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Machine learning for endoleak 
detection after endovascular aortic 
repair
Salmonn Talebi1,5, Mohammad H. Madani2,5, Ali Madani1,3, Ashley Chien1, 
Jody Shen2, Domenico Mastrodicasa2, Dominik Fleischmann2, Frandics P. Chan2* & 
Mohammad R. K. Mofrad1,4*

Diagnosis of endoleak following endovascular aortic repair (EVAR) relies on manual review of multi-
slice CT angiography (CTA) by physicians which is a tedious and time-consuming process that is 
susceptible to error. We evaluate the use of a deep neural network for the detection of endoleak 
on CTA for post-EVAR patients using a novel data efficient training approach. 50 CTAs and 20 CTAs 
with and without endoleak respectively were identified based on gold standard interpretation by a 
cardiovascular subspecialty radiologist. The Endoleak Augmentor, a custom designed augmentation 
method, provided robust training for the machine learning (ML) model. Predicted segmentation maps 
underwent post-processing to determine the presence of endoleak. The model was tested against 3 
blinded general radiologists and 1 blinded subspecialist using a held-out subset (10 positive endoleak 
CTAs, 10 control CTAs). Model accuracy, precision and recall for endoleak diagnosis were 95%, 90% 
and 100% relative to reference subspecialist interpretation (AUC = 0.99). Accuracy, precision and 
recall was 70/70/70% for generalist1, 50/50/90% for generalist2, and 90/83/100% for generalist3. The 
blinded subspecialist had concordant interpretations for all test cases compared with the reference. 
In conclusion, our ML-based approach has similar performance for endoleak diagnosis relative to 
subspecialists and superior performance compared with generalists.

Endovascular aortic repair (EVAR) is the primary treatment for many patients with aortic pathology particularly 
in the setting of abdominal aortic aneurysm. The procedure has largely replaced the traditional open surgical 
approach employed in the past which is often associated with increased morbidity and mortality in the peri-
operative period1–5. Lifelong surveillance imaging is typically performed to evaluate for postoperative EVAR 
complications which may be asymptomatic and potentially fatal6. Endoleak is one of the main and recognized 
complications associated with EVAR7. Endoleak is defined as persistence of blood flow outside the stent graft 
and within the aneurysm which may lead to growth and subsequent rupture of the aneurysm sac8, 9. Computed 
tomography angiography (CTA) is the standard imaging technique for postoperative surveillance following 
EVAR10, 11. Currently in the routine clinical setting, detection of endoleak requires manual review of multi-slice 
CTA scans. The interpretation process by humans is tedious, may be subject to error and/or demonstrate vari-
ability between human readers.

Machine learning (ML) is an emerging technique which has been increasingly applied to various fields in 
medicine such as cardiology12, radiology13–15, ophthalmology16, 17, dermatology18, 19, and pathology20, 21. Machine 
learning algorithms may learn from examples and respond to new inputs based on their prior training22. Machine 
learning may provide a means to facilitate human CTA endoleak detection in various ways including efficiency, 
accuracy and standardization of interpretation. The objective of our study is to develop and test a machine learn-
ing based model for endoleak detection as well as compare its performance with that of both subspecialist and 
general diagnostic radiologists.

A substantial amount of labeled segmentation maps is needed to produce a state-of-the-art supervised deep 
learning segmentation model. Obtaining manual segmentation maps for medical images is a tedious and costly 
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process. Data augmentation is an important and effective method to help capture the complete distribution of 
possible data. Advanced data augmentation techniques have been shown to provide substantial model perfor-
mances increases26. Studies have also shown the feasibility of getting state-of-the-art performance by augmenting 
just one image27. Data augmentation techniques such as random image rotations and introduction of nonlinear 
deformations have been shown effective in improving medical segmentation model accuracies28. Other augmen-
tation methods involving adding or subtracting regions of images have not been commonly used for natural 
images because the outcomes appear artificial. However, the addition or subtraction of regions in CT images 
may be more feasible due to the constraints of CT images compared to natural images. In this study, we present 
a novel data augmentation method using segmentation maps to augment CT slices by adding and removing 
regions of the CT slice containing an endoleak.

