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Nontargeted metabolomics methods have increased po-
tential to identify new disease biomarkers, but assess-
ments of the additive information provided in large human
cohorts by these less biased techniques are limited. To di-
versify our knowledge of diabetes-associated metabo-
lites, we leveraged a method that measures 305 targeted
or “known” and 2,342 nontargeted or “unknown” com-
pounds in fasting plasma samples from 2,750 participants
(315 incident cases) in the Jackson Heart Study (JHS)—
a community cohort of self-identified African Americans—
who are underrepresented in omics studies. We found 307
unique compounds (82 known) associated with diabetes
after adjusting for age and sex at a false discovery rate of
<0.05 and 124 compounds (35 known, including 11 not pre-
viously associated) after further adjustments for BMI and
fasting plasma glucose. Of these, 144 and 68 associations,
respectively, replicated in amultiethnic cohort. Among these
is an apparently novel isomer of the 1-deoxyceramide
Cer(m18:1/24:0) with functional geonomics and high-resolution
mass spectrometry. Overall, known and unknownmetabolites
provided complementary information (median correla-
tion q = 0.29), and their inclusion with clinical risk factors

improved diabetes prediction modeling. Our findings
highlight the importance of including nontargeted me-
tabolomics methods to provide new insights into dia-
betes development in ethnically diverse cohorts.

More than 10% of the U.S. adult population has diabetes
(1), and an additional 34% are at risk. Unfortunately, spe-
cific racial and ethnic groups, including African Americans
(AAs), are disproportionately affected (2). This contributes
to the clinical challenge of correctly determining individual
type 2 diabetes (T2D) risk (3,4), which is important for dis-
ease prevention. Dysglycemia, dyslipidemia (5), obesity (6),
and genetic polymorphisms (7–10) are known risk factors,
but questions remain about how they interplay to cause
disease. High-throughput profiling of circulating small
molecules—known as metabolomics—has identified T2D
biomarkers in large human cohorts and nominated potential
causal pathways for further study (11–20). A majority of the
published data, however, have used targeted methods that
focus on a group of mass spectrometry (MS) peaks that have
been chemically annotated and are referred to as “known”
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metabolites. This biases discovery toward compounds that
participate in highly studied physiologic pathways and repre-
sent only a modest percentage of the circulating metabolome
(21). Most cohorts studied are also of White individuals, fre-
quently of European ancestry, despite the higher burden of
disease in other race and ethnic groups (1) and the potential
for differences in metabolite associations after race/ethnicity
stratification (19).

In this study, we leveraged a hybrid liquid-chromatography
MS (LC-MS) method to identify both targeted and non-
targeted circulating compounds associated with diabetes
in the Jackson Heart Study (JHS), a large community co-
hort of self-reported AA individuals (22). We replicated
our findings in the Multi-Ethnic Study of Atherosclerosis
(MESA) (23). Furthermore, we integrated these associations
with available whole-genome sequencing (WGS) data, uncov-
ering genetic variants in specific enzyme or solute carriers
linked to these compounds that help inform unknown chem-
ical identification. We first used this technique to identify di-
methylguanidino valeric acid, a molecular marker of liver
fat that was associated in genome-wide association studies
with alanine glyoxylate aminotransferase 2 (AGXT2) (25).
Here, we leveraged a similar technique coupled with inno-
vative high-resolution and accurate MS to identify a novel
metabolite marker of diabetes. Finally, we evaluated both
the targeted and nontargeted compounds as clinical predic-
tion biomarkers. These findings serve to diversify our under-
standing of circulating metabolites associated with diabetes
and highlight potentially novel disease pathways.

RESEARCH DESIGN AND METHODS

Study Populations
The JHS is a community cohort of 5,306 self-identified AA
individuals residing in Jackson, Mississippi, with detailed
study design previously published (23). Diabetes status was
assessed at examinations in 2000–2004, 2005–2008, and
2009–2013. Fasting plasma samples from 2,750 partici-
pants were profiled (1,159 individuals were selected from
nested case-control studies for coronary heart disease and
chronic kidney disease and 1,591 were randomly sampled
from the remaining participants). Of these, 710 individuals
had diabetes at baseline. An additional 315 developed dia-
betes after a mean follow-up of 10.2 years.

