑥ො𝑖)2/𝑁𝑁
𝑖=1  

Calculate MLAE 

max(|𝑒[𝑛] ∗ 𝑤[𝑛]|) 

> η1? > η
2
? 

OR 

Fault Identified? 

Figure 8. Fault identification system. 
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It is difficult to fully enumerate 

all types of fault conditions that 

may be present in an electric 

ship power system. Failure 

modes for a system will vary 

with the components used 

within the system. Therefore 

four types of fault have been represented within these hardware loads. 

3.2.1. Pulsed Power Load 

A coil gun is assembled to emulate advanced pulse-power weapons such as a naval 

rail gun on an all-electric ship. Its parameters and potential fault locations are 

illustrated in the Table I and Figure 9 – Load 1. The full-bridge charger is controlled 

by a DSP chip to maintain each firing cycle of 100ms periodically.  

Shunt Fault: Shunt faults are the presence of a short-circuit path between two 

conductive elements or a conductive element to ground. In the most severe 

manifestation, the voltage potential between the conductive elements is the limiting 

factor of the maximum current and power dissipation of the fault. An MVDC shunt 

fault from the bus voltage to ground potential would consume an enormous amount 

of energy that could destabilize the distribution if not contained quickly. 

TABLE I HARDWARE PARAMETERS 

Load 1 (Coil gun) 

Vdc=375V Lin1=100μH Cin1=970μF 

L=2mH Vout=300Vdc max Cout=7mF 

Coil=80μH Zfault=15Ω Load=4mH 

Load 2 (Fixed impedance) 

Lin2=100μH N1:N2=70:24 LN1=51μH 

LN2=6μH Cz=100μF Rz=100Ω 

Rload=470Ω Lload=1mH Rstep=470Ω 

Load 3 (Propulsion motor) 

Lin3=100μH Cin3=1.7mF 
PMSM = TI 

HVPMSMMTR 
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Shunt faults are also the most catastrophic form of fault and closest to pulsed load 

demands. The shunt fault can create a significant pulsating current waveform, so this 

kind of fault identification is difficult to differentiate from normal pulse currents. In 

pulsed power loads, Load 1 in Figure 9, the ‘shunt fault’ switch can close for several 

miliseconds to create shunt faults randomly on purpose. 

IGBT Gate Fault: The behavior of IGBT gate fault is similar to open circuit fault. 

Improper system operation from a variety of sources, this type of fault is a collection 

of scenarios within a MVDC system leading to improper operation of control 

  
 

 

 

 

Figure 9. Circuit schematic of dc busbar with electric-ship load hardware prototypes. 
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switching. Switching devices can fail in both open and circuit conditions as well as 

experience parameter drift over time. Improper gate driver timing, software bugs, or 

malware could also produce erroneous behavior within MVDC distributions. These 

faults can manifest in a multitude of different ways, making them hard to succinctly 

characterize; thus all control-failure type faults are lumped into this broad category. 

In this case, the IGBT gate fault is produced by fluctuating the gate drive signal 

provided to S1 during the times it should be closed. 

3.2.2. Fixed Impedance Load 

Fixed impedance load is implemented to emulate the ship service loads. A typical 

current behaviour in this load is to switch on or off in each one second periodically. 

The hardware parameters and prototype are illustrated in Table I and Figure 9 - Load 

2.  

Series Arcing Fault: As a category of high impedance fault, arcing faults are less 

severe initially but are harder to detect and can lead to significant system damage 

over time. Dc arcing is more difficult to contain than ac arcing because ac breakers 

can rely on the zero crossing behavior of the current signal to extinguish the arc. In 

contrast to shunt faults, series faults introduce a high impedance breakdown of the 

conductor material reducing the overall load current. The time varying impedance 

nature of the fault is difficult to model. While identifying series arcing behavior may 

provide a benefit when considering stochastic load profiles due to the high degree 

of randomness in both. 
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In this research, there are two sources of fault within the fixed impedance load. 

The first source is a shunt fault which is protected by the coupled dc Z-source circuit 

breaker. The second type of fault, series arcing is not protected by the dc breaker 

because this type of fault does not exhibit large current swings. The spark generator, 

movable contact, creates a series arcing fault condition shown in Load 2 of Figure 

9. 

3.2.3. Propulsion Motor Drive Load 

A scale-down permanent magnet machine (PMM) controlled by a three phase 

inverter was used to emulate the slow transient behavior of electric propulsion 

system. Fig. 9 – Load 3 shows the hardware setup of this motor drive load. 

Partial Blocked Rotor Fault: The behavior of blocked rotor fault is similar to a 

short circuit fault. Because the PMM is being used here which means that a high 

current would be very easy to damage the rotor magnet. So only a friction stalling 

was applied to the inertial flywheel to produce faulty signatures during PMM 

operation. The flywheel load was manually disturbed at various times during the 

motor acceleration, deceleration and steady revolutions resulting in abnormal 

current demands. 

