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ABSTRACT
Molecular dynamics simulations of biomolecules have been widely adopted in biomedical studies. As classical point-charge models continue
to be used in routine biomolecular applications, there have been growing demands on developing polarizable force fields for handling more
complicated biomolecular processes. Here, we focus on a recently proposed polarizable Gaussian Multipole (pGM) model for biomolecular
simulations. A key benefit of pGM is its screening of all short-range electrostatic interactions in a physically consistent manner, which is
critical for stable charge-fitting and is needed to reproduce molecular anisotropy. Another advantage of pGM is that each atom’s multipoles are
represented by a single Gaussian function or its derivatives, allowing for more efficient electrostatics than other Gaussian-based models. In this
study, we present an efficient formulation for the pGM model defined with respect to a local frame formed with a set of covalent basis vectors.
The covalent basis vectors are chosen to be along each atom’s covalent bonding directions. The new local frame can better accommodate
the fact that permanent dipoles are primarily aligned along covalent bonds due to the differences in electronegativity of bonded atoms. It
also allows molecular flexibility during molecular simulations and facilitates an efficient formulation of analytical electrostatic forces without
explicit torque computation. Subsequent numerical tests show that analytical atomic forces agree excellently with numerical finite-difference
forces for the tested system. Finally, the new pGM electrostatics algorithm is interfaced with the particle mesh Ewald (PME) implementation
in Amber for molecular simulations under the periodic boundary conditions. To validate the overall pGM/PME electrostatics, we conducted
an NVE simulation for a small water box of 512 water molecules. Our results show that to achieve energy conservation in the polarizable
model, it is important to ensure enough accuracy on both PME and induction iteration. It is hoped that the reformulated pGM model will
facilitate the development of future force fields based on the pGM electrostatics for applications in biomolecular systems and processes where
polarization plays crucial roles.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0019560., s

I. INTRODUCTION

Atomistic simulations of biomolecules have been applied in
a wide range of biological systems.1 While additive nonpolarizable

models will continue to play important roles,2–4 nonadditive polar-
izable models are expected to extend our ability to study more
complex biomolecular systems and processes. Nonpolarizable mod-
els typically use fixed atom-centered partial charges to model
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electrostatics and include the polarization response to the environ-
ment (mostly in water) only in an averaged, mean-field manner.
Subsequently, nonpolarizable models that provide excellent descrip-
tions of the homogeneous bulk phase are poor models for gas-phase
clusters or in nonpolar solvents. The importance of modeling non-
additive effects is well known.5 For example, the gas-phase water
dimer interaction energy is overestimated by more than 30% in the
TIP5P model.6 Similarly, for large biomolecular systems, there are
concerns that such models cannot correctly account for situations
where the same nonpolarizable moiety is exposed to different elec-
trostatic environments/solvents, either within a single large struc-
ture or during a simulation process. In addition, there is an inher-
ent inconsistency in most nonpolarizable models related to their
static inclusion of average bulk polarization within the potential.
This results in internal energies and other properties that are derived
against a gas-phase reference state, which is already “pre-polarized”
for the liquid phase. These limitations lead to issues in modeling
multiple important problems such as pH-dependent processes, ion-
dependent interactions, order–disorder transition, and enzymatic
reactions.

In response to the above concerns, much effort has been
invested on the inclusion of explicit polarization within the molec-
ular mechanics (MM) potentials.7–9 Several methods are available
to explicitly model polarization in molecular simulations, such
as the Drude oscillator,10,11 fluctuating charges,12 and induced
dipoles.6,13,14 The use of polarizable point dipoles is a classical
approach with a long history in molecular simulation.15 The orig-
inal induced dipole model of Applequist places the induced point
dipoles on atom centers.16 However, this model suffers from the
so-called “polarization catastrophe”: when the interaction between
two mutually interacting induced dipoles with atomic polarizabili-
ties diverges at a finite distance. Thole proposed a solution by apply-
ing a damping function to the induced dipole–induced dipole inter-
actions.17 However, a drawback to this model is that it does not
prescribe how the induced dipoles and permanent charges inter-
act. A great deal of effort has been devoted to developing mod-
ern polarizable models, including the fluctuating charge models18,19

in the context of Optimized Potentials for Liquid Simulations-All
Atoms (OPLS-AA), the fluctuating charge model and the Drude
oscillator model20–23 in the context of Chemistry at Harvard Molec-
ular Mechanics (CHARMM), and detailed multipole expansions and
more complicated MM potentials in the context of Amoeba.24 In
Amber, polarization was implemented with the induced dipoles.25

In Amber ff12pol, the induced dipoles are calculated using Thole
models to avoid “polarization catastrophe.”26–29

Another limitation of widely adopted nonpolarizable models is
their use of partial atomic charges in the electrostatic models, which
often lack sufficient mathematical flexibility to describe the electro-
static potential (ESP) around molecules. Williams showed that opti-
mal least-squares fitting of atom-centered partial charges resulted in
relative root-mean-square errors of 3%–10% over a set of grid points
in a shell outside the surface of a series of small polar molecules.30

These errors were reduced by 2–3 orders of magnitude via the use
of higher atomic multipoles.6 In Amoeba force fields, multipoles are
placed on each atom, allowing better capture of electrostatic poten-
tial distribution around molecules.31,32 The Gaussian electrostatic
model (GEM) is a force field based on density fitting, which can
extend to arbitrary angular momenta (multipoles).33–35 Of course,

there are many other proposals to model electronic polarization in
the literature.12,36–38

Recently, Elking et al. proposed a polarizable multipole model
with Gaussian charge densities.39 A key benefit of the polarizable
Gaussian Multipole (pGM) model is its screening of all short-range
electrostatic interactions in a physically consistent manner. This is
critical for stable charge-fitting in polarizable force fields when the
polarizations of 1–2 and 1–3 charges are included and are needed to
reproduce molecular anisotropy, as discussed in Ref. 40. Of course,
this strategy would also require us to redesign the valence terms to
retain close to harmonic behaviors. An advantage of pGM is that
each atom’s multipoles are represented by a single Gaussian func-
tion and its derivatives with different amplitudes. Therefore, pGM is
a minimalist Gaussian polarizable model. In comparison, the GEM
model33–35 treats nuclear charges explicitly and uses Hermite Gaus-
sian auxiliary basis sets to reproduce atomic electron density, so
it has the potential to represent the short-range interactions more
faithfully than the pGM model. However, because the computational
cost of the nonbonded electrostatic calculation scales as the squared
number of functions on each atom, the multiple functions used to
represent each atom in the GEM can notably increase the simula-
tion cost. The increased number of parameters associated with the
functions may also pose additional challenges in parameterization.
Another major difference is that the GEM,33–35 like several other
efforts, such as X-Pol41 and Amoeba,31,32 uses electronic densities
to model molecular polarization and other effects. In comparison,
our pGM model follows the Amber tradition and uses the ab initio
electrostatic potential to fit the parameters of atomic partial charges
and dipoles.

Most macromolecular simulations with long-range elec-
trostatic interactions are performed using periodic boundary
conditions. A rigorous treatment of electrostatic interactions in
periodic boundary conditions requires a careful treatment of the
associated lattice sums. Thus, the widely used lattice sum meth-
ods, such as particle mesh Ewald (PME), need to be extended to
handle multipolar related summations. Fortunately, efficient imple-
mentations of PME of dipoles and higher multipoles are already
available in widely used software packages, such as Amber.42,43 This
greatly simplifies the integration of pGM with PME for molecular
simulations.

