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Abstract

Motivation: While promoter methylation is associated with reinforcing fundamental tissue identities, the methyla-
tion status of distant enhancers was shown by genome-wide association studies to be a powerful determinant of
cell-state and cancer. With recent availability of long reads that report on the methylation status of enhancer–pro-
moter pairs on the same molecule, we hypothesized that probing these pairs on the single-molecule level may serve
the basis for detection of rare cancerous transformations in a given cell population. We explore various analysis
approaches for deconvolving cell-type mixtures based on their genome-wide enhancer–promoter methylation
profiles.

Results: To evaluate our hypothesis we examine long-read optical methylome data for the GM12878 cell line and
myoblast cell lines from two donors. We identified over 100 000 enhancer–promoter pairs that co-exist on at least 30
individual DNA molecules. We developed a detailed methodology for mixture deconvolution and applied it to esti-
mate the proportional cell compositions in synthetic mixtures. Analysis of promoter methylation, as well as enhan-
cer–promoter pairwise methylation, resulted in very accurate estimates. In addition, we show that pairwise methyla-
tion analysis can be generalized from deconvolving different cell types to subtle scenarios where one wishes to
resolve different cell populations of the same cell-type.

Availability and implementation: The code used in this work to analyze single-molecule Bionano Genomics optical
maps is available via the GitHub repository https://github.com/ebensteinLab/Single_molecule_methylation_in_EP.

Contact: uv@post.tau.ac.il or roded@tauex.tau.ac.il

1 Introduction

The accumulation of high-throughput genome-wide methylation
data has enabled the analysis of human methylomes across distinct
populations and medical cohorts via epigenome-wide association
studies (EWAS) (Gorenjak et al., 2020; Küpers et al., 2019; Chu et
al., 2017). Such analyses have shown that predisposition to common
human disease is frequently associated with specific methylation sig-
natures in distal control regions also known as gene enhancers (Li
et al., 2013). While the contribution of DNA methylation in gene
promoters to variation in intertumor gene expression was found to
be low, enhancer methylation provides a much higher level of con-
tribution to tumor heterogeneity and may further illuminate the
mechanism of cancer predisposition (Li et al., 2013). Furthermore,

changes in DNA methylation patterns have been shown to correlate
with early carcinogenesis, even prior to tumor formation, as well as
with metastasis and response to therapy (Hentze et al., 2019;
Kurkjian et al., 2008; Vrba and Futscher, 2019). Aran et. al. have
shown that enhancer methylation is drastically altered in cancers
and is closely related to altered expression profiles of cancer genes
(Aran et al., 2013; Aran and Hellman, 2013a,b). Hansen et.al. have
shown that regions which are differentially methylated between can-
cer and normal tissue are more prone to variability in methylation
levels, suggesting that stochastic epigenetic variation is a fundamen-
tal characteristic of the cancer phenotype (Hansen et al., 2011).
Nevertheless, available analyses only assess enhancer–promoter
methylation on the population level, averaging out any differences
between individual cells in the studied sample. We hypothesize that
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variability in methylation on the population level may be attributed
to variability in the mixing ratios of cancer and benign phenotypes
of the same cell type. In such cases, the detailed single-cell enhancer–
promoter methylation profile may provide valuable information for
studying the evolution of early carcinogenesis and tumor heterogen-
eity. Long reads present a unique opportunity to study the co-exist-
ence of methylation in a promoter and its enhancers along the same
DNA molecule, in effect providing single-cell information for the
studied locus. When examining many such molecules, the methyla-
tion pattern distribution of an enhancer–promoter pair may be dir-
ectly recorded and used to enumerate cell subsets in a mixture,
similar to what may be achieved with gene expression RNA mix-
tures (Newman et al., 2015; Zaitsev et al., 2019). Methylation pro-
files have already been utilized to infer cell mixture distribution with
good accuracy (Houseman et al., 2012). It remains to be tested
whether pairwise analysis of enhancer–promoter pairs provides in-
formation on subtle transformations in cells with identical genetic
backgrounds such as in early cancer. In order to establish the analyt-
ical framework for such data, we analyzed whole genome Bionano
Genomics optical methylation maps (Sharim et al., 2019). We iden-
tified �4 million long molecule reads encompassing enhancer–pro-
moter pairs up to 200 kb apart at 30�–300� coverage and explored
several analytical approaches to harness these data for cell mixture
deconvolution.

