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ABSTRACT OF THE DISSERTATION 

 

Dimensionality Reduction  

for the Analysis of Single Cell  

RNA-Sequencing Data 

 

by 

 

Shamus McKinney Cooley 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2021 

Professor Eric Deeds, Chair 

 

Dimensionality reduction is nearly ubiquitous in the analysis of single cell sequencing data.  

However, until the current work, no serious effort had been made to quantify the distortion 

introduced by dimensionality reduction and the effect of that distortion on the analysis.  Here, I 

first present a method for the measurement of distortion caused by dimensionality reduction, 

Average Jaccard Distance.  I will show that the application of this metric to data analysis 

workflows suggests the need for revision in the way that these methods are used for single cell 

RNA sequencing analysis.  Next, I propose a revised methodology, and present the results of 

applying this revised methodology to the study of small cell lung cancer.  The results include the 

identification of a stem-like population of cancer cells and many potential drug targets. Finally, I 
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present the schematic of a new, more accurate method of dimensionality reduction using deep 

neural networks.   
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Chapter 1:  A novel metric reveals previously unrecognized distortion in dimensionality 

reduction of scRNA-Seq data. 

 

Introduction 

Technological advances over the past century have enabled collection and analysis of 

data sets of unprecedented size and complexity.  In geology, a modern assay might report the 

concentrations for over fifty elements from a single sample1; in climatology, measurements of 

sea surface temperature and the strength of zonal winds can be obtained simultaneously from 

hundreds of different sensors at any given point in time2; in cell and molecular biology, 

sequencing technologies have scaled up the throughput and resolution of genome data in 

populations3,4 and gene expression levels in cells5,6, into many thousands of dimensions in the 

case of single cell RNA-Seq (scRNA-Seq).  Future technologies will doubtlessly expand the 

numbers of dimensions detected in complex systems by orders of magnitude. 

While such datasets promise to provide greater insight into the problems being studied, 

high-dimensional data are also more difficult to analyze.  The computational complexity of many 

data analysis algorithms scales exponentially with the dimensionality of the dataset, statistical 

inference often becomes difficult as dimensionality increases, and algorithms that work in lower 

dimensions become intractable in higher-dimensional spaces7,8.  This is often referred to as the 

“curse of dimensionality”. The aim of dimensionality reduction is to reduce the dimensionality of 

the problem while retaining as much of the relevant information as possible– ideally all of it. It 

has become an indispensable tool for the rapidly growing number of scRNA-Seq studies. 
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Dimensionality reduction has a long history9,10.  Principal Component Analysis (PCA) is 

perhaps the oldest and most common linear approach, but many alternative approaches to linear 

dimensionality reduction exist as well, such as Non-negative Matrix Factorization (NMF) and 

Independent Component Analysis (ICA)9,11.  These algorithms are useful in a broad class of 

problems.  However, linear approaches may be insufficient when the data display significant 

nonlinear characteristics12.  In such situations, one often adopts a “manifold” assumption, which 

posits that the data can be modeled as smoothly varying local neighborhoods of dimension 

significantly lower than the ambient space13.  A large number of Nonlinear Dimensionality 

Reduction (NDR) techniques have been developed to approximate these manifolds14,15,16,17, 

including popular visualization methods like t-distributed Stochastic Neighbor Embedding (t-

SNE)18 and Uniform Manifold Approximation and Projection (UMAP)19.  Collectively, the use 

of NDR techniques is often referred to as “manifold learning”13. 

In NDR techniques, one specifies the dimension of the resulting representation of the 

data.  For example, if we use t-SNE to reduce the dimension of scRNA-Seq data, we tell the 

algorithm the number of dimensions that we want in the end.  Unfortunately, the appropriate (or 

latent) dimensionality needed to correctly represent any given data set is generally not known a 

priori.  A natural choice for visualization purposes is to choose two dimensions, since that kind 

of representation is easy to reproduce in the format of a figure.  In the analysis of scRNA-Seq 

data, two dimensions are commonly used not just for visualization but also for downstream 

analyses ranging from cell type clustering (Fig. 1a) to “pseudotime” ordering20.  Currently, it is 

unclear just how much character of the original data is being lost in the reduction of data on the 

order of 20,000 dimensions, typical for scRNA-Seq in many species, to two dimensions.  Even 

when more dimensions are employed, the amount of information preserved in the dimensionality 
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reduction step is not obvious.  Because thousands or millions of cells can be characterized using 

scRNA-Seq, the resulting datasets are often massive, and dimensionality reduction is generally 

considered a necessary step in the analysis. 

In order to understand the issues that might be introduced through dimensionality 

reduction, consider the familiar problem of making a 2-D map of the entire surface of the Earth.  

Doing this requires “slicing” the earth along some axis in order to unfold it into a map; this is 

commonly done in a line through the Pacific, since few landmasses are disrupted by this cut.  

Then, the mapmaker must either increase the relative size of landmasses near the poles or slice 

the map again in order to project the globe into two dimensions.  Regardless of technique, the 

globe cannot be represented in two dimensions without slicing and distorting the map in some 

way, which has led, for instance, to popular criticisms of the Mercator Projection.  While 

distortion of distance and area are of course important, perhaps more concerning is the fact that 

the discontinuous slices mentioned above take points that are nearby (e.g. two points in the 

Pacific) and place them on opposite sides of the map.  This means that the local neighborhoods 

of many of the points on the globe are completely different between the Earth itself and the 2-D 

representation. 

With this observation in mind, it becomes apparent that there is no guarantee that high 

dimensional data sets, such as those associated with single cell genomics, can be represented in 

two dimensions without introducing analogous discontinuous slices into the data.  Even 

techniques that attempt to objectively find a lower-dimensional representation using more than 

two dimensions, such as the common scree (elbow) plot technique in PCA to choose the 

directions that capture most of the variation in the data21, could also suffer from similar 
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problems.  Yet, little analysis has been done to elucidate the extent to which NDR techniques 

introduce discontinuities into reduced-dimensional representations. 

We approached this problem by applying a simple metric, inspired by the above 

metaphor of the globe, to quantify the extent to which any given dimensionality reduction 

technique discontinuously slices or folds the data in some way.  This metric is based on 

comparing the local neighborhood of a point in the original data with the local neighborhood of 

that same point in the reduced-dimensional space using the Jaccard distance22.  We first applied 

this approach to the simple problem of embedding points on the surface of a hypersphere (which 

is a straightforward generalization of the sphere to more than three dimensions) into the 

appropriate latent dimension from a higher-dimensional space.  We found that many popular 

techniques, such as t-SNE and UMAP, not only introduced discontinuous slices into the data 

when trying to embed hyperspheres into two dimensions, but also when trying to embed into the 

correct latent dimension.  Indeed, we failed to identify an NDR technique currently in 

widespread use for analysis or visualization of scRNA-Seq data that could successfully embed 

hyperspheres above approximately 10 dimensions. 

We then used our metric to analyze how dimensionality reduction affects analysis of 

scRNA-Seq data.  This type of data typically undergoes the following process or a variation 

thereof:  First, an arbitrary number of highest-varying genes are selected from the dataset.  These 

genes are analyzed, while the genes that vary less between samples are disregarded.  Next, the 

HVGs are represented in a lower-dimensional space with PCA.  The number of principal 

components chosen for this step is also arbitrary but can be based on inspection of a scree plot.  

Finally, the data is visualized in 2 or 3 dimensions using t-SNE or UMAP.  In our review of the 

literature, we have found that some groups perform further quantitative analysis on the PCA 
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representation of the data, while others perform analysis on the 2 or 3 dimensional embeddings 

given by UMAP or t-SNE.  When we measure distortion by calculating AJD, we found that 

commonly used techniques disrupt 90-99% of the local neighborhoods in the data prior to 

performing further quantitative analysis.  Even when embedding into higher dimensions, NDR 

techniques generally introduced substantial discontinuity into the data.  These discontinuities 

have important consequences for any approach that uses local neighborhoods for inference in 

scRNA-Seq data, including clustering and many pseudotime ordering algorithms20.   

Our results demonstrate that, regardless of the technique used to reduce dimensionality, 

most of the local structure of high-dimensional data is lost when compressed into the number of 

dimensions typically used for scRNA-Seq analysis.  This implies that any analysis based on this 

kind of representation of the data introduces substantial bias into interpretations of the results.  

We show that NDR techniques do not generate valid embeddings even for simple manifolds, and 

that the distortion introduced by NDR techniques applied to existing scRNA-Seq datasets can 

significantly alter the results of downstream analyses like cell type clustering and pseudotime 

ordering.  Our findings suggest straightforward guidelines for evaluating the quality of a lower-

dimensional representation of scRNA-Seq data.  Nevertheless, new NDR techniques are needed 

that can reliably produce true topological embeddings, or, at least, closer approximations than 

current techniques can produce.  We expect that the metric and approach introduced here will be 

helpful in evaluating and developing more effective approaches to the problem of manifold 

learning and analysis of scRNA-Seq or other high-dimensional data. 

Results 

Quantifying discontinuities introduced by dimensionality reduction 
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 The goal of NDR is to learn a representation of a data set that has fewer features, but still 

retains the bulk of the information contained in the data.  The extent to which the representations 

created by dimensionality reduction techniques actually preserve information is often illustrated 

with toy datasets such as the swiss roll (Fig. 1b).  This example tests the ability of NDR 

techniques to represent the three-dimensional swiss roll data set in two dimensions while 

preserving the local structure of the original dataset (as can be seen here by the preservation of 

the “rainbow” pattern in the t-SNE representation).  Most NDR techniques perform well on this 

task because a swiss roll is just a “rolled up” two-dimensional plane – a relatively simple 

transformation of a plane into a three-dimensional object.  However, many objects, like the 

sphere in Fig. 1c, cannot be represented in 2-D without introducing significant distortion in local 

neighborhoods.  This results in a notable scattering of the rainbow pattern (Fig. 1c). 

A mapping from a high dimension to a lower dimension that (locally) preserves the 

structure of the data is called an embedding: technically, this a bijective map that is continuous in 

both directions (also called a homeomorphism).  For topological spaces, a key mathematical 

property of an embedding is that it is continuous, and a consequence of that continuity is that 

local neighborhoods (e.g. the rainbow pattern in Fig. 1c) are preserved.  For a swiss roll, NDR 

techniques like t-SNE can usually find an embedding, or something close to one.  For a sphere, 

however, NDR finds a representation of the data in two dimensions that is not, strictly speaking, 

an embedding. 