In Secs. II and III, we first describe the detailed pGM electro-
statics scheme with a focus on how to define the atomic Gaussian
multipoles and associated analytical algorithms for force computa-
tion. This is followed by algorithmic details of interfacing pGM and
PME. We then present the validation of the analytical force formu-
lation and accuracy discussion of pGM in PME simulations. Finally,
we conclude the manuscript with a brief discussion of the next steps
in our development.

II. THEORY
A. Gaussian density representation of charge
distribution

The Gaussian multipole model represents the charge distri-
bution on each atom as a Gaussian-shaped multipole expansion.
Hence, an nth order Gaussian multipole with the radius of 1/β,
located at position

⇀

R, is39
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ρ(n)(⇀r ;
⇀

R) = Θ(n) ⋅ ∇(n)R (
β√
π
)

3

exp(−β2∣⇀r −
⇀

R∣2). (1)

Here,Θ(n) is the nth rank momentum tensor and∇(n) is the nth rank
gradient operator (Subsection 1 of the Appendix).

In our current pGM model, only monopoles and dipoles are
retained, so only the first two terms are needed at each atom as
shown below,

ρ(0)(⇀r ;
⇀

R) = q( β√
π
)

3

exp(−β2∣⇀r −
⇀

R∣2),

ρ(1)(⇀r ;
⇀

R) = ⇀μ ⋅ ∇R(
β√
π
)

3

exp(−β2∣⇀r −
⇀

R∣2),
(2)

where the zeroth-order term represents a monopole and the first-
order term represents a dipole.

Once the charge densities are defined, as in Eq. (2), the pairwise
Coulombic interaction energy expressions needed for the current
pGM model are as follows:

(1) Monopole–monopole:

q1q2
erf (β12R12)

R12
. (3)

(2) Monopole–dipole:

q1
⇀μ2 ⋅ ∇2

erf (β12R12)
R12

. (4)

(3) Dipole–dipole:

(⇀μ1 ⋅ ∇1)(⇀μ2 ⋅ ∇2)
erf (β12R12)

R12
, (5)

where erf () is the error function, and

β12 =
β1β2√
β1

2 + β2
2

and R12 = ∣
Ð⇀
R1 −

Ð⇀
R2∣. (6)

Finally, it is often convenient to introduce the dipole–dipole

interaction tensor
⇀
⇀

T12 = ∇1∇2
erf (β12R12)

R12
so that Eq. (5) can be sim-

plified as ⇀μ1 ⋅
⇀
⇀

T12 ⋅ ⇀μ2. Here, it is worth pointing out an important
convention used throughout this manuscript. All gradient operators
paired with a dipole only operate on coordinates. For example, the
gradient operator in ⇀μ1 ⋅ ∇1 only operates on the atomic coordi-
nates that follow. On the other hand, all other gradient operators
that are not paired with a dipole are used in the normal sense. This
convention is adopted throughout this manuscript.

It can be shown that an effective potential and corresponding
effective field at atomic center

Ð⇀
R1 can be defined as

ϕeffective = (q2 + ⇀μ2 ⋅ ∇2)
erf (β12R12)

R12
,

Eeffective = −(q2 + ⇀μ2 ⋅ ∇2)∇1
erf(β12R12)

R12

(7)

due to a charge distribution at atomic center
Ð⇀
R2 so that the pair-

wise Coulomb energies in Eq. (3)–(5) can be reproduced when an
effective point charge of q1 and an effective point dipole ⇀μ1 are
placed at atomic center

Ð⇀
R1. The use of the effective potential and

field simplifies the derivation of pairwise Coulombic force calcula-
tions, as shown below. Note that these are different from the real
Coulombic potential and field due to Gaussian charges and dipoles.
For example, the real potential at any location

Ð⇀
R1 due to atom 2

at
Ð⇀
R2 is

ϕreal = (q2 + ⇀μ2 ⋅ ∇2)
erf (β2R12)

R12
. (8)

B. Gaussian multipoles in pGM
In our current pGM model, interactions are modeled with

both permanent and induced atomic multipoles at atomic centers,
both of which are truncated at the dipole level. The framework can
be easily extended to higher-order multipoles, if needed in future
developments.

1. Permanent multipoles
Permanent multipoles are the first part of the pGM model

and are defined with respect to a local frame overlapped with
atom’s covalent bonds. This choice is based on the fact that atomic
moments result from atomic covalent bonding interactions. This
is also because covalent bonding interactions are along the stiffest
degrees of freedom of a molecule. Thus, our design follows the
logic that the induced moments are meant to be responsible for
changes in molecular moments due to the changes in soft degrees
of freedom in molecular simulations. Of course, the partition
between permanent and induced moments is somewhat artificial in
a moment fitting procedure. Therefore, we refer to permanent mul-
tipoles in our pGM model as covalent multipoles in the following
discussion.

The zeroth-order covalent multipoles, i.e., covalent monopoles,
are simply the atomic partial charges as in other polarizable or
nonpolarizable force fields. The first-order multipoles, i.e., cova-
lent dipoles, are expressed in linear combinations of certain basis
vectors. We define the basis vectors to be along the bonding direc-
tions or, more precisely, covalent interaction directions. Thus, there
may be more covalent interactions than the number of bonds
needed to fully define all covalent dipoles on an atom. For exam-
ple, hydrogen atoms in water are with covalent dipole moments
not 100% along the H–O bonds, so virtual H–H bonds may be
needed to define covalent dipoles more accurately. On the other
hand, sp3 carbon atoms may have up to four covalent dipoles
due to the presence of four bonds, though the presence of sym-
metry often reduces the number of unique covalent dipoles. The
new local frame originates from a physical consideration that per-
manent dipole moments are primarily aligned along the cova-
lent bonds due to the differences in electronegativity of bonded
atoms.

An illustration of basis vectors is shown in Fig. 1 for O and
H atoms of water, and we refer to these as the covalent basis
vectors (CBVs). The local frame formed by CBVs on an atom is
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FIG. 1. Definition of covalent basis vectors for atoms in the water molecule. (a) For
covalent dipoles centered at A (oxygen), the two basis vectors are

⇀eBA and
⇀eCA,

which are defined as unit vectors along its two O–H bonds whose two covalent
dipoles are the same due to symmetry. (b) For covalent dipoles centered at C
(hydrogen), the two basis vectors are

⇀eAC , the unit vector along the H–O bond,
and

⇀eBC , the unit vector along the H–H virtual bond. The covalent dipoles centered
at the other hydrogen atom B can be defined similarly.

termed its CBV frame. Another representative case is the alpha
carbon atom in proteins, which has four bonds, so there can
be four basis vectors in its CBV frame to define the covalent
dipoles.

The CBV frame is also chosen for the sake of simplifying force
calculations because the basis vectors are directly dependent on the
positions of atoms. For example, the gradient of a covalent dipole
vector used extensively in force calculations can be obtained easily
within the CBV frame as

∇(⇀u) = ∇
⎛
⎜
⎝
∑i ui

⇀

Ri

∣
⇀

Ri∣

⎞
⎟
⎠
=∑i ui

⎛
⎜⎜
⎝

⇀
⇀

I

∣
⇀

Ri∣
−

⇀

Ri
⇀

Ri

∣
⇀

Ri∣
3

⎞
⎟⎟
⎠

, (9)

where ⇀u is the permanent dipole of an atom,
⇀

Ri is the vector pointing

from the atom to its ith bonded atom (including virtually),
⇀
⇀

I is the
identity tensor, and the summation is over all covalent interactions
of the atom.

Even if quadrupoles are not used in the current pGM model,
it is instructive to outline how they are defined in the CBV
frame. Given the covalent basis vectors defined above, covalent
basis tensors are constructed as dyadic tensors, with each of which
formed as a dyadic product of two covalent basis vectors. For
example, in the case of oxygen atom with two covalent basis
vectors (⇀eBA,⇀eCA) in Fig. 1(a), there are up to four dyadic ten-
sors (⇀eBA⇀eBA,⇀eCA⇀eCA,⇀eBA⇀eCA, and⇀eCA⇀eBA) available to define its
quadrupole.