2 Materials and methods

2.1 Data collection
Single-molecule methylation maps of three replicates of the B-
lymphocyte cell line GM12878 were adapted from (Sharim et al.,
2019), and similar maps of immortalized myoblasts of two healthy
human subjects (Wellstone center for FSHD, UMMS) were obtained
by the same methods. Shortly, high molecular weight DNA was
extracted to ensure long single molecules. DNA was then fluores-
cently barcoded at specific sequence motifs for alignment to an in-
silico reference. Unmethylated cytosines in the recognition sequence
TCGA were fluorescently labeled to perform reduced representation
optical methylation mapping (ROM) on the Bionano Genomics
Saphyr instrument. The genomic location of the labeled unmethy-
lated cytosines on individual DNA molecules was inferred from dir-
ect alignments to the hg38 reference (Bionano Access and Solve).
Label coordinates were extended to 1 kb to account for the optical
measurement resolution, limiting localization accuracy to �1000 bp
(Wang et al., 2012). More details regarding ROM and optical map-
ping can be found in (Jeffet et al., 2021; Sharim et al., 2019).

2.2 Enhancer-promoter links and coordinates
Enhancers’ target genes were predicted by the JEME method and
adapted from (Cao et al., 2017). Genomic coordinates of
enhancers were converted from the human genome build hg19 to
hg38 using UCSC liftOver (Haeussler et al., 2019). Ambiguous
genomic regions (Amemiya et al., 2019) were subtracted from en-
hancer locations, and enhancers smaller than 200 bp were
extended to 200 bp around their midpoint. Promoters were
defined according to the transcription start sites (TSS) of the pro-
tein-coding genes [Gencode V.34 annotations, (Frankish et al.,
2019)], and taken as 2000 bp upstream and 500 bp downstream of
the TSS. Enhancers and promoters not containing at least one po-
tential site for methylation labeling were discarded. Enhancer–
promoter (E–P) pairs in close proximity, less than 5000 bp, were
also filtered out. All predicted E–P pairs under these conditions
were used for our analysis, regardless of cell type and biological
contexts used for their prediction.

For comparison against promoter-only analysis (see 2.4), we cre-
ated a set of pairs that matches the size of the promoters set, by
assigning a single enhancer to each promoter. We focused on
enhancers that display the highest number of potential detectable
methylation sites. In case of tie, enhancer size and proximity to the
corresponding promoter were also considered. These criteria are un-
biased toward specific cell types and select enhancers with the

highest potential for reliable methylation calling by ROM.
Nevertheless, these criteria are arbitrary and do not necessarily re-
flect biologically active enhancers.

2.3 Coexistence of methylation signals at the distal

elements
We focused on DNA molecules that span entire E–P pairs and
recorded the corresponding methylation states. The enhancers and
promoters’ states were reduced to binary methylation states: if the
element showed any degree of fluorescence, it was identified as
‘unmethylated’. Therefore, every enhancer and promoter pair coex-
isting on a DNA molecule displays one of four possible methylation
combinations with the promoter and enhancer being methylated or
unmethylated. For every pair, the number of molecules belonging to
each class is counted in order to record the exact pairwise methyla-
tion distribution. Enhancer–promoter pairs that were covered by
less than 30 molecules in an experiment were filtered out. Molecules
were counted separately for each pair they covered.

2.4 Matched promoter methylation data
To benchmark our pairwise analysis, we extracted information of
promoter-only methylation from the same molecules that span the
E–P pairs. This was used to assess single-molecule level single-elem-
ent-based deconvolution, as well as whether the coexistence of en-
hancer–promoter pairs holds similar or additional information
beyond promoter methylation analysis.