It is clear from the simple example in Fig. 1c that a major problem with trying to embed a 

sphere in 2-D is that this is impossible to do without introducing discontinuities into the resulting 

representation.  In the context of experimental scRNA-Seq data, this means that the local 

structure of the data may be lost in the dimensionality reduction, and error (possibly large error) 
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could be introduced into any analysis that happens downstream of NDR.  This is particularly 

problematic because we do not know a priori what the true dimension of a particular scRNA-Seq 

data set might be.  Previous work on quantifying distortion in NDR has focused on the notion of 

Euclidean distance between the position of a point in the original space and its embedded 

position1923, without considering the change in relative position between the point and its 

neighbors.  However, quantifying the extent of the loss of structure caused by NDR requires 

consideration of neighborhoods within the data, not just changes in the positions of individual 

points.  For example, a 2-D representation of the swiss roll might be stretched out, greatly 

distorting the pointwise distances, while still maintaining the rainbow structure depicted in Fig. 

1c and thus providing a true embedding.  This suggests the need to develop alternative 

approaches to quantifying distortion in NDR, particularly focused on characterizing 

discontinuities that may be introduced by dimensionality reduction techniques. 

For any point in the swiss roll, the neighborhood of other points that are nearest to it are 

roughly the same in three dimensions and in the t-SNE representation in two dimensions (Fig. 

1b).  The two-dimensional representation of the sphere, on the other hand, gives noticeably 

different sets of nearest neighbors to many points (Fig. 1c).  We thus developed a straightforward 

metric based on quantifying how similar the sets of neighbors are around each point between the 

original, high-dimensional data in the ambient space, and the low-dimensional representation.  

First, we find the k-nearest neighbors for each point in the original data.  We call this set A (see 

Fig. 1d).  Next, we find the k-nearest neighbors in the lower-dimensional space.  We call this set 

B.  We compare these two sets using a measure of dissimilarity called the Jaccard distance (Fig. 

1e).  Calculating the Jaccard distance involves computing the size (or cardinality) of the 

symmetric difference between A and B: the symmetric difference is just the set of points that are 
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in A or B, but not both.  This is equivalent to subtracting the number of points in the intersection 

between A and B from the number of points in the union (Fig. 1e).  The Jaccard distance is the 

ratio of the size of this symmetric difference to the total number of points in A and B together 

(i.e. the number of points in the union between A and B).   

If A and B are identical sets, meaning the neighbors of the point in the high-dimensional 

data and the low-dimensional representation are the same, then the Jaccard distance is 0.  If A 

and B are completely different sets (i.e. the neighbors around this point completely change) then 

the Jaccard distance is 1. It is easy to prove that, for a true topological embedding the Jaccard 

distance will be zero for every point in the dataset (Supplemental Info); in other words, in a true 

embedding all local information is preserved.  To characterize the global “distance” of any low-

dimensional representation from this ideal, we first compute the Jaccard distance for all the 

points in the data set and then average these values.  We refer to this quantity as the Average 

Jaccard Distance (AJD), and it gives a value of 0 for a true embedding, 1 for a representation that 

retains none of the information about the local structure of the data for any point in the data set, 

and an intermediate value for a representation that retains part of the information. 
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Fig.  1.  (a)  A schematic of some scRNA-Seq workflows.  The gene expression data are stored as 

a matrix, with each row corresponding to a cell, and each column correspond to a gene (after 

correcting for UMI swapping).  The data undergo dimensionality reduction, and analysis is 

performed on the lower-dimensional representation of the data.  (b)  The “swiss roll” data set.  

t-SNE can reduce the data into two dimensions without altering the local structure of the data.  

(c)  A sphere data set.  t-SNE is unable to represent the 3-dimensional object in 2 dimensions 

without disrupting the local structure of the data.  (d)  An illustration of how NDR distorts local 

neighborhoods.  The red points are the k-nearest neighbors of a single point in the 3-dimensional 

space.  The blue points are the k-nearest neighbors of the same point in the t-SNE-generated 2-

dimensional representation.  The violet points are the intersection between the red points and the 
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blue points.  (e)  The Jaccard Distance is a method for quantifying the disruption in local 

neighborhoods. 

 

Testing on Synthetic Data 

To test the usefulness of the AJD, we first applied the metric to a problem where we 

know a priori the appropriate embedding dimension for the data set.  Specifically, we created 

synthetic data for hyperspheres of varying dimension.  A hypersphere is a manifold that 

represents a straightforward generalization of the standard 3-dimensional sphere to higher 

numbers of dimensions; it is just a collection of points in some n-dimensional space that are all 

the same distance from a central point (that distance is the radius of the sphere).  In two 

dimensions this is a circle, in three dimensions a sphere, and in higher dimensions a hypersphere.  

We used a simple algorithm to sample uniformly from the surface of a hypersphere in n 

dimensions; for simplicity we used the origin of the space as the central point, and we set the 

radius of the hypersphere to 1 (see Methods).  It is mathematically impossible to embed an n-

dimensional sphere generated this way in less than n dimensions, so we called n the “latent 

dimension” of the data.  To see if NDR techniques could generate a true embedding of the data 

into n dimensions, we first embedded our hyperspheres into a 100-dimensional ambient space.  

To demonstrate how we did this, take the case of a 20-dimensional hypersphere.  If we sample 

points from that hypersphere, each one of those points is characterized by a vector of 20 

numbers.  We can trivially embed those points into a 100-dimensional space by just adding 80 

zeroes to the end of those vectors (see Methods). 

We used the approach above to generate synthetic 100-dimensional datasets with 1000 

points sampled from hyperspheres of known latent dimension.  We then used multiple NDR 
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techniques to embed this dataset into each lower dimension from 1 to 100.  We hypothesized that 

the AJD would be zero for every dimension above the latent dimensionality n of the manifold 

that we had generated.  Surprisingly, however, we found that the AJD did not reach 0 for 

hyperspheres with n ≥ 10 for any NDR technique that we tried when we used a neighborhood 

size of k = 20 (see Fig. 2a).  In the case of the popular technique t-SNE, for instance, the 

embeddings it produced generally had AJDs of greater than 0.75, regardless of both the latent 

dimension of the hypersphere and the embedding dimension used for the t-SNE algorithm.  

Other techniques, such as Isomap and Spectral Embedding12,14 exhibited clear minima in the 

AJD at the appropriate latent dimension, but still produced embeddings with significant 

distortion.  Changing the size of the neighborhood between 10 and 100 points did not 

significantly alter these findings (Supplemental Figure 1).  This result is particularly striking 

because we know that it is possible to embed a 20-dimensional hypersphere into a 20-

dimensional space without any distortion at all (corresponding to an AJD of 0).  Indeed, for the 

case of this particular synthetic dataset there is a trivial mapping that results in a true embedding 

and an AJD of zero in the latent dimension, but none of the commonly used techniques that we 

tested successfully recovered it. 

We hypothesized that the datasets were too small, and that an increased sample size 

might allow the algorithms to find a proper embedding.  Although increasing the sample size 

created a more pronounced local minimum at the latent dimension for some techniques (Fig. 2b), 

the AJD at the latent dimension never dropped below a certain level:  this minimum was 

invariant to increases in sample size of points on the sphere (Figs. 2D & 2E). In the case of 

MDS, increasing sample size resulted in more distorted representations at the latent dimension.  

Again, these simulated datasets represent what should be a relatively trivial problem for manifold 
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learning. The fact that no nonlinear dimensionality reduction technique could find even this 

simple mapping raises questions about the accuracy of the approximate “embeddings” generated 

by NDR and the effects that distortion might have on the analysis of scRNA-Seq and other high-

dimensional data. 

Measuring Distortion in scRNA-Seq Studies 

To address these questions, we identified state-of-the-art scRNA-Seq studies24,25 and 

analyzed the effect of NDR on the analysis of these data.  First, we looked at a study of Hydra 

cells by Siebert et al.24.  We followed a typical dimensionality reduction workflow.  Namely, we 

first selected 5000 HVGs, reduced the dimensionality of this subset with PCA using 45 principal 

components.  (The number of PCs was selected by inspection of a scree plot).  For this dataset, 

we selected one of the largest cell type clusters defined in the study (1,778 cells), an endodermal 

epithelial stem cell, and reduced the gene expression data corresponding to these cells into 

dimensions ranging from 1 to 100 (Fig. 3 a, b).  The AJD for these low-dimensional 

representations never dropped below 0.5, and for the most commonly used number of 

dimensions for analysis and visualization, 2 and 3, the AJD was close to one, regardless of the 

technique employed.  In other words, mapping the data down to 2 or 3 dimensions introduces so 

much distortion that nearly every point in the dataset has a completely different neighborhood in 

the NDR representation compared to the original data.  Above 100 dimensions, many techniques, 

such as Spectral Embedding, exhibited numerical instabilities and could not be used.  For those 

NDR techniques that consistently worked above 100 dimensions, we attempted embedding the 

data in dimensions ranging up to 1400 (Fig. 3b) but did not find any indication of approaching a 

true embedding (AJD≈0). As a control, we used PCA and found that the AJD only approached 

zero when the embedding dimension approached the number of cells in the cluster (~1,750 see 
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Fig. 3b).  The number of cells sets the absolute limit of the number of dimensions that PCA can 

find, indicating that even PCA cannot find a meaningful reduction of the dimensionality in this 

particular case. 

 

Fig.  2.  (A)  The Average Jaccard Distance (AJD) for points randomly sampled from the surface 

of hyperspheres of varying dimension embedded in dimensions 1-100.  The AJD is lowest when 

the latent dimensionality of the manifold is lowest.  (B)  The effect of sample size on Average 

Jaccard Distance.  Although the shape of the curve more clearly indicates the latent 

dimensionality of the manifold, the distortion in local structure (AJD) does not improve with 
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increased sample size.  (C) AJD for varying high-dimensional geometries.  Three simulated 20-

Dimensional datasets, hyperspheres, multivariate gaussians, and virtual scRNAseq data 

simulated by the Splatter package, are each embedded into spaces of dimension varying from 2-

100.  The AJD is calculated for each embedding.   (D)  AJD vs. Sample size.  The Average 

Jaccard Distance as the sample size increases from 100-5000 points.  The distortion created by 

the embedding is mostly independent of sample size.  (The latent dimension of these datasets was 

20, and the ambient dimension of these datasets was 100.) (E) Large Sample Sizes.  Datasets are 

sampled from a 20-dimensional hypersphere and embedded in spaces of varying dimension.  

