
GraphBLAS C API:
Ideas for future versions of the specification

Timothy G. Mattson∗, Carl Yang†, Scott McMillan‡, Aydın Buluç§, José E. Moreira¶

∗Intel Corporation, Hillsboro OR, USA (timothy.g.mattson@intel.com)
†University of California, Davis CA, USA (ctcyang@ucdavis.edu)

‡Software Engineering Institute, CMU, Pittsburgh PA, USA (smcmillan@sei.cmu.edu)
§Lawrence Berkeley National Laboratory, Berkeley CA, USA (abuluc@lbl.gov)
¶IBM Corporation, Yorktown Heights NY, USA (jmoreira@us.ibm.com)

Abstract—The GraphBLAS C specification provisional release
1.0 is complete. To manage the scope of the project, we had to de-
fer important functionality to a future version of the specification.
For example, we are well aware that many algorithms benefit
from an inspector-executor execution strategy. We also know
that users would benefit from a number of standard predefined
semirings as well as more general user-defined types. These and
other features are described in this paper in the context of a
future release of the GraphBLAS C API.

I. INTRODUCTION

The GraphBLAS aims to standardize the mathematical con-
cepts [5] and the application programming interface (API) [2]
for performing graph computations in the language of linear
algebra [6]. The GraphBLAS C API version 1.0 has been
provisionally released in May 2017 [3]. Its finalization is
pending on the existence of at least two feature compliant
implementations.

During the C API development process, the members of
the GraphBLAS community at large have provided valuable
feedback and additional features they would like to see. Some
of these ideas have made it to the version 1.0 release, some
have been deemed out of scope, and some have been postponed
for future releases despite being relevant for GraphBLAS. We
also opted to not include many interesting ideas of our own
into the first official release due to time constraints and the lack
of broad discussion on their implications. This paper presents
a high-level overview of those ideas that we are considering
for future versions of the GraphBLAS C API.

The topics we describe in this paper are likely to become
part of a future release of the C API Spec. We describe
standard definitions that aim to ease the burden on the pro-
grammer in Section III. An inspector-executor interface that
allow preprocessing to be performed on the inputs (matrices,
vectors, and masks) of the operation with the aim of accel-
erating the overall operation is discussed in Section IV. We
describe finer grained synchronization constructs in Section V,
extensions to descriptor objects in Section VI, user-defined
types in Section VII, and additional mathematical operations
Section VIII. Finally, Section IX includes a discussion about
object type promotion that allows automatic generation of
higher dimensional objects from lower dimensional ones.

II. THE GRAPHBLAS C API

This section gives a brief overview of important elements
of Version 1.0 of the GraphBLAS C API specification [2]
in order give some context for future extensions proposed in
this paper. The full specification can be downloaded from the
GraphBLAS Forum website [1]. Like the original BLAS, this
library performs operations on matrices and vectors. However,
there are significant differences to specifically support graph
operations as explained in the mathematical specification [5].

Since nearly all operations in the API follow the same basic
structure, we will highlight important aspects of the API by
examining one operation: matrix-matrix multiply as shown in
Figure 1. Figure 1(a) illustrates the mathematical notation for
that operation (optional items in brackets). This is similar
to what is described in the mathematical specification [5],
with some additions supported by the API – write masks
and accumulation – which are contained in the signature in
Figure 1(b). In the signature for every GraphBLAS operation,
the output argument always appears first. This is followed
by the write mask and accumulate operation, if supported.
Next, the arguments describing the input objects and the math
to be performed are listed. Finally, the last argument is the
optional descriptor. All GraphBLAS methods return a status

C〈M〉 = [C �] A[T ] ⊕ .⊗B[T ]

(a) The mathematical definition.

GrB_Info GrB_mxm(GrB_Matrix C,
const GrB_Matrix M,
const GrB_BinaryOp accum,
const GrB_Semiring op,
const GrB_Matrix A,
const GrB_Matrix B,
const GrB_Descriptor desc);

(b) The mxm function signature.

Fig. 1. GraphBLAS matrix-matrix multiply definition and function signature
where � (corresponding to accum) performs an optional accumulate opera-
tion with the output matrix, and M is an optional write mask that controls
which elements of the output matrix get modified.

1



code (GrB Info) regarding the success of the call.