2. Induced multipoles
Induced multipoles are the second part of the pGM model.

Only first-order terms, i.e., the induced dipoles, are used. The
pGM polarization scheme can naturally avoid the well-known
polarization catastrophe in point polarizable models without
employing any artificial screening factors17 because distributed
dipole densities instead of point dipoles are induced at atomic
centers.44

In the current pGM model, the linear polarization relation is
retained as follows:

⇀pi = αi
⇀

E
effective
i

= αi(
⇀

E
covalent,effective
i −∑j≠i

⇀
⇀

Tij ⋅
⇀pj),

⇀

E
covalent,effective
i = −∑j≠i (qj + ⇀μj ⋅ ∇j)∇i

erf(βijRij)
Rij

,

⇀
⇀

Tij = ∇i∇j
erf(βijRij)

Rij
,

(10)

where ⇀pi is the induced dipole and αi is the polarizability coef-

ficient of atom i;
⇀

E
effective
i is the total effective electric field at

atom i, which contains two parts: (1) the effective field of cova-
lent dipoles,

⇀

E
covalent,effective
i [Eq. (7)], and (2) that of the induced

dipoles, −∑j≠i

⇀
⇀

Tij ⋅
⇀pj. Note that we have used the effective electric

field instead of the real electric field to define the induced dipoles in

the pGM model. One reason is to ensure the symmetry of
⇀
⇀

Tij, which
greatly reduces the complexity of force calculation later.44 To sim-
plify the following discussion, we drop the effective superscript as we
plan to use effective electric fields in all subsequent discussions of
energy and force calculations in the pGM model.

Another issue worth pointing out about induced dipoles is their
self-energies. The linear polarization itself implies a self-energy term
of the form

U = 1
2

⇀p2

α
. (11)

The derivation can be found in many publications.45 However, the
pGM model, due to its use of Gaussian distributions of multipoles,
posts extra difficulty. For example, a Gaussian charge distribution
itself has self-energy, or assembly energy, of the form

U = q2β√
2π

+
β3(⇀μ + ⇀p)2

3
√

2π
. (12)

Clearly, the self-energy is different from Eq. (11), and it does not
lead to a linear polarization behavior. In fact, it is difficult to assess
the physical meaning for the nonlinear assembly energy, just like
it is hard to discuss the physical meaning of the infinitely large
assembly/self-energy for a point charge. Thus, for the current model
development, we do not consider self-energies beyond Eq. (11).

C. Total electrostatic energy and forces in pGM
model

From the introduction of the pGM model in Secs. II A and II B,
it is clear that the electrostatic potential energy of the system can be
divided into two parts:

(1) Covalent dipole–covalent dipole interaction energy:

Ucovalent–covalent =
1
2∑

N
i ∑

N
j≠i (qi + ⇀μi ⋅ ∇i)

× (qj + ⇀μj ⋅ ∇j)
erf(βijRij)

Rij
. (13)

(2) Induced energy:
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Uinduced = Uinduced–covalent + Uinduced–induced + Uself

= −∑N
i
⇀pi ⋅

⇀

E
covalent
i +

1
2∑

N
i ∑

N
j≠i (

⇀pi ⋅
⇀
⇀

Tij ⋅
⇀pj)

+
1
2∑

N
i
⇀pi ⋅ (

⇀

E
covalent
i −∑N

j≠i

⇀
⇀

Tij ⋅
⇀pj)

= −1
2∑

N
i
⇀pi ⋅

⇀

E
covalent
i (14)

where N denotes the number of atoms in the system. Thus,
atomic electrostatic forces can be derived as negative gradi-
ents of the above two potential energy terms.

When computing gradients for the covalent–dipole interaction
energy, it is very important to know which quantities are the vari-
ables of the virtual displacement of atom i. There are two types of
variables: (1) pairwise distances between atom i and all other atoms
and (2) covalent dipoles on atom i and covalent dipoles on atoms
covalently interacting with atom i. Given this classification of vari-
ables, we can group the terms in Eq. (13) into four different parts
and discuss their gradients with respect to

⇀

Ri, separately.
The detailed derivations are presented in Subsection 2 of the

Appendix, and the final force expression for the covalent–dipole
interaction energy is

⇀

F
covalent–covalent
i = −∑N

j ∇i(⇀uj) ⋅∑N
k≠j∇j(qk + ⇀uk ⋅ ∇k)

erf(βjkRjk)
Rjk

− (qi + ⇀ui ⋅ ∇i)∑N
j≠i (qj + ⇀uj ⋅ ∇j)∇i

erf(βijRij)
Rij

,

(15)

where N denotes the number of atoms in the system. Briefly, the first
term is from the derivatives over the covalent dipoles, and the second
term is from derivatives over the pairwise distances.

The derivation of forces for the induced energy in Eq. (14) is not
that straightforward. We first need to express the induced dipole, ⇀pi,
in terms of fields from covalent dipoles only, not as their definition

in Eq. (10). This is because ⇀pi appears on both sides of Eq. (10), i.e.,
the induced dipoles mutually influence each other, so it is difficult to
take their derivatives. Instead, we proceed by expressing ⇀pi, as shown
in Subsection 2 of the Appendix, as

psi = A−1st
ijE

covalent,t
j , (16)

where A−1st
ij is an 3N × 3N matrix, which we do not know the expres-

sion of, and s, t and i, j are coordinate component indices and atom
indices, respectively. Next, Eq. (14) can be rewritten as

U = −1
2
A−1st

jkE
covalent,s
j Ecovalent,t

k , (17)

where Einstein’s index notation is employed for j, k, s, and t so that
a repeated index implies a summation over all possible values of the
index, i.e., Eq. (17) is a quadruple summation. Even if we do not
know the expression of matrix A−1, we can still obtain its gradient
with respect to

⇀

Rk, or the virtual displacement of atom k,

∂A−1st
ij

∂xwk
= −A−1ss

′

ii′
∂Ts′t′

i′j′

∂xwk
A−1t

′t
j′j , (18)

where w refers to coordinate indices (x1, x2, x3), all primed indices
follow Einstein’s index notation, and T is the dipole–dipole interac-
tion tensor.

Given the above preparations, the induced part of the force can
be obtained as

⇀

F
induced
i = −⇀pi ⋅ ∇i∑N

j≠i (
⇀pj ⋅ ∇j)∇i

erf(βijRij)
Rij

+ ∑N
j ∇i(

⇀

E
covalent
j ) ⋅ ⇀pj, (19)

where N denotes the number of atoms in the system. Details are
presented in Subsection 2 of the Appendix. Briefly, the first term is
obtained from the derivative of matrix A−1, and the second term is
calculated as the derivative of the covalent field

⇀

E
covalent
j as follows:

∇i(
⇀

E
covalent
j ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∑n
k≠j∇i(⇀uk) ⋅ ∇k∇j

erf(βjkRjk)

βjkRjk
− (qi + ⇀ui ⋅ ∇i)∇i∇j

erf(βijRij)

βijRij
if j ≠ i

−∑n
k≠i∇i(⇀uk) ⋅ ∇k∇i

erf(βikRik)

βikRik
−∑N

k≠i (qk + ⇀uk ⋅ ∇k)∇i∇i
erf(βikRik)

βikRik
if j = i,

(20)

where n denotes all atoms that are covalently (including virtually)
bonded with atom i and atom i itself.

In practice, force calculations must be combined with an Ewald
summation or particle mesh Ewald (PME) technique to handle long-
range under periodic boundary conditions. This is to be discussed in
detail in Sec. II E.