Increase the size of the sample does not alleviate the distortion introduced by dimensionality 

reduction. 
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Figure 3.  Does PCA Filter Noise?  (A) A 20-dimensional multivariate gaussian “cloud” is 

simulated in a 100-dimensional space.  Noise is added to the dimensions containing the manifold 

(on-manifold noise) as well as to the dimensions not containing the manifold (off-manifold 

noise). The noisy data is embedded with PCA, and the Average Jaccard Distance is calculated 

between the raw data and the embedding.  The experimented is repeated with a range of 

standard deviations for the added noise, both on and off the simulated manifold.  The Average 

Jaccard Distance changes little, indicating that PCA is unable to remove the noise except in 



 

 16 

cases where the noise is very small. (B) Again, a 20-dimensional multivariate gaussian “cloud” 

is simulated in a 100-dimensional space.   Noise is added to the dimensions containing the 

manifold (on-manifold noise) as well as to the dimensions not containing the manifold (off-

manifold noise).  The noisy data is embedded with PCA.  The Average Jaccard Distance is 

calculated between the raw data and the embedding, as well as between the raw data and the 

noisy data.  The experimented is repeated with a range of standard deviations for the added 

noise, both on and off the simulated manifold.  The heatmap displays the difference between 

these two measurements of distortion.  The Average Jaccard Distance changes little, indicating 

that PCA is unable to remove the noise. 

 

In order to confirm that the observed distortion wasn’t unique to the these two studies, we 

next selected a wide variety of scRNA-seq studies from a diverse set of model organisms, both 

vertebrate (Fig. 3e) and invertebrate (Fig. 3f) and repeated our analysis in Seurat, using the 

dimensionality reduction techniques PCA and UMAP (Fig. 3e).  In every case, the distortion 

introduced by UMAP was substantial, and the technique consistently failed to find a low-

distortion embedding even in higher dimensions.  The performance of PCA varied from data set 

to data set, but often needed well over 100 dimensions to represent the data with low levels of 

distortion (e.g. AJD < 0.05), 

These results indicate that dimensionality reduction likely introduces significant 

distortion into data not only reduced to two dimensions, which is commonly used for 

visualization and some data analysis, but even in higher-dimensional representations of the data.  

As some degree of dimensionality reduction is an integral part of essentially every scRNA-Seq 

data analysis pipeline, it is unclear how accurate the results of most scRNA-Seq analyses are. 
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Fig.  4.  Distortion introduced by dimensionality reduction in scRNA-Seq.  (A)  The entire 

dataset from Siebert et al. undergoes typical dimensionality reduction. First, the 5000 most 
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highly varying genes (HVGs) are selected.  PCA is performed using a number of principal 

components varying from 2-100.  AJD is calculated between each of these embeddings and the 

raw data.  (B) The “best” PCA representation of the data according to a scree plot (45 PCs) 

undergoes dimensionality reduction via UMAP and t-SNE.  AJD is measured between these 

embeddings and the original, raw data.  (C)  A single cluster in the hydra dataset (as identified 

by the authors) undergoes selection for HVGs and the PCA into spaces of dimension 2-100. The 

distortion is somewhat less, but still significant.  (D)  The “best” PCA representation (45 PCs) 

undergoes nonlinear dimensionality reduction into 2 and 3 dimensions using t-SNE and UMAP.  

Again, the distortion is less for a single cluster. (E) Average Jaccard Distance vs. Embedding 

Dimension for Invertebrate scRNA-Seq studies.  (F)  Average Jaccard Distance vs. Embedding 

Dimension for Vertebrate scRNA-Seq studies.   

 

 

Evaluating the Effect of NDR Distortion 

Although the distortion in local neighborhoods caused by NDR is quite high when the techniques 

are applied to scRNA-Seq data, it is unclear if these effects are mostly local, or if the problem is 

more global in nature.  In other words, it is possible that, within some local region of the data, 

NDR is essentially moving points around within the region.  This would lead to an AJD near one 

with a neighborhood size of ~20 but may not significantly affect analyses like cell type 

clustering.  Alternatively, the distortion caused by NDR might move points over large distances, 

as in the example with the sphere discussed above (Fig. 1c).  More global changes like this could 

introduce more significant errors into cell type clustering and other analyses.  

To test this, we first considered how the AJD changes as a function of the neighborhood 

size used to calculate the Jaccard distances.  If the distance goes to 0 at a relatively small 
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neighborhood size (say, around 100 or so), this would imply that the distortion due to NDR is 

primarily local.  If not, it implies that the distortion is more global.  We applied this analysis to 

hyperspheres, and found that, for many techniques including t-SNE and UMAP, the AJD did not 

approach 0 until we included the majority of the data set in the neighborhood even at the latent 

dimension, indicating that the distortion in the case of hyperspheres is global in nature (see 

Supporting Info).  We applied a similar analysis to the endothelial cell cluster from the Siebert et 

al. Hydra dataset24.  Because we do not know the “true” latent dimension for this dataset, we 

chose to use two dimensions, the typical dimensionality for visualization and, frequently, data 

analysis20.  Here we also found that the AJD did not fall to 0 until we computed the Jaccard 

Distance using the entire cell type cluster, which indicates that the distortion due to NDR is 

global in nature (Fig. 4a). 

The above analyses were performed on minimally processed scRNA-Seq data where the 

raw counts were just corrected for doublets, batch effects, and other common sources of 

technical noise in the scRNA-Seq experiment.  In practice, NDR is rarely used on this type of 

relatively unprocessed scRNA-Seq data.  In particular, transcript counts for each cell are often 

reduced to a subset of “Highly Variable Genes” (HVGs) that display significantly more 

variability between cells in the experiment than one would expect according to some null model. 

Reduction of the gene set to HVGs is itself a form of dimensionality reduction.  Next, the data 

are subjected to linear dimensionality reduction.  Often a scree plot is used to select the 

embedding dimension for PCA.  Clustering is performed after this linear reduction, and 

nonlinear reduction is used for visualization of the results.  Although it is not always the case, it 

is common for developmental “pseudotime trajectories” to then be derived from the data after 
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NDR26,27.  This is done by constructing a minimum spanning tree across the reduced data set and 

ordering cells using this tree20 

Such analysis pipelines clearly entail several dimensionality reduction steps, and our 

results above indicate that severe distortion is likely introduced at each step.  We thus sought to 

analyze the consequences of this distortion on the results of typical analysis pipelines applied to 

a wide variety of data sets. We used the Seurat package in R to perform these analyses, partially 

because of the popularity of the package and partially because the original analysis of the data 

was performed using Seurat2824. For each study we used the same embedding dimension for PCA 

as was used by the original investigators.  We then reduced the data to 2 dimensions with UMAP 

and computed the AJD between each step in the pipeline. 

Study Model Organism Number 

of PCs 

AJD after “De-

Noising” with PCA 

AJD after UMAP 

Siebert et al.24 Hydra vulgaris 
31 0.87 0.92 

Jean-Baptiste et al.38 Arabidopsis thaliana 
25 0.75 0.81 

Farrell et al.40 
Danio rerio (Zebrafish) 97 0.90 0.92 

Taylor et al.41 
Caenorhabditis elegans 

125 0.94 0.95 

Davie et al.42 
Drosophila melanogaster 

(Fruit Fly) 

82 0.94 0.95 

Ma et al.43 
Homo sapiens 

20 0.90 0.91 

Mays et al.44 Rattus norvegicus 13 0.99 0.99 

 

Table 1. Average Jaccard distance (AJD) between the minimally processed (raw) scRNA-Seq 

datasets and the representations produced by dimensionality reduction. 

 

As expected based on our findings above, each step of dimensionality reduction 

introduced significant distortion, with AJD values between the original data and the processed 
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data above 0.9 for almost every step (Table 1).  Clearly, the local structure of the data is almost 

entirely lost downstream of the final NDR step. 

One of the most common applications of scRNA-Seq analysis is in the identification of 

distinct cell types in the data, which is usually done by clustering the cells after dimensionality 

reduction has been performed29.  We used the standard Adjusted Rand Index (ARI) to quantify 

the similarity of the clusters obtained from each step along the data analysis pipeline (Table 2).  

Because clustering only makes sense in the case where there are multiple distinct cell types, we 

applied this analysis only to those studies where it was computationally feasible to analyze all 

cells in the data set.  We obtained clusters using the standard procedure in Seurat (see Methods). 

 

 

Study Model Organism ARI:  PCA ARI:  UMAP 

Siebert et al.24 
Hydra vulgaris 

0.61 0.43 

Jean-Baptiste et al.38 
Arabidopsis thaliana 

0.53 0.45 

Jackson et al.39 Saccharomyces cerevisiae (Yeast) 0.25 0.14 

Farrell et al.40 Danio rerio (Zebrafish) 0.12 0.09 

Taylor et al.41 Caenorhabditis elegans (Worm) 0.31 0.23 

Ma et al.43 Homo sapiens (Human) 0.36 0.21 

Davie et al.42 Drosophila melanogaster (Fruit Fly) 0.27 0.12 

 

Table 2. Adjusted Rand Index (ARI) between clustering performed on the minimally processed 

(raw) scRNA-Seq datasets and clustering performed on representations produced by 

dimensionality reduction.  In each case, the number of PCs used for PCA is the same as in the 

original study, and UMAP into 2 dimensions is performed downstream of PCA.  In every case, 

the clustering is substantially different after PCA, and even more dissimilar after UMAP. 
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Fig.  5.  (A)  Distortion vs. neighborhood size. A single cell RNA sequencing dataset is filtered for highly 

varying genes.  The data is then embedded into a 45 dimensional space using PCA.  (The choice of 45 

principal components was based on inspection of a scree plot)  The data is then embedded into 2 

dimensions using t-SNE and UMAP.  Average Jaccard Distances are calculated between the raw data 

and the PCA embedding, as well as between the raw data and the 2-dimensional embeddings using 

various values for the k-nearest neighbor search.  (B)  The result of clustering of scRNA-Seq data in the 

original, ambient dimension (left), and the result using the same clustering algorithm with the same 

parameters on PCA-reduced representation of the data.  Only a subset of the points is colored for clarity.  