MESA is a U.S. community-based cohort study that re-
cruited individuals who self-identified as White, AA, His-
panic, or Chinese American (24). At the baseline examination
(2000–2002), 918 individuals were free of diabetes and
underwent metabolomics profiling (403 self-identified as
White, 175 as AA, 268 as Hispanic, and 72 as Chinese Ameri-
can). All individuals were included in the replication cohort
to improve statistical power. During a mean follow-up of
8.9 years, 126 individuals developed diabetes.

Written consent was obtained from all of the study partic-
ipants, and study protocols were approved by the institu-
tional review boards of Beth Israel Deaconess Medical Center
and each JHS and MESA study site.

Clinical Variables and Outcome
Diabetes was defined in JHS at each examination as a
fasting plasma glucose (FPG) $126 mg/dL, hemoglobin
A1c (HbA1c) $6.5%, diabetes diagnosis, or diabetes medi-
cation use. Hypertension was defined as a systolic blood
pressure (SBP) >140 mmHg, diastolic blood pressure
(DBP) >90 mmHg, or use of hypertension medications.
HbA1c, FPG, insulin, and lipids were measured using stan-
dard laboratory techniques (25). HOMA for insulin resis-
tance (HOMA-IR) was calculated using fasting insulin ×
FPG/22.5. The Chronic Kidney Disease Epidemiology Col-
laboration equation was used to calculate estimated glo-
merular filtration rate (eGFR) (26). In MESA, diabetes was
defined as an FPG $126 mg/dL and/or use of diabetes
medications, including insulin (27).

Overview of Metabolite Profiling
Fasting plasma samples were obtained at the baseline ex-
amination. A total of 2,649 LC-MS peaks—including tar-
geted and nontargeted features—were measured by using
two different LC-MS methods (hydrophilic interaction liq-
uid chromatography [HILIC] positive and amide negative)
that have been previously described (28,29). Quality con-
trol (QC) pools created by combining small-volume aliquots
from all JHS samples were inserted every 20 samples and
used to normalize intensity trends across batches and to
calculate the coefficient of variation (CV) for each metabo-
lite. Normalization was visually confirmed with plotted
pre- and postnormalized data. The median CV was 4.0%
for the targeted HILIC-positive method, 11.4% for nontar-
geted, and 6.9% for the targeted amide-negative method.
More than 97% of the measured LC-MS features had
<20% missingness.

Tandem MS Methods for Nontargeted Metabolite
Feature Identification
A comprehensive tandem MS (MS/MS) library of all mea-
sured features was created using HILIC chromatography
coupled to a Thermo ID-X Mass Spectrometer (Thermo
Fisher Scientific, Waltham, MA) scanning in positive ion
mode with different collision energies (10, 25, and 50 V)
of study QC pools. To improve detection of low abundant
features, QC pools were concentrated 10-fold. MS/MS
data extraction was then conducted by scanning for pre-
cursors within ± 0.2 atomic mass units of the targeted
feature and ± 0.1 min from the apex of the MS/MS de-
tected peak. Parsed MS/MS was formatted for molecular
structure predictions (*.ms) and loaded into SIRIUS1CSI:-
Finger ID version 4.7.2 (30) with molecular formula predic-
tions based on Orbitrap-specific settings (MS/MS isotope
scorer: ignore; mass deviation: 5 ppm; candidates: 10; candi-
dates per ion: 1; possible ionizations: [M1H]1, [M1K]1,
and [M1Na]1). All databases were searched, including
adducts [M1H]1, [M1K]1, and [M1Na]1, and the
top three predicted chemical structure/compound identifica-
tions were exported.
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Metabolomics Data Processing and Statistical
Analyses With Clinical Traits and Outcomes
Nontargeted LC-MS peaks can represent adducts, dehy-
dration products, or daughter ions of a parent compound.
The 2,342 measured peaks were statistically reduced using
a correlation matrix that clustered potential adducts and
daughter ions with parent ions based on feature retention
time (RT) and mass-to-charge (m/z) values. Only those
designated as “primary features”—which we believe repre-
sent truly unique compounds (n = 1,434)—were included
in the nontargeted analyses.

Compound concentration correlations were calculated
using the Spearman rank correlation. For regression model-
ing, LC-MS peak areas were log-transformed and scaled to
a mean of 0 and SD of 1 within batch. For cross-sectional
trait associations, logistic regression models adjusting for
age and sex were used for the binary outcome of prevalent
diabetes. Linear regression models were used for the con-
tinuous clinical traits of BMI and log-transformed FPG,
HOMA-IR, and triglyceride levels due to values being right
skewed. Cox proportional hazards models were used to cal-
culate the hazard ratio (HR) and 95% CI for a 1-SD in-
crease in compound concentration with incident diabetes.
Three JHS models were defined a priori. Model 1 adjusted
for age, sex, and batch to identify analytes associated with
diabetes, including via increased adiposity and IR. Model 2
further adjusted for BMI and FPG, identifying associations
that are independent of these two known biological mecha-
nisms. Model 3 additionally adjusted for hypertension sta-
tus, HDL cholesterol level, triglyceride levels, and statin
use to identity diagnostic biomarkers that are independent
of known diabetes risk factors.