3.3. Verification 

The classification accuracy can be improved by the Fourier transform feature 

extraction that is demonstrated in the following current waveform classification test. 

3.3.1. Current Waveform Classification 
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Pulsed Power Load: The trained LSTM networks with or without feature 

extraction are both implemented to compare the performance improvement. 100 

datasets are captured including 60 training datasets and 40 validation datasets. 

Figure 10 (a) shows the four different stages of pulsed power load operation 

including pulse start, ramp, end, and n/a. Compared to the ground truth, an accuracy 

of 98.75% can be achieved under feature extracted classification, compared with 

70.12% without feature extraction. All waveforms are identified as n/a because it is 

the majority of this load classification.  

Propulsion Motor Drive Load: The motor drive load is sampled at 100Hz for 

slow transient capture. Figure 10 (b) shows the four different stages of motor drive 

load operation including motor steady, accelerating, decelerating, and stalled. 

Compared to the ground truth, an accuracy of 98.53% can be achieved under feature 

  
                                                (a)                                                                                                                            (b) 

Figure 10. LSTM RNN classification performance of coil gun (a) and propulsion motor drive (b). 
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extracted classification, compared with 93.75% without feature extraction. The 

performance is much better than the pulsed power load without feature extraction 

because the stage classification of motor drive load is more even distribution and 

there is no short period of stages existed such as ‘start’ and ‘end’ in the pulsed power 

load.  

3.3.2. Fault Identification 

The STFT feature in faulty condition is different from normal condition. The 

autoencoder (AE) can only reconstruct signals similar to normal conditions because 

AE is only trained from the features in normal condition. It will reconstruct abnormal 

signals with undetermined waveform when fault happens because AE never 

experiences the faulty feature in the training process. 

Shunt Fault: The validation set of the coil gun includes 30 samples of three-count 

normal operation pulse trains, 20 samples of a pulse train containing a shunt fault, 

and 20 samples of a pulse train containing a gate fault. The thresholds of RMSE is 

0.09 and MLAE is 0.03 for zero FPR. Fig. 11(a) shows the fault identification of 

shunt fault case including original and reconstructed signals and residuals calculated 

from them. In faulty condition in Figure 11(a), the residual has a positive surge at 

3.64s corresponding to the largest error residuals. 

Because the reconstructed signal is totally different from the original signal. By 

contrast in normal cases, the residual has no large surges because the reconstructed 

signal is similar to the original signal. This obvious surge as a sign of anomaly is 
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used for differentiating this 

fault from normal 

condition.  

 

IGBT Gate Fault: The 

IGBT gate fault 

identification set-points for 

the RMSE and MLAE are 

same as shunt fault and its 

verification datasets. An 

examplar IGBT gate fault behavior and its signal reconstruction are shown in Figure 

11(b). The fault event occurs at approximately 4.8s corresponding to the largest error 

residuals. 

Table II shows the composite detector performance against the test dataset of both 

fault categories. In both cases, an ROC comprehensive review of varying RMSE 

and MLAE demonstrated the MLAE was more efficient in the short duration gate 

and shunt fault identification. One fault went undiagnosed, but a review of the 

undetected gate fault signal showed little to no current disturbance in the original 

sample because the event occurred during initial pulse ramping when the initial 

current ramp rate is low.  

Series Arc Fault: The validation set of the fixed impedance load includes 10 

TABLE II IDENTIFICATION CONFUSION MATRIX 

Load 1 (Coil gun), RMSE=0.09, MLAE=0.03 

  Network Classification  

  Normal Fault  

Actual 

Classification 

Normal 30 0 100% 

Fault 1 39 97.5% 

  96.8% 100%  

Load 2 (Fixed impedance), RMSE=0.01, MLAE=0.3 

  Network Classification  

  Normal Fault  

Actual 

Classification 

Normal 10 0 100% 

Fault 0 20 100% 

  100% 100%  

Load 3 (Propulsion motor), RMSE=0.13, MLAE=0.06 

  Network Classification  

  Normal Fault  

Actual 

Classification 

Normal 100 0 100% 

Fault 5 55 91.7% 

  95.2% 100%  
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samples of on-off normal switching operation and 20 samples containing arcing 

faults. Fig. 11(b) shows the fault identification of arcing fault case including original 

and reconstructed signals and residuals calculated from them. Table II shows the 

composite detector performance against the test dataset. The RMSE is 0.01 and 

          
                                      (a)                                                                                                (b) 

           
                                      (c)                                                                                             (d) 

Figure 11. Original and reconstructed signals of shunt fault (a), IGBT gate fault (b), arcing fault 

(c) and partial blocked rotor fault (d). 
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MLAE is 0.30 for zero FPR. This detector scheme flagged all series arcing events. 