A. Objects

At its foundation, the GraphBLAS C API is built on opaque
data types exposed through the API by handles. A few of these
opaque types are collections – matrices and vectors – where
matrices are typically very sparse and vectors can be sparse
as well. The mxm signature consists of one output matrix,
C, and two input matrices, A and B. The dimensions and
domain (type) of the object are specified at construction time
and remain fixed for the lifetime of the object. A number of
domains corresponding to the C built-in types are supported,
and the API allows for definition of user-defined types as well.

The GraphBLAS C API also has opaque types for algebraic
objects including unary and binary operators, monoids, and
semirings, which differ from the traditional linear algebra
of the BLAS. The traditional arithmetic addition and mul-
tiplication operations can be replaced (e.g., min and plus,
respectively) through user-defined capabilities that can operate
on data from multiple domains. The op argument in Figure 1
corresponds to a GraphBLAS semiring, denoted by ⊕.⊗ in the
mathematical description, and it specifies the binary operations
that take the place of arithmetic addition and multiplication,
respectively. The accum argument in the signature, denoted
by �, is an optional binary operator that can be used to
combine the results with existing values in the output matrix.
If accumulation is not desired, GrB NULL is specified.

The API supports a few optional control objects: write
masks and descriptors. A mask is specified using GraphBLAS
matrix (or a vector for 1-dimensional operations). Since this
is a write mask, it is applied when assigning results to the
output matrix after accumulation has been performed. The
descriptor is a lightweight object that can modify the semantics
of the operation by allowing the user to specify which input
parameters need to be transposed prior to the operation,
whether the mask should be structurally complemented, or
whether the output should be cleared before assignment. Note
that GrB NULL can be specified if default behavior is desired.

B. Operations

The API supports the basic operations that were outlined in
mathematical specification [5]: inserting and extracting data,
matrix multiply, element wise operations, subgraph assignment
and extraction, apply, reduction, and transpose. It also provides
a number of variants that are useful in a number of graph
algorithms. For example, instead of just row reduction of a
matrix to a vector, the API also supports reduction of both
matrices and vectors to scalars. Variants of both subgraph
assignment and extraction support these operations on a single
row or column of a matrix. The API also supports the ability
to assign a constant scalar value to an entire subgraph (through
a variant of subgraph assignment).

C. Execution Models

The API also supports two execution modes: blocking and
nonblocking. In blocking mode, each API method completes

the operation before proceeding to the next. However, because
the API is meant to support high-performance computing
in a parallel and distributed environment we also provide a
non-blocking mode. In this mode, the methods may return
immediately after the input arguments have been verified but
before any computation has been carried out. This mode
gives an implementation the flexibility to choose an execution
strategy that might reduce computation time through fused
operations, lazy evaluation, asynchronous evaluation, and/or
asynchronous execution. When using nonblocking mode, a
slightly different mechanism is used for reporting errors which
is beyond the scope of this paper.

III. STANDARD DEFINITIONS

The first way in which the current GraphBLAS specification
could be augmented is with a list of pre-defined objects, such
as descriptors, semirings and monoids, that are commonly
used in building graph algorithms. These standard pre-defined
objects would simplify coding and ensure more consistency
across algorithms. We emphasize that individual application
writers are always free to create their own set of pre-defined
objects.

Additionally, GraphBLAS could include pre-defined macros
that support shorter calling syntax for methods, by hiding
default arguments. Again, individual application writers are
always free to create their own set of pre-defined macros.

We propose that such pre-defined objects and macros would
be included in a compilation unit by including a header file
as follows:

#include <GrB_stddef.h>

Table I shows an initial set of proposed standard object
definitions. It includes descriptors for transposing either or
both input matrices, Boolean monoids, the standard arithmetic
monoids for integer and floating-point data, and min and max
monoids for floating-point data. It also includes a number of
commonly used semirings, including the conventional Boolean
semiring, arithmetic semirings for integer and floating-point
data, as well as min-plus and max-times semirings. Other
semirings commonly used with graph algorithms can also
be added, and experience with the current API will help in
determining which of these are most common.

IV. INSPECTOR-EXECUTOR

In its non-blocking mode of execution, GraphBLAS al-
lows specific implementations to support various alternative
execution approaches. In particular, it allows for methods
to be executed in several stages, possibly interleaved with
stages from other methods. This is called split execution. In a
particular split execution, a method can go through an analyze
stage followed by a perform stage. The analyze stage computes
various characteristics of the object being produced, whereas
the perform stage does the actual calculations.

It may be desirable to augment GraphBLAS with addi-
tional constructs to control this particular analyze/perform split
explicitly. In particular, having the application communicate

2



TABLE I
INITIAL SET OF PROPOSED STANDARD DEFINITIONS FOR GRAPHBLAS.