2.5 Assembling datasets, training/test division of

molecules and creating simulated mixtures
Two different datasets were assembled to test our deconvolution pipe-
line. Each dataset is composed of two samples. The two samples com-
prising the dataset will be referred to as sample ‘A’ and sample ‘B’.

1. Dataset of two different cell types: contains B-lymphocyte cells

(three GM12878 replicates were merged to a single sample) and

myoblasts (two lines were merged).

2. Dataset of the same cell type from two different individuals: con-

tains myoblast cells from two different human subjects.

Molecules of the two samples comprising each dataset (‘A’ and
‘B’) were randomly divided into a training set and a test set. Test
sets of both samples in a dataset contain an equal number of mole-
cules, accounting for 33% of molecules in the less-covered sample.
The training sets were left pure while the test sets of both samples
were randomly mixed at known ratios (0–100%, in 10% incre-
ments) to create a mixed test set (Scheme 1).

2.6 Deconvolution of mixtures
We explored several methods for deconvolving the mixtures to
infer the mixing ratio: (i) local projection of vectors, (ii) global
minimization of sum of squared errors (SSE) and Kullback-
Leibler divergence (KLD) measures and (iii) global maximum

Dataset 
Different cell types/

same cell type

Sample A Sample B

Mixed test set 
molecules

Training set 
molecules –

sample A

Training set 
molecules –

sample B

Scheme 1. Hierarchy of terms used: dataset, sample, training/test set.
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likelihood estimation (MLE). We describe these methods in
detail below.

2.6.1 Vector projections

In this local method, the mixing ratio is calculated separately for
each enhancer–promoter pair. Specifically, the normalized propor-
tions of each of the four possible methylation combinations de-
fine a 4-dimensional vector representing the pair in a given
sample. Each E–P pair is characterized by three such vectors
belonging to the mixed test set (Tp

!
) and the two pure training

sets ðAp
!
; Bp
�!Þ. In order to assess the proportion of molecules in

the test set originating from each sample, the difference between
the test set vector and vector Ap

�!
, named vector ATp

��!
, was pro-

jected on the difference between vectors Bp
�!

and Ap
�!

of the train-
ing sets (ABp

��!
). The mixing ratio w.r.t. sample B is given by the

ratio between the size of the difference between the projection
vector and vector Ap

�!
(calculated as the dot product of ATp

��!
and

ABp
��!

divided by the size of ABp
��!

), and the size of vector ABp
��!

. The
mixing ratio w.r.t sample A completes this value to 1. The final
selected mixing ratio is the average of mixing values calculated
for all E–P pairs (Equation 1).

aA ¼
1

Np

X
p

1�
ATp
��!� �

� ABp
��!� �

ABp
��!� ���� ���2

0
B@

1
CA (1)

In Equation 1, aA is the mixing ratio relative to sample A; p rep-
resents the E–P pair; Np is the total number of E–P pairs; ATp

��!
repre-

sents the difference between the test set vector and the vector of the
training set of sample A; ABp

��!
represents the difference between the

vectors of training sets B and A.

2.6.2 Minimizing the difference between the test set and linear

combinations of the training sets via SSE and KLD computations

The counts of molecules with the different methylation combina-
tions in each enhancer–promoter pair in the mixed test set and the
pure training sets were normalized to obtain ratios, making sure all
ratios are non-zeros by adding 0.01 to each ratio and renormalizing
to 1. The ratios of the pure training sets were treated as the probabil-
ity of a molecule spanning a certain E–P pair to have a specific
methylation combination given the sample it came from, either ‘A’
or ‘B’. Then, linear combinations of the two pure training sets were
assembled per pair in all possible mixing ratios w.r.t. sample A (0–
100% in 1% increments) (Equation 2).