D. Ewald summation and PME in pGM
The Ewald summation was introduced to compute the

electrostatic energy of an infinite lattice under periodic bound-
ary conditions.46 The basic idea is to put a mask Gaussian charge

distribution on the real charge on each atom. Then, a direct-space
pairwise summation is conducted to compute the electric field due
to real charges masked by the Gaussian charges. This step can be
executed with a reasonably short cutoff distance due to the very
fast decay after applying the mask Gaussian charges. Next, the field
generated by the mask Gaussians can be computed efficiently by a
reciprocal-space summation to bring back the original electric field
due to the real charges. Finally, a correction step is used to remove
interactions not needed in the original electrostatic model. Simi-
lar to its use in point charge/dipole models, a mask Gaussian dis-
tribution is also used on each moment of each atom in the pGM
model,
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ρmask
i (⇀r ;

⇀

Ri) = qi(
β0

2

π
)

3
2

exp(−β0
2∣⇀r −

⇀

Ri∣
2
)

+(⇀μi + ⇀pi) ⋅ ∇Ri(
β0

2

π
)

3
2

exp(−β0
2∣⇀r −

⇀

Ri∣
2
), (21)

where β0 is an adjustable parameter usually in the range of about
1
5∼

1
2 Å−1, universal for all atoms.

1. Direct summation
Given that the mask distribution is also a Gaussian function, it

is straightforward to compute the electrostatic potential, field, and
the gradient of the field of a masked pGM charge distribution as
follows:

ϕi =∑N
j≠i [qj + (⇀μj + ⇀pj) ⋅ ∇j]

erf(βijRij) − erf(β0Rij)
Rij

, (22)

⇀

Ei = −∑N
j≠i [qj + (⇀μj + ⇀pj) ⋅ ∇j]∇i

erf(βijRij) − erf(β0Rij)
Rij

, (23)

⇀
⇀

Ei = −∑N
j≠i [qj + (⇀μj + ⇀pj) ⋅ ∇j]∇i∇i

erf(βijRij) − erf(β0Rij)
Rij

. (24)

For the current pGM model, no higher-order field is needed. Here,
N represents all the atoms including those in the periodic boxes, but
their influence would decay to zero very quickly due to the masking
effect.

Another point worth pointing out is that the real field of
the mask Gaussian multipoles is used, i.e., β0 is used instead of
βi0 = βiβ0√

βi2+β0
2 in the above expressions. The mixed use is not an issue

because mask multipoles do not really exist; their role is just a math-
ematical treatment in the Ewald summation as long as the effect is
exactly canceled out in the later step.

2. Reciprocal summation
The reciprocal summation of the pGM model follows the

same procedure as a traditional point polarizable model.43 Thus,
the electrostatic potential, field, and gradient of the field can be
shown as

ϕi =
1
πV ∑Ð⇀m≠0

exp(− π2Ð⇀m 2

β0
2 )

Ð⇀m 2 exp(−2πiÐ⇀m ⋅
⇀

Ri)S(Ð⇀m), (25)

⇀

Ei =
2i
V ∑Ð⇀m≠0

Ð⇀m
exp(− π2Ð⇀m 2

β0
2 )

Ð⇀m 2 exp(−2πiÐ⇀m ⋅
⇀

Ri)S(Ð⇀m), (26)

⇀
⇀

Ei = −
4π
V ∑Ð⇀m≠0

Ð⇀mÐ⇀m
exp(− π2Ð⇀m 2

β0
2 )

Ð⇀m 2 exp(−2πiÐ⇀m ⋅
⇀

Ri)S(Ð⇀m), (27)

where the i’s that are not subscripts but the imaginary units, V is the
volume of the unit cell, and Ð⇀m is the reciprocal space vector. S(Ð⇀m)
is the structure factor,

S(Ð⇀m) =∑N
j=1 L̃j(

Ð⇀m) exp(2πiÐ⇀m ⋅
⇀

Rj),

L̃j(Ð⇀m) = qj + 2πi(⇀μj + ⇀pj) ⋅
Ð⇀m .

(28)

Here, N is the number of atoms in the primary simulation box
only.

3. Correction
The PME correction term is used to handle various specific sit-

uations in a force field. For example, most force fields have masked
bonded (1–2 and 1–3) atom pairs, which result in no electrostatic
interactions between these pairwise atoms. Thus, the interactions
among these masked pairs must be removed. However, in the cur-
rent pGM model, we do not have any masked pairs, so there is no
need for such correction.

Another correction that needs paying attention to is the self-
interaction correction. This is the only correction in the pGM model.
The self-potential, self-field, and gradient of the self-field can be
shown as42,43

ϕi =
2qiβ0√

π
, (29)

⇀

Ei = −
4(⇀μi + ⇀pi)β0

3

3
√
π

, (30)

⇀
⇀

Ei =
4qiβ0

3

3
√
π

⇀
⇀

I . (31)

These terms need to be properly subtracted to obtain the correct
potential, field, and field gradient, respectively

In summary, the similarity between the Ewald summation in
the pGM model and that in the polarizable point charge/dipole
model shows that the PME molecular dynamics (MD) engine for the
point charge/dipole model can be easily transplanted over for pGM
applications with little revision. There are excellent literature stud-
ies discussing the details of PME for polarizable point dipole models
and can be safely omitted in this work.42,43

E. Computing forces with the Ewald summation
and PME

As pointed out at the end of Sec. II C, analytical force expres-
sions [Eqs. (15) and (19)] cannot be used directly in typical MD
simulations since all summations are over infinite numbers of atoms
with periodic boundary conditions. They must be combined with
an Ewald summation or a PME technique to facilitate solvated-
phase simulations. To bypass the infinite summations, the force
expressions are reformulated in terms of fields and its derivatives,
which are also the quantities that an Ewald or PME procedure
would return. The key to express Eqs. (15) and (19) with fields and
gradients of fields is to consider the following quantities together:

⇀

E
covalent
i = −∑N

j≠i (qj + ⇀μj ⋅ ∇j)∇i
erf(βijRij)

Rij
,

⇀
⇀

E
covalent

i = −∑N
j≠i (qj + ⇀μj ⋅ ∇j)∇i∇i

erf(βijRij)
Rij

,

⇀

E
induced
i = −∑N

j≠i
⇀pj ⋅ ∇j∇i

erf(βijRij)
Rij

,

⇀
⇀

E
induced

i = −∑N
j≠i

⇀pj ⋅ ∇j∇i∇i
erf(βijRij)

Rij
,

(32)
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where N denotes all atoms in the system, including those of the
periodic boxes. Thus, these are all infinite summations.