Name Description
Descriptors:

GrB TA GrB INP0 = GrB TRAN
GrB TB GrB INP1 = GrB TRAN

GrB TATB GrB INP0 = GrB INP1 = GrB TRAN

GrB TASR GrB INP0 = GrB TRAN,
GrB MASK = GrB SCMP,
GrB OUTP = GrB REPLACE

GrB SR GrB MASK = GrB SCMP,
GrB OUTP = GrB REPLACE

GrB R GrB OUTP = GrB REPLACE
Monoids:

GrB Lor 〈bool,∨, false〉
GrB Land 〈bool,∧, true〉
GrB FP32Min 〈float,min,∞〉
GrB FP32Max 〈float,max,−∞〉
GrB Int32Add 〈int32 t,+, 0〉
GrB Int32Mul 〈int32 t,×, 1〉
GrB FP32Add 〈float,+, 0.0〉
GrB FP32Mul 〈float,×, 1.0〉
GrB FP64Add 〈double,+, 0.0〉
GrB FP64Mul 〈double,×, 1.0〉
Semirings:

GrB Boolean 〈bool, bool, bool,∨,∧, false〉
GrB Int32AddMul 〈int32 t, int32 t, int32 t,+,×, 0〉
GrB FP32AddMul 〈float, float, float,+,×, 0.0〉
GrB FP64AddMul 〈double, double, double,+,×, 0.0〉
GrB FP32MinPlus 〈float, float, float,min,+,∞〉
GrB FP64MinPlus 〈double, double, double,min,+,∞〉
GrB FP32MaxTimes 〈float, float, float,max,×,−∞〉
GrB FP64MaxTimes 〈double, double, double,max,×,−∞〉

properties of an object that do not change between multiple
perform stages greatly simplifies or eliminates the need for
analyze stages.

As a concrete example, the current GraphBLAS specifica-
tion exposes mxm as a single operation to the user. Under the
hood, it is understood that mxm is often implemented in two
phases: analyze and compute. The analyze phase consists of
allocating memory to the output matrix. The compute phase
computes the value at each nonzero of the output matrix.
In this scenario, the implementer has the option of deciding
whether to set the nonzero structure of the output matrix in
the analyze phase or the compute phase.

It may be desirable in some circumstances to expose these
two phases of mxm to the user explicitly. There are a few
options on how to do that, including separate methods and
leveraging the functionality of the descriptor (see Section VI.)

For typical use cases, neither the size nor the nonzero
structure of the output matrix are known a priori before the
mxm operation is run. However, there may exist situations
where the user is computing a sequence of output matrices
which share the same nonzero structure and memory layout.
In this case, it may be advantageous for the user to explicitly
call both the analyze and compute phases for the first matrix-
multiplication in the sequence, and only the compute for the

TABLE II
EXPERIMENTAL SETUP USED FOR BENCHMARKING.

Vendor Intel Nvidia
Family Xeon Tesla GPU
Device E5-2637 v2 K40c

Codename Sandy Bridge Kepler GK110
Memory 256 GB 12 GB

OS Ubuntu 14.04.1 Ubuntu 14.04.1
Compiler Intel C++ v17.0.4 nvcc v8.0.44

Intel OpenMP v5.0 g++ v4.9.4
Library Intel MKL 2017.4.196 cuSPARSE v8.0.44

API mkl Scsrmultcsr cusparseScsrgemm2

TABLE III
DESCRIPTION OF DATASETS USED FOR BENCHMARKING. FLOPS REFERS

TO THE NUMBER OF FLOATING-POINT COMPUTATIONS REQUIRED TO
SQUARE THE MATRIX BY ITSELF. TWO COPIES OF THE MATRIX ARE KEPT

IN MEMORY FOR SAKE OF BENCHMARKING.

Dataset Rows Nonzeros Flops Symmetric
epidemiology 526k 2.1M 16.8M no
wind tunnel 218k 11.6M 1.3B yes

protein 36k 4.3M 1.1B yes
sphere 83k 6.0M 0.9B yes
hood 221k 10.8M 1.1B yes

webbase 1.0M 3.1M 139M no

rest.
To further motivate this proposed capability, we used two

experimental testbeds to measure the importance of split
execution for mxm operation. Experiments were performed
on a quad-core Intel Xeon CPU E5-2637 v2 @ 3.50GHz with
256 GB RAM running Ubuntu 14.04.1, and an NVIDIA K40c
GPU with 12 GB RAM. For each platform we used library
(MKL and cuSPARSE, respectively) that supports this type of
split execution. Complete details of the test setups are listed
in Table II.