Compounds with a CV >30% and/or >5% missingness
in any batch were excluded; concentrations of those with
<5% missingness were imputed at half of the lowest
batch value. A Benjamini-Hochberg false discovery rate
(FDR-q) <0.05 was used for significance to correct for the
1,434 compounds included in the analyses. A total of 263
compounds (including targeted and nontargeted) that were
significantly associated with incident diabetes in JHS model 1
and 107 compounds from JHS model 2 were measured
in MESA and were nominated for replication. Cox pro-
portional hazards models that adjusted for 1) age, sex,
race/ethnicity, and batch and 2) additionally for BMI
and FPG were used with statistical significance defined
at an FDR-q < 0.05.

To assess metabolite efficacy as diabetes predictive bio-
markers, compounds were selected using elastic net regu-
larization in Cox models for incident diabetes. The Harrell
c statistic, Akaike information criteria, and Bayesian infor-
mation criteria were calculated for models that included
1) only clinical risk factors, 2) risk factors and targeted
compounds, 3) risk factors and nontargeted compounds,
and 4) risk factors and both targeted and nontargeted
compounds. The clinical risk factors included age, sex,
BMI, SBP, HDL, triglycerides, waist circumference, FPG,
and parental history of diabetes (31). Model discrimination

was validated in MESA. The same prediction models were
used except for the exclusion of parental history of diabe-
tes due to data availability. All analyses were conducted us-
ing Stata and R statistical analysis software.

WGS Association Studies
WGS in JHS was obtained in participants who were in-
cluded in Freeze 6 of the Trans-Omics for Precision Medi-
cine (TOPMed) project at the University of Washington
and Broad Institute; methods have been previously de-
scribed (32).

Data and Resource Availability
The data sets generated during and/or analyzed during
the current study were uploaded to the JHS database of
Genotypes and Phenotypes (dbGaP) repository and/or are
available upon request from the respective study cohorts,
which can be facilitated by the corresponding author.
MS/MS spectra of the unknown compounds were uploaded
to the Global Natural Products Social Molecular Networking
(GNPS) website under the job ID: aa6d11c8be15436abc
b7d3d44fee5836. We also uploaded relevant MS/MS spec-
tra, including those obtained from the Patern�o-B€uchi reaction
under the Mass Spectrometry Interactive Virtual Environ-
ment (MassIVE) database, under data set MSV000090113
(doi:10.25345/C5V97ZW46), with a complete list of the spec-
tra that were uploaded in the Supplementary Materials.

RESULTS

Baseline Characteristics
Baseline traits for the metabolomics subcohort (n = 2,750)
are summarized in Table 1 and were similar to the whole
JHS cohort (n = 5,306) (Supplementary Table 1). Of the
1,700 individuals in the incident analysis, the 315 cases
were more likely to be older, had hypertension, and used
statin medications. They also had higher BMI, FPG, and
triglyceride levels and lower eGFR and HDL cholesterol.

Compound Feature Correlations
Spearman rank correlations were calculated between the tar-
geted (i.e., known) and nontargeted (i.e., unknown) com-
pounds measured using the hybrid HILIC-positive method
(Fig. 1 heat map). Among known compounds, stronger cor-
relations were seen among those from the same class. For
example, compared with a median r = 0.55 among all
knowns, valine had a median r = 0.93 with other branched
chain amino acids. By contrast, unknown compounds were
less correlated with each other (median r = 0.27) and
knowns (median r = 0.29), suggesting that they may report
on diverse metabolic processes.

Compound Associations With Prevalent Diabetes and
Select Baseline Clinical Traits in JHS
There were 176 known compounds associated with diabe-
tes at examination 1 after adjusting for age, sex, and
batch (FDR-q < 0.05) (Fig. 2A and Supplementary Table 2).
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These included the inverse association of 1,5-anhydrosorbi-
tol/1,5-anhydroglucitol, which is used clinically to measure
hyperglycemic excursions (33) and has been nominated as a
possible biomarker of sodium–glucose cotransporter inhibi-
tor treatment efficacy (34). An additional 625 unknowns
were also associated. Of these 801 total compounds, 269 re-
mained significant after further adjustments for oral diabe-
tes medication and/or insulin use (Supplementary Table 3).