An ROC review showed that RMSE was more efficient in the arcing fault detection. 

 

Partial Blocked Rotor Fault: Friction stalling was applied to the inertial flywheel 

to produce faulty signatures during PMSM operation. The flywheel load was 

manually disturbed at various times during the motor acceleration, deceleration and 

steady revolutions resulting in abnormal current demands. 

The testing set for the PMSM consisted of 100 acceleration-deceleration cycles, 

and 60 samples during friction stalling the motor. Fig. 11(d) shows a partial blocked 

rotor fault. The stalling event causes the motor controller to demand more torque to 

achieve the commanded speed resulting in current peaking in the load signature. In 

faulty condition in Figure 11(d), the residual has a positive surge around 40s because 

the reconstructed signal is totally different from the original signal, which would not 

happen in normal cases in figure 10(b). This obvious surge as a sign of anomaly is 

used for differentiating this fault from normal condition.  

Table II shows the composite detector performance against the test dataset. The 

RMSE is 0.13 and MLAE is 0.06. In this case, both RMSE and averaging window 

error equally helped detect current disturbances. This detector scheme failed to flag 

several current disturbance events, however the overall fault identification accuracy 

was relatively high at 91.7%. Increasing the LSTM AE hidden node size to 100 units 

raised the fault identification accuracy to 95% on the same testing dataset. 
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3.4. Conclusions 

Pulsed power loads are being increasingly deployed on Naval all-electric ships. 

The deep learning neural network can be used as a tool for load monitoring purpose 

in these systems. In this article, a Fourier fed long short-term memory autoencoder 

method was shown to achieve a rapid and accurate result on load monitoring and 

fault identification of three typical loads operating under four fault cases.  Namely, 

the method was verified using a pulsed power load with a shunt fault and an IGBT 

gate fault, a fixed impedance load with a series arcing fault, and a motor drive load 

with a partial blocked rotor fault. In all cases, the method was shown to be highly 

accurate in identifying faults. 
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4. WAVELET TRANSFORM DATA-DRIVEN CLUSTERING BASED MACHINE 

LEARNING APPROACH 

All-electric warships require high power-dense distribution system to power 

advanced weapon loads. Medium voltage dc (MVDC) power distribution is well 

suited to fulfill this requirement if certain risks are addressed. A particularly 

emerging problem is that the advanced pulsating loads draw large currents in 

extremely short periods of time and behave similarly to the shunt fault. The nature 

of the load and the operating cycle determines the unique structure of the pulse in 

time and frequency domains.  If the load operating cycle consists of a finite number 

of transitions, then the corresponding frequency content of the current profile can be 

used to identify these transients. The wavelet transform is used to extract this useful 

frequency domain information from the sampled current data. A proposed 

computationally light data-driven machine learning based fault detection and load 

monitoring solution extracts the frequency domain features of the observed transient 

and compares that to a database of stored features to identify the observed transient, 

then to further identify faults that may create an abnormal disturbance in the load 

current profile such as arcing and shunt faults. It can be further applied to any load 

profile with prerequisite of a finite number of repetitive transients during normal 

condition. This paper focuses on the fault detection only and not for fault 

isolation while it is simple to achieve isolation capability once the fault was 
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diagnosed. In final real-time implementation, the recursive Haar stationary wavelet 

transform (SWT) fed computationally light machine learning is employed to 

validate the proposed scheme in a single-core Texas Instrument (TI) Digital Signal 

Processer (DSP) TMS320F28335. 

The typical machine learning approach is usually implemented in complicated 

algorithm with multiple layers and complex structure, which is difficult to do the 

real-time implementation, especially in a resource-constrained microcontroller. 

Computationally-light machine learning approach is proposed here for its real time 

application so the complexity of the algorithm is supposed to be simplified for 

implementing in microcontrollers. In this paper, a real-time computationally light 

machine learning algorithm with wavelet transform feature extraction is proposed 

and validated for fault detection in pulsating power load monitoring of the Naval all-

electric ship with MVDC grids. The major contribution of this work concerns the 

real-time implementation of a simplified k-NN computationally-light machine 

learning method for dc pulsating load fault detection. This paper focuses on the fault 

detection only and not for fault isolation while it is simple to achieve isolation 

capability once the fault was diagnosed. The work of this chaptor has been published 

in [98], [99], [100], [101]. 