For our datasets (see Table III), we chose six matrices
from the University of Florida Sparse Matrix Collection [4]
because they come from diverse sources (epidemic modeling,
finite element modeling, protein data, web connectivity) and
have varying sparsity structures ranging from fairly regular
(epidemiology, wind tunnel, protein, sphere) to highly irregular
(hood, webbase). To test the above mentioned use case, we
compared calling mxm ten times with no split execution, to a
split execution where a call to mxm analyze phase is followed
by ten calls to mxm compute phase.

Performance of the test cases is shown in Figure 2. We ob-
serve that the split execution performs better than the “unsplit”
execution. MKL sees a geometric mean 37.2% speedup going
to split execution, while cuSPARSE sees a geometric mean
29.3% speedup. In general, cuSPARSE performed better than
MKL on the larger datasets (wind tunnel, protein and sphere),
but worse on the smaller ones (epidemiology and webbase).

We decided to defer such facilities from version 1.0 of the
GraphBLAS specification. There is a computational benefit to
the user in being able to access split execution, but the API
will need to become more complex in order to support it. We

3



0
1
2
3
4
5
6
7
8
9

Epidemiology Wind	Tunnel Protein Sphere Hood Webbase

GF
lo
ps

Dataset

MKL	No	Split MKL	Split cuSPARSE	No	Split cuSPARSE	Split

Fig. 2. Comparison of mxm runtime with and without split execution for
two experimental setups, MKL and cuSPARSE.

believe that additional experience with implementation and use
of GraphBLAS is necessary before we can define the proper
interfaces for explicit split execution.

V. DEPENDENCY DAGS AND wait ON SPECIFIC OBJECTS

In the current specification of GraphBLAS, when operating
in nonblocking mode, the operation wait will ensure that
the current sequence of GraphBLAS operations has either
completed successfully, or encountered an error. Further, a
sequence in nonblocking mode where every GraphBLAS op-
eration is followed by an wait call is equivalent to the same
sequence in blocking mode with wait calls removed.

It may be desirable to modify the wait interface such that
it takes a GraphBLAS object as parameter, and performs all
outstanding computations needed to compute that particular
object. This approach gives the programmer finer grained spec-
ification of the synchronization, while giving the GraphBLAS
implementation more flexibility in scheduling operations.

We decided to defer such an interface from version 1.0 of
the GraphBLAS specification. We believe that additional expe-
rience with implementing and using GraphBLAS nonblocking
mode is necessary before we can determine what is the best
approach.

VI. API-TRANSPARENT EXTENSIONS

A defining characteristic of the GraphBLAS C API is its
use of descriptors to modify the behavior of a method. In
the current definition of the API, descriptors can specify
preprocessing steps for input data (typically, whether an input
matrix should be transposed or not before the operation) as
well as controlling how the result value is written to the output
object (complement or not the mask, preserve or replace the
elements of the output object that are masked).

This descriptor-based approach allows one to extend the
functionality of methods without changing their interface,
since all main GraphBLAS methods already include an op-
tional descriptor as the last argument. We envision some new
uses for descriptors in future versions of the GraphBLAS C
API.

First, we plan to provide a GrB STRUCTURE ONLY
modifier for masks. In the present specification of Graph-
BLAS, masks need to be matrices or vectors of a prede-
fined type. And only those elements of a mask that evaluate

to a Boolean true value are considered active. Specifying
GrB STRUCTURE ONLY in the GrB MASK field of a
descriptor would direct GraphBLAS to consider all elements
present in the mask as active, irrespective of their value. As a
side effect, vectors and matrices of any type could be used as
masks.

Another item under consideration is the use of assertions
about the properties of the output object. Those assertions
could be used to implement optimizations for certain oper-
ations. For example, specifying GrB FIXED STRUCTURE
in the GrB OUTP field of a descriptor would assert that the
output object will not change structure (pattern of nonzero
elements) during this operation. Therefore, computation can
happen in place with new values simply replacing old val-
ues. This would accomplish similar optimization results as
achieved by a split analyze/compute execution. Moreover, a
spectrum of standard properties, from more restrictive to more
permissive can be specified. For example, GrB SYMMETRIC
can assert that an output is a symmetric matrix, whereas
GrB FIXED NVALS can assert that the number of elements
in the output is constant (even though the structure may
change).

