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Orientation Information in Encoding Facial Expressions

Deyue Yu1, Andrea Chai2, and Susana T.L. Chung2

1College of Optometry, The Ohio State University, Columbus, Ohio

2School of Optometry, University of California, Berkeley, CA

Abstract

Previous research showed that we use different regions of a face to categorize different facial 

expressions, e.g. mouth region for identifying happy faces; eyebrows, eyes and upper part of nose 

for identifying angry faces. These findings imply that the spatial information along or close to the 

horizontal orientation might be more useful than others for facial expression recognition. In this 

study, we examined how the performance for recognizing facial expression depends on the spatial 

information along different orientations, and whether the pixel-level differences in the face images 

could account for subjects’ performance. Four facial expressions—angry, fearful, happy and sad—

were tested. An orientation filter (bandwidth=23°) was applied to restrict information within the 

face images, with the center of the filter ranged from 0° (horizontal) to 150° in steps of 30°. 

Accuracy for recognizing facial expression was measured for an unfiltered and the six filtered 

conditions. For all four facial expressions, recognition performance (normalized d′) was virtually 

identical for filter orientations of −30°, horizontal and 30°, and declined systematically as the filter 

orientation approached vertical. The information contained in mouth and eye regions is a 

significant predictor for subject’s response (based on the confusion patterns). We conclude that 

young adults with normal vision categorizes facial expression most effectively based on the spatial 

information around the horizontal orientation which captures primary changes of facial features 

across expressions. Across all spatial orientations, the information contained in mouth and eye 

regions contributes significantly to facial expression categorization.

Introduction

Recognizing facial expressions is an important skill in social interactions. Many previous 

studies have focused on evaluating the role of spatial frequencies in facial expression 

recognition. It has been shown that subjects perform the task of categorizing facial 

expressions based on low spatial frequency information contained within the face images, 

although the detection of an expression and the strength of an expression engages the use of 

high spatial frequency information (Calder, Young, Keane, & Dean, 2000; Schyns & Oliva, 

1999; Vuilleumier, Armony, Driver, & Dolan, 2003). In early visual processing, retinal input 

such as face image was decomposed not only along the dimension of spatial frequency but 
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also along the dimension of orientation (e.g., (De Valois, Albrecht, & Thorell, 1982; Hubel 

& Wiesel, 1968). We have also learnt that to precisely categorize facial expressions, subjects 

tend to use different configurations of facial regions (e.g. mouth region for happy face; 

eyebrows, eyes and upper part of nose for angry face) (Smith, Cottrell, Gosselin, & Schyns, 

2005). Most of the facial elements such as eyebrows, eyes, mouths are more horizontally 

oriented. When generating facial expressions, there also seems to be more variations in 

configurations among facial elements oriented horizontally. As shown in a later section 

(Figures 7, 8 and 9), image comparisons between different facial expressions demonstrate 

that the majority of the configural differences occur near horizontal orientation. These 

findings indicate that information conveyed by channels along or near horizontal orientation 

might be more important than the others for facial expression recognition.

Several studies explored how the orientation of spatial information could affect face 

identification (e.g., Dakin & Watt, 2009; Yu & Chung, 2011). By evaluating face 

identification using images filtered along various bands of orientation, these studies showed 

that subjects performed best when viewing images containing information close to 

horizontal orientation, with performance declining gradually as the orientation of the 

reserved information approached vertical. Goffaux and Dakin (2010) further examined the 

impact of horizontally orientated facial information on several key behavioral signatures of 

face perception: inversion effect, identity after-effect, matching across viewpoints, and 

interactive processing of parts. They found that preferential processing of information 

around the horizontal orientation provides a significant account of the behavioral measures 

of face processing. While the invariant aspects of faces encode face identity, the changeable 

aspects of faces construct emotional expressions (Haxby, Hoffman, & Gobbini, 2000). It has 

been suggested that separate functional and neural pathways are involved in the perception 

of invariant aspects of faces and of changeable aspects of faces (Bruce & Young, 1986; 

Hasselmo, Rolls, & Baylis, 1989; Haxby et al., 2000; Winston, Henson, Fine-Goulden, & 

Dolan, 2004), implying that identifying faces and categorizing facial expressions could 

depend on different input information. On the other hand, both face identification and facial 

expression categorization have been shown to rely on the configural information of facial 

components (Calder et al., 2000; Leder, Candrian, Huber, & Bruce, 2001). Therefore, it 

remains unclear whether the spatial information most crucial for categorizing facial 

expressions is the same as that for recognizing face identities.