4.1. Machine Learning Based Fault Detection and Load Monitoring 

The adopted fault detection and load monitoring solution consists of two distinct 

parts shown in figure 4. First is databased training, which includes calculation of 
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unique attributes of an event from raw data in feature extraction, specifically by 

using Haar wavelet transform to achieve its time-frequency information, then using 

the information to train the normal database for the preparation of the following 

classification and detection. The second stage can be referred to as classification 

monitoring and fault detection stage wherein the real-time observed event is 

assigned a label based on how its feature compare to those present in the trained 

database. Specifically, to find the observed event label with most matches, or 

identify fault if it is different from the majority in the normal database. This section 

briefly introduces each step of the fault detection and load monitoring algorithm, 

including feature extraction, event detection, database training, classification 

monitoring, and fault detection. 

4.1.1. Feature Extraction 

Time-frequency features are extracted from the discrete-time input current 

waveform. The common technique of feature extraction is the short-time Fourier 

transforms (STFT). However, the application of STFT imposes certain limitations 

on the analysis of the input waveform. The window size of data considered, number 

of discrete points in the data, and sampling frequency are all fixed which means that 

the frequency resolution and the range of frequencies analyzed are fixed too. This 

may limit the ability to detect features from a wide variety of loads. A more 

advanced harmonic analysis technique called wavelet transform is employed in 

more recent research that allows the program to zoom into the sampled window of 
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data and retrieve information at various frequency resolutions.  

The wavelet transform was demonstrated to have an advantage over the STFT 

when trying to extract frequency information from a transient. The wavelet 

transform is usually implemented using the discrete time wavelet transform (DWT). 

Figure 12 shows the DWT process for three levels of decomposition [102]. In this 

approach the input data set is passed through a series of high-pass and low-pass 

filters in a multi-resolution analysis (MRA) approach to extract coefficients 

corresponding to the energy in various bands of frequencies at various resolutions. 

After passing through the 

filter stages the input to the 

next stage is dyadically 

(2^N) reduced to ensure the 

output is the same size as the 

original signal. Many works 

recently have used DWT 

instead of STFT to extract 

time-frequency features 

from the input data due to 

easy access to high-speed multicore processors.  

The stationary wavelet transform (SWT) is a variant to the DWT where the filter 

 
Fig. 12. Three-stage DWT implementation [102]. 

 
   

Fig. 13. Three-stage SWT implementation [103]. 
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stages are dyadically up-

sampled rather than down-

sampling the signal 

approximations as in the DWT. In the DWT case, a transient response in the 

beginning of sample window could have a different response than one occurring at 

the middle or end of the window. Figure 13 depicts the SWT implementation over 

three stages [103]. The key benefit to the SWT approach allows the transient signal 

response to be the same wherever the transient occurs in the sample window. The 

SWT can also be implemented in real-time but requires more system memory to 

store each of the filter responses at the same size of the original input signal. 

The pros and cons of STFT, DWT and SWT are concluded in Table III. The 

wavelet transform innately provides a zooming feature with a dynamically-sized 

window for various transients without operator selection. For other typical feature 

extraction method such 

as STFT, a disadvantage 

is that the analysis 

window size must be 

selected using the 

transient ramp rates for 

each new transient in 

the pulse. Its fixed 

 
Fig. 14. The recursive 5/3 filters for forward wavelet transform 

[104]. 

 

TABLE III. EXISTING METHODS COMPERISION. 

 STFT DWT SWT 

Shift invariance Yes No Yes 

Dynamically-
sized window 

No Yes Yes 

Basis Sinewaves Wavelets Wavelets 
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analysis window requires a signal periodicity to fit infinitely-long sine 

approximations to extract frequency information, limiting the transient analysis 

performance for various loads. The wavelet transform is validated to have an 

advantage over STFT that it innately allows the program to zoom into the sampled 

window of data and retrieve information at various frequency resolutions. The basis 

selection has great effects on both speed and performance that will be introduced 

later. 

Wang et al. in [104] presented an algorithm for the recursive calculation of 

wavelet coefficients for video coding and compression shown in Fig. 14. The 

recursive wavelet filter approach uses previously calculated filter outputs along with 

“future” inputs to calculate the filter coefficients for the current time step and is 

illustrated in. Only odd-sized wavelet filters (5/3 and 9/7) were considered by the 

algorithm; the filter sizes correspond to the number of filter coefficients in the high-

pass and low-pass filters respectively. The algorithm leverages the odd size to center 

the computation window within the middle of the longest filter applied to the signal.  

The current input must be delayed until the “future” input is available. This 

information is usually already available at the time of processing in the context of 

image and video compression, but a temporal sequence will still require a latency of 

half the longest filter length. Recursive coefficient computation removes the frame 

(buffer) requirement for wavelet transform calculation at half the latency of the 

frame-based approach. Additionally, previously calculated wavelet coefficients 
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beyond the end filters are discarded, which saves on memory space as the high 

frequency coefficients are processed and discarded at a faster rate than the lower 

frequency coefficients. All wavelet coefficients are retained throughout the 

transformation calculation in frame-based wavelet transformations, and thus have 

higher memory requirements.  