Methods
Data preprocessing.  This retrospective study was conducted with the approval of the Stanford Institu-
tional Review Board (IRB) and under a waiver of informed consent. All methods were performed in accord-
ance with relevant guidelines and regulations. Fifty CTA scans from 50 post-EVAR patients with endoleak and 
20 CTA scans from 20 post-EVAR patients without endoleak were retrospectively identified. The presence or 
absence of endoleak in each patient was determined based on the corresponding clinical CTA radiology report 
dictated by a cardiovascular imaging subspecialty trained diagnostic radiologist. Post-EVAR patients without 
endoleak are referred to as controls in this study.

The CTA imaging from the positive endoleak cases and negative controls were sent from the picture archiving 
and communication system (PACS) to TeraRecon (TeraRecon Inc., Foster City, CA) for obtaining de-anonymized 
DICOM images. The deanonymized CT images included noncontrast, arterial phase, and delayed phase images 
for each positive endoleak case and control. The de-anonymized images were subsequently transferred to a secure 
encrypted password-protected server. The DICOM files were then processed into a machine-readable format 
using Pydicom, flattened, and stored in a storage-efficient manner using HDF5 standards.

CTA scans were split into sets used for training (32 positive endoleak CTAs, 8 control CTAs), validation (8 
positive endoleak CTAs, 2 control CTAs), as well as a held-out test subset (10 positive endoleak CTAs, 10 control 
CTAs). Endoleak regions were labeled for training purposes by manual contouring of individual CT images on 
all positive endoleak CTAs which was performed by a diagnostic radiologist with cardiovascular imaging sub-
specialization. Manual segmentation of the endovascular stent lumen and aneurysm sac was also performed for 
a subset of the controls (10 CTAs). Image pre-processing was performed by thresholding the raw pixel values, 
mean-centering data, and resizing images.

Data augmentation.  Standard data augmentation techniques included image rotation and introduction of 
pixel noise to enhance the training process for the ML model. Additional data augmentation was also performed 
with a custom developed endoleak augmentation technique referred to as Endoleak Augmentor. Endoleak Aug-
mentor involves the addition and removal of endoleaks on individual CTA images using aneurysm sac and 
endoleak masks derived from segmentation (Fig. 1) which were then inputted to the ML model for training. 
Output from the Endoleak Augmentor was verified for adequate addition and removal of endoleaks by a cardio-
vascular imaging subspecialist radiologist prior to supplying the images to the algorithm for training.

The Endoleak Augmentor was integrated into Keras as a custom data generator class (Algorithm 1). During 
data generation a batch of labeled data X are selected. For each xb in the batch we generate transformed version 
x’b depending on the augment ID lb (algorithm 1, lines 5, 8 and 12).

Endoleaks are inserted into CT slices using x’b, y’b = augment_adder(xb, xab, ue, σe) (algorithm 1, line 9). Using 
the aneurysm sac segmentation map xab as a boundary, an endoleak of random shape is generated and inserted 
into the aneurysm sac. Pixel values for the endoleak are calculated using a Gaussian distribution of endoleak 
pixel values calculated from ue, σe. A new CT slice x’b is generated that contains an endoleak.

Endoleaks are removed from CT slices using x’b, y’b = augment_remover(xb, xeb, ua, σa) (algorithm 1, line 
13). Using the endoleak segmentation map xeb the endoleak pixels are replaced using a Gaussian distribution 
of aneurysm sac pixel values calculated from ua, σa. A new CT slice x’b is generated with the endoleak removed.

Algorithm 1  Endoleak Augmentor takes a batch of labeled CT slices X and corresponding augmentation labels 
l. Depending on the augmentation label, a CT slice will either have an endoleak added, an endoleak removed, or 
no augmentation. The algorithm produces a collection of updated labeled CT slices X’.
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Figure 1.   (Top) Overview of the custom data augmentor for removing an endoleak. The CTA slice with a 
corresponding mask of the endoleak is input into the data augmentor. The data augmentor uses the endoleak 
mask to remove the endoleak from the CTA slice. (Bottom) Overview of the custom data augmentor for adding 
an endoleak into an aneurysm sac. The CTA slice with a corresponding mask of the aneurysm sac is input into 
the data augmentor. The data augmentor uses the aneurysm mask to artificially create a unique and randomly 
shaped endoleak into the CTA slice.
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Figure 2.   Overview of the pipeline illustrating use of the custom data augmentor and U-net convolutional 
neural network (CNN).