LCTa;c;p ¼ aAc;p þ 1� að ÞBc;p (2)

LCTa;c;p is the linear combination of the pure training sets per
EP pair (p), methylation combination (c) and current parameter
of the training sets’ linear combination (a); Ac;p and Bc;p are the
probabilities of molecules from training sets A and B respective-
ly to have methylation combination c given the sample and the
E–P pair p.

The test set is compared against all the 101 linear combinations
of the training sets. The ratio a that minimizes these expressions is
reported. We use two minimization criteria:

2.6.2.1 Sum of squared errors (SSE).X
p

X
c

testcp � LCTa;c;p
� �2

(3)

In Equation 3, p represents E–P pairs; c represents methylation com-
binations; a represents the current parameter of the training sets’ lin-
ear combination.

2.6.2.2 Kullback–Leibler divergence (KLD).

DKL testc;pjjLCTc;p;a
� �

¼
X

p

X
c
testc;plog

testc;p

LCTc;p;a

� 	
(4)

DKL LCTc; p;ajjtestc; p

� �
¼
X

p

X
c
LCTc; p; alog

LCTc; p;a

testc; p

 !
(5)

DKLaverage
¼ ½DKLðtestc;pjjLCTc;p;aÞ þDKLðLCTc;p;ajjtestc;pÞ�

2
(6)

In Equations 4–6, p represents E–P pairs; c represents methylation
combinations; a represents the current parameter of the training
sets’ linear combination.

2.6.3 Maximum likelihood estimation (MLE)

Last, we considered a method that is based on a probabilistic model
of the data which asserts that each molecule is chosen from one of
the samples based on the mixing ratio and then its methylation sta-
tus is chosen based on the corresponding normalized counts vector.
In detail, the probability of a molecule in the test set to originate
from sample A, is the mixing ratio, a, whereas its probability to ori-
ginate from sample B is 1-a (Equation 7).

P yi ¼ Að Þ ¼ PA ¼ a;P yi ¼ Bð Þ ¼ PB ¼ 1� a (7)

In Equation 7, i stands for a molecule in the test set; y is the hid-
den information about the sample it came from.

The probability of a molecule from the test set to exhibit a methyla-
tion combination c, given the sample it came from (A or B) and the E–P
pair it spans can be evaluated as the proportion of combination c in that
E–P pair in the training set of the corresponding sample (Equation 8).

P Xi;p ¼ cjyi;p ¼ j
� �

¼ Pj;c;p (8)

Xi, p is the observed methylation combination of molecule i of pair
p; j is the sample of origin, either A or B.

We estimate the mixing ratio for which the test data observations
are most probable by maximizing the log-likelihood function
(Equation 9):

log L að Þð Þ ¼
X

i

log aPA;p;ci þ 1� að ÞPB;p;ci

� �
¼
X

p

X
c

Np;clog aPA;p;cþ 1� að ÞPB;p;c

� �
(9)

In Equation 9, i represents a test set molecule; p is the pair it
belongs to; c is its methylation combination; A and B are the two
samples; Np, c is the number of molecules in the test set that come
from pair p and display methylation combination c.

As the log-likelihood is concave, we can find its maximum using gra-
dient ascent. In our implementation of the algorithm (Equation 10), the
difference in log-likelihood from previous iteration served as a stopping
criterion (0.001), while confining the mixing ratio to the relevant range
(0–1), as well as limiting the number of iterations (no more than 20
000). The mixing ratio that yielded the highest log-likelihood is reported.

anew ¼ aold þ g
@log L að Þð Þ

@a
(10)

anew is the calculated mixing ratio in the current iteration; aold is the
mixing ratio obtained in the previous iteration (initialized to 0.5); g
is the step size of the gradient ascent algorithm (fixed to 0.005).

2.7 Supervised selection of enhancer–promoter pairs
Several methods are proposed here to rank the different E–P pairs by their
ability to discriminate between the training set samples. This ranking can
serve to select a smaller subset of pairs, to ensure more accurate results
and noise filtration. We explored three such methods, as detailed below.