A key step is in the computation of
⇀

F
i
induced, where term

∑N
j ∇i(

⇀

E
covalent
j ) ⋅ ⇀pj also has to be reformulated accordingly. Given

that Eq. (20) for ∇i(
⇀

E
covalent
j ) lists two separate terms for j = i and

j ≠ i, we can rewrite∑N
j ∇i(

⇀

E
covalent
j ) ⋅ ⇀pj as follows:

∑N
j ∇i(

⇀

E
covalent
j ) ⋅ ⇀pj

=∑N
j≠i∑

n
k≠j (−∇i(⇀uk)) ⋅ ∇k(

⇀pj ⋅ ∇j)
erf(βjkRjk)

βjkRjk

−∑N
j≠i (qi + ⇀μi ⋅ ∇i)∇i(

⇀pj ⋅ ∇j)
erf(βijRij)

βijRij

−∑n
k≠i∇i(⇀uk) ⋅ ∇k(

⇀pi ⋅ ∇i)
erf(βikRik)

βikRik

−∑N
k≠i (qk + ⇀μk ⋅ ∇k)∇i(

⇀pi ⋅ ∇i)
erf(βikRik)

βikRik
, (33)

where both j = i and j ≠ i terms in Eq. (20) are needed due to the
outermost summation over j. Combining the first and third terms of
Eq. (33) gives

∑N
j ∑

n
k≠j (−∇i(⇀uk)) ⋅ ∇k(

⇀pj ⋅ ∇j)
erf(βjkRjk)

βjkRjk

−∑N
j≠i (qi + ⇀μi ⋅ ∇i)∇i(

⇀pj ⋅ ∇j)
erf(βijRij)

βijRij

−∑N
k≠i (qk + ⇀μk ⋅ ∇k)∇i(

⇀pi ⋅ ∇i)
erf(βikRik)

βikRik
. (34)

Exchanging the summation order for the first term leads to

∑n
k∑

N
j≠k (−∇i(⇀uk)) ⋅ ∇k(

⇀pj ⋅ ∇j)
erf(βjkRjk)

βjkRjk

−∑N
j≠i (qi + ⇀μi ⋅ ∇i)∇i(

⇀pj ⋅ ∇j)
erf(βijRij)

βijRij

−∑N
k≠i (qk + ⇀μk ⋅ ∇k)∇i(

⇀pi ⋅ ∇i)
erf(βikRik)

βikRik
. (35)

Substitution of the expressions of electric fields and derivatives in
Eq. (32) gives

N

∑
j
∇i(

⇀

E
covalent
j ) ⋅ ⇀pj =∑

n
k ∇i(⇀uk) ⋅

⇀

E
induced
k + qi

⇀

E
induced
i

+ ⇀ui ⋅
⇀
⇀

E
induced

i + ⇀pi ⋅
⇀
⇀

E
covalent

i . (36)

Here, n are those atoms that covalently interact with atom i.
Given the above preparations, Eqs. (15) and (19) can finally be

expressed as follows after the substitution of Eqs. (32) and (36):

⇀

F
covalent–covalent
i =∑n

j ∇i(⇀uj) ⋅
⇀

E
covalent
j + qi

⇀

E
covalent
i + ⇀ui ⋅

⇀
⇀

E
covalent

i ,

(37)

⇀

F
induced
i =∑n

j ∇i(⇀uj) ⋅
⇀

E
induced
j + qi

⇀

E
induced
i + ⇀pi ⋅

⇀
⇀

E
induced

i

+⇀ui ⋅
⇀
⇀

E
induced

i + ⇀pi ⋅
⇀
⇀

E
covalent

i . (38)

Adding these two terms together, the final force expression is
obtained as

⇀

Fi =∑n
j ∇i(⇀uj) ⋅

⇀

Ej + qi
⇀

Ei + (⇀ui + ⇀pi) ⋅
⇀
⇀

Ei. (39)

Equation (39) shows that a key step in this algorithm is to accu-
mulate the atomic electric potential and its first and second deriva-
tives from various components, including both reciprocal and direct
summations.

III. RESULTS AND DISCUSSION
A. Validation of analytical electrostatic force
expression

To validate the pGM force expressions, e.g., Eq. (15) or (19), we
constructed a small toy system of two water molecules in free space.
The detailed water pGM parameters are listed in Table I. These
parameters were derived with an iterative Restrained ESP (RESP)
procedure for the pGM model with quantum mechanical ESP data
from a B3LYP/aug-cc-pVTZ calculation of the water dimer.

Two methods were used to calculate the atomic forces. The first
method is to use the force expressions to calculate forces analyti-
cally. The second method is to calculate forces numerically via the
finite-difference method based on the fact that each force is the neg-
ative gradient of potential energy. Here, the potential energy was
computed with Eqs. (13) and (14). The finite-difference coordinate
displacement was set to be 1 × 10−6 Å, and the induced dipole accu-
racy was set to 1 × 10−9. The two sets of atomic forces are listed
in Table II. It is clear that the differences between the two sets
of atomic forces appear only on the ninth digit after the decimal
point.

There is also an indirect way to confirm the correctness of the
force expression, which is to utilize the fact that the total force of the
system should always be zero in any direction. If we add up all atomic
forces, the system net force (in e2/Å2) is 1 × 10−9, 2 × 10−17, and
3 × 10−17, for x, y, and z directions, respectively. The overall error
here is consistent with the induction tolerance used in the testing,
1 × 10−9.

B. Accuracy of pGM electrostatic energy and forces
in PME

To achieve aqueous-phase simulations, an Ewald summa-
tion or PME technique is essential for any electrostatic model.
Although there are various publications discussing the accuracy
of PME,42,43,47,48 we have to acknowledge the fact that the pGM
model has a higher accuracy requirement than classical point-
charge force fields due to the presence of dipoles. In general,
higher moments would require higher PME accuracy. This can be
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TABLE I. Two water molecules in free space. The permanent dipole moments are expressed in the CBV frame according to Fig. 1. The moments in the CBV frame can be
obtained via a least square fitting procedure from either the ESP data or the permanent dipole moments in the lab frame.

Tested atoms Water-1 O Water-1 H1 Water-1 H2 Water-2 O Water-2 H1 Water-2 H2

Charge (e) −1.797 045 4 0.898 522 70 0.898 522 70 −1.797 045 4 0.898 522 70 0.898 522 70
Covalent dipole moment (e Å) −0.371 441 54 0.151 706 58 0.151 706 58 −0.371 441 54 0.151 706 58 0.151 706 58

−0.371 441 54 −0.022 490 434 −0.022 490 434 −0.371 441 54 −0.022 490 434 −0.022 490 434
Polarizability (Å3) 1.448 980 10 0.427 350 00 0.427 350 00 1.448 980 10 0.427 350 00 0.427 350 00
Gaussian radius (Å) 0.806 624 90 0.714 759 70 0.714 759 70 0.806 624 90 0.714 759 70 0.714 759 70
Coordinates (Å) −1.387 669 −1.734 110 −1.756 164 1.514 536 1.919 419 0.555 921

−0.006 775 0.790 147 −0.740 122 0.007 522 −0.047 517 −0.008 485
0.110 728 −0.310 036 −0.397 708 −0.121 554 0.751 251 0.043 101

appreciated from the perspective of two considerations. First, the
interaction energy between two dipoles decays faster with distance
(1/r3) than that between two charges (1/r). Second, the second
derivatives of the potential are needed to compute forces on dipoles
[Eq. (39)], whereas only first derivatives, e.g., electric fields, are
needed to compute forces on charges. Due to these differences, we
have to carefully examine the accuracy requirement of PME methods
used in our model.

To test the accuracy, we only look at the most difficult pair-
wise interactions so that the errors reported below are the max-
imum errors in the tested water system. For the reciprocal part,
we focus on the electrostatic field between the bonded O atom
and H atoms whose interactions are the strongest and thus the
most difficult in PME. For the direct summation part, we focus
on the electrostatic field between two H atoms. Because they have
the smallest Gaussian radii, their interactions converge slowly in
the direct summation. Thus, to guarantee a given accuracy level
for forces in the pGM model, we need to consider both PME
components.

In the following analysis, we set the grid spacing to 1 Å for PME
as in most biomolecular simulations and varied other parameters
to see how accuracy changes in both the reciprocal and the direct

summation components. Because our model contains both charges
and dipoles, we analyzed their field separately to assess the impact of
different setups on their accuracy of the electric field. The test results
are shown in Tables III–V.