A recent study utilized orientation bubbles to reveal the diagnostic information for facial 

expressions and found a strong link between the horizontal information and the successful 

categorization of several facial expressions (anger, disgust, fear, happy and sad) but not for 

the surprise expression (Duncan et al., 2017). These authors further showed that individual 

differences in the reliance of horizontal information were best predicted by the utilization of 

eye region alone. However, facial regions other than the eyes have been shown to be 

important for expression categorization. In fact, Smith et al (2005) showed that the facial 

regions diagnostic of a certain emotion expression are different for different expressions and 

share very little overlapping in their locations on a face image. Also, by examining only 

happy and sad expressions, Huynh and Balas (2014) found that the magnitude of the 

preference of horizontal orientation (compared to vertical) can be modulated by factors such 

as mouth openness.
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In this study, we systematically evaluated the dependency of facial expression categorization 

on the orientation of spatial information. Specifically, we examined how the performance for 

recognizing facial expression depends on information restricted to different orientation 

bands. We asked whether categorizing facial expressions shows a similar orientation 

dependency on spatial information as that for recognizing face identities, i.e. primarily the 

horizontal structures. In addition, we examined the confusion patterns among different facial 

expressions for different filter orientations, and investigated how local facial regions 

(differences between facial expressions at the pixel level) may contribute to the 

categorization performance.

Methods

Subjects

Fifteen subjects (eight females and seven males) with normal or corrected-to-normal vision, 

aged between 18 and 39 years, participated in the study. All subjects were naïve to the 

purpose of the experiment, and performed the task binocularly. The research was conducted 

in accordance with the Declaration of Helsinki. Prior to the commencement of data 

collection, every subject signed a consent form approved by the Institutional Review Board 

at the University of California, Berkeley.

Apparatus and Stimuli

We used custom-written software written in MATLAB (version 7.7.0) and Psychophysics 

Toolbox (Brainard, 1997; Pelli, 1997) to control the experiment using a Macintosh computer 

(MacBook 5.1). Stimuli were presented on a gamma-corrected SONY color graphic display 

(model: Multiscan E540), at a pixel resolution of 1280 × 1024 (dimensions: 39.3 cm × 29.4 

cm) and a refresh rate of 75 Hz.

Four facial expressions were tested: angry, fearful, happy and sad. We selected stimuli from 

the NimStim Set of Facial Expressions, a standardized database of naturally posed 

photographs of professional actors (Tottenham et al., 2009). As shown by Huynh and Balas 

(2014), the openness of the mouth can influence the emotion-dependent reliance on 

horizontally orientated face information. To examine the effect of filter orientation without 

the possible interfering effect of mouth openness, only closed-mouth versions were used in 

the study. To ensure none of the subjects viewed the same image more than once, we 

generated more test faces by morphing (Abrosoft FantaMorph 4 Deluxe) between two 

persons (of the same gender) with the same facial expression (a total of 118 source images 

were used). There were a total of 140 different faces (morphed and original) obtained for 

each facial expression, with 55 female faces and 85 male faces. To create a morphing image, 

about 100 key dots were placed on the major elements (such as eyes, eyebrows, nose, mouth, 

the outline of the face, and creases induced by facial expressions) of both source images. 

Each key point on one face image was automatically matched to its corresponding key point 

on the other face. The two source face images were then linearly interpolated by the 

software to produce a morphed image. Only one morphing level, 50%, was used so that the 

facial features from both faces were equally presented. Additionally, for each image 

(morphed and original), two reference points were defined, one at the center of the mouth 
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and the other at the midpoint between the eyes. Rotation was then made to each image until 

the two reference points fell on a vertical line. The mean distance between the two reference 

points was 153 pixels for happy, 167 pixels for sad, 162 pixels for angry, and 167 pixels for 

fearful.