A similar process can be used to recover the wavelet coefficients for other types 

wavelets, and is not constrained to filters of odd parity. For real-time monitoring, 

the recursive Haar SWT presented in equation (1) and (2) is implemented where j is 

the stage of decomposition, i is the time index, and the input signal is  𝑓[𝑖]. The Haar 

wavelet was chosen for its reduced filter size and for the elimination of filter 

coefficient multiplication operations because the Haar wavelet transform is 

computed from 2-point differences and sums. It also performed adequately as 

feature extractors for simulation and experimental data analysis of a pulsed load 

MVDC system during load shifts and faults. The detail coefficients and 

approximation coefficients in the current sampling step are calculated from the 

recursive wavelet filter outputs from previous calculation together with current 

inputs. Approximation coefficients are achieved by summing the current input 

signal 𝑓[𝑖] to its previous approximation coefficients, then subtracting the input 

signal outside its filter length. At each stage j, the detail coefficients 𝐷𝑗[𝑖]  are 

computed by the difference between approximations from the finer scale 𝑗 − 1. 

Each filter stage output is linearly phase-delayed by a fixed amount to synchronize 
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with the filter-stage output of the lowest frequency band (largest stage of 

decomposition). For example, the finest detail stage 1 containing high frequency 

details is delayed by 128 time steps if eight stages of decomposition are required. 

𝐴𝑗[𝑖] = 2−𝑗/2 ∙  (𝐴𝑗[𝑖 − 1] + 𝑓[𝑖] − 𝑓[𝑖 − 2𝑗])        (1) 

                      𝐷𝑗[𝑖] = 2−𝑗/2 ∙  (𝐴𝑗−1[𝑖] − 𝐴𝑗−1[𝑖 − 2𝑗−1])               (2)  

For every time step 1 𝐹𝑠⁄ , an array of length j is calculated by equation (2). Each 

element in the array is its detail coefficient and magnitude used for current profile 

analysis. The polarity of detail coefficients in the current has been applied to indicate 

the feature either increase or decrease to achieve the direction directly.  

4.1.2. Event Detection 

The pre-processing of event detection includes spectrogram analysis of a typical 

load profile, surge points identification, and pre-defined event threshold. The 

features calculated in each sampling step 1 𝐹𝑠⁄  seconds are stored and categorized 

only when an event happens. The events are predefined by user selection on the 

algorithm parameter i.e. event threshold. A time-frequency approach is chosen in 

which the spectrum in full cycle is observed and its salient points in particular detail 

coefficient in SWT can be thresholds which are used to identify specific event. 

4.1.3. Database Training 

Figure 15 illustrates key steps in the load monitoring system including database 

training and classification monitoring. Database training requires a fault-less 
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controlled operation of the load during which the events occur in a known sequence. 

The sequence of events is known prior to operation and programmed in the scheme 

through an event-sequence-array (ESA). The ESA is an array including the order of 

labelled event expected to happen in sequence defined by users.  

In each sampling frequency of event detection, an array of features calculated from 

sampling data are stored in memory according to ESA defined by user. Memory 

allocation is determined by the length of ESA and number of unique event labels. 

ESA must be provided before training and all normal operations are secured to 

happen with no faults during the database training. After the collection of ESA 

database by the end of training, a three-dimensional statistical matrix has been 

calculated including the mean, maximum and minimum values based on the ESA 

database saved in memory.  

4.1.4. Classification Monitoring 

The typical nearest neighbor approach or other more complex algorithms cannot 

be implemented in one sampling frequency and therefore cannot be implemented in 

run-time in this specific DSP. A computationally light machine learning approach is 

proposed to classify the observed feature in real time instead of k-nearest neighbor 

approach: A 2-D Boolean Match Matrix is populated first. Then the input observed 

feature can be regarded as TRUE if it is within the minimum and maximum values 

of that feature in statistical matrix. Event label with most matches is declared the 

label for observed event. If several events have number of TRUE matches within 
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25% of each other, the distance calculation is performed. In that case the distance 

from mean is calculated only for the features with FALSE match for the competing 

event labels. Event label with least distance is declared the label for observed event. 

The process of this classification monitoring is illustrated in Fig. 15. 

4.1.5. Shunt Fault Detection 

Most shunt fault analysis is performed with a low fixed impedance resistance in 

parallel to operating loads. As the shunt fault is activated in this load, the resultant 

power demand is a step load change, or ramp if arc inductance is included in 

modeling. Circuit protection based on these models will naturally rely on detecting 

the sharp ramp rate on supply current to meet the lower system impedance. These 

circuit protection methods cannot be relied on to protect naval MVDC systems 

employing pulsed load technologies which also demand high current ramp rates.  