There were 177 knowns and 535 unknowns associated
with BMI, 156 knowns and 516 unknowns with FPG, 166
knowns and 509 unknowns with HOMA-IR, and 201
knowns and 710 unknowns with triglycerides. To quantify
the percentage of variation in clinical trait explained by
circulating compounds, R2 values were calculated from
least absolute shrinkage and selection operator regression
models adjusted for age and sex that included known
compounds alone and knowns and unknowns (Fig. 2B).
The addition of nontargeted data increased the percent-
age of variance explained in all traits, dramatically so for
FPG. While there was a significant number of overlapping
compound associations with diabetes and these risk fac-
tors, several did not overlap, especially among the un-
knowns (Fig. 2C and D and Supplementary Table 4). For
example, 55 known and 241 unknown compounds were
associated with diabetes but not BMI, 65 knowns and
261 unknowns were associated with diabetes but not
HOMA-IR, and 10 knowns and 47 unknowns were associ-
ated with prevalent diabetes alone.

Metabolite Associations With Incident Diabetes in JHS
There were 307 compounds, including 82 knowns, associ-
ated with diabetes incidence during a mean 10.2 years of fol-
low-up in JHS model 1 (Supplementary Table 5), and 124
were associated in JHS model 2 (Fig. 3 and Supplementary
Table 5). Thirty-five were known compounds, including

previously reported associations such as the branched chain
amino acids. Serine was associated with the lowest HR (HR
0.75 [95% CI 0.67–0.83], q = 9.09 × 10�5) and urate with
the highest (HR 1.37 [95% CI 1.20–1.56], q = 3.26 × 10�4).
Of these, 11 have not previously been reported in other hu-
man cohorts, and an additional 16 have not been found in
cohorts that include AAs (Supplementary Table 6), including
serotonin (HR 0.85, q = 2.62 × 10�2), homoarginine (HR
1.26, q = 9.61 × 10�3), and N-palmitoyl taurine (HR 1.29,
q = 2.26 × 10�2). After further adjusting for hypertension
status, statin medication use, and HDL and triglyceride
levels, six metabolites remained significant (Supplementary
Table 7). Of the 89 unknown compounds associated in
model 2 (Supplementary Table 5), 19 remained after further
adjustments for hypertension status, statin medication use,
and lipid measurements (Supplementary Table 8).

Validation of Metabolite-Diabetes Associations in
MESA
The incident diabetes associations were validated in 918
MESA participants, of whom 175 (19%) were self-reported
AAs (Supplementary Table 9). Compared with JHS, MESA
participants were older, had lower BMI and eGFR, had FPG
that was higher in case subjects but lower in control sub-
jects, and fewer were women.

Of 82 known compounds associated with diabetes in
JHS model 1, 46 replicated in MESA model 1 (FDR-q < 0.05)
(Supplementary Table 10) and 98 of 225 unknowns replicated.
Of the 35 knowns associated with incident disease in
JHS model 2, 25 replicated in MESA model 1 and 5 in
MESA model 2 (FDR-q < 0.05) (Table 2). Of these five
compounds, the inverse association of the plasmalogen
lipid species phosphatidylethanolamine (PE)(P-36:2)/
PE(O-36:3) (HR 0.68 [95% CI 0.56–0.83], q = 6.42 × 10�3)
and phosphatidylcholine (PC)(P-34:2)/PC(O-34:3) (HR 0.71

Table 1—Baseline clinical characteristics of individuals included in the metabolomics analysis of the JHS
Total (N = 2,750) Control subjects (n = 1,385) Case subjects (n = 315)

Age, years 55.9 (12.7) 53.5 (12.5) 55.9 (11.3)

Female, n (%) 1704 (62) 849 (61) 192 (61)

BMI, kg/m2 31.7 (7.1) 30.5 (6.5) 33.9 (7.5)

FPG, mg/dL 101.9 (35.7) 89.2 (7.7) 97.0 (9.9)

SBP, mmHg 127.7 (16.7) 125.5 (15.6) 128.8 (17.5)

eGFR (CKD-EPI), mL/min/1.73 m2 93.0 (22.5) 95.7 (20.2) 92.2 (19.1)