An orientation filter (wrapped Gaussian distributions with a bandwidth σ = 23°) was applied 

to restrict information contained in the stimuli, with the center of the filter ranged from 0° 

(horizontal) to 150° in steps of 30°, as in Yu and Chung (2011). For each filtered condition, 

information within the filter orientation ± the bandwidth was retained, and the rest was 

filtered out. All face images were converted to gray scale and cropped to an oval shape 

(minor and major diameters are 273 and 405 pixels). Across all conditions, images were 

normalized to equate the root mean square (RMS) contrast (0.12) and luminance (0.5). 

Stimuli were presented on a gray background (29 cd/m2). Subjects were tested binocularly. 

At our viewing distance of 40 cm, the angular subtense of the images was 8° horizontally 

and 11.9° vertically. Figure 1 shows examples of the four facial expressions in the unfiltered 

and the six filtered conditions. Accuracy for recognizing facial expressions filtered with each 

of these filters, as well as for the unfiltered condition, was measured.

Procedures

There were a total of 28 conditions (four facial expressions × seven filter orientations). 

Twenty trials per filter orientation were tested for each facial expression and each subject. 

For each subject, trials were divided into four blocks with 140 trials per block (testing 

conditions were completely randomized within each block). No subject viewed the same 

image more than once. Prior to testing, each subject completed a practice block using a 

different set of face images to familiarize themselves with the task.

Before each trial, a white fixation dot was presented at the center of the display. Subjects 

were instructed to press a mouse button to initiate a trial. Each face image was presented for 

53ms, which was selected based on pilot data to avoid any ceiling or floor effect in 

performance. Immediately after the stimulus disappeared, a white-noise post-mask was 

presented for 500ms, followed by a response screen displaying four choices in words—

angry, fearful, happy and sad. Using the mouse, subjects selected the response for each trial. 

Figure 2 illustrates a schematic diagram of the experimental paradigm.

Results

The proportion correct of recognition, averaged across the 15 subjects, was plotted as a 

function of the orientation of the spatial filter for each facial expression in Figure 3. Given 

that the task was a four alternative forced choice task, the chance performance is 0.25. 

Values lower than 0.25, such as the accuracy of recognizing angry faces filtered along the 

vertical orientation, may be accounted for by sampling error or response bias.

With the exception of fearful expression, subjects’ proportion-correct performance 

demonstrated a tuning relationship with respect to the orientation of filter. In other words, 

the orientation of the spatial information contained within the stimuli is an important 

determinant of subjects’ performance, at least for the angry, happy and sad expressions. 
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What about fearful expression? Subjects’ performance toward face images containing fearful 

expressions appeared to be invariant with the orientation of filter — subjects’ proportion-

correct performance was between 0.66 and 0.82 across all filter orientation for stimuli with 

the fearful expression. The main difference between the pattern of results for the fearful 

expression versus other expressions is that the proportion correct performance was much 

higher for filter orientations close to vertical for the fearful expression than for other 

expressions. One explanation for this finding is that subjects often chose “fearful” as their 

responses when the stimuli contained only the information close to the vertical orientation. 

In the following, we examined the stimulus-response confusion matrix, as well as the miss 

and false-alarm rate. These analyses reveal a fuller picture of how subjects’ responses 

depend on the spatial information within the face stimuli.

Figure 4 shows the confusion matrix with data accumulated across all subjects. The rows are 

stimuli (targets presented) and the columns are subject responses. Each cell shows the 

proportion of response X given a target Y. The diagonal elements show the proportion 

correct when a given target was presented (hit). The off-diagonal elements show the pattern 

of confusions (false alarms in columns and misses in rows). We also constructed the average 

face images based on the stimuli presented in the corresponding cells (see Figure A1).

In general, subjects showed high performance when recognizing facial expressions for 

unfiltered face images or face images filtered at orientations near the horizontal (i.e., −30°, 

0°, and 30°). Happy expression seemed to be the most resistant to information loss due to 

filtering across orientations except when the stimuli were filtered along the vertical 

orientation (i.e., stimuli containing information near the vertical orientation only). As the 

filter orientation approached vertical, more misses and false alarms occurred, regardless of 

the facial expressions. Recognition of fearful expression was least affected by the filter 

orientation near the vertical (also see Figure 3), which can be accounted for by subjects’ 

strong bias toward classifying an expression as fearful for stimuli filtered with the vertical 

orientation. We also observed that subjects tended to produce many false alarms for sad 

expression regardless of the filter orientations. Overall, the miss rate was especially high for 

angry and sad expressions for the filtered conditions. As will be shown in the discussion, the 

information content conveyed at the pixel level of the stimulus images can partially account 

for the variability of the subjects’ response (Figures 7, 8 and 9).