2.7.1 Euclidean distances

Distance A; Bð Þp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

c

PA; p; c � PB; p; c

� �2
r

(11)

In Equation 11, p is the current E–P pair; c represents methylation
combinations; PA;p;c;PB;p;c are the proportions of methylation com-
bination c in pair p in samples A and B respectively.
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2.7.2 KLD

DKLp
¼

P
cPA;p;clog

PA;p;c

PB;p;c

� �
þ
P

cPB;p;clog
PB;p;c

PA;p;c

� �
2

(12)

In Equation 12, p is the current E–P pair; c represents methylation
combinations; PA;p;c;PB;p;c are the proportions of methylation com-
bination c in pair p in samples A and B respectively.

2.7.3 Weighted KLD (wKLD)

Molecule coverage of the different enhancer–promoter pairs in each
training sample can vary. Multiplying the KLD score of each com-
bination of every pair by the number of molecules displaying this
combination in the corresponding sample and pair, puts more
weight on the highly covered pairs, which presumably provide more
reliable information.

wDKLp
¼

P
cNA;p;cPA;p;clog

PA;p;c

PB;p;c

� �
þ
P

cNB;p;cPB;p;clog
PB;p;c

PA;p;c

� �
2

(13)

In Equation 13, p is the current E–P pair; c represents methylation
combinations; PA;p;c;PB;p;c are the proportions of methylation com-
bination c in pair p in samples A and B respectively; NA;p;c;NB;p;care
the number of molecules in pair p that display methylation combin-
ation c in the training sets of samples A and B respectively.

3 Results

Our analytical exploration builds on the fact that new types of data
that profile genomic methylation via long single-molecule reads
have recently become available. Of special interest are datasets
obtained by Bionano Genomics optical genome mapping. These
data contain the largest fraction of molecules longer than 100 kbp in
comparison to other long-read approaches, allowing us to explore
distant enhancers in the context of their molecular promoter. The
method is inherently poor in resolution but may effectively report
on methylation status at the level of genomic elements such as gene
bodies, promoters and enhancers. Figure 1 shows a stack of digitized
DNA molecules mapped to a region in chromosome 17 containing
the TP53 gene locus and three of its predicted enhancers, located
�50–100 kb away from the promoter. All individual molecules
selected from these data span the gene promoter and at least one dis-
tant enhancer. Methylation labels shown in dark blue along the gray
molecules contour denote unmethylated CpGs (non-methylation
labels have been artificially enhanced inside the boxed promoter and
enhancer regions). It can be clearly seen that the promoter and the
two closest enhancers are highly labeled and thus unmethylated.
The leftmost enhancer is almost void of methylation labels, indicat-
ing that it is highly methylated. The methylation status is well
reflected in the average methylation profile shown on the bottom of
the figure and reflecting the accumulation of methylation labels
from all molecules along the region. We note that for many gene
promoters and enhancers, the methylation status is variably distrib-
uted along individual molecules, with all four combinations of E–P
methylation represented for some pairs.

3.1 Comparison between deconvolution methods for

promoters and E–P pairs
We first set out to compare the deconvolution efficacy of E–P pair-
wise methylation in comparison with promoter methylation. Given
that each promoter has multiple predicted enhancers, which results
in a much larger E–P dataset, we restricted this analysis to a single
enhancer assigned to each promoter as described in Section 2.2.
Deconvolution of simulated mixtures was performed by several
methods: local projection of vectors, global minimization of the sum
of squared errors (SSE), Kullback-Leibler divergence (KLD) and
maximum likelihood estimation (MLE) (see Section 2.6). Mixtures
containing two different cell types (B-lymphocytes and myoblasts) at
10% increments were subject to deconvolution by each of the

methods for promoter-only methylation as well as in the context of
E–P pairwise methylation (Fig. 2). The least accurate deconvolution
was achieved by vector projections, yielding over 7% average error
for the promoter-based analysis and over 4% error for the E–P ana-
lysis. The best deconvolution was achieved by MLE with 0.86%
average error for promoter methylation and 0.69% error for E–P
methylation. Since the entire range was assessed (mixing ratios from
0 to 1), the error rate of very small proportions can be obtained by
interpolation (for median coverage per pair of �50 molecules in the
test set).