Total cholesterol, mg/dL 199.8 (41.0) 199.0 (38.6) 200.5 (42.3)

Triglycerides, mg/dL 109.0 (78.2) 95.6 (55.2) 117.2 (65.8)

HDL, mg/dL 51.8 (14.7) 53.1 (15.1) 49.0 (12.8)

Smoking, n (%) 335 (12) 156 (11) 37 (12)

Hypertension, n (%) 1,618 (59) 648 (47) 208 (66)

Statin use, n (%) 391 (14) 109 (8) 44 (14)

Baseline diabetes, n (%) 710 (26) — —

Values represent mean (SD) unless otherwise noted. Mean follow-up time was 10.2 years for incident diabetes. CKD-EPI, Chronic
Kidney Disease Epidemiology Collaboration.
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[95% CI 0.58–9.87], q = 0.02) has not previously been re-
ported. Of the 89 unknown compounds from JHS model 2,
43 validated in MESA model 1 (Supplementary Table 10)
and 3 validated in MESA model 2 (Table 2).

Integration of High Mass Accuracy Spectrometry and
Human Genetics Identifies a Novel Biomarker of
Diabetes
Compound QI15902, with an RT of 1.72 min and m/z of
634.6486, had an HR of 1.46 for incident diabetes (95% CI

1.29–1.66, q = 1.67 × 10�7) (Supplementary Table 5) in
JHS model 1 and an HR 1.31 (95% CI 1.16–1.49, q = 1.31 ×
10�3) in model 2. This replicated in MESA model 1 (HR
1.44 [95% CI 1.17–1.76], q = 1.74 × 10�3). QI15902 was
clustered with four other nontargeted LC-MS peaks, several
of which were even more strongly associated with diabetes
(Supplementary Fig. 1 and Supplementary Table 11). In
WGS, four of the five peaks were associated with the same
genetic variant in the MEIS2 gene on chromosome 15,
rs1357470, three at GWS (QI15902, QI15886, and QI299,

Figure 1—Correlation of both targeted or known and nontargeted or unknown compounds measured using the HILIC-positive LC-MS method.
Heat map of the Spearman rank correlation coefficients for baseline LC-MS compound concentrations in all JHS participants who underwent me-
tabolomics profiling. The compounds included were measured using the targeted and nontargeted HILIC-positive LC-MS method that measured
known and unknown compounds. Of note, only primary LC-MS features that are believed to represent unique compounds and not daughter ions,
adducts, etc., are included. Strong positive correlations are dark red and strong negative correlations are dark blue. The grey bars denote targeted
features and the green bars denote nontargeted features. Targeted feature correlations are in the left upper corner, targeted to nontargeted feature
correlations are in the right upper corner, and nontargeted feature correlations are in the lower right.
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with P < 4.48 × 10�8), and one at sub-GWS (QI15901
P = 2.36 × 10�7), supporting that these features were appro-
priately clustered. Two peaks (QI15902 and QI15886) were
associated with a variant in the CPS1 gene on chromosome
2 (rs1047891, P < 4.1 × 10�8). Variants in this gene have
previously been associated (35,36)—and in the JHS were
also associated—with circulating glycine and serine levels
(35,36). The RT of QI15902 was consistent with a lipid spe-
cies. Given the CPS1 polymorphism association with serine
and glycine, which are participants in de novo ceramide syn-
thesis, we postulated that this novel compound could be a
lipid product of ceramide biosynthesis.

The parent ion mass (m/z 634.6486) and subppm MS/MS
data collected on QI15902 matched a deoxyceramide,
N-(tetracosanoyl)-1-deoxysphing-4-enine (Cer[m18:1/24:0])
in the CSI:FingerID database. LC-MS analysis of a syn-
thetic Cer(m18:1/24:0) reference compound containing
linear alky chains yielded MS and MS/MS spectra that
matched QI15902 (Fig. 4); however, the RT of QI15902
did not match, suggesting it could be an isobaric spe-
cies of Cer(m18:1/24:0) with differences in either the
double-bond position or cis-orientation, or alkyl chain
branching. To determine whether the double-bond po-
sition in QI15902 differed from Cer(m18:1/24:0), a plasma