To examine the strength of signal relative to noise, we transformed accuracy data into d-

prime (d′) values. d′, indicating the ability to distinguish target-present from target-absent, 

was calculated for each combination of facial expression and filter orientation using the 

equation d′ = ϕ−1(H) − ϕ−1(FA), where ϕ−1(H) and ϕ−1(FA) denote the z scores (i.e. the 

inverse Gaussian distribution) of the hit rate and the false-alarm rate, respectively.1 We 

found higher d′ value for happy expression (4.52±0.08 (SE)) than for angry, fearful and sad 

expressions (3.32±0.14, 3.44±0.14, and 3.22±0.16) for the unfiltered condition (ps ≤ 

1Due to the lack of a widely accepted method for calculating d′ for multiple-alternative forced-choice situations, we decided to 
calculate d′ using the standard formula for a two-alternative forced-choice task. Our task has four alternative choices. When 
performing d′ calculation for each target facial expression, we assembled the other three expressions into the same group (target-
absent group). Although the validity of this approach may be debatable, we would like to include the analyses and results here as an 
alternative or reference. The same is true for the calculation of response bias, c.
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0.0005). Normalized d′ was then calculated by subtracting the d′ of the unfiltered condition 

from the d′ of each filtered condition. This was performed for each facial expression and 

subject. Based on the same hit and false-alarm rates, we also computed response bias, c = −

(ϕ−1(H) + ϕ−1(FA))/2, the distance between the criterion and the neutral point (cneutral point = 

0). A large absolute value of c signifies that subject biases towards one type of response 

regardless of the stimulus (Stanislaw & Todorov, 1999).

Since the testing trials were divided into four blocks, we assessed the possible incidental 

learning or fatigue (i.e. whether normalized d′ changes across blocks) by comparing the 

four testing blocks. Repeated measures ANOVA (4 facial expressions × 7 filter orientations 

× 4 testing blocks) were employed. Neither the main nor the interaction effects involving 

testing block were significant, justifying our pooling of data over the four blocks for 

analysis.

Figure 5 plots normalized d′ (averaged across subjects) as a function of the orientation of 

filter for each facial expression. Clearly, a major difference between Figure 5 and Figure 3 is 

that we observe a tuning function for all four facial expressions, including the fearful one. 

The change in the shape of the data (from a flat function in Figure 3 to a tuning function in 

Figure 5) is mainly due to the fact that we examined both the target-present and target-absent 

trials (both signal and noise).

As demonstrated in Figure 5, there was an effect of filter orientation when comparing all six 

filtered conditions (F(5,70) = 131.04, p < 0.0005) but not when considering only the three 

orientations near the horizontal (i.e., −30°, 0°, and 30°) or only the −60° and 60° filtered 

conditions. For the near horizontal orientations, all except happy expression showed 

significantly lower performance compared to the unfiltered condition (ps ≤ 0.002). 

Normalized d′ was similar for angry, fearful and happy expressions, but lower for sad 

expression (F(3,42) = 8.66, p < 0.0005). In other words, subjects could not recognize sad 

expression as well as the other three at these three filtered conditions. At the −60° and 60° 

filtered conditions, subjects performed equally well on the four expressions. At the vertical 

filter orientation, recognition performance varied across expressions (F(3,42) = 6.96, p = 

0.001), and was worst for happy expression (ps < 0.05).