It is clear from the above analyses that the pGM model demands
a higher accuracy level than classical point-charge models. This
is as expected for any electrostatic model with dipoles or higher
moments. For the reciprocal part, the field generated by dipoles
is more difficult to handle than that of charges in PME. Com-
paring Tables III and IV, we can see that the errors of dipole
fields are about twice larger than those of charge fields. Further-
more, Tables III and IV show that the second derivatives are the
most difficult in PME. Thus, to ensure the accuracy of the recip-
rocal summation of PME, we need to make sure that the second
derivatives reach a specified accuracy level. For example, if we use
5 × 10−5 as the accuracy threshold, which is a common choice, we
have to set Ewald β0 = 0.3 Å−1 and the interpolation order 7 or
higher in the PME setup (Table III). Of course, the use of smaller
grid spacing would increase the accuracy but with a higher over-
head in reciprocal summation. We will explore the best tradeoff in
accuracy and efficiency for realistic biomolecular systems in a later
publication.

TABLE II. Atomic forces (e2/Å2) computed via the analytical expression and the finite difference procedure and their differences.

Tested atoms Water-1 O Water-1 H1 Water-1 H2 Water-2 O Water-2 H1 Water-2 H2

Analytical forces (0.096 951 679, (−0.049 846 750, (−0.042 834 464, (0.055 862 413, (−0.248 587 088, (0.188 454 211,
−0.008 409 817, −0.237 351 651, 0.245 826 708, 0.009 291 242, 0.001 371 87, −0.010 728 352,

0.124 608 301) −0.076 271 576) −0.048 683 253) −0.136 952 953) −0.041 030 761) 0.178 330 242)
Finite-difference forces (0.096 951 679, (−0.049 846 749, (−0.042 834 464, (0.055 862 412, (−0.248 587 086, (0.188 454 212,

−0.008 409 817, −0.237 351 652, 0.245 826 707, 0.009 291 241, 0.001 371 87, −0.010 728 352,
0.124 608 301) −0.076 271 576) −0.048 683 253) −0.136 952 954) −0.041 030 761) 0.178 330 242)

Deviations (−0.3× 10−9, (0.6× 10−9, (0.02× 10−9, (−1.4× 10−9, (2.0× 10−9, (0.8× 10−9,
−0.3× 10−9, −1.1× 10−9, −1.0× 10−9, −0.9× 10−9, 1.1× 10−9, 0.2× 10−10,

0.5× 10−9) 0.2× 10−9) −0.4× 10−9) −0.9× 10−9) −0.1× 10−10) −0.3× 10−9)
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TABLE III. Errors of reciprocal potentials and derivatives generated by the dipole of the water-1 H1 atom on the water-1 O atom at different PME setups. The analytical values
[Eqs. (25)–(28)] were calculated using MATLAB. The interpolation order refers to the rank of the B-spline interpolation method used in PME (see Ref. 48 for details).

Interpolation order 5 6 7 8 9

Ewald coefficient β0 = 0.3 Å−1 Potential 8.2× 10−5 2.8× 10−5 1.5× 10−7 3.4× 10−6 2.7× 10−6

First derivative 3.0× 10−4 6.4× 10−5 9.2× 10−6 7.6× 10−6 3.9× 10−6

Second derivative 1.3× 10−3 3.9× 10−4 4.6× 10−5 1.6× 10−5 5.7× 10−6

Ewald coefficient β0 = 0.4 Å−1 Potential 1.2× 10−4 4.0× 10−5 4.3× 10−6 3.5× 10−8 5.4× 10−6

First derivative 1.3× 10−3 4.6× 10−4 1.5× 10−4 6.5× 10−5 2.5× 10−5

Second derivative 2.6× 10−3 1.6× 10−3 4.0× 10−4 1.9× 10−4 8.1× 10−5

Ewald coefficient β0 = 0.5 Å−1 Potential 2.6× 10−4 1.1× 10−4 1.7× 10−4 6.1× 10−5 9.1× 10−5

First derivative 5.1× 10−3 2.5× 10−3 1.2× 10−3 7.2× 10−4 4.0× 10−4

Second derivative 8.8× 10−3 5.5× 10−3 2.4× 10−3 1.3× 10−3 8.8× 10−4

TABLE IV. Errors of reciprocal potentials and derivatives generated by the charge of the water-1 H1 atom on the water-1 O atom at different PME setups. The analytical values
[Eqs. (25)–(28)] were calculated using MATLAB. The interpolation order refers to the rank of the B-spline interpolation method used in PME (see Ref. 48 for details).

Interpolation order 5 6 7 8 9

Ewald coefficient β0 = 0.3 Å−1 Potential 1.4× 10−6 3.7× 10−8 6.5× 10−8 1.4× 10−8 5.3× 10−9

First derivative 1.8× 10−4 3.8× 10−5 5.5× 10−6 1.1× 10−6 3.4× 10−7

Second derivative 7.7× 10−4 2.1× 10−4 3.0× 10−5 7.8× 10−6 1.8× 10−6

Ewald coefficient β0 = 0.4 Å−1 Potential 1.4× 10−5 3.7× 10−6 1.6× 10−6 6.8× 10−7 3.2× 10−7

First derivative 7.4× 10−4 1.1× 10−4 6.1× 10−5 2.1× 10−5 1.0× 10−5

Second derivative 2.5× 10−3 7.7× 10−4 2.1× 10−4 7.5× 10−5 3.0× 10−5

Ewald coefficient β0 = 0.5 Å−1 Potential 8.1× 10−5 3.9× 10−5 1.9× 10−5 1.2× 10−5 7.0× 10−6

First derivative 2.5× 10−3 7.8× 10−4 4.5× 10−4 2.6× 10−4 1.5× 10−4

Second derivative 6.7× 10−3 2.6× 10−3 1.1× 10−3 6.3× 10−4 3.4× 10−4

Situations are similar for the direct summation part. To reach
a common accuracy threshold of 5 × 10−5, if we set β0 = 0.3 Å−1

as in the reciprocal part, the direct space cutoff should be set to a
relatively longer cutoff distance of 10 Å, as shown in Table V. Of
course, a choice of larger β0 (i.e., 0.35 Å−1) would allow a commonly
used cutoff distance of 9 Å. However, this would require a higher
interpolation order to achieve the similar level of accuracy.

C. NVE simulations of the water box

Given all the accuracy considerations in Sec. III B, we per-
formed a pure water simulation to test the energy conservation
behavior in an NVE run with the PME treatment. The electrostatic
parameters were derived from those in Table I and transplanted onto
the TIP3P water model. We used 512 water molecules in a truncated

TABLE V. Errors of direct summation potentials for Gaussian potentials between two H atoms at different PME setups. These
values are the difference between two error functions, erf(βRc) − erf(β0Rc). Here, Rc is the direct summation cutoff distance,

and β = 1/(0.714 759 7 ⋅
√

2) Å
−1

for the H atom pairs.

Cutoff distance (Å) 7 8 9 10 11

β0 = 0.3 Å−1 3.0× 10−3 6.9× 10−4 1.3× 10−4 2.2× 10−5 3.1× 10−6

β0 = 0.4 Å−1 7.5× 10−5 6.0× 10−6 3.6× 10−7 1.5× 10−8 4.9× 10−10

β0 = 0.5 Å−1 7.4× 10−7 1.5× 10−8 2.0× 10−10 1.5× 10−12 7.3× 10−15

J. Chem. Phys. 153, 114116 (2020); doi: 10.1063/5.0019560 153, 114116-9

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

octahedron box of 27.5 Å. The dimension of the particle mesh
grid is 303, so the grid spacing is a bit less than 1 Å. The PME
β0 = 0.35 Å−1, the real space cutoff was set as 9 Å, and the inter-
polation order was 8 so that the overall PME error was less than
5 × 10−5.