Figure 2—Known and unknown compound associations with clinical traits and prevalent diabetes. A: Bar graph represents the number of
targeted (i.e., known) and nontargeted (i.e., unknown) compounds associated with select clinical traits. Clinical traits are plotted on the
x-axis. The number of compounds associated with an FDR-q < 0.05 with the dichotomous outcome of prevalent diabetes in logistic re-
gression models and with select continuous clinical traits in linear regression models are shown on the y-axis. All models were adjusted
for age and sex. DM, diabetes mellitus. B: Percentage of clinical trait variability explained by known and unknown circulating compound
levels. R2 values, plotted on the x-axis, from adapted least absolute shrinkage and selection operator regression models that model the
association of 1) known and 2) known and unknown compounds with BMI, FPG, HOMA-IR, and triglycerides are shown. These were re-
stricted to the compounds measured using the hybrid HILIC positive method. Venn diagram shows the number of shared targeted or
known compounds (C) and nontargeted or unknown compound associations (D) with prevalent diabetes, BMI, FPG, HOMA-IR, and clini-
cal triglyceride levels.
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sample was fractionated using C8 chromatography, and
photochemical Patern�o-B€uchi reaction (37) double-bond
cleavage products were generated from the fraction contain-
ing QI15902 (Supplementary Materials and Supplementary
Fig. 2). LC-MS analyses showed that the QI15902 major
cleavage product was an ion at m/z 454 and was the same
mass as that generated from the Cer(m18:1/24:0) reference
compound. This indicated that QI15902 has a 4,5-double
bond like Cer(m18:1/24:0). This cleavage product also con-
tained the C24 fatty acid moiety. Notably, cleavage of
QI15902 yielded at least two different isomeric peaks, the
more abundant of which had an earlier RT compared with
the product from Cer(m18:1/24:0). These data indicate that
QI15902 has a sphingoid base similar to Cer(m18:1/24:0),
but the structure of the C24 fatty acid is different. The cur-
rent hypothesis is that QI15902 is an isomer of Cer(m18:1/
24:0) possessing a branched alkyl group in the C24 fatty
acid moiety of the molecule. Predicted compound identities
for other nontargeted features associated with incident dia-
betes are listed in Supplementary Table 12, and definitive

identification using commercially available chemical standards
are ongoing.

Utility of Circulating Compounds in Diabetes
Prediction
A clinical diabetes risk prediction model based on the
Framingham diabetes risk score (including age, sex, BMI,
SBP, HDL, triglycerides, waist circumference, FPG, and paren-
tal history of diabetes) had a c statistic of 0.74 in JHS (Fig. 5).
This improved to 0.77 with the addition of 10 known
compounds selected using elastic net regularization. A similar
improvement occurred with the addition of 11 unknown
compounds. Inclusion of both knowns (n = 9) and un-
knowns (n = 26) further improved the c statistic to 0.81
(Fig. 5). Incident receiver operating characteristic curves
over the course of 10 years of the different models are
shown in Supplementary Fig. 3. Reclassification of case
subjects and control subjects to high- and low-risk groups
calculated using the net reclassification index were also
improved, especially with the inclusion of nontargeted

Figure 3—Known and unknown compound associations with incident diabetes in the JHS. Volcano plot shows targeted (i.e., known) and
nontargeted (i.e., unknown) LC-MS compounds associated with incident diabetes in JHS model 2 (Cox proportional hazard model ad-
justed for age, sex, BMI, and FPG). Diabetes HRs over a mean 10.2 years of follow-up for every 1-SD increase in transformed and normal-
ized LC-MS feature concentration are plotted on the x-axis. The colored dots represent metabolite features associated with diabetes at an
FDR-q < 0.05. Red dots are known compounds, blue are unknown compounds. Select targeted LC-MS features are named. DMGV, di-
methylguanidino valeric acid; LPC, lipophopsphatyidlycholine; TG, triacylglycerol.
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compounds compared with the clinical model alone (Supp-
lementary Table 13). These prediction models were exter-
nally validated in 500 individuals from MESA, with an
improvement in model discrimination again observed with
the inclusion of both the knowns and unknowns (P =
0.009) (Supplementary Table 14).

DISCUSSION

We identified novel circulating compounds associated
with incident diabetes in a large AA cohort and validated
these associations in an independent multiethnic cohort.
We expanded the number of known and unknown com-
pounds measured by leveraging a hybrid targeted and
nontargeted LC-MS method. Compared with knowns, un-
known compounds are less correlated (median r = 0.29)
and improved diabetes prediction model discrimination
(c statistic increase from 0.77 to 0.81), suggesting they
provide additional, orthogonal information. Finally, we
combined functional genomic analyses with high resolu-
tion and accurate MS to identify a novel deoxyceramide
biomarker of incident disease with one of the highest dia-
betes HRs found in JHS.