Response bias is plotted as a function of the orientation of the filter for each facial 

expression in Figure 6. For the unfiltered condition (dashed lines), there was no response 

bias for happy expression, a small preference toward responding “yes” (value < 0) for sad 

expression (c = −0.19, t(14) = −2.90, p = 0.01), and some biases toward the “no” response 

(values > 0) for angry (c = 0.48, t(14) = 5.43, p < 0.0005) and fearful expressions (c = 0.48, 

t(14) = 6.19, p < 0.0005). When assessing the response biases occurred under the filtered 

conditions, we examined each bias relative to its corresponding baseline (i.e. the bias under 

the unfiltered condition). Interestingly, for all filtered conditions, sad expression consistently 

showed a bias toward “no” response (p ≤ 0.003), which explains the high miss rates 

observed under the six filtered conditions in Figure 4. Across the four facial expressions, the 

largest biases occurred at the 90° filtered condition—relative to the unfiltered condition, bias 

was strongly toward “yes” response for fearful expression and “no” for the other three 

expressions. These results are consistent with, and can account for, the observation in Figure 
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3 that the proportion-correct for categorizing face images filtered with the 90° filter was 

much higher for fearful expression than for other facial expressions; as well as the 

observation in Figure 4 that over half of the responses were toward fearful expression for 

images filtered with the 90° filter.

Discussion

Consistent with previous work (e.g. Huynh & Balas, 2014; Goffaux & Greenwood, 2016; 

Duncan et al, 2017), we found that the spatial information that lies around the horizontal 

orientation captures primary changes of facial features across expressions and is the most 

important information for recognizing facial expressions for young adults with normal 

vision. In addition, we further showed that for all four facial expressions (angry, fearful, 

happy and sad), recognition performance was virtually identical for filter orientations of 

−30°, horizontal (0°) and 30°. Beyond ±30° filter orientation, performance declined 

systematically as the filter orientation approached vertical.

Processing facial expression information is supported by both low and high spatial 

frequencies (Calder et al., 2000; Schyns & Oliva, 1999; Vuilleumier et al., 2003). Both the 

individual features (i.e., fine-grained information contained in high spatial-frequency 

components) (Ellison & Massaro, 1997; Smith et al., 2005) and the configural information 

(i.e., global information contained in low spatial-frequency components) play an important 

role in facial expression categorization (Calder et al., 2000). Our findings show that signals 

in the horizontal and nearby orientation channels contain more diagnostic information when 

compared to the other orientations, which is possibly due to the fact that the local features 

and the configural information in faces are most reliably reserved in the horizontal and 

nearby oblique orientation channels. In other words, it is not the absolute amount of energy 

contained within a given orientation channel that makes the signal within that orientation 

diagnostic; instead, it is the variations (the relative changes) of this signal across different 

expressions that are important.

By analyzing confusion matrices constructed based on subjects’ performance, we found that 

the vertical filter orientation produced the largest amount of confusions among the four 

expressions while the reporting rate for fearful expression was substantially high 

(accounting for half of all responses at the vertical orientation). Our finding suggests that the 

information carried by the vertical and its neighboring orientations primarily contains 

signature for fearful expression, and has little variation across expressions, as demonstrated 

in Figure 7. Therefore, it is reasonable to observe the substantial biases presented at the 

vertical filter orientation (Figure 6). In addition, as indicated by our data (Figure 3), the 

diagnostic features for fearful expression are not exclusively carried by the vertical and 

nearby orientation channels. When the vertical information was removed (e.g., when face 

images were filtered at orientations near the horizontal), subjects were still able to recognize 

fearful expression.

Besides neutrality, facial expressions are generally classified into six basic categories: angry, 

fearful, happy, sad, disgusted, and surprised (Ekman & Friesen, 1975). In the present study, 

we tested four of the facial expressions: angry, fearful, happy and sad. It is possible that the 
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horizontal tuning and the pattern of confusions among different facial expressions may 

change if we included all expressions. A recent study showed that when all six facial 

expressions plus neutrality were tested, a considerable degree of confusion was found 

between surprised and fearful expressions, and that the information around horizontal 

orientation is not diagnostic for surprised expression (Duncan et al., 2017).

A feed-forward neural network, EMPATH model, has been developed to model facial 

expression recognition (Dailey, Cottrell, Padgett, & Adolphs, 2002). Li and Cottrell (2012) 

used the same model to model our findings. The model consists of three layers—a set of 

model neurons based on the magnitude of Gabor filters, principal components generated 

from Gabor filter outputs to capture the distinguishing features of each facial expression, and 

a linear perceptron with the principal components mapped to different emotion categories. 

The model showed a very similar response pattern to that of our human subjects.