The graphs were produced using t-SNE for the purpose of visualization only, as the t-SNE embedding 

loses much of the structure of the data.  (C)  The Graph Edit Distance between a minimum spanning tree 

constructed in the ambient space and a minimum spanning tree constructed in the NDR-reduced 

representation.  The dotted line corresponds to a random embedding that retains none of the original 

information. 

 

Clustering is not usually performed directly after identification of HVGs.  Instead, it is 

common to use the elbow/scree plot to choose a number of dimensions for PCA and cluster 

based on the PCA-transformed data.  We see that the ARI values between the clusters obtained  

from raw data and the clusters based on the PCA-reduced data indicates significant differences 

between the clusters in every case.  This effect is visualized in Fig. 4b where a cluster obtained in 

the HVG data is visualized using t-SNE, demonstrating a notable difference in how cells are 

classified into different cell types.  Overall, these results suggest that distortion introduced by 

both linear and non-linear dimensionality reduction can significantly change the classification of 

cells into specific cell types based on clustering in scRNA-Seq data. 

Pseudotime ordering attempts to use cells captured at various points along a 

differentiation or developmental trajectory to infer the underlying trajectory itself20.  A key step 
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in this analysis is the calculation of a minimum spanning tree that connects the beginning and 

end point in the trajectory.  This tree is formed by linking cells in close proximity to each other 

to form a graph, typically after NDR is performed.  Because NDR readily changes both the local 

and global relationships between cells in the data set (Fig. 3 and 4a), we hypothesized that the 

trees produced by analyzing data after NDR would not closely resemble trees formed using the 

original data.  To test this, we calculated the graph edit distance between trees formed from the 

raw data and after various NDR techniques were used to project the data into a variety of 

different dimensions (Fig. 4c).  For comparison, we also generated a random embedding by 

simply assigning each cell to a random point in the reduced-dimensional space (see Methods).  

The graph edit distances obtained from the NDR techniques and from the random embedding are 

similar until embedding dimensions of ~100 are reached (Fig. 4c).  Even above 100 dimensions, 

the improvement in the graph edit distance relative to a random embedding is not very large.  

Because pseudotime trees are usually built using 2- or 3-dimensional representations based on t-

SNE, UMAP or similar techniques, our findings suggest that distortion caused by NDR could 

have a large effect on the results. 

Finally, to determine whether the distortion that we observe is unique to scRNA-Seq 

data, we measured the distortion caused by dimensionality reduction on several standard 

machine learning data sets (Table 3).  In every case, substantial distortion was observed to have 

been introduced by dimensionality reduction, leading us to conclude that commonly used 

dimensionality techniques, both linear and nonlinear, are prone to introducing distortion into 

local neighborhoods and thus distort the structure of the data. 

Dataset 
Dimensionality 

of Data 

t-SNE UMAP PCA 

Abalone (Sea snail) Age Prediction50 8 0.33 0.48 0.45 

Sonar Object Classification47 60 0.53 0.56 0.61 
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Banknote Authenticity Prediction48 4 0.26 0.34 0.52 

Human Subpopulation Diabetes Prediction46 8 0.46 0.51 0.63 

Iris Classification49 4 0.26 0.33 0.24 

Ionosphere51 34 0.53 0.60 0.61 

Wine Quality Prediction45 11 0.42 0.54 0.57 

Table 3:  Distortion caused by dimensionality reduction on some standard machine learning 

datasets.  In every case, dimensionality reduction into two dimensions introduces substantial 

distortion into the data. 

 

 
Table 4.  Grid Search on UMAP parameters.  UMAP was used to embed the hydra dataset from 

Siebert et. al. into 2 dimensions with various values for the parameters (neighborhood size and 

minimum distance).  

 

 

 
Table 5.  Grid Search on t-SNE parameters.    The hydra dataset was embedded into two 

dimensions using the t-SNE algorithm with various values for perplexity and learning rate. 
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Methods 

Average Jaccard Distance 

For each data point, the neighborhood consisting of the nearest k-neighbors were found in 

the ambient space, call this set A, and the NDR-reduced space, call this set B, using 

sklearn.neighbors.NearestNeighbors.  We employed the ball-tree algorithm in both cases.  To 

calculate the Jaccard distance between A and B, we used the usual definition: 

𝐷𝐽(𝐴, 𝐵) =
|𝐴 ∪ 𝐵| − |𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 

The Average Jaccard Distance was calculated by taking the arithmetic mean of the Jaccard 

distance for every point. 

Sampling of Hyperspheres 

To create a synthetic dataset consisting of m uniformly distributed samples in an n-

dimensional spherical manifold in d-dimensional space, we used the following method:  For each 

of the m data points, we sampled from a standard normal distribution n times (using the Python 

Numpy method numpy.random.normal(0,1)).  This method ensured that the sampling on the 

sphere was uniform.  These samples became the first n coordinates of a vector.  The remaining 

n+1 to d coordinates were filled with zeros.  We then normalized each vector to length 1.   

Dimensionality Reduction 

We executed dimensionality reduction with t-SNE, Isomap, PCA, Spectral Embedding, 

Multidimensional Scaling, LLE, and LTSA using the implementations in Scikit-learn30.  .  For 

the methods UMAP and diffusion maps, we used umap-learn19 and pydiffmap31, respectively.  
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We implemented PCA using sklearn.deomposition.PCA.  We used default parameters except 

where otherwise noted. 

scRNA-Seq Data 

The study from Siebert et al. is published on the Broad Institute’s single cell portal: 

https://portals.broadinstitute.org/single_cell/study/SCP260/stem-cell-differentiation-trajectories-

in-hydra-resolved-at-single-cell-resolution. 

The study from Cao et al. is published on The Gene Expression Omnibus: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119945  

The .txt files were converted to .csv files corresponding to individual clusters, and the data were 

loaded into Python pandas (https://pandas.pydata.org/) dataframes for dimensionality reduction. 

Minimum Spanning Tree and Graph Edit Distance 

The minimum spanning tree in the ambient space, mst1, and the minimum spanning tree 

in the NDR-reduced space, mst2, were constructed using the Python function 

scipy.sparse.csgraph.minimum_spanning_tree.  The graph edit distance was calculated in Python 

according to the following equation: 

𝐺𝐸𝐷(𝑚𝑠𝑡1, 𝑚𝑠𝑡2) = min
{𝑒1 ,…,𝑒𝑘}∈𝑃(mst1,mst2)

∑ 𝑐(𝑒𝑖)

𝑘

𝑖=1

  

Where 𝑃(mst1, mst2) is the set of edit paths transforming mst1 into mst2 and 𝑐(𝑒𝑖) is the cost of 

each graph edit operation 𝑒𝑖.  The cost of deleting a vertex and the cost of adding a vertex were 

both weighted as 1. 

As a control, a random embedding was created by sampling coordinates from a uniform 

distribution between -1 and 1.  The minimum spanning tree was then computed on this random 

https://portals.broadinstitute.org/single_cell/study/SCP260/stem-cell-differentiation-trajectories-in-hydra-resolved-at-single-cell-resolution
https://portals.broadinstitute.org/single_cell/study/SCP260/stem-cell-differentiation-trajectories-in-hydra-resolved-at-single-cell-resolution
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119945
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embedding and the Graph Edit Distance was calculated between this tree and the minimum 

spanning tree constructed in the ambient space. 

 

Adjusted Rand Index 

The Rand index quantifies the similarity between clusters in two partitions 𝑈 and 𝑉 (say, 

cell clusters in the ambient dimension and in a reduced dimension) through a contingency table 

that classifies pairs of points into four cases: pairs in the same cluster in both partitions (𝑎), pairs 

in the same cluster in 𝑈 but not 𝑉 (𝑏), pairs in the same cluster in 𝑉 but not 𝑈 (𝑐), or pairs in 

different clusters in both partitions (𝑑). It takes a value between 0 and 1. The adjusted Rand 

index corrects the value by accounting for coincidental/chance clustering and avoiding the 

tendency of the unadjusted Rand index to approach 1 as the number of clusters increases. It is 

given by 

𝐴𝑅𝐼 =
(

𝑛
2

)(𝑎+𝑑)−[(𝑎+𝑏)(𝑎+𝑐)+(𝑐+𝑑)(𝑏+𝑑)]

(
𝑛
2

)
2

−[(𝑎+𝑏)(𝑎+𝑐)+(𝑐+𝑑)(𝑏+𝑑)]
 where 𝑛 is the number of points and (

𝑛
2

) is the total 

number of possible point pair combinations.32 

Replicating scRNA-Seq Workflow 

To replicate a typical workflow, we used Seurat in R.  To isolate highly variable genes, 

we used the data from the function FindVariableFeatures() in Seurat with default parameters.  

For PCA reduction, we used the ElbowPlot function, with the “elbow” observed to be at 12 PCs. 

Our clustering was done in Seurat using the function FindNeighbors() on the specified 

dimensional space to compute the Shared Nearest Neighbor Graph, followed by the 

FindClusters() function.  We set the resolution at 0.8, number of random starts at 10, random 

seed at 0, maximum number of iterations at 10 and we used the standard modularity function. 
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Discussion 

The capacity to generate high-dimensional data is currently in the process of 

revolutionizing scientific inquiry.  scRNA-seq, for example, has the potential to drive significant 

advances in our understanding of the evolution and differentiation of cell types, the progression 

of cellular state during development and disease, and a host of other critical biological 

phenomena13,33,34.  Yet the very thing that makes this technique so powerful – the ability to 

simultaneously measure the expression level of tens of thousands of genes within a single cell – 

also entails the curse of dimensionality and thus complicates the analyses needed to extract 

meaning from it.  As such, dimensionality reduction has become an indispensable part of 

scRNA-Seq data analysis. It is currently unclear, however, to what extent dimensionality 

reduction disrupts the underlying structure of the data itself. 