According to the previous classification, a modification is used for shunt fault 

detection shown in Fig. 15. Using a time domain method such as di/dt, the fault 

event is almost same as the normal pulsed event, while their frequency spectrum can 

be distinguished. Classification monitoring will force a label on the faulty event with 

the closest match of recorded event. However, a threshold can be defined on number 

of labels to exhibit a TRUE match in order to define a fault. Therefore in matrix 

matching step of Fig. 15, if the real-time feature cannot match up with any labelled 

event over the threshold of j - n, it is labelled as fault condition, where n is the 

tolerance parameter. Choice of n is an engineer’s decision based on confidence in 
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database training, natural variation in load profile, and the required sensitivity of the 

system. A small n may lead to some normal event with slight difference to be 

labelled as fault condition, a large n may regard a fault as normal labelled event.              

4.1.6. Arc Fault Detection 

Shunt faults manifest in arcing phenomenon if the short-circuit path is over air, as 

well as series faults discussed in this subsection. Arcing is the electrostatic 

breakdown of air which occurs over potential distances at 3 MV/m, making this a 

particular concern for MVDC distributions. The series arcing fault detection method 

can take advantage of the detail coefficients at low stages on arcing current. The 

feature |𝐷𝑗[𝑖]| under stage 3 can be stored in database training and an array of length 

j at low stages can be calculated in each sampling step 1 𝐹𝑠⁄  seconds. If it is higher 

than its database training average value, it would be regarded as an arcing fault. The 

flow diagram of arc fault detection is illustrated in Fig. 15. The core parts of overall 

algorithm including database training, classification monitoring and fault detection 

are implemented in Matlab/Simulink, which can be compiled into an out file that 

loads directly to the TI C2000 DSP by embedded coder support package 

for Texas Instruments C2000 processors in Simulink.  

https://www.mathworks.com/add-ons/TIC2000/?s_tid=srchtitle
https://www.mathworks.com/add-ons/TIC2000/?s_tid=srchtitle
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4.2. Simulation Results  

The overview of Naval shipboard dc pulsating loads is introduced first. Then the 

simulation results of the machine learning based fault detection and load monitoring 

algorithm are described in the this section, comparing to real-time experimental 

result in section VI. 

 

4.2.1. Naval Shipboard Dc Pulsating Loads 
This subsection introduces the dc pulsed loads on naval shipboard power system 

and their parameters. The scaled-down naval shipboard dc pulsed loads are shown 

in Fig. 16(a) and 16(b). Two naval dc loads consists of pulsed-power coil gun (Load 

1) and fixed impedance (Load 2). Both typical loads represent different dc pulsed 

loads with fast transient for testing the algorithm performance for different naval dc 

pulsed loads. Shunt fault, IGBT fault and arcing fault are also generated 

 
                                       (a)                                                                        (b) 

Fig. 16: Naval pulsed-power load hardware prototype. (a) Coil gun pulsed-power load and (b) 

fixed impedance load. 
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intentionally in these loads to validate the protection algorithm. Design parameters 

of these naval dc pulsed loads are listed in Table IV. For each type of fault 

identification, they have their own MCU in each load so that it can be easily 

identified as specific type of fault. 

4.2.2. Coil Gun with Shunt Fault and IGBT Gate Fault 
The scaled-down naval shipboard dc pulsed power loads are shown in Fig. 16. A 

coil gun represent dc pulsed power loads with fast transient for testing the algorithm 

performance. Shunt fault, and IGBT fault are generated intentionally in this load to 

validate the protection algorithm. Design parameters of this dc pulsed load are listed 

TABLE IV. HARDWARE DESIGN PARAMETERS. 

Load 1 (Coil gun) 

Vdc=375V Lin1=100μH Cin1=970μF 

L=2mH Vout=300Vdc max Cout=7mF 

Coil=80μH Zfault=15Ω Load=4mH 

Load 2 (Fixed impedance) 

Lin2=100μH N1:N2=70:24 LN1=51μH 

LN2=6μH Cz=100μF Rz=100Ω 

Rload=470Ω Lload=1mH Rstep=470Ω 

 

Fig. 17. Circuit schematic of pulse load hardware 

prototypes. 
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in Table IV. An H-bridge charger has been implemented to charge the coil paralleled 

capacitor by constant 10A in each cycle. An SCR switch is used to fire the coil gun 

when the voltage of coil paralleled capacitor reached 300Vdc, and it takes about 

200ms in each firing pulse cycle. 

The location where the shunt fault is placed across the full-bridge charger is 

shown in Fig. 17 resulting in a positive spike in the current waveform. The IGBT 

gate fault is due to improper system operation that could happen from a variety of 

sources such as improper control signal and gate firing sequences or harmonic 

distortion events. It is made by control error in the gate driver resulting in a negative 

surge in the current waveform. Both are challenging to pick based on current 

threshold. 