In the case of assertions, it is important to specify how hard
or soft those assertions are. That is, do they cause a run-time
error if violated or are they just “hints” that the implementation
can use to improve performance but should be able to recover
from, maybe with big performance penalties, if they prove to
be wrong.

VII. GENERALIZED USER-DEFINED TYPES

Currently, GraphBLAS only supports a limited form of user-
defined types – the elements that are stored in matrices and
vectors. In particular, objects of the data type must have a flat
memory representation, so that an object can be copied with a
simple memcpy operation. It is desirable to lift this restriction.
One possibility would be to add a version of GrB Type new
that supports arbitrary user-defined types as follows.

When the user creates a new type, he or she must pass three
functions that perform the most basic operations in that type:

1) A create function that creates an object of the user-
defined type. That includes allocating storage for the
object and initializing that object to a default state.

2) A copy function that copies the state of a source object
of the user-defined type to a target object of the same
user-defined type.

3) A destroy function that destroys an object of the user-
defined type, releasing any resources the object uses.

Optionally, we could allow create, copy and destroy methods
for arrays of user-defined objects, in order to avoid the
overhead of function calls and memory management at the
level of each individual object. The description of this new
form of GrB Type new is shown in Figure 3.

VIII. KRONECKER PRODUCT

One of the proposed operations in the mathematical specifi-
cation of GraphBLAS is Kronecker product. It is not present in

4



a) Syntax:
GrB_Info GrB_Type_new(GrB_Type *utype,

void *create,
void *destroy,
void *copy);

b) Parameters:
utype (INOUT) On successful return, contains a handle to the newly

created user-defined GraphBLAS type object.
create (IN) A pointer to a function that creates and initializes (to a

default state) an object of the user-defined type. Such function
must return a void* pointer to the new object. Its signature is
void* create().

destroy (IN) A pointer to a function that destroys an object of the
user-defined type, releasing any resources the object uses. Its
signature is void destroy(void* obj).

copy (IN) A pointer to a function that copies the contents from
a source object of the user-defined type to a destina-
tion object of the same user-defined type. Its signature is
void copy(void* tgt, const void* src).

c) Return Values:
GrB SUCCESS operation completed successfully.

GrB PANIC unknown internal error.
GrB OUT OF MEMORY not enough memory available for opera-

tion.
GrB NULL POINTER at least one of utype, create, destroy,

copy pointers is NULL.

Fig. 3. Definition of a GrB Type new GraphBLAS method that can support
arbitrary user-defined types.

the current GraphBLAS API, but may be added in the future.
Kronecker product may be useful for generating graphs. It is
known that the Kronecker product of the adjacency matrices
of two graphs is the adjacency matrix of their tensor product
graph.

IX. RANK PROMOTION

Rank promotion is the conversion of an object of lower
rank (e.g., scalar or rank 0) to an object of a higher rank
such as a vector (rank 1), or a matrix (rank 2). It is a
common feature in array programming languages such as
Fortran 90+ and MATLAB. Typically, a scalar is converted
to a matrix or vector by replicating it in every element of
the matrix or vector. A vector is converted to a matrix by
replicating it either along the rows or along the columns of
the matrix. The replication factor can be stated explicitly or
implicitly calculated in order to result in a valid operation. We
should note that rank promotion can already be accomplished
explicitly with the existing GraphBLAS methods. However,
doing it automatically, as we propose in this section, saves a
matrix or vector instantiation just for that purpose.

In GraphBLAS, scalars, whether of built-in or user-defined
type, are always of rank 0. Vectors and matrices are of rank 1
and 2, respectively. Our proposal is to support automatic rank
promotion by allowing, in most cases, the use of an object of
lower rank in an input argument.

For example, in the GraphBLAS matrix multiply method
GrB mxm(C,Mask,accum,op,A,B,desc)

A and B are input matrices. One could replace either (or
both) of them by a scalar or vector. Assume no transposition
specified by the descriptor desc, and let C be an m×n matrix,

TABLE IV
TENTATIVE LIST OF AUTOMATIC RANK PROMOTIONS IN GRAPHBLAS.