We identified 124 circulating compounds associated
with incident diabetes after adjusting for age, sex, batch,
BMI, and FPG. Of these, 35 were known compounds, 11
of which had not previously been reported in other hu-
man populations, and an additional 16 had not been
found in AA cohorts (Supplementary Table 6). Sixty-eight
of these associations replicated in MESA (FDR-q < 0.05
after adjusting for age, sex, batch, and race/ethnicity). Se-
rotonin is a neuroactive amino acid known to contribute to
glucose homeostasis (38) and was inversely associated with
incident diabetes in our cohort. Homoarginine is a sub-
strate for nitric oxide synthase (39) and was found to be
significantly higher in AAs compared with Whites in the
Dallas Heart Study (DHS) and positively associated with
obesity, IR, and dysglycemia, but inversely associated with
diabetes prevalence (40). We demonstrate a positive associ-
ation that replicated in MESA. The fatty acid conjugated
amino acid, N-palmitoyl taurine, accumulates in human is-
let cells and may be an insulin secretagogue (41), support-
ing our positive associations with prevalent and incident
diabetes, BMI, and HOMA-IR.

Nontargeted metabolomics remains relatively unexplored
because peak acquisition, data cleaning, and compound iden-
tification remain labor and time intensive. We demonstrate
that nontargeted or unknown compounds are only modestly
associated with each other (median r = 0.27) and targeted
or known compounds (median r = 0.29, with median
r = 0.55 among knowns). Inclusion of unknowns at least tri-
pled the number of cross-sectional associations found with
clinical traits (Fig. 2A). Unknowns also explained up to 45%
of clinical trait variance (Fig. 2B). Several unknowns associ-
ated with diabetes were also not associated with traditional
risk factors (Fig. 2C and D), providing potential insights into
previously unknown pathways of disease development. For
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example, compounds associated with diabetes, but not BMI
and HOMA-IR, may participate in metabolic processes that
cause diabetes independent of adiposity and IR.

In JHS, 225 unknown compounds were associated with
incident diabetes after adjusting for age and sex, and 89
were associated with additional adjustments for BMI and
FPG (108 and 43 validated in MESA, respectively). In-
cluded in these associations was a novel isobaric species
of 1-deoxyceramide Cer(m18:1/24:0) that we identified by
leveraging WGS data. This novel compound, or QI15902,
had an HR of 1.38, similar to urate (HR 1.37), which was
the highest among knowns. QI15902 was inversely associ-
ated with a CPS1 gene variant (rs1047891, b = �0.17,
P = 1.48 × 10�8, minor allele frequency = 0.36). CPS1 enc-
odes for carbamoyl-phosphate synthase 1, which catalyzes
the first committed step of the urea cycle, and this variant
has been associated with circulating glycine and serine
levels (35,36), including in the JHS (b = 0.20, P = 5.03 ×
10�11 for serine). De novo synthesis of sphingolipids
and ceramides are initiated by the condensation of serine
and palmitoyl CoA. QI15902 had a RT suggestive of a lipid
species. In the absence of serine, alanine is condensed with
palmitoyl CoA to form deoxyceramides and deoxysphinga-
nine (42). Given the inverse association of QI15902 with

rs1047891, we hypothesized it was part of the deoxycera-
mide pathway. Consistent with this, individuals in the JHS
with the 4217C>A missense gene variation also had higher
levels of circulating serine and glycine, and lower levels of
alanine and QI15902 (Supplementary Fig. 4). Finally, after
further MS work, we have confirmed that QI15902 is an
isobaric 1 deoxyceramide Cer(m18:1/24:0) species.

Elevated levels of 1-deoxysphingolipid and 1-deoxy-
sphinganine—which are closely related to deoxyceramides—
are found among individuals with metabolic syndrome
(43,44), impaired fasting glucose (44), impaired oral glu-
cose tolerance in pregnant women (45), and diabetes
(44,46). Owing to a missing hydroxyl group, these complex
lipids cannot be degraded, leading to cellular accumulation
and possible toxicity (47). Deoxyceramides, specifically, are
positively associated with neuropathy in individuals with
type 1 diabetes (48), but its association with T2D, espe-
cially in AA cohorts, has not been extensively studied. In-
terestingly, QI15902 along with three other LC-MS peaks
from this compound cluster were also associated with a
variant in the developmental gene MEIS2 (49), and fur-
ther studies are needed to determine whether MEIS2
may serve as a master regulator of CPS1. Several of the
novel known compound associations with incident diabetes