Distortion from dimensionality reduction can take several forms.  Much of the previous 

work on this problem has focused on the extent to which the process changes the distances 

between points.  Our work highlights that there are even larger problems with dimensionality 

reduction than just distortion of distances.  For one, even in possession of a perfect technique, 

one cannot reduce the dimensionality of the data to arbitrarily low dimensions without creating 

large numbers of discontinuities in local neighborhoods and other distortions in the data. In the 

case of points taken from the surface of a 3-D sphere, it is mathematically impossible to project 

those points into a 2-D representation without introducing discontinuities into the data (e.g. the 

scattering of the rainbow pattern in Fig. 1c).  Many analyses commonly performed with scRNA-

Seq data, including cell type clustering, RNA velocity35, and pseudotime ordering, rely at least in 

part on the local relationships between data points.  The introduction of discontinuities thus has 

the potential to significantly impact the results of that kind of analysis. 
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A second problem is the fact that, even if it is theoretically possible to represent the data 

in a given dimension, available techniques may not be capable of finding that representation.  

Unfortunately, it is currently impossible to evaluate the extent to which either of these issues 

have an impact on the analysis of scRNA-Seq data (or, indeed, any high-dimensionality data).  

Here, we developed a straightforward metric that quantifies the extent to which discontinuities of 

the type exemplified in Fig. 1c would impact the analysis of any given data set. 

One immediate application of this metric is in the discovery of the appropriate latent 

dimension of a given data set.  In testing this use case on data sampled from hyperspheres, 

however, we found that several NDR techniques currently in widespread use are far from perfect 

(Fig. 2).  Indeed, none of the techniques we tested could find a true embedding for even a 20-

dimensional hypersphere, despite a complete lack of noise in the data and the fact that the 

embedding in this case was rather trivial (and known a priori).  This finding suggests that 

fundamental work is needed to develop new and more effective NDR techniques.  We expect 

that both the AJD metric we developed and the hypersphere example we explored will prove 

useful in the design and testing of these algorithms. 

Application of our metric to scRNA-Seq data revealed that the problem there is even 

worse than for hyperspheres (Fig. 3).  For instance, it is currently common to use t-SNE or 

UMAP to reduce scRNA-Seq data to two dimensions for visualizations and, in many cases, 

downstream data analysis20,24,25.  Our work revealed that nearly 100% of the local neighborhood 

structure is disrupted by this kind of dimensionality reduction.  We found that this level of 

distortion has a significant effect on the results of common analyses such as cell type clustering 

and pseudotime ordering (Fig. 4). 
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There are several practical implications of our findings for routine scRNA-Seq analysis.  

For one, it seems likely productive to perform cell-type clustering using a set of “Highly 

Variable Genes” provided by popular packages like Seurat, because this preserves the resulting 

clusters while reducing dimensionality (and thus the computational resources required) by about 

an order of magnitude (Fig. 4).  Another straightforward recommendation flowing from this 

work is to exercise caution when analyzing data in dimensions that are significantly smaller than 

the ambient space of the original measurements, particularly the 2-D representations generated 

by t-SNE or UMAP. We recommend that practitioners use the AJD to track the distortion they 

introduce into their dimensionally reduced data and report it so that others can understand 

potential biases and errors that may affect the results of analyses that rely on local relationships 

between cells in the dataset. 

Our findings, and the recommendations above, might at first glance seem to be in conflict 

with the fact that most scRNA-Seq studies ultimately produce results that are broadly consistent 

with orthogonal data regarding the system under study.  For instance, t-SNE and UMAP plots 

still tend to place cells of similar type close to one another.  This is often checked by coloring 

cells according to the expression of marker genes on that are known to be associated with certain 

cell types, and finding that those cells tend to cluster together, at least on visual inspection24,25.  

Similarly, pseudotime analysis often results in expression dynamics that broadly correlate with 

known expression dynamics obtained from other techniques24,25.   

While this agreement seems reassuring, there is a subtle issue with this kind of analysis. 

Each of the dimensionality reduction techniques mentioned above are governed by one or 

more parameters.  A small adjustment in any of these parameters can result in vastly different 

representations of the data (Supplementary Fig. 6).  How does one decide the appropriate values 
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for the parameters?  In practice, one first selects marker genes that they know correspond to 

certain cell types based on previous studies. The expectation in this case is that the analysis 

pipeline, which entails several steps of dimensionality reduction, will have been executed 

correctly when the marker genes cluster according to prior knowledge.  Adjusting the parameters 

of the algorithm until agreement is achieved, the researcher concludes that these are the correct 

parameter values, and this is the correct representation because the result has been “validated” by 

prior knowledge.  Other observed clusters can then be interpreted as representing new cell types.  

Popular packages, such as Seurat, include suggestions along these lines for users in their 

documentation. 

The problem with this approach is that it is inherently biased to reproduce known aspects 

of the system in question.  To see why, suppose that the biological ground truth doesn’t agree 

with prior biological knowledge.  The researcher will discard such a result and adjust the 

parameters of the analysis pipeline until the representation comes into agreement with their 

expectations.  In other words, if prior knowledge is used to guide the analysis, the fact that one 

ultimately sees agreement between the result and that prior knowledge is no guarantee that the 

analysis itself is sound.  This is true even if the marker genes used to guide clustering or other 

analysis are different from the ones used for “validation,” since it is unlikely that any such sets of 

genes will be truly independent of one another.  Thus, while many scRNA-Seq analysis agree 

with well-established prior knowledge, that in no way guarantees that distortion due to 

dimensionality reduction has not significantly impacted the analysis.  

Of course, one question raised by our results is whether meaningful dimensionality 

reduction of scRNA-Seq data is possible at all.  The poor performance of NDR techniques on the 

simple hypersphere tests makes it difficult to say whether the results we obtained for scRNA-Seq 
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data are due to the limitations of available techniques or because the data do not actually lie on a 

low-dimensional manifold.  We note, however, that NDR techniques failed to find meaningful 

embeddings even for non-scRNA-Seq data (Table 3), strongly suggesting that the issue here lies 

with the techniques themselves, rather than representing limitations of the individual data sets.  

The only technique that we found to provide something close to a “true” embedding, PCA, does 

so only at dimensionalities that are much larger than those typically used.  Indeed, PCA 

sometimes only finds a true embedding at the largest possible dimension that can be obtained by 

the technique (Fig. 3).  The development of new NDR techniques that are more effective at 

finding true embeddings thus represent a critical step in answering central questions not only in 

cell biology, but across all scientific disciplines that rely on the analysis of high-dimensional 

data.  Until such techniques are developed, the relentless expansion of single-cell genomics to 

larger and larger scales may provide a wealth of new data that cannot be optimally mined for its 

biological insights.  

 

Chapter 2:  Unbiased analysis of scRNA-Seq data reveals cancer stem cells in small cell 

lung cancer cell lines 

 

Introduction 

It is commonly accepted that that heterogeneity of cancer cells is a key factor by which tumors 

resist treatment36,37.  It has been shown that certain transcriptionally distinct subtypes of SCLC are more 

likely to survive chemical treatment and proliferate38,39.  Understanding the transcriptional variation 

between subpopulations of cells can is likely to suggest new treatments as well as further our 

understanding of the biology of cancer.  Therefore, how to best classify SCLC subtypes has been a much-

debated question in the field.   
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The first observation of SCLC heterogeneity was published in 1985, when biochemical 

characterization of 50 SCLC cell lines revealed that SCLC cell lines could be subdivided into 

two distinct classes40,41.  Little progress was made until 2013, when gene expression profiling of 

the treated tumors revealed that one of these classes  showed higher expression of ASCL1 and 

the other displayed high expression of NeuroD142.  Soon after, a third classification was added to 

the scheme that was characterized by a non-neuroendochrine nature and low expression of both 

ASCL1 and NeuroD143,44.  This third subtype was also found to be heterogenous, with one 

subpopulation demonstrating high expression of YAP145 and the other high expression of 

POU2F346.  Additionally, the MYC family of oncogenes have been found to be over-expressed 

in a mutually exclusive manner, with MYC being highly expressed in one population, and 

MYCL being overexpressed in another.  These observations were combined into a proposed 

classification scheme in 2020 by Poirier and colleagues47.  

Another, competing classification scheme exists, and was proposed by Wooten et al.  This 

scheme draws on RNA-sequencing data to construct a Boolean network model of gene regulatory 

network reconstruction48.  This classification relies on global characteristics of the gene regulatory 

network as reconstructed from single cell data.  This scheme was further modified by Groves et al. to 

consist of a continuum of “archetypes” rather than static classifications.  This scheme is largely based on 

results of Archetypal Analysis49 and RNA velocity50.   

Here, we attempt to characterize heterogeneity in an unbiased way from single cell RNA 

sequencing data without gene network reconstruction.  The most appropriate way to analyze single cell 

data is still an active area of debate51,52.  Our previous studies have shown that mainstream methods of 

analysis for single-cell RNA sequencing suffer from serious shortcomings53.  Namely, most analysis 

workflows employ one or more methods of dimensionality reduction to reduce the computational expense 

of analysis51.  As described in Chapter 1 of this dissertation, we developed an objective measure to 

quantify this distortion.  This metric, Average Jaccard Distance (AJD), is calculated by comparing the k-
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nearest neighbors in the original space with the k-nearest neighbors in the lower-dimensional 

representation produced by dimensionality reduction.   An AJD of zero indicates that the neighborhoods 

are the same, and that no distortion has taken place.  An AJD of one indicates that all of the neighbors in 

the lower-dimensional representation are different, and that the information contained in the original data 

is lost.  When we applied this metric to several recent published studies, we found that the distortion 

introduced by dimensionality reduction was often as high as .95, and rarely better than .70, meaning that 

the majority of information contained in the data is mostly lost when these techniques are employed. 