3.2 Deconvolution of myoblasts derived from two

individuals using full E–P methylation
The abundance of enhancers and the interplay between their inter-
action with their gene promoters may hold important information
on the precise state of a cell. While for comparison with promoter-
based analysis we limited the number of enhancers to one per pro-
moter, our E–P dataset is composed of over 100 000 different pairs
with detailed pairwise distribution for each pair. B-lymphocytes and
myoblasts, two distinct cell types, were successfully resolved with
1.01–1.36% accuracy by three of the four methods tested (Fig. 3).
The incorporation of multiple enhancers per promoter slightly
increases the overall deconvolution error relative to the more limited
set used for comparison with promoters. This is likely due to the
additional noise contributed by non-active predicted enhancers.
Nevertheless, analyzing the full E–P methylation dataset is more bio-
logically relevant as it does not make assumptions on the activity of
enhancers and inherently contains more information (but also more
noise). Using validated enhancer–promoter links as opposed to the
predicted links used here, may further improve the pairwise esti-
mates. Such validated links may be constructed by use of proximity
ligation methods [such as Hi-C (Rao et al., 2014)].

We next tested our deconvolution methods on mixtures of two
myoblast cell lines from different donors. The mixtures were
resolved with 5.81–6.82% accuracy by the same three methods (Fig.
4). The two myoblast samples are more similar to each other in gen-
ome-wide methylation profiles than they are to the unrelated B-lym-
phocytes in the previous mixtures. Hence, random alterations
between the samples may occupy more weight, and can explain the
decline in accuracy. We hypothesized that a smaller, educated subset
of E–P pairs used for deconvolution could improve the analysis.

3.3 Supervised selection of enhancer–promoter pairs
With over 100 000 predicted enhancer–promoter links used for de-
convolution, it is reasonable to assume that not all pairs contribute
equally to the discrimination between sample types. Most probably
the identity of the most contributing pairs is specific to the types of
samples being resolved. Accordingly, relying only on a subset of
most differentiating pairs, while filtering out the rest, has potential
to improve deconvolution accuracy by filtering out invaluable and
possibly noisy data. Additionally, if a small subset of pairs is suffi-
cient for accurate deconvolution, it simplifies and shortens the
required analysis. We tested three methods for ranking the pairs:
Euclidean distances, KLD and Weighted KLD (wKLD) (see Section
2.7). The performance of the different deconvolution methods was
compared for all ranking methods and with different numbers of
highest-ranking pairs selected. The full set constituted 108 048 pairs
in the mixture of B-lymphocytes and myoblasts, and 135 793 pairs
for the two different myoblasts. The mean deconvolution error for
several subsets of highest-ranking pairs are shown in log10 scale in
Figure 5. The different ranking methods provide similar results and
the differences in accuracy are mostly attributed to the deconvolu-
tion approach used. The lymphocytes and myoblasts mixtures were
resolved with �1% average deconvolution accuracy by MLE, using
75 000–108 048 pairs, and the mixture of the two myoblasts was
resolved with �1.4–1.8% average accuracy using only 100 pairs
chosen by KLD or wKLD with MLE deconvolution.

Figure 5 reveals opposite trends in respect to the optimal size of
pairs subset used for deconvolution. Whereas the mixture of the dif-
ferent cell types is monotonically resolved more accurately with

i330 S.Margalit et al.



Fig. 1. Methylation states in predicted enhancer–promoter pairs. (A) schematic illustration of possible methylation states for a promoter and enhancers, and potential inter-

action between them. (B) Bionano Genomics optical methylation map of a region in chromosome 17 in GM12878 DNA. The region contains the gene TP53, its promoter

(small blue box), and several predicted enhancers (pink boxes). Dark blue dots denote unmethylated sites and orange dots denote genetic tags used for alignment to the hg38

reference.