In each pulse, the start and end are transient components selected as classified 

event 1 and 2 as shown in Fig. 18 and Fig. 19. During wavelet transform data 

analysis, Dj[i] profile over one load cycle has two distinct surges. The event 

detection threshold is selected to be 0.4 according to the wavelet transform data 

analysis result Dj[i] and the intention to have two labelled events during each normal 

cycle. There were 150 cycles of the normal load profile used to create a database in 

training. Each time the detail coefficient is over the event threshold, this event is 

detected and saved as a wavelet feature vector in the database memory. After 
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training, certain faults are 

created. For the label sign of 

each event, it is defined that 

event 1 is +1, event 2 is +2, 

and fault is -1. They raised 

respectively when 

happening. The 

performance of load 

monitoring is shown in 

Table V. As can be seen, the 

method was able to achieve 

1% false positives and 

3.33% false negatives in the example coil gun scenario. For the shunt fault and 

IGBT gate fault, the distinguish can be achieved by adding discriminator based on 

their time and frequency domain information. The discriminator is not used here 

because both faults are shunt fault (one is positive, the other is negative shunt fault), 

and the aim of this solution is to detect fault only. 

4.2.3. Fixed Impedance with Series Arcing Fault 
Fixed load is built up for emulating the ship service loads such as lighting system, 

central heating system etc.. It usually operates periodically as a step change in power 

of the load. Series arcing faults should be detected and isolated quickly because they 

Fig. 18. Simulation result of coil-gun load with shunt fault. 



52 

 

can pose a fire hazard and 

personnel shock hazard. A 

movable contact shown in 

Fig. 17 is applied for 

generating arcing fault, so 

the series acring fault 

algorithm is validated 

through this setup.  

In simulation results, two 

significant transient parts 

i.e. start and end are selected 

as labelled event 1 and event 

2 in Fig. 20. The sampling frequency has been kept same as coil gun, and the event 

threshold is chosen 0.8 according to the detail coefficients of the fixed impedance 

load. There were 150 cycles of the normal load profile are used to create a database 

in training. Each time an event is detected a feature vector is saved in memory. After 

training, certain faults are created. The label sign of event 1 (+1), event 2 (+2), and 

fault (-1) are raised when their respective case happens. The disturbance created by 

Fig. 19. Simulation result of coil-gun load with IGBT fault. 
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the arc generation device is 

not large enough to trigger 

a normal event but the arc 

fault detection is able to 

identify it and raise -1 flags 

continually during duration 

of the arc. The performance 

and detection parameters 

are listed in Table V.  

4.3. Real-time DSP 

Implementation 

The data-driven machine 

learning algorithm with 

wavelet transform based feature vectors has been implemented in the TI DSP model 

TMS320F28335. Computation requirements become high with higher sampling 

frequency and more event labels. The sampling frequency was therefore reduced 

compared to simulation verification for some cases. Because the processing speed 

 

Fig. 20. Simulation result of fixed impedance load with series 

arcing fault. 
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is 150MHz, the single-core 

DSP cannot finish the 

computation within 100μs 

as simulation, the sampling 

frequency Fs is therefore 

down to 5kHz so that the 

computation can complete 

within 200μs. The fastest 

reaction is one sampling 

time, equal to 1 𝐹𝑠⁄ . In 

simulation, the detection 

time is 100μs, by contrast 

in the real time 

implementation, it is 200μs 

because the sampling 

frequency decreases to 

5kHz. Smaller training 

period or shorter ESA are 

required due to the memory and practical constraints. The ESA used for real-time 

implementation are therefore fifteen times shorter than those in database training in 

offline simulations. 

TABLE V. Detection Parameters and Performance Summary 

of Simulation and Experimental Results. 

 Coil Gun Fixed impedance 

 Simulation DSP Simulation DSP 

Event threshold 1.2 1.2 0.8 0.8 

j 8 8 8 8 

Arcing 

threshold 
na na 0.0015 0.0015 

Fs 10 kHz 5 kHz 10 kHz 5 kHz 

Detection time 100 µs 200 µs 100 µs 200 µs 

Length of ESA 300 20 300 20 

Event per cycle  2 2 2 2 

n 2 2 2 2 

Event 1 
appearnce 

149 12 150 12 

% correct 

labeled 
99.3% 100% 100% 100% 

Event 2 
appearnce 

148 12 149 12 

% correct 

labeled 
98.6% 100% 99.3% 100% 

Normal load 

cycles 
150 12 150 12 

Fault event 
cycles 

30 4 50 60 

False positive 1.00% 0% 0.50% 0% 

False negative 3.33% 0% 4.00% 0% 
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4.4. Experimental Results 

The DSP experimental results of real-time fault detection and load monitoring 

algorithm are described in this section, validating the simulation results in section 

IV. 