Here, we analyze single-cell RNA sequencing (scRNAseq) data from eight immortalized SCLC 

cell lines.  To avoid the high level of distortion introduced by dimensionality reduction, we removed 

dimensionality reduction from our quantitative analysis pipeline, and instead use dimensionality reduction 

for visualization only.  Although this approach is more computationally expensive, it results in an 

undistorted view of the data.  We used Louvain clustering to provide an unsupervised classification of 

each of our eight SCLC cell lines.  In each cell line, we observed 4-6 clusters.  On further analysis of 

these clusters, we found that each had a transcriptionally distinct gene expression profile.  We analyzed 

gene expression with respect to signaling pathways suspected to be involved in progression of SCLC and 

found that the signaling pathways were expressed in a highly heterogenous way across clusters.  We also 

investigated expression of genes associated with proliferation and found that at least one cluster in each 

cell line expressed these genes more highly.  Finally, we employed an algorithm, CytoTRACE54,that is 

trained to identify the stem-like quality of cells, we found that our more proliferative cluster also had a 

strong stem-like quality, and that this subpopulation may be more proliferative than the population as a 

whole, and could be a promising target for new treatments. 

 

Results 

Canonical Marker Genes 

Since an active area of debate in the study of SCLC is how to best characterize sub-types, we 

began our analysis by examining the distributions of previously proposed sub-type marker genes in each 
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of our cell lines (Fig. 1).  Interestingly, POU2F3 and YAP1 are expressed similarly, despite being 

previously identified as a marker for distinguishing subtypes45,46.  MYCL is typically highly expressed as 

well in these cell lines, despite being previously thought to correspond only to the ASCL1 subtype.  

MYC, which was previously thought to correspond to the NEUROD1, POU2F3, and YAP1 subtypes is 

not here expressed in high levels with those marker genes.  Overall, the distributions of each gene are 

highly multimodal, which indicates that the diversity in cancer cells is not adequately described by the 

marker gene model. 
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Figure 1.  Subtype marker genes in SCLC cell lines.  (A) Four subtypes have been proposed by previous 

studies, corresponding to NEUROD1, ASCL1, POU2F3, and YAP1.  MYC is thought to correspond to the 

NEUROD1, POU2F3, and YAP1 subtypes, and MYCL is thought to correspond to the ASCL1 subtype.  

(B)  The distribution of previously identified subtype markers in eight SCLC cell lines. 

 

Unbiased Clustering Reveals Previously Uncharacterized Heterogeneity  
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Previous results indicated that most forms of dimensionality reduction do not preserve the local 

relationships between points in high dimensional space53, thereby confounding any downstream analyses 

which relies on a nearest-neighbor search.  To avoid this, we started our analysis by clustering in the full 

high dimensional space, upstream of any form of feature selection or dimensionality reduction. For each 

of the 8 cell lines we analyzed, we clustered the cells in the full high dimensional space using the Louvain 

Clustering algorithm implemented in scanpy55,56. In each of the 8 cell lines, 4-6 clusters were observed.  

We then used dimensionality reduction via UMAP and t-SNE, solely for visualization (Fig. 1).  We 

observed that in each cell line, there are one or two clusters that take a unique shape whether visualized 

with UMAP or t-SNE.  We also find that the cell lines, when combined, are clearly classified with the 

unsupervised clustering approach, indicating the validity of this clustering approach. 
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Figure 2.  Louvain Clustering reveals previously unrecognized heterogeneity.  (A) Each cell line 

undergoes clustering using the Louvain clustering algorithm upstream of dimensionality reduction.  

Clusters are then visualized with (A) UMAP and (B) t-SNE.  Data from all cell lines is combined and 

undergoes Louvain clustering before visualization with (C) UMAP and (D) t-SNE 

 

WNT and Notch Signaling Heterogenous Across Clusters 

Previously, in a whole-exome sequencing study, Wagner et al. found transcriptional up-

regulation of wingless-related integration (WNT) pathway genes in chemotherapy-resistant 

tumors57.  WNT activation was enriched in patient tumors with low levels of ASCL1 expression.  

Here, we examined the distribution of WNT pathway genes in each of our eight cell lines (Fig 3).  

In each cell line, the expression of WNT signaling is heterogeneous across clusters.    
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Figure 3.  Distributions of WNT signaling genes. WNT signaling pathway genes are expressed 

heterogeneously in each cell line.  

 

Inactivating mutations in the NOTCH family of genes has been found to correlate with 

SCLC58.  On the other hand, activation is found in a subset of human and mouse tumors59.  Additionally, a 

special class of neuroendocrine stem cells that have a unique capacity for self-renewal are characterized 
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by NOTCH2 expression60.  We examined the distributions of NOTCH signaling genes across all clusters 

in each of our cell lines (Fig 4.) 

 

 

Figure 4.  Distributions of NOTCH signaling genes. NOTCH signaling pathway genes are expressed 

heterogeneously in each cell line.  
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Principal Component Analysis  

To determine whether these clusters were transcriptionally distinct, we used Principal Component 

Analysis (PCA) to embed each of our Louvain-determined clusters into lower dimensions ranging from 1-

1000.  As a control, we also performed PCA on a random subsample of size equal to each cluster.  If our 

clusters were artifacts of the clustering algorithm, we would expect the values of AJD to be the same for 

the sample and the control.  However, if each of the clusters is transcriptionally distinct, we would expect 

the AJD at each dimension to be significantly different from one another.  We found that each of our 

clusters was transcriptionally distinct, with one or more clusters in each cell line deviating strongly from 

the random control.  (Fig 5)   

 For two different sets of data, if the PCA determined components are different between the two 

sets of data, then one set of components will not easily embed the data of another without significant 

distortion. To further determine whether the orientation of the local neighborhoods of these specified 

clusters were unique relative to the rest of the dataset, we determined the PCA components using the data 

from our “special” clusters.  This provided us with loadings (the weights that serve as the points’ 

coordinates in the embedding space).  At each embedding dimension, we measured the Average Jaccard 

Distance between the full gene expression space and the embedding dimension space. We repeated the 

experiment, switching which cluster was used to make the PCA components and which cluster was used 

to make the loadings in the low dimensional space. In both cases, we found AJDs that were consistently 

higher than those found by finding the PCA components of a cluster and applying those components to 

the same cluster to find the loadings. This implies that the Principal Components of each cluster are 

unique to that cluster, and this in turn implies that each cluster must be transcriptionally distinct from the 

others. 
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Figure 5.  Principal Component Analysis of SCLC subtype clusters.  (A) The raw data is embedded into 

varying lower dimensional spaces using PCA.  Distortion, as measured by AJD, is calculated between the 

raw space and the embedded representation.  (B)  In each cell line one or two clusters have a lower 
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distortion when compared to a random subsample of the same size.  This indicates unique gene 

expression profiles for each cluster. 

 

Tests for Epithelial-Mesenchymal Transistion,  Cell Cycle, and Chromatin Remodeling 

Cells in vitro have been commonly observed undergoing Epithelial Mesenchymal Transition 

(EMT), wherein cells change from being square, planar epithelial cells to spherical motile mesenchymal 

cells. This transition results in a global change in gene expression structure61.  In order to be certain that 

our clusters were the result of natural differences in gene expression state, and not a side-effect of cell 

culturing, we viewed the expression of EMT-associated genes in each of the cell lines, there was no 

significant difference between the gene expression of the clusters we identified as unique and the rest of 

the cells from that respective cell line. Nor was there any significant difference between these special 

clusters and the rest of the dataset for genes associated with Epithelial and Mesenchymal Cell States. 

These results implied that at the transcriptomic single cell level, the phenomenon that was responsible for 

our unique clusters was not correlated with EMT nor the Epithelial or Mesenchymal Cell State. 

We considered that these unique clusters may differ from the rest of the cell line as a result of 

being in a different phase of the cell cycle. We compared the gene expression of the unique clusters with 

that of the other clusters in each respective cell line, and looked for high expression levels of genes 

correlated with the four phases of the cell cycle (G1, S,G2, M)62. We found no significant difference in 

this set of genes between the clusters identified as unique and the remainder of the sample. We concluded 

that the unique topology of these clusters was not a result of these cells occupying a distinct point on the 

cell cycle. 

One of the most well documented phenomena that result in persistent changes to gene expression 

structure is open chromatin. This is when the DNA that normally is tightly bound around histones is 

loosened, allowing for significant changes in gene expression that remain so long as the chromatin is 

open. This process is mediated by chromatin remodeling proteins that modify the histones to weaken the 

interactions between them and the DNA double helix. While open chromatin can occur during DNA 
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synthesis, it is more persistent in stem and stem-like cells and is responsible for causing the unique gene 

expression pattern of stem cells63. 

Unfortunately, since scRNAseq is a destructive assay51, conventional methods to measure the 

modifications to the chromatin, such as ATAC-Seq, cannot be done on the exact same cells as those used 

for scRNAseq.  Instead, we decided to measure the gene expression for genes involved in Chromatin 

Remodeling (Fig 5).  We found that the clusters demonstrating unique behavior on the AJD Assay had 

higher expression of genes involved in chromatin remodeling. This over-expression implies that 

chromatin modification is underway in the cell. To test whether this result was significant, we compared 

the expression of the chromatin remodeling in the clusters identified as special with the rest of the data set 

using a Wilcoxon-Rank Sum test. With very few exceptions, we found that the chromatin remodeling 

genes were always expressed at a statistically significant higher level (p values< 0.00005 after Bonferroni 

Correction) in the “special” cluster when compared with the rest of the cells from their respective cell 

line. This result persisted even after we attempted to take into account the sparsity of scRNAseq data, by 

replacing each UMI count of 0 with the value corresponding to its cell’s average gene expression. In 

addition, the chromatin genes that were significantly more expressed were also expressed by cells in the 

unique clusters across cell lines. This implies that the chromatin remodeling program is persistent and 

shared across all eight cell lines. 

 

Stem-Like Cell Clusters 

Given these results, we postulated that our cells identified by their unique Average Jaccard 

Distance vs Embedding structure were in a unique chromatin state. Cells with high potency, which are 

known as stem cells, have been associated with persistent open chromatin and more exposed DNA64. 

Recent findings also associate a cell’s potentiality or “stemness” with the number of genes expressed in 

its transcriptome54. We applied this knowledge in two ways: first, by finding the distribution of the 

number of genes expressed in each cell in our clusters and by finding the CytoTRACE (an algorithm that 

measures differentiation potential for a cell based on its transcriptome) score assigned to it (Fig. 6).  The 
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clusters that deviated strongly from the random control in the AJD assay demonstrated more gene 

expressed per cell and higher CytoTRACE scores.. These results imply that these cells may be stem-like 

in nature. 
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Discussion 

 Our results from our analysis indicate three key insights regarding Small Cell Lung Cancer and 

Single-Cell RNA-Sequencing. The first is that there is strong evidence that the current understanding of 

established sub-types within Small Cell Lung Cancer fails to explain the complexity in heterogenous gene 

expression.  Our results are not fully consistent with either of the previously proposed classification 

schemes.  Our results indicate that our understanding of cell types from Small Cell Lung Cancer must 

broaden to account for heterogeneity within these cell types. Given that some clusters within each cell 

line correspond to stem-like behavior and hint at a presence of a unique chromatin state, it is possible that 

the cells determined to be in the “special” subcluster are stem-like proliferative cells, a difference that 

could affect treatment plans for patients. 