Matrices: A,B,C,M
Vectors: a,b,u,w,m
Scalars: a, b, u, v
∆ denotes a descriptor
S is a semiring
� is a binary operator used for accumulation
⊕ and ⊗ are binary operators, either standalone or from a monoid/semiring
f(·) is a unary operator

Method Promotions
GrB mxm(C,M,�, S,A,B,∆) a→ A

a→ A
b→ B
b→ B

GrB vxm(w,m,�, S,u,A,∆) u→ u
a→ A
a→ A

GrB mxv(w,m,�, S,A,u,∆) u→ u
a→ A
a→ A

GrB eWiseMult(w,m,�,⊗,u,v,∆) u→ u
v → v

GrB eWiseMult(C,M,�,⊗,A,B,∆) a→ A
a→ A
b→ B
b→ B

GrB eWiseAdd(w,m,�,⊗,u,v,∆) u→ u
v → v

GrB eWiseAdd(C,M,�,⊗,A,B,∆) a→ A
a→ A
b→ B
b→ B

GrB assign(C,M,�,A, i,m, j, n,∆) a→ A
a→ A

GrB apply(w,m,�, f(·),u,∆) u→ u
GrB apply(C,M,�, f(·),A,∆) a→ A

a→ A

A be a scalar and B be an p× n matrix. The scalar A would
be converted into an m × p matrix, with all its elements set
to the value of A. After that, the matrix multiplication would
proceed as specified in the standard. We note that the same
requirements for domain compatibility would still hold.

If, instead, A were an m-element vector, it would be
converted into an m× p matrix by replicating it p times as a
column of the matrix. Replication as rows could be achieved
by specifying transposition of A in the descriptor.

A tentative list of GraphBLAS methods supporting au-
tomatic rank promotion is shown in Table IV. The left
column of the table shows the standard signatures of the
main GraphBLAS methods. The right column shows which
rank promotions are supported for that method. A promotion
a → A means that a scalar a can be used in place of matrix
A. That scalar will get promoted to a matrix of the right shape
before the operation. Correspondingly, a → A means that a
vector a can be used in place of matrix A. Finally, u → u
means that a scalar u can be used in place of vector u.

We realize that adding automatic rank promotion can result
in operations that the user did not intend if an object with
a the incorrect rank is accidentally sent as one of the input

5



arguments. This could, again, be ameliorated with the use
of the descriptor by requiring flags corresponding to the
input arguments that explicitly specify the type of promotion
desired. Further discussion within the GraphBLAS community
is desired before deciding on the approach.

X. CONCLUSION

The GraphBLAS C API 1.0 provisional specification was
released in May of 2017. The qualifier “provisional” will
be dropped once two conforming implementations of the
specification have been completed. To manage the scope of
the project, we had to defer many planned features for a future
release of the GraphBLAS C API.

A successful API evolves over time to meet the needs of
its user community. This means a dialogue between the users
of the API and the team working on developing the API is
critical. This paper is the start of the next phase in that dialog,
launching an ongoing discussion of the future GraphBLAS C
API version 2.0.

ACKNOWLEDGMENTS AND DISCLAIMERS

We thank the members of the GraphBLAS forum.
This material is based upon work funded and supported by

the Department of Defense under Contract No. FA8702-15-D-
0002 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and
development center [DM17-0410]. Aydın Buluç and Carl Yang
were supported in part by the Applied Mathematics Program of
the DOE Office of Advanced Scientific Computing Research
under contract number DEAC02-05CH11231. Carl Yang was
supported in part by the DARPA XDATA program (US Army
award W911QX-12-C-0059) and the National Science Foun-
dation (Award No. CCF-1629657).

REFERENCES

[1] The GraphBLAS Forum. http://graphblas.org/.
[2] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang. Design of

the GraphBLAS API for C. In Intl. Parallel & Distributed Processing
Symposium Workshop (IPDPSW). IEEE, 2017.

[3] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang. The
GraphBLAS C API Specification, version 1.0.0. Technical report, The
GraphBLAS Signatures Subgroup, May 2017. http://graphblas.org/ ayd-
in/GraphBLAS API C.pdf.

[4] T. A. Davis and Y. Hu. The university of florida sparse matrix collection.
ACM Transactions on Mathematical Software (TOMS), 38(1):1, 2011.

[5] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert,
D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, S. McMillan,
J. Moreira, J. Owens, C. Yang, M. Zalewski, and T. Mattson. Mathemat-
ical foundations of the GraphBLAS. In IEEE High Performance Extreme
Computing (HPEC), 2016.

[6] J. Kepner and J. Gilbert. Graph algorithms in the language of linear
algebra, volume 22. SIAM, 2011.

6

http://graphblas.org/
http://gauss.cs.ucsb.edu/~aydin/GraphBLAS_API_C.pdf
http://gauss.cs.ucsb.edu/~aydin/GraphBLAS_API_C.pdf