Figure 3.   Model evaluation.

Table 1.   Patient clinical characteristics.

Positive endoleak cases (n = 50 patients) Control cases without endoleak (n = 20 patients)

Mean (SD) Mean (SD) P value

Age (years) 77.4 (4.9) 75.5 (7.1) 0.32

Male/female 5:1 19:1 0.21

Height (cm) 172.8 (9.6) 174.3 (6.5) 0.46

Weight (kg) 80.7 (18.6) 88.3 (15.0) 0.11

BMI (kg/m2) 26.9 (4.6) 29.0 (4.3) 0.07

Systolic BP (mm Hg) 138.5 (20.5) 140.0 (21.9) 0.79

Diastolic BP (mm Hg) 73.8 (12.3) 71.7 (14.2) 0.54

Comorbidities N (%) N (%)

HTN 47 (94) 16 (80) 0.08

CAD 23 (46) 13 (65) 0.15

DM 12 (24) 6 (30) 0.60

Stroke/TIA 5 (10) 0 (0) 0.31

CKD 14 (28) 4 (20) 0.49
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Model training and evaluation.  Our training set contains a total of 10,539 CTA slices of which 4190 slices 
contain endoleak segmentation maps and 1532 contain stent lumen and aneurysm sac segmentation maps. A 
separate validation set containing a total of 1940 CTA slices of which 746 were positive for endoleaks. The train-
ing slices are input into the Endoleak Augmentor which transforms the slices and inputs them into our deep 
learning model. A U-net style model with a convolutional encoder–decoder architecture was used to generate 
predicted endoleak segmentation maps. Model overview with architecture is depicted in Figs. 2, 3. During train-
ing, various hyperparameters were evaluated to improve the model’s prediction performance. Next, the thresh-
old to determine whether a slice is considered yes for endoleak is optimized by picking the probability threshold 
that maximized the precision, recall and F1 scores of the validation set. Additional post processing logic is 
implemented to remove false positive predictions that contain very small or very large endoleaks. A final post 
processing step is performed on all of a patient’s CTA slices to determine if a patient has an endoleak. Testing was 
performed at a per slice and per case level based on a subset of 10 positive endoleak cases and 10 controls. The 
same test subset was also reviewed by three additional blinded general diagnostic radiologists and one blinded 
cardiovascular imaging subspecialty trained radiologist for comparison against the ML model at a per case level.

Results
Table 1 summarizes the clinical characteristics of the study’s patients. Patients were predominately male and 
elderly with elevated systolic blood pressures. The most frequent comorbidity among patients was hypertension 
followed by coronary artery disease with no statistically significant differences between post-EVAR patients 
with and without endoleak. The majority of patients with endoleak as well as most of the controls underwent 
EVAR for abdominal aortic or aortoiliac aneurysm (48/50 for the endoleak group, 18/20 for the control group). 
Isolated iliac artery aneurysm or abdominal aortic dissection was the EVAR indication in 2/50 endoleak group 
patients and 2/20 control group patients. Prevalence of endoleak types are as follows: type 1 (5/50), type 2 (28/50), 
type 3 (8/50). Nine of the remaining 50 endoleak group patients had either multiple or indeterminate endoleak 
types. Embolization material in conjunction with EVAR was present in 10/50 endoleak group patients and 2/20 
control group patients. Three of the twenty (15%) of the CTA scans in the test subset had embolization material 
associated with the endovascular stent graft.

The area under the curve (AUC) for individual CT slice prediction at a per slice level was 0.89 for a set of 
600 CT slices randomly selected from the test subset (Fig. 4). A patient level prediction is then made using an 
ensemble of all of a patient’s individual CT slice predictions. Performances of the machine learning model and 
3 blinded general diagnostic radiologists on a per patient or case level relative to the gold standard interpreta-
tion by a cardiovascular imaging subspecialty trained radiologist are shown in Table 2. Accuracy, precision and 
recall of the ML model was 95%, 90%, and 100% with an AUC of 0.99. The accuracy confidence intervals— as 
determined by the standard deviation of 1000 bootstrapped sets sampled with replacement—was 11%. Accuracy, 
precision and recall was 70%, 70% and 70% for the blinded general radiologist 1. Blinded general radiologist 2 
had an accuracy of 50%, precision of 50% and recall of 90%. Accuracy, precision and recall for the blinded general 

Figure 4.   Receiver operating characteristic curve for CT Slice endoleak detection by the machine learning 
model.