Orientation selectivity for facial expression categorization vs. face identification

Facial expression and face identity represent changeable and invariant aspects of faces, 

respectively. Despite the suggested dissociation between the representations for processing 

the two types of aspects of faces (Bruce & Young, 1986; Hasselmo et al., 1989; Haxby et al., 

2000; Winston et al., 2004), facial expression categorization and face identification (Dakin 

& Watt, 2009; Yu & Chung, 2011) showed similar dependency on information restricted to 

different orientation bands. To further compare the orientation sensitivity profiles for face 

identification and facial expression categorization, we fit our expression categorization data 

and face identification data from Goffaux & Greenwood (2016, data for the masked outline 

and upright face condition) using a Gaussian function and compare the shape and position of 

the profiles. We found that both facial expression processing and identity processing are 

strongly tuned to horizontal orientation (peaks of the curves reside within 3° from 

horizontal). Subjects consistently benefit most from the presence of spatial information 

around the horizontal orientation. The tuning bandwidth (full-width at half-maximum) is 

broader for the sensitivity to facial expression (93°, 94°, 98° and 95° for angry, fearful, 

happy and sad expressions, respectively) than for the sensitivity to facial identity (62°), 

which indicates that a broader range of orientations contribute more similarly to processing 

facial expression than processing facial identity. It has been shown that in face identification, 

the face inversion effect is essentially related to a decreased sensitivity to horizontal 

information (Goffaux & Greenwood, 2016). The modeling results by Li and Cottrell (2012) 

indicate that performance on categorizing facial expression is largely driven by stimulus 

images (information contained in stimulus image should be invariant regardless of image 

orientation). Although we have not tested face inversion effect on facial expression, it is 

possible that we may not observe the same amount of disruption on the horizontal selectivity 

for facial expression processing as it does for facial identity processing, that is, facial 

expression categorization may not be as susceptible to face inversion as face identification.

Pixel-Level Face Image Analysis

A recent study showed that in the categorization of facial expressions, horizontal tuning is 

best predicted by eye diagnosticity (Duncan et al., 2017). Here, to examine whether 

subject’s response was driven by the energy content in a specific facial region, we performed 
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further analysis on the stimulus images. First, we performed pixel-level stimulus comparison 

between each pair of facial expressions by subtracting the average face image of one 

expression from the average face image of another expression. The comparison was done for 

all facial expression pairs and all seven conditions (unfiltered, −60°, −30°, 0°, 30°, 60°, and 

90° filtered conditions). Figures 7, 8 and 9 show the image subtraction for vertical and 

horizontal filtered conditions and the unfiltered condition, respectively. Difference was 

shown in all the off-diagonal pairs. The larger the difference (i.e. the larger the deviations of 

pixel values from the mean gray background), the easier it could be to differentiate the two 

facial expressions. RMS contrast was calculated to quantify the amount of information 

contained in each subtracted image, and was found to peak near the horizontal orientation. 

We also performed linear regression modeling to evaluate the contributions of different 

facial regions to subjects’ response. Specifically, we divided each subtracted image into four 

regions (eye, mouth, nose, and the rest; see examples in Figure 9), and calculated RMS 

contrast for each region. The outcome variable was the proportion of subjects’ response (i.e., 

the cells of confusion matrices in Figure 4). Only off-diagonal values were considered. Since 

we only have 12 data points (i.e., 12 off-diagonal values) for each filtered condition, we 

compiled the data across all filtered conditions to model the proportion of subjects’ response 

as a function of RMSeye, RMSnose, RMSmouth and RMSrest. By examining both the linear 

and two-way interaction terms in the model, we found that only the mouth and eye regions 

showed significant associations with the outcome measure. The model (proportion of 

response = 0.65 – 9.80×RMSmouth – 7.74×RMSeye + 113.76 × RMSmouth × RMSeye) 

explains 49% (R2
adj) of the variability of the proportion of subjects’ response. In other 

words, 49% of the variance of subjects’ response can be explained by the information 

content contained in the mouth and eye regions at the pixel level. The unique contribution to 

explaining the total variance in the proportion of response is the largest for RMSmouth (sr2 = 

0.33), followed by RMSeye (sr2 = 0.22), and the smallest for the interaction term (sr2 = 

0.05).2 The results suggest that energy contents in different facial regions have different 

weights in facial expression recognition. It is possible that this weight distribution varies for 

different tasks and/or testing conditions.