We first tested a range of induction tolerance criteria, ranging
from 10−3 to 10−6. Our experiments show that 10−3 and 10−4 are
clearly not sufficient for the induction iteration, leading to decreas-
ing energy throughout the MD simulations. This is consistent with
previous findings in the developments of polarizable point dipole
models.42 Specifically, the energy in the NVE run of 10−3 drifts too
fast so that it is already out of the plotting range at the 100th step,
the very first data point. The rest of the energy plots over the simula-
tion time are shown below in Fig. 2. The initial testing shows that the
energy convergence became much better after we tighten the itera-
tion tolerance to 10−5. Although the total energy still drifts down a
little, but much slower. Finally, after we tighten it to 10−6, the total
energy is basically conserved. Of course, the total energy fluctuation
does exist.

Next, we also studied the influences of the PME setup on the
energy conservation. To compare with the NVE run with the high
PME accuracy above, we collected a comparable NVE run with the
same induction tolerance of 10−6, but with a somewhat lower PME
setting. The real space cutoff was set as 8 Å, and the interpolation
order was set as 6, but others remained to be the same, which leads
to a lower PME accuracy of ∼5 × 10−4. The total energy is more pos-
itive because there are fewer van der Waals pairs. As shown in Fig. 3,
the total energy also drifts noticeably, though it becomes more posi-
tive over time. In summary, our experiment shows that high enough
accuracy in both the PME calculation and the induction iteration
is necessary for a polarizable dipole model with permanent dipoles
to achieve energy conservation. Furthermore, we expect that even
higher accuracy is necessary if higher moments, i.e., quadrupoles, are

FIG. 2. Total energy vs the simulation time for the 512-water box simulation. Here,
all the simulations are performed with a 5 × 10−5 PME accuracy, but with different
induction iteration tolerances (1 × 10−4–1 × 10−6).

FIG. 3. Total energy vs the simulation time for the 512-water box simulation. Here,
both simulations were performed with a 1 × 10−6 induction iteration tolerance, but
with different PME accuracies, low for 5 × 10−4 and high for 5 × 10−5.

used in future pGM developments as higher derivatives are needed
from the PME calculation.

IV. CONCLUSION
In this work, we proposed an efficient formulation for the

polarizable Gaussian Multipole (pGM) model for biomolecular sim-
ulations. First, a local frame based on the covalent basis vectors
(CBV)/tensors was used to set up the permanent (covalent) multi-
poles on all atoms. The CBV frame nicely allows the intrinsic molec-
ular flexibility during simulations and facilitates an efficient expres-
sion of the electrostatic forces in the closed form. Based on the new
CBV local frame, we then derived the analytical force expressions for
the pGM model. Finally, we outlined how to interface the pGM elec-
trostatics seamlessly with the PME implementation for molecular
simulations under the periodic boundary conditions.

To validate the analytical force expression for the pGM model
defined on the CBV frame, we studied the accuracy of the analytical
atomic forces with a finite-different force analysis for a water dimer.
The analysis shows a very good consistency between the analytical
and numerical forces, with an error comparable to the finite differ-
ence uncertainty. In addition, total analytical and numerical forces
of the water dimer are very close to zero with an error consistent
with the induction iteration tolerance.

Next, we analyzed the PME setups necessary for accurate pGM
energy and force calculations. It was found that the pGM model
requires higher accuracy than the classical point-charge models due
to the presence of dipoles. This is because the electrostatic field gen-
erated by dipoles is much more difficult to interpolate than that of
charges in PME, and the error of the dipole field is about twice that
of the charge field. In addition, the second derivative of the potential
is needed, which is the more difficult to compute accurately in PME
to ensure accurate pGM forces.
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To validate the overall electrostatic framework for the refor-
mulated pGM model, we conducted an NVE simulation for a small
water box of 512 water molecules. Our results show that to achieve
energy conservation, it is important to ensure enough accuracy
on both PME and induced dipoles. With a 5 × 10−5 accuracy on
PME and a 1 × 10−6 tolerance for the induced dipoles, the tested
NVE water simulation in the pGM model was shown to conserve
energy reasonably well. Future development will be necessary to
improve the efficiency of the pGM model in both the PME setup
and induction iteration to bring out the potential of the pGM
model.
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APPENDIX: BOYS SERIAL AND DERIVATION
OF ANALYTICAL PGM FORCES
1. Tensor format of Boys serial

In this study, Boys functions up to rank 3 were used and are
listed below as reference. Higher ranked tensors and Boys functions
can be found in the literature.44,49

Boys functions up to rank 3 are

B0(x) =
erf(x)

x
,

B1(x) =
erf(x)
x3 − 2√

π
e−x

2 1
x2 ,

B2(x) =
3erf(x)

x5 − 2√
π
e−x

2 1
x4 (3 + 2x2),

B3(x) =
15erf(x)

x7 − 2√
π
e−x

2 1
x6 (15 + 10x2 + 4x4).

The associated tensors are

∇ erf(βR)
R

= −
⇀

Rβ3B1(βR),

∇∇ erf(βR)
R

= x̂px̂q(RpRqβ5B2(βR) − δpqβ3B1(βR)),

∇∇∇ erf(βR)
R

= x̂px̂qx̂r((δpqRr + δprRq + δrqRp)β5B2(βR)

−RpRqRrβ7B3(βR)).

2. Force derivation
We proceed in two steps: covalent–covalent interactions and

induced interactions, as shown in Sec. II C. First, we consider inter-
action energies due to covalent multipoles interacting with covalent
multipoles.

The system can be split into two groups of atoms, bonded atoms
and nonbonded atoms. The bonded group has those atoms bonded

to the atom to be considered (including itself), and the nonbonded
group has the rest. In the bonded group, the atoms can be further
split into two subgroups: the atom that is currently under considera-
tion, termed as the bonded-moving atom below, and the other atoms
in the bonded group are termed bonded-non-moving atoms. A total
of three groups of atoms can be classified.

Thus, we can rewrite the covalent–covalent interaction energy
as the following four parts.

(1) Nonbonded atoms interacting with bonded-non-moving
atoms:

U =
bonded−non−moving

∑
i

nonbonded

∑
j
(qi+⇀μi ⋅∇i)(qj+⇀μj ⋅∇j)

erf(βijRij)
Rij

.

(2) Nonbonded atoms interacting with bonded-moving atom i:

U =
nonbonded

∑
j
(qi + ⇀μi ⋅ ∇i)(qj + ⇀μj ⋅ ∇j)

erf(βijRij)
Rij

.

(3) Bonded-non-moving atoms interacting with bonded-non-
moving atoms:

U = 1
2

bonded−non−moving

∑
i

bonded−non−moving

∑
j≠i

(qi + ⇀μi ⋅ ∇i)

× (qj + ⇀μj ⋅ ∇j)
erf(βijRij)

Rij
.

(4) Bonded-non-moving atoms interacting with bonded-moving
atom i:

U =
bonded−non−moving

∑
j

(qi + ⇀μi ⋅ ∇i)(qj + ⇀μj ⋅ ∇j)
erf(βijRij)

Rij
.

Apparently, there should be a fifth part of interaction energy,
nonbonded atoms interacting with nonbonded atoms. However, this
part of energy does not change in the force calculation, so we omit its
expression here. Of course, atom i’s self-interaction is also ignored,
as discussed in the text.