Figure 4—LC-MS and MS/MS of putative deoxyceramide. Extracted ion chromatograms for plasma unknown feature QI15902 in plasma
compared to neat standards for Cer(m18:1/24:0) and Cer(m18:0/24:1) resolved using (A) hydrophilic liquid interaction chromatography
(HILIC) or (B) reversed phase C8 chromatography. (C) Product ion spectra (MS/MS) for plasma unknown feature QI15902 compared to
Cer(m18:1/24:0) and Cer(m18:1/24:0) standards. (D) Structures and MS/MS fragmentation of deoxyceramide standards. Extracted ion
chromatograms of m/z 634.6496 ± 5 ppm and MS/MS spectra were obtained from the molecular ions ([M+H]+) at m/z 634.65 with an iso-
lation window of 0.4 a.m.u.

2434 Diabetes Metabolomics in African Americans Diabetes Volume 71, November 2022

https://doi.org/10.2337/figshare.20510979


in JHS were also lipid subspecies (Supplementary Table
10). Replication of these associations in MESA, however,
were varied. Whether these differences are due to diet
or heterogeneity in genetic makeup across these cohorts
is an important question to answer and motivates dedi-
cated lipidomic profiling to improve measurement spe-
cificity and in-depth genetic association studies to further
explore.

Finally, in clinical prediction models, the addition of
both known and unknown compounds improved model
discrimination in a stepwise fashion in JHS (Fig. 5). There
was a significant increase in the model c statistic and an
AIC that favored the use of a combined clinical, known,
and unknown compound prediction model. A modest in-
crease in the c statistic was also observed with the

inclusion of metabolite predictors in the multiethnic
MESA cohort (Supplementary Table 12); however, a limi-
tation was the lack of family diabetes history data, which
improves clinical prediction models. While the inclusion
of these biomarkers may not be practical for the clinical
diagnosis of diabetes, these models demonstrate that un-
known circulating metabolites provide insights into diabe-
tes beyond what is provided by knowns. Furthermore, as
metabolites, these unknown compounds can highlight
pathways that may contribute to disease development
and complications that are both dependent and inde-
pendent of dysglycemia, obesity, and insulin resistance
and warrant further study.

Our study has many strengths, including the breadth and
depth of our metabolomics profiling in a large cohort of AAs.

Figure 5—Targeted and nontargeted metabolite diabetes risk discrimination. The c statistics are shown for prediction models of incident
diabetes in JHS. Clinical risk factors included age, sex, BMI, SBP, HDL cholesterol, triglycerides, FPG, and family history of diabetes and
were used in all models. Elastic net regularization was used to select targeted (tgt) and nontargeted (nontgt) LC-MS primary features to be
included as predictors in the respective models. **Denotes likelihood ratio test. P< 0.001 comparing nested models.
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Limitations include the small number of AAs who had metab-
olomics profiling available in MESA; therefore, we were un-
able to replicate in a cohort with similar race/ethnicity
makeup. While we found novel compound associations in a
large cohort of self-reported AAs, we will need metabolo-
mics and genetic data from other large multiethnic cohorts
before we can draw conclusions about how self-reported
race/ethnicity, genetic ancestry, and social determinants of
health contribute to these associations and is a planned fu-
ture direction of study. For our diabetes case definition,
FPG and HbA1c were used, but we did not have oral glu-
cose tolerance tests, which could have led to case misclassi-
fication of some individuals. Also, while the majority of
prevalent and incident cases were likely of T2D, C-peptide
and islet autoantibodies were not measured so we could
not exclude individuals who had type 1 diabetes.

In conclusion, using targeted and nontargeted LC-MS
methods, we have identified novel incident diabetes metabo-
lites in a population of self-reported AAs, with a majority
that replicated in a multiethnic cohort. We identified a novel
lipid species as a new biomarker of diabetes that warrants
further mechanistic studies. Future steps will be to validate
our findings in both multiethnic and ethnic-specific cohorts
to understand how race, ethnicity, and social determinants
of health may affect these metabolite-disease associations.
Finally, we demonstrate that unknown metabolites provide
added knowledge, explaining a significant amount of the
variance in clinical traits associated with diabetes risk and
prevalent and incident disease and improves clinical diabetes
prediction model discrimination. These results motivate fur-
ther studies focused on the identification of nontargeted
LC-MS peaks to increase our understanding of diabetes bio-
markers in diverse human populations.
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