Fig. 2. Deconvolution of mixtures containing B-lymphocytes and myoblast cells by

different methods using methylation states in promoters alone and enhancer–pro-

moter pairs, accounting for one enhancer per promoter. (A) Calculated mixing ratio

according to the different methods versus the known mixing ratio. (B) The mean

error in calculated mixing ratio, calculated as the absolute distance from the known

ratio, in the different methods.

Fig. 3. Deconvolution of B-lymphocytes and myoblast cells mixtures by different

methods using methylation states in all predicted enhancer–promoter pairs. (A) cal-

culated mixing ratio according to the different methods versus the known mixing

ratio. (B) the mean error in calculated mixing ratio, calculated as the absolute dis-

tance from the known ratio, in the different methods.

Cell-type deconvolution by enhancer–promoter methylation i331



increasing number of pairs (>75 000 pairs), the mixture of myoblast
cells derived from different individuals shows a distinct minimum in
the mean error for 100–500 pairs. Since DNA methylation patterns

are known to regulate the expression of cell-type specific genes (Dor
and Cedar, 2018), a higher variance in methylation signatures is
expected between different cell types such as lymphocytes and myo-
blasts. Different cell-specific methylation patterns imply that more
regions along the genome are differential and may contribute to de-
convolution, making their differentiation simple and accurate.
Deconvolving mixtures of the same cell types such as the mixture of
myoblasts from the different individuals is more challenging. We
postulate that as may frequently happen in diseased tissue, the
observed methylation differences are not related to the cell’s iden-
tity, but factors as disease, age or exposure to environmental stimuli.
In such cases, methylation variability at cell-type specific loci adds
noise to the deconvolution analysis. Sorting the pairs by their infor-
mation contribution provides a supervised educated approach for
assembling the list of pairs that yields the most accurate
differentiation.

4 Conclusions

This work lays the ground for cell-type deconvolution utilizing a
new type of data structure now available via long single-molecule
methylation maps. This data structure contains chromosome-level
methylation profiles of gene bodies, promoters and one or more dis-
tant enhancers, all on the same molecule. We test several deconvolu-
tion methods and show that for differentiating two cell types, the
pairwise analysis yields better deconvolution than promoter-based
analysis, reaching an error rate of 0.7%. Since enhancer methylation
is known to be a major contributor to methylation variability within
a cell-type population, such as in cancer, we also analyzed mixtures
of two myoblast cell-lines derived from two individuals. The full E–
P pairs dataset yielded a deconvolution error of �6% for these high-
ly similar samples. We reasoned that cells with similar methylomes
will be differentially methylated only at a subset of loci while vari-
ability in common methylation loci will add noise to the deconvolu-
tion process. We tested several methods to rank the pairs according
to their differentiation capacity. We assessed deconvolution fidelity
for various numbers of highest-ranking pairs and found that for the
two distinct cell types the deconvolution error monotonically
declines with additional pairs. For the two myoblast samples on the
other hand, a clear minimum was calculated at �100 pairs that
reduced the error from �6% to �1.5%. These results constitute a
first step toward harnessing enhancer–promoter linked methylation
for deconvolution of cell populations with highly similar cell-type
methylomes. Despite focusing on Bionano Genomics’ optical methy-
lation mapping (Gabrieli et al., 2021; Sharim et al., 2019), which
currently provides the highest coverage of long reads, the principles
are valid to other future datasets such as those produced by Oxford
Nanopore ultralong-read sequencing protocol. Further exploration
of these linkages, including the joint effects of multiple enhancers
per promoter may shed light on insightful cellular transformations
regulated by long-range epigenetic interactions.
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Fig. 5. Subsets of E–P pairs, selected by supervised selection methods. The mean
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method and ranking method. (A) A mixture of two cell types: B-lymphocytes and

myoblasts. (B) A mixture of two myoblast cells derived from different individuals.
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