Next, force on bonded-moving atom (i) can be derived as
the negative gradient of the above energy terms. When comput-
ing the gradient, it is worth pointing out that nothing varies
on the nonbonded atoms, only the dipole directions vary on
the bonded-non-moving atoms, and both dipole directions and
positions of the bonded-moving atoms vary. The above four
energy parts thus lead to the following four force components,
respectively:

(
⇀

Fi)1 = −
bonded−non−moving

∑
k

nonbonded

∑
j
∇i(⇀μk)⋅∇k(qj+

⇀μj ⋅∇j)
erf(βkjRkj)

Rkj
,

(
⇀

Fi)2 = −
nonbonded

∑
j
∇i(⇀μi) ⋅ ∇i(qj + ⇀μj ⋅ ∇j)

erf(βijRij)
Rij

−
nonbonded

∑
j
(qi + ⇀μi ⋅ ∇i)(qj + ⇀μj ⋅ ∇j)∇i

erf(βijRij)
Rij

,
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(
⇀

Fi)3 = −
bonded−non−moving

∑
k

bonded−non−moving

∑
j≠k

∇i(⇀μk)

⋅ ∇k(qj + ⇀μj ⋅ ∇j)
erf(βkjRkj)

Rkj
,

(
⇀

Fi)4 = −
bonded−non−moving

∑
j

∇i(⇀μi) ⋅ ∇i(qj + ⇀μj ⋅ ∇j)
erf(βijRij)

Rij

−
bonded−non−moving

∑
j

(qi + ⇀μi ⋅ ∇i)∇i(⇀μj) ⋅ ∇j
erf(βijRij)

Rij

−
bonded−non−moving

∑
j

(qi + ⇀μi ⋅ ∇i)(qj + ⇀μj ⋅ ∇j)∇i
erf(βijRij)

Rij
.

Summing up all four components, the final force expression is

⇀

Fi = −
n

∑
k

N

∑
j≠k
∇i(⇀μk) ⋅ ∇k(qj + ⇀μj ⋅ ∇j)

erf(βkjRkj)
Rkj

−
N

∑
j≠i
(qi + ⇀μi ⋅ ∇i)(qj + ⇀μj ⋅ ∇j)∇i

erf(βijRij)
Rij

.

Here, n and N follow the same notation as Sec. II C, the number of
atoms in the bonded group and the system, respectively.

Second, we consider energies caused by the induced dipoles.
As stated before, the induced energy contains three parts, induced
dipoles interacting with covalent multipoles, induced dipoles inter-
acting with induced dipoles, and induced dipole self-energy 1

2
⇀p ⋅

⇀

E.
From Sec. II C, we know that the total induced energy is

1
2

N

∑
i
−⇀pi ⋅

⇀

E
0
i ,

where
⇀

E
0
i is the electric field on atom i only by covalent multipoles.

The induced dipoles are determined by the total electric field,

⇀pi = αi
⇀

Ei = αi(
⇀

E
0
i −

N

∑
j≠i

⇀
⇀

Tij ⋅
⇀pj),

⇀
⇀

Tij = ∇i∇j
erf(βijRij)

Rij
.

Changing the above expressions into the component format and
applying Einstein’s index notation, we obtain

psi = αi(E0,s
i − Tst

ij p
t
j),

where s and t are component indices. Rearrangement leads to

( 1
αj
δstij + Tst

ij )ptj = Ast
ij p

t
j = E0,s

i .

If we assume that Ast
ij is inversible and its inverse matrix is A−1st

ij , we
have

psi = A−1st
ijE

0,t
j ,

where A−1st
ij is a 3N × 3N matrix, symmetrical for both atom index

and component index,

A−1st
ij = A−1ts

ij = A−1st
ji .

The gradient of A−1 is

∂A−1st
ij

∂xwk
= −A−1ss

′

ii′
∂As′t′

i′j′

∂xwk
A−1s

′t
i′j = −A−1ss

′

ii′
∂Ts′t′

i′j′

∂xwk
A−1t

′t
j′j ,

where w refers to coordinate indices (x1, x2, x3). It is obvious that i′

or j′ has to be equal to k for T to have a nonzero value. We have

∂Ts′t′
i′j′

∂xwk
=
∂Ts′t′

kj′

∂xwk
+
∂Ts′t′

i′k

∂xwk
.

Based on the above relations, the force expressed as the negative
gradient of the induced energy is

Fw
i =

∂

∂xwi
(1

2
⇀pj ⋅

⇀

E
0
j ) =

∂

∂xwi
(1

2
A−1st

jkE
0,s
j E0,t

k ) =
1
2
∂A−1st

jk

∂xwi
E0,s
j E0,t

k + A−1st
jkE

0,s
j
∂E0,t

k

∂xwi

= −1
2
A−1ss

′

jj′
∂Ts′t′

j′k′

∂xwi
A−1t

′t
k′kE

0,s
j E0,t

k + ptk
∂E0,t

k

∂xwi
= −1

2
ps
′

j′
∂Ts′t′

j′k′

∂xwi
pt
′

k′ + ptk
∂E0,t

k

∂xwi
= −ps

′

i
∂Ts′t′

ik′

∂xwi
pt
′

k′ + ptk
∂E0,t

k

∂xwi
.

Rewriting the above component format into the vector/tensor format, we have

⇀

Fi = −
N

∑
j≠i

⇀pi ⋅ ∇i(
⇀pj ⋅ ∇j)∇i

erf(βijRij)
Rij

+
N

∑
j
∇i(

⇀

E
0
j ) ⋅

⇀pj.

The next step is to evaluate∇i(
⇀

E
0
j ). Following the similar strategy used in covalent–covalent interactions, we split the system into two groups:

non-moving atoms and moving atom (i.e., atom i).
When computing the derivative of the field on a non-moving atom j, it is worth pointing out that the other nonbonded non-moving

atoms are not influenced by the virtual displacement of atom i, so only bonded non-moving atoms are considered below,
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∇i(
⇀

E
0
j ) = ∇i

⎛
⎝

bonded–non–moving

∑
k≠j

−∇j(qk + ⇀μk ⋅ ∇k)
erf(βkjRkj)

Rkj
−∇j(qi + ⇀μi ⋅ ∇i)

erf(βijRij)
Rij

⎞
⎠

=
bonded–non–moving

∑
k≠j

−∇i(⇀μk) ⋅ ∇k∇j
erf(βkjRkj)

Rkj
−∇i(⇀μi) ⋅ ∇i∇j

erf(βijRij)
Rij

− (qi + ⇀μi ⋅ ∇i)∇i∇j
erf(βijRij)

Rij

=
n

∑
k≠j
−∇i(⇀μk) ⋅ ∇k∇j

erf(βkjRkj)
Rkj

− (qi + ⇀μi ⋅ ∇i)∇i∇j
erf(βijRij)

Rij
.

Here, n represents the number of atoms in the bonded group, including atom i.
Next, we compute the derivative of the field on the moving atom, i.e., atom i, as follows:

∇i(
⇀

E
0
i ) = ∇i

⎛
⎝

n

∑
j≠i
−∇i(qj + ⇀μj ⋅ ∇j)

erf(βijRij)
Rij

−
nonbonded

∑
j
∇i(qj + ⇀μj ⋅ ∇j)

erf(βijRij)
Rij

⎞
⎠

=
n

∑
j≠i
−∇i(⇀μj) ⋅ ∇j∇i

erf(βijRij)
Rij

−
n

∑
j≠i
(qj + ⇀μj ⋅ ∇j)∇i∇i

erf(βijRij)
Rij

−
nonbonded

∑
j≠i
(qj + ⇀μj ⋅ ∇j)∇i∇i

erf(βijRij)
Rij

= −
n

∑
j≠i
∇i(⇀μj) ⋅ ∇j∇i

erf(βijRij)
Rij

−
N

∑
j≠i
(qj + ⇀μj ⋅ ∇j)∇i∇i

erf(βijRij)
Rij

.

Here, N represents the number of all atoms in the system.

DATA AVAILABILITY

The algorithms developed in this study and the valida-
tion data are deposited in the Amber repository and will be
made publicly available in the next Amber/AmberTools release at
http://ambermd.org/.
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