4.4.1. Coil Gun with Shunt Fault and IGBT Gate Fault 
Ten normal load currents pulses are used in database training which are 15 times 

shorter than offline simulation. In Fig. 21, the first two pulsed are the end of training 

process then the rise step of 3rd pulsed is used for database calculation including 

maximum, minimum and mean value of previous 20 input datasets. Since then, the 

system starts the classification and fault detection. As shown in Fig. 21, in total four 

shunt faults are created intentionally including two positive shunt faults and two 

negative shunt faults, and all are identified correctly. The classification of start and 

end in each pulse are also labelled accurately with no false positives. The zoomed 

waveforms of either shunt faults or normal operation are same as the simulation 

Fig. 18 and Fig. 19. The load monitoring parameters and performance are concluded 

 

 
 

Fig. 21. Real-time experimental result of fourteen load cycles with normal and faulty operations of 

the coil gun. 

                          Fig. 7.                           Fig. 8. Database Training 
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in Table III, with a fast detection time of 200µs, no false positives and no false 

negative, validating the simulation results in section III. For the shunt fault and 

IGBT gate fault, the distinguish can be achieved by adding discriminator based on 

their time and frequency domain information. The discriminator is not used here 

because both faults are shunt fault (one is positive, the other is negative shunt fault), 

and the aim of this solution is to detect fault only. 

4.4.2. Fixed Impedance with Series Arcing Fault 
The detection parameters of fixed inmpedance load are listed in Table III 

including the additional arc threshold. Ten normal cycles of load currents are applied 

to database training in the microprocessor. The response for normal load cycles and 

series arcing faults are shown in Fig. 22. The series arcing fault detection is zoomed 

shown in Fig. 20. All the events are detected and identified accurately with no false 

positives. The algorithm parameters and method perfomance for this load are shown 

is Table III, with a fast detection time of 200µs, no false positives and no false 

negatives. 

 
 

Fig. 22. Real-time experiment result of eleven load cycles with normal and faulty operations of the 

fixed load. 

                     Fig. 9. 
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4.5. Conclusions 

Pulsed power loads are extensively deployed on naval shipboard medium-voltage 

dc power systems. The pulse profiles of these loads create challenges to laod 

monitoring systems in future shipboard MVDC grids. A wavelet transform-fed 

computationally light machine learning algorithm for Naval dc pulsating loads are 

applied in shipboard power system application and can be further applied to any load 

profile with prerequisite of a finite number of repetitive transients during normal 

condition.  

The real-time implementation of this algorithm achieves a rather quick and high 

accuracy on fault identification of both typical pulse-power loads with three typical 

faults i.e. an electromagnetic coil gun load with shunt fault and IGBT gate fault, and 

a fixed impedance load with series arcing fault. Lower false positives and higher 

true positives are achieved in both simulation and real-time implementation. Any 

fault or disturbance that creates an unexpected transient in the load profile will be 

quickly and reliably diagnosed and a trigger can be sent for protection.  
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5. CONTRIBUTIONS AND FUTURE WORKS 

To summary, two types of AI approaches are proposed including wavelet data-

driven clustering-based machine learning approach and STFT-fed LSTM 

autoencoder-based deep learning approach. Pulsed power loads are being 

increasingly deployed on naval all-electric ships. The deep learning neural network 

can be used as a tool for load monitoring purpose in these systems. In this article, a 

Fourier fed long short-term memory autoencoder method was shown to achieve a 

rapid and accurate result on load monitoring and fault identification of three typical 

loads operating under four fault cases.  Namely, the method was verified using a 

pulsed power load with a shunt fault and an IGBT gate fault, a fixed impedance load 

with a series arcing fault, and a motor drive load with a partial blocked rotor fault. 

In all cases, the method was shown to be highly accurate in identifying faults. A 

wavelet transform-fed computationally light machine learning algorithm for Naval 

dc pulsating loads are applied in shipboard power system application and can be 

further applied to any load profile with prerequisite of a finite number of repetitive 

transients during normal condition.  

The real-time implementation of this algorithm achieves a rather quick and high 

accuracy on fault identification of both typical pulse-power loads with three typical 

faults i.e. an electromagnetic coil gun load with shunt fault and IGBT gate fault, and 

a fixed impedance load with series arcing fault. Lower false positives and higher 

true positives are achieved in both simulation and real-time implementation. Any 
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fault or disturbance that creates an unexpected transient in the load profile will be 

quickly and reliably diagnosed and a trigger can be sent for protection.  

For the future works, the accuracy guarantee from source-side measurement and 

monitoring by algorithm optimization can be the further research direction. The 

LSTM autoencoder-based deep learning approach can be real-time implemented in 

microcontrollers. 
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