The second insight that our analysis revealed was the importance of clustering before performing 

dimensionality reduction.  As we have shown53.  The standard for Single Cell RNA Sequencing analysis 

is to only cluster in a reduced PCA space51, ostensibly to reduce unwanted variation that might cloud 

further analysis while retaining the information necessary for those analyses. Yet, doing so introduces the 

investigator’s own biases as to what variation is important or not and thus results could be tainted by 

confirmation bias, limiting the power of the analysis. Our results demonstrate that significant variation 

exists that can differentiate cells and those differences could have biological meanings; these biological 

implications would at the very least, would have been distorted if we clustered in a reduced space. 

The third insight we gathered from this analysis was the validation of the idea to use the Average 

Jaccard Distance with PCA to analyze scRNA-sequencing data and mathematically classify cells. Since 

PCA is a linear tool, it’s behavior on data is well characterized, as it builds a set of basis vectors to 

capture the most variance. Combined with AJD, PCA can then be used to determine the relative 

orientation of the basis vectors and thus classify cells on whether they exist on the same manifold in 

transcriptional space. This opens the door to new approaches for unsupervised analysis of scRNA-seq 

data that would reduce confirmation bias and allow for new pathways to be discovered and analyzed. 
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While work needs to be done to develop this method of manifold learning, our results thus far show that 

this approach is a viable way to resolve hitherto unobserved heterogeneity in transcriptomic data.   

 

Methods 

Clustering 

 Clustering was done in the full gene space after quality control steps were taken using the scanpy 

package in python. First a k-nearest neighbors graph was made using the scanpy.pp.neighbors() function, 

with the nearest neighbors parameter set to 20. Then Louvain clustering was done with the 

scanpy.tl.louvain() function, with the resolution set at 0.2. Each of the cells were labeled with the cluster 

label ranging from 0 to n-1 for n clusters determined by the algorithm. Each of the clusters was separated 

form the total dataset and saved separately. 

 

Visualization. 

 For the t-SNE visualizations, the data matrices generated from the previous step were imported 

into the python package scanpy, for analysis. The data matrices were normalized with the 

normalize_total() function in scanpy with the counts_total parameter set to 10000. The data was then log 

transformed using the log1p() method in scanpy. 2000 highly variable genes were selected with scanpy’s 

highly_variable_gene() function, which uses a binning method to bin the mean and standard deviations 

before scaling(bin size was set to 20). The data matrix that remained after removing highly variable genes 

was saved and used to calculate the unsupervised marker genes. After that, PCA was performed on the 

filtered data matrix, with 50 components selected using scanpy.tl.pca() method. Finally t-SNE was 

performed on the 50 principal components using scanpy.tl.tsne(), resulting in a 2-dimensional 

representation. The points representing each cell were colored based upon the obtained with Louvain 

clustering 

 

Marker Gene Selection: 
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 Supervised marker genes were determined based upon existing literature and data from the 

UniProt gene ontology database. The list of marker genes came for the canonical Small Cell Lung Cancer 

types were obtained from existing literature47. The list of genes involved in Chromatin Remodeling came 

from the UniProt Gene ontology database, out of which we chose 236. 

 Unsupervised Marker Genes were identified using scanpy’s rank_gene_groups(), applied to the 

individual datasets after log-transformation and scaling. This method uses a overestimation-corrected t-

test to determine if the log fold changes between the cluster and the rest of the changes were significant. 

These genes were then filtered using scanpy’s filter_rank_gene_groups() method, which only selected 

marker genes based upon the function’s default parameters, and stored in the AnnData object associated 

with the dataset  

 

Heatmap Generation: 

 For each of the sets of marker genes established through literature search, we created a heatmap 

using scanpy’s heatmap() with default parameters. This utilized the filtered and scaled data matrix that 

was then normalized where each gene was subtracted by the minimum value for that gene and divided by 

the maximum value for that gene. The heatmaps for the unsupervised marker gene determination were 

made using the rank_gene_groups_heatmap() function in scanpy, which used the same set of parameters 

and implementation as the heatmap() function, only instead using the list of genes marked as significant 

in the AnnData object associated with the dataset. 

 

Wilcoxon Rank Sum: 

 The Wilcoxon Rank Sum tests were done utilizing the scipy implementation of the test. First, 

Each dataset was loaded into a pandas data frame using the read_csv() function. For each dataset, the 

cluster identified as special was removed from the rest of the dataset. For each individual gene in the 

chromatin remodeling gene set, the expression values for the special cluster and the rest of the data set. 

This is done using the loc slicing function in pandas. Then, the ranksums() function in the scipy package 
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was used, with ties being counted as 0.5. Finally, a Bonferroni collection was applied with a threshold p-

value of 0.05 divided by the number of chromatin remodeling genes was used. 

 

Average Jaccard Distance: 

 The Average Jaccard Distance test was done using the python packages NumPy, sklearn, and 

pandas. Each cluster for each dataset was loaded into the pandas DataFrame using the read_csv() 

function. The nearest, neighbor graph for 20 nearest neighbors was then determined using sklearn() 

neighbors() function with the neighborhoods being determined by the sklearn.NearestNeighbors() 

function using the ball-tree method. Afterward, the PCA loading was determined using the 

sklearn.decomposition implementation of PCA (the SVD solver was set to arpack). The PCA was fitted 

using the specified cluster of the dataset, and applied to that cluster as well, with the number components 

used set the specified dimension. Once the loadings were calculated, the nearest neighbor graph was 

calculated for the low- dimensional representation. Finally, the Average Jaccard Distance was calculated 

between high dimensional KNN graph and the low dimensional representation’s KNN graph.  This was 

repeated for each dimension from 1 to the smaller number between the number of genes and the number 

of cells. 

As a control, in each of the datasets, a random sample of cells was drawn without replacement 

from the total dataset using the sample() method in the pandas package. The size of the sample was set as 

the number of cells in the cluster being tested. Once the sample was generated, a high dimensional KNN 

graph (k=20) was generated as before. The data was then embedded into the specified dimension using 

PCA that was trained and applied on the sample. In the low dimensional space, the 20 KNN graph was 

constructed as before and the Average Jaccard distance between the 2 nearest neighbor graphs was 

calculated. This was repeated for each dimension from 1 to the smaller number between the number of 

genes and the number of cells in the sample. 

 To compare the PCA components between the clusters, the nearest neighbor graph for 20 nearest 

neighbors was once again found for the specified cluster of a particular dataset. Then PCA was trained on 
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the largest cluster of the data and applied to the specified cluster to find it’s loadings. In the low 

dimensional space, the 20 KNN graph was constructed as before and the Average Jaccard distance 

between the 2 nearest neighbor graphs was calculated. This was repeated for each dimension from 1 to the 

smaller number between the number of genes and the number of cells in the cluster.  This test was 

repeated on the largest cluster for each dataset but with one significant change: the PCA components were 

determined using the clusters identified as special and were then applied to the largest clusters in the 

specified dataset. Average Jaccard Distance was then measured between the KNN graph (k= 20) of the 

high dimensional data and the low dimensional representation This test was once again repeated form for 

each dimension from 1 to the smaller number between the number of genes and the number of cells in the 

special cluster. 

 

Stemness Analysis: 

 To determine the likelihood of the cells being stem-like, we utilized two known metrics: the 

number of genes expressed (AKA the gene count score) and the CytoTRACE algorithim54.  For the gene 

count score each dataset was loaded into a pandas DataFrame. Then the DataFrame was casted as 

Boolean with the astype() function and ‘bool’ as the parameter. This converted the values to 1s if the raw 

gene expression value was greater than 0 and 0 if the raw gene expression value in the matrix was 0. Then 

using the sum() function in the pandas packages, the total number of genes that were expressed were 

added up. The distribution of the totals for each cell was plotted using the Seaborn65 package using the 

violinplot() parameter, where the cell scores were separated by cluster identity and colored based upon 

whether the cluster they were a member of was considered special or not. All other parameters were set to 

default values. 

 For CytoTrace, we utilized the eponymous package in R to conduct the analysis. We loaded each 

of the datasets into and R DataFrame using the read.csv() function in the readr package. After transposing 

the DataFrame, we used the CytoTrace() function in the CytoTrace Package to conduct the test  

(enableFast was set to False to allow the whole dataset to be used). The CytoTrace scores were saved and 
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plotted using the Seaborn package in python with the violinplot() function. The cell scores were separated 

by cluster identity and colored based upon whether the cluster containing this cell was considered special 

or not. All other parameters were set to default values. 

 

Chapter 3: Deep Neural Networks for Dimensionality Reduction  

 

Introduction 

Our previous work has shown that existing techniques of dimensionality reduction 

introduce large amounts of distortion, even in situations where a zero-distortion embedding is 

possible.  For example, a 5-dimensional hypersphere in a 20 dimensional space can be easily 

represented in a five dimensional space by removing the empty dimensions.  However, most 

nonlinear dimensionality reduction algorithms are unable to find this optimal solution, and 

instead give a sub-optimal solution with a large amount of distortion.   Linear embedding 

techniques such as PCA are able to find the optimal solution in this case but are unable to resolve 

nonlinear data in a meaningful way.  (Figure 1) 
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Figure 1:  Linear vs. nonlinear techniques  

 

In the case of nonlinear techniques, the distortion is lower, but the algorithm makes no 

attempt to approximate the embedding function.  This results in poor out-of-sample 

generalizability of the embedding.  To illustrate, suppose that 5,000 cells are sequenced and a t-

SNE embedding is generated to  visualize the data.   Then suppose then that an additional 2,000 

cells are sequenced to supplement the data.  For a new visualization to be generated, the t-SNE 

algorithm must be run again on the entire set of 7,000 cells, instead of just the new set.  The 

optimal dimensionality reduction solution would be able to solve this problem of 

generalizability. 