Table 2.   Performance metrics for the machine learning (ML) model and general radiologists.

Accuracy (%) Precision (%) Recall (%)

ML model 95 90 100

General Radiologist1 70 70 70

General Radiologist2 50 50 90

General Radiologist3 90 83 100
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radiologist 3 was 90%, 83% and 100%. The blinded subspecialist had interpretations for presence or absence of 
endoleak that were concordant with the reference clinical radiology report dictated by a cardiovascular imaging 
subspecialist for all test cases. Examples of masks predicted by the ML model are shown in Fig. 5.

Discussion
The detection of endoleak following EVAR requires meticulous review of multi-slice CTA scans by humans 
which can be time-consuming and potentially inaccurate. There has been sparse prior investigation into the 
application of machine learning in the setting of post-EVAR CTA imaging particularly evaluation for endoleak. 
One study has demonstrated use of a computer vision algorithm for the segmentation of the inner and outer 
boundaries of abdominal aortic aneurysms23. A recent study by Hahn et al. evaluated the use of a deep learn-
ing method for endoleak identification24. Our machine learning model accuracy exceeded their study (95% vs. 
89%) with an AUC of 0.99 versus 0.94. Hahn et al. reported using the radiology report as the gold standard for 
endoleak detection with only a subset of 100 CTA images independently read by two human readers consisting 

Figure 5.   Raw CT slice (left) followed by human annotated segmentation map (middle) and model predicted 
endoleak map (right).
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of one interventional radiologist and one vascular surgeon. However, the performance metrics of their ML 
model relative to each of the individual human reader performances for endoleak diagnosis were not stated. 
In our study in addition to using the radiology report interpreted by cardiovascular imaging subspecialized 
diagnostic radiologists as the gold standard, we report our machine learning endoleak detection performance 
along with the individual performances of 3 additional blinded general diagnostic radiologists and 1 additional 
blinded cardiovascular imaging subspecialty trained radiologist. The purpose of our study design is to provide 
for further direct comparison at both a machine versus human level and at a human versus human level. Our 
study raises the possibility that there may be variability even among human readers for endoleak diagnosis, a 
topic which has not been extensively investigated in the literature25. The prior study also excluded CT images 
with prior embolization although fifteen percent of our test subset CTAs had embolization material which can 
be encountered in the clinical setting.

Data augmentation is critical to the success of machine learning model performance across domains from 
computer vision to natural language processing. In this work, we introduce a novel data augmentation tech-
nique that can be broadly applied for recognition tasks in medical imaging. This augmentation method provides 
multiple benefits for training a deep learning model. One benefit is the training set now contains anatomically 
identical CT slices, one with an endoleak and one without an endoleak. This helps the deep learning model focus 
on the variation representing an endoleak and not other anatomical differences. Another benefit is the amount 
of new endoleak CT slices we can generate. For each CTA slice containing an aneurysm sac segmentation map 
we are able insert many uniquely shaped endoleaks. This increases both the quantity and variance of the training 
data—ideally improving overall performance and reducing overfitting effects.

Our study has several limitations. Since our data came from a single medical center, the generalizability of the 
machine learning model may have been limited. Furthermore, our sample sizes including the test subset were 
small and further studies with more patients are needed for validation of the deep neural network. Lastly, our 
model uses prediction masks to detect only the existence of an endoleak. However, the endoleak prediction masks 
can serve as interpretable predictions of the endoleak type and aneurysm size. In future work the quantification 
of endoleak type and aneurysm size from the prediction masks will be evaluated.

The introduction of machine learning based systems into the clinical setting for post-EVAR surveillance may 
potentially lead to increased efficiency, accuracy, and greater consistency among readers for post procedural 
complication detection which could in turn result in improved management of these patients. In summary, this 
study demonstrates that our machine learning method performance is comparable to that of cardiovascular imag-
ing subspecialist radiologists and superior to that of general radiologists. This raises the possibility that machine 
learning may eventually assist humans in the interpretation of post-EVAR scans in routine clinical practice.
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