Conclusions

In this study, we showed that for normally-sighted young adults, the spatial information 

around the horizontal orientation is the most important for recognizing facial expressions. It 

is important to ask whether similar results can be found in older adults and people with 

visual impairment. If crucial orientation(s) can be identified in these populations, selective 

enhancement of face images along the orientation(s) would possibly improve the ability of 

these people to recognize facial expression. When analyzing the face image stimulus on a 

pixel level, we further showed that human performance for categorizing facial expressions is 

primarily driven by the information contained around the mouth and eye regions, supporting 

the importance of these regions for the task of facial expression categorization.

2The sum of the three sr2 is larger than R2adj (0.49) because the two variables, RMSeye and RMSmouth, are mutually enhancing (due 
to their negative correlation (r = −0.24, p = 0.03)), that is, each variable accounts for more of the variance in the outcome measure (the 
proportion of subjects’ response) in the presence of the other variable than it does alone (Cohen & Cohen, 1975).
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Appendix A

Figure A1 shows the average confusion matrix with data accumulated across all subjects and 

the six filtered conditions. In each cell, an average face image was constructed based on all 

the stimulus faces presented in the corresponding cell.

Figure A1. 
The average confusion matrix with data accumulated across all subjects and the six filtered 

conditions. The rows are stimuli (targets presented) and the columns are subject response. 
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Each cell shows the proportion of response X given a target Y, and the face image which was 

constructed based on all the stimulus faces presented in the corresponding cell.
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Figure 1. 
Examples of the four facial expressions—angry, fearful, happy and sad—in an unfiltered and 

the six filtered conditions. For the filtered conditions, an orientation filter was applied to 

images along one of the six orientations (−60° (120°), −30° (150°), 0°, 30°, 60°, 90°) with a 

bandwidth of 23°. Image RMS contrast and luminance were normalized.
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Figure 2. 
A schematic diagram of the experimental paradigm.
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Figure 3. 
Proportion correct of recognizing facial expression as a function of filter orientation. Both 

90° and −90° refer to the vertical filter orientation. Dashed lines denote the performance for 

recognizing unfiltered images. Error bars indicate 95% confidence intervals.
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Figure 4. 
Confusion matrices with data accumulated across all subjects for different conditions 

(unfiltered, −60°, −30°, 0°, 30°, 60°, and 90° filtered conditions). We also constructed the 

average confusion matrices across the six filtered conditions (“6 Filtered”) and across all 

conditions (“6 Filtered + Unfiltered”). In each matrix, the rows are stimuli (targets 

presented) and the columns are subject response. Each cell shows the proportion of response 

X given a target Y. The diagonal elements show the proportion correct when a given target 

was presented. The off-diagonal elements show the pattern of confusions (false alarms in 

columns and misses in rows). The value below each column represents the total proportion 

of response X for the given filtered condition. The colored key represents the different 

accuracy.
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Figure 5. 
Normalized d′ (d′ for each filtered condition subtracted by the d′ of the unfiltered 

condition) as a function of filter orientation for each facial expression. Both 90° and −90° 

refer to the vertical filter orientation. Dashed lines denote a normalized d′ of zero (i.e., no 

difference between performance for a filtered condition and the unfiltered condition). Error 

bars indicate 95% confidence intervals.
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Figure 6. 
Response bias, c, as a function of filter orientation for each facial expression. Both 90° and 

−90° refer to the vertical filter orientation. Dashed lines denote c of the unfiltered condition. 

Negative value of c indicates a bias toward responding “yes”, whereas positive value 

indicates a preference toward the “no” response. Error bars indicate 95% confidence 

intervals.
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Figure 7. 
Image subtraction (pixel by pixel) between each pair of facial expressions for the vertical 

filtered condition.
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Figure 8. 
Image subtraction (pixel by pixel) between each pair of facial expressions for the horizontal 

filtered condition.
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Figure 9. 
Image subtraction (pixel by pixel) between each pair of facial expressions for the unfiltered 

condition. In the happy-fearful subtracted image, we showed an example on how the eye, 

nose and mouth regions are defined. The eye region is bounded by the red box. The mouth 

region is defined by the blue box. The nose region is bounded by green lines. All the leftover 

regions are categorized as “the rest”.
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