The previous chapters have shown that one way to minimize distortion in analysis of 

scRNAseq data is to minimize the use of dimensionality reduction and to compensate by 

increasing the computational cost of the analysis.  However, in a time when the size and 

Linear vs. Nonlinear Dimensionality Reduction

Linear  

(PCA)

Nonlinear 

(t-SNE)
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dimensionality of datasets is increasing exponentially faster, but the annual increase in 

computational power of computer chips is growing at a lower rate, it is becoming increasingly 

apparent that this approach also has its limits.  Dimensionality reduction is already an 

irreplaceable step in those datasets where the computational resources don’t exist to analyze the 

data in raw form, and the number of situations will only grow.  Dimensionality reduction is 

therefore an important problem both within the field of genomics, and within the field of biology 

and other sciences.   

 

Methods 

Deep neural networks have found application in a wide variety of fields66,67,68.  The 

technique is a method of learning a function that takes a set of data points as input and maps 

them into the desired output space.  In the case of classification, the output space is a set of 

categories, and the probability that an arbitrarily sample will fall into that category.  In the case 

of regression, the output space is a continuous value of one or more variables. For example, one 

might train a network to take as input several observations of a population of organisms such as 

height, weight, etc., and to output the predicted age of each organism.  

A neural network can be depicted as a graph of nodes and edges or as a series of 

matrices.  Although the depiction as a graph is more popular, and no less accurate, the matrix 

representation is often more useful, since it more closely resembled the way that the idea is 

implemented in the computer.  The model consists of matrices the weights and the biases.  Each 

point in the data is multiplied by the first matrix in the set of weight matrices.  Then, the first bias 

matrix is added to the result.  Finally, the activation function is applied to each component of the 

point.  These three operations make up the first layer of the neural network.  A network can have 
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any number of layers, each with its own set of weights, biases, and activation functions.  After 

each layer has conducted its operations on the datapoint, the output of the network is compared 

with the input.  This comparison comes in the form of an objective function.  The output of the 

objection is the loss, and this value is minimized or maximized to train the model. There are 

many variations on this basic architecture, such as recurrent neural networks and convolutional 

neural networks, but these architectures are outside the scope of this document. 

In the context of our problem, the inputs for the neural network are vectors, each 

corresponding to a cell.  Just as in previous chapters, the components of the vectors correspond 

to genes, with the value of each component corresponding to the count number of that gene.  The 

output space is likewise a vector, of arbitrary dimension, with each value corresponding to some 

nonlinear combination of the original components.  Our strategy is to use the calculation of our 

metric of distortion, Average Jaccard Distance, as the objective function for the a deep neural 

network.  By minimizing the AJD, we can train a network that gives an embedding that faithfully 

maps the original manifold from which the data was sampled.  However, there are several 

technical challenges to overcome. 

First, Average Jaccard Distance is a measure of similarity between sets of points rather 

than points.  Pre-packaged neural network packages are unable to accommodate this form of loss 

function.  In fact, they are unable to accommodate any objective function that takes more than a 

single point and its output into consideration.  To overcome this obstacle, we were obliged  to 

implement the method ourselves, without relying on existing packages.   

Second, the necessity of implementing our algorithm from scratch means that interpreted 

data analysis languages such as Python or R are not viable, due to the fact that the computational 

cost of training the model is high, and these languages are geared more towards ease of use than 
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efficiency.  We tested an initial version of our algorithm in Julia and C++ and found the C++ 

implementation to be as many as two orders of magnitude faster than the comparable Julia 

implementation.  We therefore chose C++ for our final prototyping language, and will likely 

develop wrappers for Python and Julia, so that other researchers have easy access to our tool. 

Third, the Average Jaccard Distance is not a differentiable function, hence analytical 

calculation of a gradient is impossible.  However, we can use the finite difference method of 

differentiation to approximate the gradient.  Our initial results suggest that this method of 

approximation may also result in more accurate results, as the looser approximation of the 

gradient somewhat alleviates the problem of getting “stuck” in local minima. 

Finally, there is the problem of step size.  To efficiently determine the best step size at 

each epoch, we implemented a training protocol that we’ve dubbed “spectral step size.  This 

simply means that for each training epoch, after the gradient is calculated, a wide spectrum of 

step sizes is evaluated, and the training algorithm chooses the step that results in the lowest AJD.  

Although evaluating each step is more computationally expensive, the resulting increase in 

accuracy more than makes up for the increased computational cost. 

 

Results 

Test Datasets 

For some datasets, the deep embedder approach can achieve a lower distortion 

embedding than either t-SNE or UMAP, which are the most commonly used dimensionality 

reduction techniques.   For example, a common dataset for testing and benchmarking machine 

learning techniques is the Boston housing dataset69.  This dataset consists of thirteen 

observations about homes in the Boston area, as well as the appraised value for the home.   To 



 

 58 

test our method, we embedded the dataset using t-SNE, UMAP, and the deep embedder 

approach. (Fig. 1) The deep embedder approach can achieve a lower distortion representation of 

the data in any of the dimensions as well as higher dimensions.   

 The wheat seeds dataset is a classification dataset that is also widely used for testing and 

benchmarking machine learning tools70.  The dataset consists of seven observations for each 

weed seed, as well as a species classification.  Again, we embedded the dataset using t-SNE, 

UMAP, and the deep embedder approach. (Fig. 2) The deep embedder approach can achieve a 

lower distortion representation of the data in any of the dimensions as well as higher dimensions.  

 

Figure 1.  Dimensionality Reduction benchmarking on Boston housing dataset.  Thirteen 

observations are given of houses in the Boston area.  When embedded in dimensions 2-12, the 

deep embedder approach gives a lower distortion embedding than either t-SNE or UMAP. 
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Figure 2.  Dimensionality Reduction benchmarking on wheat seeds dataset.  Seven observations 

are given of wheat seeds.  When embedded in dimensions 2-7, the deep embedder approach gives 

a lower distortion embedding than either t-SNE or UMAP. 

 

scRNA-seq Data 

In a typical scRNA-seq analysis workflow, each cell is modeled as a point in an n-

dimensional space, where n is the number of genes that is observed across the entire dataset.  A 

subspace of this original space is typically chosen based on those genes thought to be most 

significant.  The highest varying genes are a popular choice51.  After this reduction, PCA is 

usually used as a next step to get the data to a manageable level.  Although this linear method 

most likely destroys the ability of nonlinear dimensionality reduction techniques to recover 

nonlinear characteristics and portray them in the visualization.   
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Because this is the case, we compared our deep neural network approach to the 

performance of t-SNE and UMAP on a subsample of scRNA-seq data from Siebert et al.71 This 

sample corresponds to the endodermal epithelial stem cell cluster (as identified by the authors).  

After being reduced to 40 dimensions via PCA.  Interestingly, our approach obtained the lowest 

distortion results for 3 dimensions.  Although t-SNE still produced the lowest distortion 

visualization in this scenario, we believe that with further refinement of the technique, the deep 

embedder approach will be able to achieve the lowest distortion in visualization dimensions, 

while maintaining out-of-sample generalizability that is lacking in t-SNE and UMAP. 

 

 

Figure 3.  Dimensionality Reduction benchmarking on scRNA-seq dataset.  Single cell 

sequencing data from Siebert et al.  The data is reduced to 40 dimensions with PCA, then that 

representation is further reduced with t-SNE, UMAP, and the Deep Embedder approach.  When 
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no activation function is applied, the deep embedder approach gives a lower distortion 

embedding in 3 and 4 dimensions than either t-SNE or UMAP.   

 

Discussion 

Our current implementation of the deep embedder approach uses finite difference method 

of approximating derivatives.  This is necessary, since the function that maps a data set and its 

embedding to a value of AJD is not continuous or differentiable.  Backpropagation, which is a 

more efficient means of estimating derivatives, requires a differentiable objective function.  A 

major thrust of our future work is to find an approximation of the AJD that is continuous and 

differentiable.  We have made some initial progress in that we have implemented 

backpropagation for a handful of approximations, and the algorithm’s speed is improved by an 

order of magnitude.  However, none of the approximations correlates perfectly with AJD, and we 

have yet to achieve results that are comparable in terms of distortion to our original 

implementation. 

   Another challenge is the fact that our implementation is randomly initialized.  More 

specifically, all the weights and biases in the model are initialized with a random number 

generator.   In other words, our model starts at a random location in the space of possible 

parameters.  Because of the complexity of this landscape, the starting point affects the overall 

result of the dimensionality reduction.  This means that some starting points are more ideal than 

others.  Practically, this means there is a large variance in results when the deep embedder 

approach is used.  It is always possible to repeat the algorithm and select the best result, but it 

would be ideal to systematically explore the landscape and find a global optimal solution.  

Broadly speaking, there are two ways to attack this problem: training and initialization.  



 

 62 

Initialization refers to the place where we start, and training refers to how well we can navigate 

our landscape.   

First, we can use an initialization strategy that optimizes our initial parameters.  Many 

strategies have been published, and a major area of future work will be to test and evaluate these 

published initialization strategies.  We have had some early success using the so-called “greedy 

bandit” approach.  This approach starts with 1000 random initializations and selects the one that 

has the lowest AJD when the model is used to embed the data.  This adds a small computational 

cost, but that cost is a fraction of the cost of the algorithm and is theoretically justified by the 

increased accuracy.  Second, we can refine our training algorithm.  One method that has shown 

early promise is a variation on conformational space annealing72.  By searching the landscape of 

model parameters more efficiently, we hope to obtain a global optimal result with each run of the 

algorithm.   

To conclude, using deep neural networks as a means of dimensionality reductions shows 

great promise, and there are a wide variety of strategies and techniques to be drawn from in the 

literature.  This technique has the potential to create lower distortion visualizations of scRNA-

seq data and hence clearer pictures than have ever been seen before.  It also has the potential to 

aid in the elucidation of the high dimensional manifold from which the data is originally 

sampled.  This manifold, if properly characterized, will give us a clearer and more complete 

picture of gene expression than has ever been possible in history of science, which in turn would 

give us a greater understanding than ever before of how life changes and adapts to the Universe 

around it. 
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